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The archaeal RNA polymerase (RNAP) is a double-psi β-barrel enzyme closely related to
eukaryotic RNAPII in terms of subunit composition and architecture, promoter elements
and basal transcription factors required for the initiation and elongation phase of tran-
scription. Understanding archaeal transcription is, therefore, key to delineate the univer-
sally conserved fundamental mechanisms of transcription as well as the evolution of the
archaeo-eukaryotic transcription machineries. The dynamic interplay between RNAP sub-
units, transcription factors and nucleic acids dictates the activity of RNAP and ultimately
gene expression. This review focusses on recent progress in our understanding of (i) the
structure, function and molecular mechanisms of known and less characterized factors
including Elf1 (Elongation factor 1), NusA (N-utilization substance A), TFS4, RIP and Eta,
and (ii) their evolution and phylogenetic distribution across the expanding tree of Archaea.

Introduction
Transcription — the DNA template-dependent synthesis of RNA — is essential to life. The overall struc-
ture of the molecular machine that drives transcription, RNA polymerase (RNAP), is universally con-
served in all domains of life, including Bacteria, Archaea and Eukarya. But whereas bacteria and archaea
use a single RNAP to transcribe all genes, eukaryotes have compartmentalized the transcription space
into distinct subsets of genes that are transcribed by three and five different enzymes in animals and
plants, respectively. Most features of archaeal transcription — including the RNAP, general transcription
factors that govern its activities and the DNA sequence elements with which they interact — are closely
related to the eukaryotic RNAPII system. The archaeal transcription apparatus is likely to resemble the
ancestral version of eukaryotic RNAPII and thus worthy of our attention not only because it is interesting
in its own right, but also because it serves as highly tractable and thus extremely valuable model system.
Archaea are prokaryotic organisms that occupy a key position in the tree of life. The development

of culture-independent sequencing techniques highlighted the abundance of archaea in diverse envir-
onments such as soils, deep-sea sediments and hydrothermal systems. Archaea are also well-
recognized components of the human microbiome and provide a broader view on biodiversity. To
date, archaea comprise at least four major superphyla, each of which comprises various phyla:
Euryarchaeota (subdivided into group I and II), DPANN (Diapherotrites, Parv-, Aenigm-, Nano-,
Nanohaloarchaeota, and others), TACK (Thaum-, Aig-, Cren-, Kor- and Bathyarchaeota) and
ASGARD (Loki-, Odin-, Thor- and Heimdallarchaeota) [1–5]. Genetically very diverse, archaea use a
single type of RNAP to transcribe all genes. However, lineage-specific RNAP subunits, such as Rpo8
and Rpo13, shed light on the acquisition of transcription function during evolution.

Architecture and function of the archaeal RNAP
subunits
All cellular RNAPs share a subunit core whose ancestry predates the last universal common ancestor
and thus the diversification into the lineages that have evolved into extant bacteria, archaea and eukar-
yotes [6]. The RNAP core is formed by five universally conserved subunits (Rpo1, 2, 3, 6 and 11 in
archaea) and contains, in principle, all critical elements for transcription. In addition, RNAP subunits
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not conserved in bacteria play important roles for the assembly and stability of RNAP (Rpo10 and 12), its
interactions with downstream DNA (Rpo5 and 13), the RNA transcript as well as the initiation factor TFE
(Rpo4 and 7). RNAP subunits and their functions are summarized in Table 1 and Figure 1. The catalytic
centre enabling phosphodiester bond formation and cleavage in all multisubunit RNAPs is formed between
two structural motifs called double-psi β-barrels (DPBBs) residing in the large subunits (Rpo1 and Rpo2) [7,8].
In many archaea, the genes encoding the large RNAP subunits Rpo1 and Rpo2 are split into two open reading
frames [8,9]. The two DPBBs acquired different functions crucial for the activity of extant RNAPs: One DPBB
provides three carboxylate residues (aspartic acid) for the active site that chelate one of the two catalytic magne-
sium ions (Mg-A), while the second DPBB contributes two universally conserved lysine residues that facilitate
interactions with nucleic acid and NTP substrates [10,11]. The overall RNAP core resembles a crab claw with a
DNA-binding channel (aka main channel) between its pincers that leads the DNA template strand towards the
active site (Figure 1). The NTP entry channel (aka secondary channel) connects the external milieu with the
RNAP active centre allowing NTP substrates to enter the RNAP active site [12] and the RNA 30-terminus to be
extruded through it in backtracked transcription elongation complexes (ECs) (see below).
Like all molecular machines, the RNAP comprises a combination of rigid and flexible parts; the most prom-

inent conformationally flexible domain of RNAP is the clamp. Movements of the clamp are conserved in all

Table 1 Evolutionary conservation of RNAP subunits and general transcription factors
Table summarizes the archaeal RNAP subunits, transcription initiation- and elongation factors, and
indicates the homologous components in bacteria and eukaryotes. The column on the right indicates the
molecular functions discussed in detail in the text. Note that the bacterial sigma-70 factor is functionally
analogous to the TBP/TFB duo, while only sharing a very limited sequence similarity with TFB. Bacterial
Gre factors are functionally analogous, but not homologous, to TFS/TFIIS transcript cleavage factors.

*Only found in some species.
**Archaeal TFS is evolutionarily related to RNAPII subunit RPB9 and to the transcript cleavage factor TFIIS in eukaryotes.
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DPBB RNAPs and not only alter the width of the DNA-binding channel but also translate into the microenvir-
onment of the active centre. During transcription, RNAP progresses through three distinct phases of the tran-
scription cycle starting with initiation of transcription, elongation and termination with concomitant release of
the transcript (Figure 2A). Interactions with the DNA template and general initiation- and elongation factors
modulate the position of the clamp, resulting in distinct clamp closure states that reflect functional states of
RNAP at different phases of the transcription cycle. In brief, FRET measurements on Methanocaldococcus jan-
naschii RNAP revealed that clamp opening is important (i) during transcription initiation for DNA melting
and template strand loading into the active site enhanced by the initiation factor TFE, (ii) keeping the clamp
closed in conjunction with the factor Spt4/5 during elongation enables high processivity [13,14]. In addition,
an opening of the clamp accompanies pausing and is a prerequisite for bacterial transcription termination [15].
Rpo13 is the only archaea-specific RNAP subunit, and it is only conserved in species belonging to the

Sulfolobales family of Crenarchaeota. Rpo13 is located at the downstream end of the DNA-binding channel
and has been speculated to interact with the DNA template. The most prominent difference between bacterial
and archaeo-eukaryotic RNAPs is the stalk domain comprising Rpo4 and Rpo7. The stalk interacts with the
initiation factor TFE during initiation, and with the nascent RNA transcript during elongation via an oligo-
nucleotide/oligosaccharide binding (OB) S1 domain residing in Rpo7. The interactions between the RNA and
Rpo7 have been reported in vitro, they increase the processivity during elongation, and enable efficient termin-
ation at weak intrinsic terminator signals [16]. Rpo8, like Rpo7, contains an OB-fold [17]. The functional

Figure 1. Structure of the archaeal RNAP.

Overall architecture of the archaeal RNAP (subunits are colour-coded according to the key). The DPBB-1 and -2 comprising

the catalytic centre reside in the two largest subunits Rpo1 and -2, respectively. Important structural features and motifs,

including the RNAP assembly platform, stalk, clamp and the (main) DNA-binding channel and (secondary) NTP entry channel,

are highlighted with dashed circles.
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implications of this OB-fold are unclear; however, the location adjacent to the secondary channel suggests that
it could interact with the 30 segments of the RNA that are extruded through the pore in backtracked ECs
[11,18]. Rpo8 is the only archeo-eukaryotic acquisition in the RNAP subunit repertoire that is not conserved in
all archaea. While Rpo8 is present in species belonging to the TACK (Cren- and Korarchaeota) and ASGARD
(Odin- and Heimdallarchaeota) superphyla, it is not conserved in euryarchaeal and DPANN species (Table 1)
[19,20]. The eukaryotic homologue of the archaeal transcript cleavage factor TFS corresponds to the RNAPII

Figure 2. The archaeal transcription cycle.

(A) The archaeal transcription cycle consists of initiation, elongation and termination phases during which RNAP is assisted by

general transcription factors. (B) Transcription cascade. TBP (pink) and TFB (green) bind to the TATA-box and BRE promoter

elements, respectively, forming a ternary complex. RNAP (grey) is subsequently recruited to form the minimal PIC. TFE (yellow)

is recruited to the PIC, and enhances the transition between the CC and OC which occur concomitantly with DNA strand

separation and formation of the transcription bubble. In the presence of NTP substrates, RNAP undergoes abortive initiation

that produces 3–9 nt RNA species — also called abortive transcripts or nano-RNAs. The elongation factor Spt4/5 (orange)

displaces TFE in a process coined factor swapping during promoter escape or early elongation. Template and non-template

DNA strands are shown in dark blue and light blue, respectively. Catalytic Mg-A is shown in purple.
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subunit RPB9 as well as to the transcription factor TFIIS, a special case that is discussed in depth in section
‘RNAP backtracking, arrest and reactivation’. Overall, archaeal RNAPs and in particular the RNAPs of the
TACK and ASGARD superphyla are closely related to eukaryotic RNAPII in terms of subunit composition.

Factors and mechanisms enabling transcription initiation in
archaea
While bacterial RNAPs require sigma factors to initiate transcription, archaeal RNAP utilizes the three general
transcription initiation factors TBP (TATA-binding protein), TFB (Transcription Factor B) and TFE
(Transcription Factor E) that are homologous to eukaryotic TBP, TFIIB and TFIIE [21–25], respectively. On
the nucleic acid level, three consensus promoter elements direct the assembly of transcription initiation com-
plexes on the promoter: the TATA-box (7–8 bp in length), B-recognition- (BRE, 3–5 bp in length) and the ini-
tiator (Inr) elements. The consensus DNA sequences of these elements is differentially conserved in the
archaeal lineages; the TATA element is highly conserved, the BRE consensus is juxtaposed to TATA elements
and enriched in A-residues, and the Inr (T(A/G)) is conserved in some archaea (e.g. M. jannaschii,
Methanolobus psychrophilus, Sulfolobus solfataricus and Haloferax volcanii) but not in others (e.g.
Methanosarcina mazei, Thermococcus kodakarensis) [26]. TATA and BRE serve to recruit transcription initi-
ation factors. The sequence and role of the Inr is difficult to decipher because this motif overlaps extensively
with start codon positions in many archaeal species such as S. solfataricus where most mRNAs are leaderless. A
sequence preference for purines at the TSS preceded by a pyridine is a universal feature not only of DPBB
RNAPs, but also of other RNAPs as it helps positioning the initiating NTP substrate [27]. A genome-wide
comparison of transcript 50-ends and the Inr motifs of the corresponding promoters revealed that the Inr is
important for the exact positioning of the transcription start site TSS in M. jannaschii [28].
Archaeal TBP corresponds to the eukaryotic TBP core domain that binds to and distorts the

TATA-containing promoter DNA by ∼90° (Figure 2B) [29,30]. TBP has an internal symmetry consisting of two
repeats that are derived from an ancestral DNA-binding domain present in RNaseHIII [31,32]. The kinetics and
stability of the TBP–DNA interaction differs significantly between archaeal species suggesting lineage-specific
adaptation. For many archaea, the formation of a stable TBP:DNA complex requires TFB recruitment concomi-
tant with TBP binding [29,33]. TFB, like its eukaryotic counterparts, consists of an N-terminal ZR (Zn-ribbon)
domain connected by a flexible linker region to two cyclin fold domains at the C-terminus. The linker region
itself comprises the B-reader and the B-linker motifs [34]. The orientation of the ternary TBP–TFB–DNA
complex determines the directionality of transcription and relies on interactions between the second cyclin fold
of TFB and the BRE upstream of the TATA-box [35]. The ZR domain of TFB interacts with the RNAP dock
domain and recruits RNAP to the promoter forming a minimal DNA–TBP–TFB–RNAP pre-initiation complex
(PIC). The B-linker penetrates deep into the RNAP and stabilizes the template DNA strand (TS) in the active
site [34,36,37]. Many archaea, most prominently haloarchaea, utilize combinations of multiple TBP and TFB
homologues, allowing different combinations of TBP–TFB which enable a certain degree of promoter specificity
[38–40]. Additional TFB paralogues do not necessarily function the same way as canonical TFBs. TFB3, a TFB
paralogue in Sulfolobus that is induced by UV-radiation and DNA damage, cannot replace the canonical TFB
homologue, but rather appears to activate transcription in conjunction with canonical TFB in trans via a mech-
anism that is still poorly understood [41]. Recent insights into the genes under direct control of TFB3 provide
now a basis for functional studies into the molecular mechanism of transcription activation by TFB3 [42,43].
To load the DNA TS into the RNAP active centre, the DNA strands are locally melted in a region 12 bp

upstream of the TSS. This process is accompanied by large-scale conformational changes of the PIC that are
referred as closed (CC) to open complex (OC) transition [21,44–46]. The initially melted region (IMR) shows
an increased AT-content that might aid DNA melting in some, but not all archaea. DNA melting and OC for-
mation are facilitated by the third archaeal initiation factor termed TFE. Canonical archaeal TFE and its
eukaryotic counterpart TFIIE are composed of two subunits (α and β) [21]. TFEα and TFIIEα share the bipart-
ite WH (winged helix) and ZR domain organization that interact with RNAP in a bidentate fashion: the TFEα
ZR domain interacts with the RNAP clamp and stalk, whereas the TFEα WH domain interacts with the RNAP
clamp coiled-coil (clamp-CC) domain [47]. The interactions of TFEα with both the stalk and clamp domains
of RNAP together with interactions of TFE with the non-template strand (NTS) of the promoter DNA retain
the clamp in the open conformation, and stabilize the transcription bubble, respectively, facilitating OC forma-
tion [45,47,48] (Figure 2B). In the presence of NTP substrates, the RNAP enters into abortive cycles of

© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY).

521

Emerging Topics in Life Sciences (2018) 2 517–533
https://doi.org/10.1042/ETLS20180014

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


synthesis which release short RNA transcripts (2–15 nt) prior to the full extension of the RNA–DNA hybrid
and escape from the promoter [46,49,50].

Is TFEβ a global regulator of transcription?
The TFEβ subunit has a patchy phylogenetic distribution and is present in most group I euryarchaeota (with
the exception of Thermoplasmata that lack both α- and β-subunits), TACK (missing in Korarchaeota) and
ASGARD superphyla, but is absent from species from group II Euryarchaeota and DPANN [26,51]. TFEβ con-
sists of an N-terminal WH- and a C-terminal cubane [4Fe–4S] cluster domain. The [4Fe–4S] cluster easily
undergoes oxidative damage rendering TFE sensitive to oxidative stress. TFEβ expression levels vary dramatic-
ally with growth conditions and environmental stresses in S. solfataricus, unlike the remaining general tran-
scription factors. Since TFE is a general factor and its activation of transcription varies considerably between
promoters, the depletion of TFEβ has the potential to alter the RNA synthesis globally in S. solfataricus. In
essence, modulation of OC formation provides an opportunity for the regulation of transcription, a mechanism
which has previously been shown to operate in bacterial and eukaryotic transcription systems [26].
Interestingly, H. volcanii TFEβ and indeed all haloarchaeal homologues lack the [4Fe–4S] cluster that is essen-
tial for S. solfataricus TFEβ function. Nevertheless, in line with TFEβ being a bona fide general transcription
factor, the deletion of the H. volcanii TFEβ results in the misregulation of approximately one-third of all tran-
scription units [52]. The group II Euryarchaeota lacks TFEβ altogether and monomeric TFEα can fully support
OC formation [23,36,48]. This broad, though patchy phylogenetic, distribution suggests that both TFEα and β
subunits were present in the last archaea common ancestor (LACA) [26,52].

Promoter escape: early transcription elongation
All DPBB RNAPs face similar mechanical engineering problems when entering the early elongation phase of
the transcription cycle. A network of high affinity interactions between DNA-bound initiation factors (TBP,
TFB and TFE) and RNAP are important to enable efficient recruitment to the promoter. However, these inter-
actions need to be disrupted for RNAP to escape the promoter and enter processive transcription elongation.
Structures of the initially transcribing complex of yeast RNAPII as well as recent cross-linking studies in
Pyrococcus have shown that once the nascent RNA exceeds 5 nt in length, it collides with the TFB B-reader
and B-linker domains, disrupting the interaction with and displacing TFB from the active site of RNAP
[34,53,54]. Promoter escape of archaeal RNAP has not been well studied thus far and probably differs from its
eukaryotic counterpart RNAPII with its drastically increased repertoire of initiation factors. Exonuclease and
permanganate foot-printing studies revealed that promoter escape is initiated once the nascent RNA reaches
10 nt in length [46]. Once the elongating RNAP has reached register +15, the interactions between TFB and
the DNA downstream of the TATA-box are disrupted [54]. An additional feature of the promoter escape is the
swapping of initiation (TFE) and elongation factors (Spt4/5), both of which bind to overlapping binding sites
on the RNAP clamp-CC motif in a mutually exclusive manner. This mechanism was initially discovered using
biochemical and biophysical interaction analysis and transcription assays in vitro [47] and it is supported with
the early recruitment of Spt4/5 to the vast majority of transcription units in vivo determined using chromatin
immunoprecipitation (ChIP-seq) [28]. The association of Spt4/5 possibly induces allosteric changes in RNAP
from an initiation- to elongation competent conformation. In line with this idea, single molecule FRET experi-
ments showed that TFE and Spt4/5 exert opposing effects on the position of the RNAP clamp [14]. The global
occupancy analysis revealed that a subset of non-coding RNA transcription units, including the ribosomal
RNA operons and CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, displayed a
delayed Spt4/5 recruitment to the promoter, suggestive of an alternative promoter escape mechanism possibly
reliant on additional uncharacterized transcription factors [28].

Factors and mechanisms that enable efficient transcription
processivity
A subset of evolutionarily conserved regulatory factors assist RNAP during transcription elongation by modu-
lating the elongation rate and/or by improving the processivity (defined as polymerized nucleotides per initi-
ation). Elongation factors belonging to the Spt4/5 family (the bacterial homologue of Spt5 is called NusG)
stimulate transcription by binding to the RNAP clamp-CC on one side of the DNA-binding channel and to
the RNAP gate loop on the other [13,55–58]. This locks the clamp into the closed state and seals the
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DNA-binding channel of RNAP, which counteracts the dissociation of the EC [13,59,60]. In addition, the inter-
action between the Spt5/NusG NGN (NusG N-terminal) domain and the template DNA enhances the anneal-
ing of the TS and NTS at the upstream edge of the transcription bubble and thereby suppress backtracking and
pausing, which overall improves processivity and increases the elongation rate [61]. Bacterial NusG is mono-
meric, while in archaea and eukaryotes, NusG homologue Spt5 forms a heterodimer with a small
ZR-containing protein Spt4. Spt4 not only exerts a stabilizing effect on the Spt5 NGN domain but also may
functionally interact with the upstream DNA of the EC [13,59]. In addition to the NGN domain, Spt5 contains
one (in archaea and bacteria) or several (in eukaryotes) KOW (Kyrpides–Ouzounis–Woese) domains. In bac-
teria and probably in archaea, the KOW domain interacts with the ribosomal protein S10 thereby physically
coupling RNAP and the first co-translating ribosome, coordinating transcription and translation [55,62].
Structural insight into complete yeast transcription ECs encompassing RNAP, DNA, TFIIS, Spt4/5 and Elf1

reveals a striking reoccurring theme, by which the latter two elongation factors form entry and exit tunnels for
the DNA and RNA strands [58,59]. Elf1 (Elongation factor 1) is a transcription elongation factor conserved in
eukaryotes and several archaeal species [63]. Homologues of Elf1 have been identified in of the TACK (Cren-,
Kor-, Aig- and Bathyarchaeota) as well as in the ASGARD superphylum (Table 1) [3,63,64]. Elf1 comprises a
positively charged N-terminal α-helical tail, a structurally discrete ZR domain and a negatively charged
unstructured C-terminal tail [59,65]. ChIP-Seq analyses in yeast demonstrate that Elf1 accompanies elongating
RNAPII in similar manner to Spt4/5 [66], and in vitro transcription assays showed that Elf1 inhibits transcrip-
tion elongation, possibly by interacting with downstream DNA via its N-terminal tail [59]. Elf1 is likely also
part of the archaeal EC (Figure 3); however, the mechanism and function of Elf1 during transcription
elongation in archaea remains enigmatic.

A likeness between the Rpo4/7 RNAP stalk and NusA
The origin of the RNAP stalk — a hallmark feature of archaeal and eukaryotic RNAPs — is opaque, but a com-
bination of recent structural and functional studies has revealed a striking resemblance to a bacterial elongation
factor. The bacterial NusA (N-utilization substance A) interacts with the RNAP via the NusA N-terminal

Figure 3. The archaeal transcription elongation complex.

Schematic representation of the complete archaeal transcription elongation complex encompassing RNAP-DNA/RNA, TFS, Spt4/5

and possibly Elf1. The function of the cleavage and processivity factors are discussed in detail in the main text. The RNA-bound

NusA is indicated beyond the tip of the RNAP stalk. Factors with unknown function is archaea are highlighted in dashed lines.
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domain (NTD), and with RNA in at least two distinct ways that have different effects on transcription elong-
ation. Interactions of the NusA S1 domain with an RNA hairpin enhances transcription pausing. In contrast,
interactions between the NusA KH1 and -2 domains and the RNA nut (N-utilization target) sequence promote
antitermination on ribosomal RNA operons [67]. This increases the elongation rate and renders the RNAP
inert to the action of the termination factor rho [68]. All archaea encode one or several genes homologous to
NusA, but archaeal NusA variants only encompass the two RNA-binding KH domains and not the N-terminal
RNAP-interaction- and S1 domains altogether [69,70]. The archaeal RNAP stalk subunit Rpo7 includes an
RNAP interaction domain, as well as an S1 domain that interacts with the nascent RNA transcript, which in
turn modulates both transcription elongation and termination properties of the elongation complex [16]
(Figure 4A). In combination, the RNAP interaction- and S1 domains of Rpo7 in conjunction with the two KH
domains of archaeal NusA provide the complete domain complement of bacterial NusA [71]. Moreover, a
recent structure of the bacterial RNAP–NusA complex shows that NusA forms an elongated stalk protruding
from the RNAP proximal to the RNA exit channel, somewhat reminiscent of the archaeal and eukaryotic
RNAP structures (Figure 4B) [72]. The possibility of a relationship between Rpo7 and NusA is enticing, and
the S1 domains of archaeal Rpo7 and eukaryotic RPB7 and bacterial NusA are homologous [71] (Figure 4C). If
indeed Rpo7 is homologous to NusA, an important question remains how the division of one polypeptide
(NusA) in bacteria into two distinct (Rpo7 and NusA) polypeptides in archaea-altered NusA function.

Transcription bubble maintenance by flexible RNAP motifs
During transcription elongation, RNAP translocates along the template DNA via a thermal Brownian ratchet
mechanism [73–75]. The active centre of RNAP contains several polypeptide loops that were shown to be crit-
ical for the proper arrangement of the RNA–DNA hybrid and its stability during RNAP elongation. The

Figure 4. Structure comparisons of archaeal RNAP and the bacterial RNAP–NusA complex.

(A) The archaeo-eukaryotic Rpo4/7 subunits form a stalk-like protrusion highly reminiscent of (B) the RNAP-bound bacterial

elongation and antitermination factor NusA. The S1 domains of Rpo7 and NusA are highlighted in dashed lines. The insertion

domains SI1, SI2 and SI3 of E. coli RNAP and regulatory C-terminal domain of NusA were omitted for clarity. (C) RNA-binding

S1 domains of archaeal Rpo7 (PDB: 1GO3) and bacterial NusA (PDB: 1K0R).
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downstream DNA stacks on the fork loop 2, which plays a critical role in double-strand DNA separation [76]
(Figure 5). The lid serves as a wedge to facilitate RNA displacement by sterically blocking the formation of an
overextended hybrid [76–78], while the rudder interacts with the RNA and overall stabilizes the EC [79].
Switch 3 binds to each RNA base in a nascent transcript as it dissociates from the RNA–DNA hybrid, stabiliz-
ing the EC [80,81]. Finally, the double-stranded DNA is reformed at the upstream edge of the transcript
bubble by the zipper motif [11,77].

RNAP backtracking, arrest and reactivation
Transcription elongation is a discontinuous process during which the EC pauses relatively frequently. This
pausing can be induced in DNA sequence-dependent fashion (e.g. poly-A stretches in the TS) or by roadblocks
such as DNA-bound proteins (e.g. chromatin proteins) or DNA lesions [82–85]. Upon pausing, RNAP can
move in a retrograde direction along the DNA, which is referred to as backtracking. During this process, the
RNA–DNA hybrid maintains its 8–9 bp length, while one or more nucleotides of the RNA 30-end are displaced
from the downstream edge of the RNA–DNA hybrid out of the active site rendering the backtracked EC cata-
lytically inert. If backtracking proceeds further, longer RNA 30 segments are extruded from the RNAP through
the secondary channel. Backtracked ECs pose a severe problem for the cell since they act as roadblocks for
upstream transcription ECs and replication forks, which can lead to double-stranded DNA breaks compromis-
ing genome integrity [86]. Transcript cleavage factors resolve this conflict by inducing an endonucleolytic cleav-
age activity inherent in DPBB RNAPs. This generates a new RNA 30-end conducive to RNA polymerization
and transcription elongation can commence.
While archaea and eukaryotes utilize evolutionary related factors, TFS and TFIIS, respectively, the non-

homologous bacterial Gre factors carry out the same function while providing a stunning case of convergent
evolution [87] (Table 1). With the exception of the euryarchaeon Methanopyrus kandleri, TFS is conserved in
all archaeal species [88]. Both TFS and TFIIS are evolutionarily related to RPB9-like subunits of eukaryotic
RNAPs, but while RPB9 subunits are stably incorporated into RNAP, TFS/TFIIS associate with their cognate
RNAP in a reversible fashion (Table 1) [89]. All transcript cleavage factors position two acidic residues at the
tip of an elongated insertion domain through the secondary into the RNAP active site. The carboxylate moi-
eties stabilize a magnesium ion required for the stable coordination of a water molecule that carries out a
nucleophilic attack on the RNA phosphodiester bond triggering RNA cleavage [89–91].

Functional diversification of archaeal transcript cleavage
factors
Several archaeal species encode more than one TFS paralogue, e.g. the genome of the crenarchaeon S. solfatari-
cus includes four apparent TFS paralogues (TFS1 to 4). While TFS1 carries out the canonical transcript

Figure 5. Flexible motifs enable the nucleotide translocation cycle of DPBB–RNAP.

Schematic representation of RNAP active centre in the transcribing RNAP elongation complex (EC), the NTP insertion site

corresponds to register i + 1. The motifs critical for RNA–DNA hybrid maintenance are shown as coloured triangles, and the

trigger loop (TL) and bridge helix (BH) are shown in magenta and green, respectively, RNA, DNA strands, catalytic Magnesium

ions and NTP substrate are coded according to the key.
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cleavage function, TFS4 has evolved into a highly potent RNAP inhibitor [91]. TFS4 shares a high degree of
sequence similarity with TFS1 but lacks the catalytic acidic (DE) residues required for transcript cleavage activ-
ity. Rather, three lysine residues replace the acidic residues at the tip of the insertion domain. TFS4 binding to
RNAP destabilizes transcription initiation and ECs which suggests that it exerts an allosteric effect that compro-
mises the interactions between RNAP and the nucleic acid scaffold. These conformational changes are likely
characteristics for all DPBB RNAP and related to the mechanism by which the bacterial regulator Gfh1 inhibits
RNAP activity [92,93]. In addition to the allosteric mechanism, TFS4 acts as a competitive inhibitor for NTP
binding to RNAP, possibly by sterical blockage as suggested by its binding site within the secondary channel.
Expression of the tfs4 gene is not detectable under standard growth conditions. However, infection with STIV
(Sulfolobus turreted icosahedral virus) leads both to a dramatic increase in TFS4 expression, and induces a
dormant state in the infected cell [94] (Figure 6). TFS4 is likely to play a key role in this process, since the
ectopic overexpression of a TFS4 variant is sufficient to induce a severe growth retardation in line with its
potent inhibitory effect on global transcription. Our understanding of the biological function of TFS4 during
infection leaves much room for improvement, but it seems likely that the inhibition of transcription is an anti-
viral response that enables host survival by persistence. This is a survival strategy employed by bacteria in
response to bacteriophage infection; the infected cells enter a hiatus to inhibit virus proliferation often in con-
junction with additional, more active, defence mechanisms [95].

Global inhibition of transcription in the host–virus arms
race
TFS4 is a host encoded archaeal transcription factor that inhibits transcription on a global level in response to
viral infection [91]. Surprisingly, archaeal viruses themselves use a very similar strategy to their own advantage.
Archaeal cells are exposed to a plethora of viruses in their natural environment, and an ongoing arms race
between the two has shaped the relationship between them [96]. One of the primary antiviral defence

Figure 6. Global transcription inhibition in the virus–host relationship.

Both host- (TFS4) and virus-encoded factors (RIP) can directly associate with the archaeal RNAP and efficiently shut down

transcription on a genome-wide scale. The S. solfataricus transcript cleavage factor homologue TFS4 interacts with RNAP like

other cleavage factors such as TFS1 through the NTP entry channel. Rather than promoting transcription elongation, TFS4

dramatically lowers the affinity of RNAP for NTP substrates thereby inhibiting catalysis, and induces allosteric changes that

destabilize RNAP-nucleic acid interactions. TFS4 expression is repressed during normal cell growth but highly induced by

infection with the STIV. In comparison, the ATV that infects Sulfolobales encodes the small protein RIP, which is derived from a

viroid coat protein but has evolved into a potent inhibitor of the archaeal RNAP. RIP binds to the RNAP clamp in the

DNA-binding channel, locks the clamp into a fixed position and inhibits RNAP activity in a global fashion. Both TFS4 and RIP

inhibit transcription in a DNA sequence-independent fashion, i.e. they repress host as well as virus promoters. While the former

has been speculated to provide a survival mechanism for the infected host akin to persistence, the latter probably serves the

virus by preventing or attenuating the activation of cellular antiviral type III-B CRISPR–Cas system.

© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY).

526

Emerging Topics in Life Sciences (2018) 2 517–533
https://doi.org/10.1042/ETLS20180014

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


mechanisms of the archaeal hosts is provided by CRISPR–Cas systems [97]. Sophisticated viral counter mea-
sures involve the subjugation of the host transcription machineries, as well as strategies to stay ‘under the radar’
of surveillance mechanisms including the type IIIb CRISPR–Cas system that is triggered by active transcription
[98–100]. Encounters between the Acidianus two-tailed virus (ATV) and S. solfataricus are witnessed by the
presence of several ATV genome-derived CRISPR spacers in the hosts’ CRISPR arrays, including sequences
mapping to a small gene called ORF145 [101]. ORF145, also called RIP (RNAP inhibitory protein), binds
tightly to the inside of the DNA-binding channel of the host RNAP, thereby locking the RNAP clamp into a
fixed position [102]. This counteracts the formation of transcription initiation complexes and inhibits abortive
and productive transcription (Figure 6).
The interaction of RIP with RNAP differs in a fundamental way from TFS4, but the outcome is surprisingly

similar. RNAP-nucleic acid complexes are destabilized and transcription initiation and elongation are inhibited.
Because RIP, like TFS4, binds directly to RNAP, both host and virus promoters are inhibited in a global
fashion. While the regulatory rationale behind this mechanism is still unclear, it is likely that the inhibition of
transcription attenuates or even prevents the activation of the type IIIb CRISPR–Cas system and expression of
anti-ATV CRISPR RNAs, while still enabling transcription on viral genes required for virus proliferation [102].

Mechanisms and factors that enable transcription
termination
Transcription termination not only defines the nascent 30 terminus of the RNA transcript but is important to
prevent transcription read through of RNAP from upstream into the adjacent transcription units in the densely
crowded environment of small archaeal genomes. Despite its biological significance, transcription termination
remains one of the least understood processes of gene expression in archaea. In vitro and in vivo studies have
shown that euryarchaeal RNAPs are capable of terminating transcription directed by short poly-U stretches and
unaided by exogenous factors, a property reminiscent of the eukaryotic RNAPIII system (Figure 7) [103–109].
An unbiased mapping of RNA 30-ends in a euryarchaeal- (M. mazei) and crenarchaeal (S. acidocaldarius)

species using Term-seq has provided an overview of RNA 30-ends in vivo on a genome-wide scale [110].
However, Term-seq alone cannot discriminate between genuine transcription termination sites and RNA 30

ends resulting from RNA processing; therefore, additional prior information, such as high-resolution RNAP
occupancy profiling (ChIP-seq) and -transcriptome mapping (RNA-seq) and the position of the RNA 30 end
relative to operon structures and stop codons (at the end of ORFs), needs to be taken into account for a rigor-
ous and meaningful analysis. Overall, the archaeal Term-seq study supports the notion that transcription termi-
nates immediately downstream of uridine-rich sequences but also highlights additional, lineage-specific
sequence features in M. mazei and S. acidocaldarius that are not accounted for in current models of transcrip-
tion termination [110]. Termination in about one-third of genes in either system is enabled by multiple

Figure 7. Transcription termination and RNA release.

Schematic representations of transcription termination in archaea. Termination events that do not rely on exogenous factors are

known as intrinsic termination. In archaea, intrinsic termination does not rely on secondary structures in the transcript such as

RNA hairpins. Rather, a poly-U stretch seems sufficient to enable termination in vitro and in vivo. Recently, the first archaeal

termination factor, Eta, has been shown to enhance RNA transcript release from stalled ECs. Eta is a Ski2-like DEAD box

helicase that in an ATP-hydrolysis-dependent fashion translocates along the DNA; upon impact with the RNAP from the

upstream direction the transcript is released, the TEC dissociates, and transcription is terminated.
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terminator elements, resulting in variations of non-coding 30-untranslated regions (30-UTRs) with differing
lengths that could be involved in the regulation of gene expression by small non-coding RNAs. Alternatively, or
in addition, transcription termination in archaea could be less precise compared with prototypical bacterial
intrinsic terminators, possibly due to the lack of any RNA hairpin secondary structures in archaeal terminators.
Little is known about factor-dependent transcription termination mechanisms in archaea. In T. kodakarensis,

the Ski2-like RNA helicase Eta (Euryarchaeal Termination Activity) is a DEAD box helicase that is recruited to
stalled transcription complexes via interactions with the DNA immediately upstream of the arrested RNAP
[111,112]. Eta translocates along the DNA in an ATP-dependent fashion, pushes the EC forward and thereby
releases the nascent RNA (Figure 7). It is important to point out that Eta, unlike other transcription termin-
ation factors in bacteria and eukaryotes, is not essential for cell viability and does not trigger transcription ter-
mination of actively elongating RNAPs [112]. Eta’s properties suggest that it is not a general transcription
termination factor but rather likely to be a component of the DNA damage response akin to the Mfd factor in
bacteria [113,114].

Future perspectives
RNAPs are among the most well-studied molecular machines of life. The initiation phase of transcription has
been characterized over the last two decades. These studies have elucidated the structure, function and detailed
mechanisms that govern the archaeal PIC. Many studies have identified positive and negative transcription
factors that enhance or prevent its recruitment of the PIC. While the structure and mechanisms of elongation
factors like TFS and Spt4/5 are reasonably well understood in vitro, a thorough understanding of how these
factors influence transcription in vivo just starts to emerge. An integrated, genome-wide view of transcription
in archaea shows promise to bring to light more sophisticated mechanisms of transcription regulation beyond
the initial recruitment, probably involving promoter escape and transcription processivity during the elongation
phase of the transcription cycle.
Recent discoveries of virus and host encoded global inhibitors of RNAP transcription have shed light on

novel molecular mechanisms and regulatory strategies that seemingly play a key role in the host–virus arms
race. Finally, our field is coming to terms with the fact that the chromatin structure, histone-based or otherwise,
plays an important role in gene regulation in archaea. Novel approaches, including high-throughput sequencing
techniques, live cell imaging, as well atomic-resolution cryo-electron microscopy, will lead to key discoveries
and a new dawn of archaeal gene expression, with an ever more detailed understanding of transcription from
the molecular to the systems level.

Summary
• The catalytic centre or the archaeal RNAP is formed between two DPBB.

• Combined ChIP-seq and RNA-seq analyses reveal the genome-wide organization of trans-
cription and generate new mechanistic hypotheses that can be tested in vitro.

• The general transcription initiation factor TFEβ has the potential to regulate transcription
globally in response to environmental stresses.

• Transcription elongation is modulated by RNAP subunits (Rpo4/7) and transcription factors
(Spt4/5, TFS1 and likely Elf1).

• The RNAP stalk subunit Rpo7 shows an intriguing structural and functional similarity to the
bacterial pausing/antitermination factor NusA.

• The expression of the transcript cleavage factor paralogue TFS4 is induced by STIV virus
infection and acts as a powerful global inhibitor of RNAP in S. solfataricus.

© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons

Attribution License 4.0 (CC BY).

528

Emerging Topics in Life Sciences (2018) 2 517–533
https://doi.org/10.1042/ETLS20180014

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


• The ATV virus-encoded regulator RIP binds directly to RNAP and results in the global inhib-
ition of transcription; thus both host- and virus-encoded RNAP-binding transcription factors
globally inhibit or attenuate total RNA synthesis.

• Genome-wide mapping of transcript 30-ends changes our view on the sequence context of
archaeal transcription terminators.

• RNAPs stalled by DNA-damage can be efficiently removed by the termination-like factor Eta.
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