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ABSTRACT
The presence of spectroscopically confirmed Balmer breaks in galaxy spectral energy distributions
(SEDs) at z > 9 provides one of the best probes of the assembly history of the first generations
of stars in our Universe. Recent observations of the gravitationally lensed source, MACS 1149 JD1
(JD1), indicate that significant amounts of star formation likely occurred at redshifts as high as
z ' 15. The inferred stellar mass, dust mass, and assembly history of JD1, or any other galaxy at
these redshifts that exhibits a strong Balmer break, can provide a strong test of our best theoretical
models from high-resolution cosmological simulations. In this work, we present the results from a
cosmological radiation-hydrodynamics simulation of the region surrounding a massive Lyman-break
galaxy. For two of our most massive systems, we show that dust preferentially resides in the vicinity
of the young stars thereby increasing the strength of the measured Balmer break such that the
simulated SEDs are consistent with the photometry of JD1 and two other z > 9 systems (GN-z10-3
and GN-z9-1) that have proposed Balmer breaks at high redshift. We find strong variations in the
shape and luminosity of the SEDs of galaxies with nearly identical stellar and halo masses, indicating
the importance of morphology, assembly history, and dust distribution in making inferences on the
properties of individual galaxies at high redshifts. Our results stress the importance that dust may
play in modulating the observable properties of galaxies, even at the extreme redshifts of z > 9.

Key words: radiative transfer, galaxies: high-redshift, galaxies: formation, galaxies:
stellar content, dust, extinction, dark ages, reionization, first stars,

1 INTRODUCTION

The quest for cosmic dawn, the epoch corresponding to the
emergence of the first galaxies from the dark, neutral inter-
galactic medium produced at recombination, represents the
final observational frontier in constructing a physical picture
of galaxy evolution. As the first generation of stars were
devoid of heavy elements, a potential observational strat-
egy for identifying such objects would be to use the James
Webb Space Telescope (JWST) to locate sources with spec-
tra lacking metallic nebular emission lines or that exhibit
intense ionised helium, characteristic of hot stars free from
line blanketing (Schaerer 2002). However, numerical simu-
lations suggest that such low mass halos are likely rapidly
self-enriched to metallic abundances of ' 10−3 Z� by early
supernovae (Smith et al. 2015), indicating that such “Pop-
ulation III” galaxies would be short-lived and consequently
difficult to find.

A more practical strategy is to link cosmic dawn to the
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beginnings of cosmic reionization - the transformation of
neutral hydrogen in the intergalactic medium (IGM) to an
ionised state. Although uncertainties remain, it seems likely
that reionization was initiated by star-forming galaxies (see
Stark 2016 for a review). The most recent analysis of Thom-
son scattering in the IGM from measures of polarisation
and temperature fluctuations in the microwave background
(Planck Collaboration et al. 2018) suggests reionization be-
gan relatively late, corresponding to redshifts of z ∼ 10 − 15.
An intriguing signal of 21cm absorption in the microwave
background has been claimed corresponding to Lyman α

emission from early sources at z ' 15 (Bowman et al. 2018).

Unfortunately, current observational facilities are not
capable of detecting early galaxies beyond a redshift of
z ' 11 − 12 where both continuum and nebular emission
are expected to be predominantly in the near-infrared. The
Hubble Space Telescope (HST) has a wavelength range lim-
ited to λ < 1.6µm, while the near-infrared performance of
large ground-based telescopes is limited by the thermal sky
background. The most distant spectroscopically-confirmed
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sources are at z = 9.11 (Hashimoto et al. 2018) and z ' 11
(Oesch et al. 2016).

A potential way to provide a first estimate of when cos-
mic dawn occurred would be to estimate the age and dust
content of galaxies at slightly lower redshift, e.g. z ' 8 − 10.
As cosmic time is compressed with respect to redshift at
early times, even an approximate stellar age at z ' 9, when
the Universe was 550 Myr old, can provide a meaningful
indication of when the first generation of stars emerged.
Hashimoto et al. (2018) provided an illustration of this
method by analysing the SED, dust content, and line emis-
sion from a gravitationally-lensed source MACS 1149 JD1
(hereafter JD1) at z = 9.11. Their analysis indicated that
a significant fraction of the stars in JD1 likely formed at
a redshift zform ' 15.4 ± 2.3. Likewise Laporte et al. (2017)
estimated a dust mass of 6 × 106M� for a gravitationally-
lensed source at a redshift z = 8.38 and claimed that such a
mass, coupled with estimates of the past star formation rate,
could be used to pinpoint the likely period when chemical
enrichment began.

Inferring the past assembly history of z ' 8 − 10 galax-
ies to estimate when cosmic dawn occurred might be the
only promising route while we await JWST, but the method
has many uncertainties. Of particular interest is whether the
stellar and dust masses, and the inferred assembly histo-
ries of these observed galaxies, are reasonable in the context
of models of hierarchical structure formation in the stan-
dard Λ cold dark matter cosmology. Hashimoto et al. (2018)
claimed that the bulk of the stars observed in JD1 at z = 9.11
formed at z ' 12−15 after which the star formation rate must
have declined with time to match a prominent Balmer break
seen in the SED. Star formation rates that decline with time
at z ' 10−15 contrast with high-resolution cosmological sim-
ulations which mostly predict bursty star formation histories
that are generally rising with time (e.g. Rosdahl et al. 2018).

Comparing simulated galaxies with observations is
highly non-trivial as massive systems are likely to be dust
and metal-enriched and the distribution of stars, gas and
dust can significantly alter the intrinsic spectrum via ab-
sorption and scattering. Analytic models demonstrate that
the distribution of dust in a galaxy is key to reproducing the
spectral properties of observed galaxies (e.g. Charlot & Fall
2000). The importance of dust at high redshift is further
supported by numerous semi-analytical and semi-numerical
models (e.g. Valiante et al. 2011; Mancini et al. 2015, 2016;
Yung et al. 2018). In principle, detailed information re-
garding the dust content and distribution in high-redshift
galaxies can be obtained from numerical simulations. Ex-
amples of such simulations where the effects of dust at
high redshift have been studied include Mare Nostrum
(Devriendt et al. 2010), BlueTides (Wilkins et al. 2018),
FIRE (Ma et al. 2018), FiBY (Cullen et al. 2017), and Re-
naissance (Barrow et al. 2017). In particular, Wilkins et al.
(2018) have shown that many galaxies at z & 8 are ex-
pected to be heavily dust obscured and the properties of
such galaxies may be constrained in the future by ALMA.
However, numerous uncertainties remain regarding dust pro-
duction and destruction (and hence dust mass), dust tem-
perature, and dust composition/characteristics within sim-
ulations (Dayal & Ferrara 2018). Nevertheless, techniques
for “observing” simulated galaxies to obtain, for instance,
their SEDs are now commonplace and are providing de-

tailed insight into the ISM properties of high redshift galax-
ies (e.g Zackrisson et al. 2013; Cen 2014; Wilkins et al.
2016; Cullen et al. 2017; Barrow et al. 2017). For example,
Behrens et al. (2018) used a numerical simulation to repro-
duce the dusty SED of a z = 8.38 galaxy (A2744 YD4,
Laporte et al. 2017), at a slightly lower redshift than JD1.
However, it remains to be determined whether the assembly
histories of simulated galaxies can be reconciled with the
strength of the Balmer break observed in JD1.

In this paper we examine the method of inferring cos-
mic dawn from the properties of several z ' 9 galaxies, in-
cluding JD1, using a cosmological, radiation hydrodynamics
code with multifrequency radiative transfer. In addition to
addressing the question of whether the assembly history of
such sources inferred from observations are consistent with
such models, we make predictions for further observables
that may assist in breaking degeneracies between stellar ages
and other parameters.

This paper is organised as follows. In §2 we select three
z ' 9 − 9.5 galaxies for this study and we briefly describe
their observational data from which the SEDs and other
properties are derived. In §3 we summarise our numerical
approach and illustrate its appropriateness for the topic at
hand. We derive assembly histories and match the SEDs in
§4 and summarise our conclusions in §5.

2 OBSERVATIONAL DATA

The key aspect of JD1 that makes it of particular interest
in probing when cosmic dawn occurred is an IRAC chan-
nel 2 excess in its SED at 4.5 µm at the confirmed red-
shift z = 9.11. This excess can only arise from starlight and
hence provides a clear measurement of the strength of the
Balmer break. The idea was first proposed by Zheng et al.
(2012) and later Hoag et al. (2018); Hashimoto et al. (2018)
demonstrated through careful modelling that such an excess
in the SED cannot arise from any reasonable contamina-
tion by strong nebular emission lines such as [OIII] and Hβ.
However, as discussed by Hashimoto et al. (2018), the lens-
ing magnification µ, of JD1 is somewhat uncertain, formally
ranging from µ ' 10 − 80. The adopted value naturally af-
fects the absolute scale of the derived stellar mass assembly
history and hence credibility of the star formation history in
the context of structure formation models.

In addition to considering JD1, we have selected two
further unlensed sources, GN-z10-3 and GN-z9-1 seen in the
CANDELS survey, with similar IRAC channel 2 excesses
from the compilation of z ' 9 galaxies by Oesch et al. (2014).
Although not yet spectroscopically confirmed, both have
photometric redshift likelihoods consistent with a similar
Balmer break at about the same epoch. Table 1 summarises
the photometric properties of the three selected sources and
Figure 1 provides image stamps that illustrate the HST and
Spitzer data. Naturally a key question is whether, without
spectroscopic confirmation, we can follow the arguments for
JD1 in ruling out an IRAC channel 2 excess from intense
[O III] emission. Formally this requires both sources to have
redshifts beyond z ' 9.0. In Figure 2 we show the photomet-
ric likelihood distribution for both sources alongside that for
JD1 for which spectroscopic confirmation was finally pro-
vided by Hashimoto et al. (2018). As can be seen, it seems
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Optical F105W F125W F140W F160W IRAC1 IRAC2

JD1

GN-z9-1

GN-z10-3

Figure 1. Stamps of the three high-redshift candidates discussed in this paper. The size of each stamp is 5”×5” and the position of

each target is displayed by a red 1” radius circle. For JD1, the optical stamps is the sum of F435W, F606W and F814W whereas for

GN-z10-3 and GN-z9-1 it corresponds to a sum of F814W and F850LP.

ID F435W F606W F775W F814W F850W F105W F125W F140W F160W Ks 3.6µm 4.5 µm

JD1 >29.40 > 29.60 - > 29.80 - > 30.2 26.75 25.83 25.77 > 24.20 25.64 24.70

±0.03 ±0.02 ±0.02 ±0.17 ±0.07
GN-z10-3 >28.70 >28.90 >28.53 > 28.39 > 28.39 >28.15 27.99 - 26.74 26.58 27.42 26.48

±0.38 ±0.12 ±3.33 ±0.59 ±0.24
GN-z9-1 >28.04 > 28.39 > 28.04 >28.26 > 27.86 >28.39 27.51 26.56 26.61 26.70 26.87 26.15

±0.27 ±0.68 ±0.15 ±0.79 ±0.30 ±0.17

Table 1. Photometry of the three z >9 galaxies discussed in this study. Upper limits are given at 2σ. Values for GN-z10-3 and GN-z9-1

are from Oesch et al. (2014) and magnitudes for JD1 are from Hashimoto et al. (2018).

reasonably likely that the IRAC channel 2 excess in GN-z10-
3, and to a lesser extent, GN-z9-1 also arise from a Balmer
break.

In analysing the star formation histories and dust con-
tent of all 3 sources, we seek to go beyond understanding
whether they share a common origin but also to examine
whether their derived properties are consistent with numeri-
cal simulations of early galaxies. In this respect however, it is
important to realise that these three sources have been care-
fully selected from the population of HST-located sources
in both the deep fields (the Ultra Deep Field and CAN-
DELS surveys) and the lensed surveys (principally the Hub-
ble Frontier Field campaign). As they are chosen purely on
the basis of their likely redshift and Balmer break, they may
not be representative of the overall population of luminous
sources at z ' 9. Nevertheless, as they provide the most
useful early constraints on cosmic dawn, it is important to
understand whether their properties can be reproduced by
cosmological simulations.

3 NUMERICAL SIMULATIONS

To compare with the observed galaxies, we perform a cosmo-
logical gravitational radiation-hydrodynamics zoom-in sim-
ulation of a massive Lyman-break galaxy (LBG) at z >

6, using the publicly available, adaptive mesh refinement
(AMR) code RAMSES-RT (Teyssier 2002; Rosdahl et al.

Figure 2. Redshift probability distribution for the 3 candidates
discussed in this study, namely JD1 (red), GN-z9-1 (blue) and

GN-z10-3 (green). The yellow box displays the redshift window
where the colours observed between IRAC channel 1 and 2 could
be explained by the contamination of the 4.5µm photometry by

strong [OIII]+Hβ emission lines. The P(z) of our 3 objects only
enter marginally into this redshift window, in favour of a Balmer

break explanation for the red IRAC colours observed.
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Figure 3. (Left) Stellar mass-halo mass relation for all uncontaminated central systems within the zoom-in region that are resolved by at
least 300 DM particles at z = 9.2. The grey shaded region shows the 1σ and 2σ scatter on the extrapolated predictions from abundance

matching from (Behroozi et al. 2013). The red square, green pentagon, and black star represent AD1, AD2, and AD3, respectively, while

the cyan points represent other resolved haloes in the simulation that host stars. (Centre) SFR as a function of the age of the Universe
for the same set of galaxies. Red, green, and black represent AD1, AD2, and AD3, while the other lines are coloured based on their virial

mass. (Right) Cumulative stellar mass as a function of the age of the Universe.

2013; Rosdahl & Teyssier 2015). Initial conditions for a low-
resolution (2563) dark matter-only simulation were gener-
ated in a box with side length 50 comoving Mpc with MU-

SIC (Hahn & Abel 2011). A dark matter halo with mass
Mvir = 1011.8M� was selected at z = 6 for re-simulation.
New initial conditions were iteratively generated around the
Lagrange region of the system of interest using a convex-
hull until the high-resolution dark matter only simulation
resulted in the halo being uncontaminated by low resolu-
tion dark matter particles out to 2Rvir at z = 6. In the fi-
nal set of optimised initial conditions, the set of high res-
olution particles were generated to have an effective reso-
lution of 40963 particles, corresponding to a DM particle
mass of 4 × 104M�h−1. The cosmology of the initial condi-
tions was set so that h = 0.6731, Ωm = 0.315, Ωb = 0.049
, ΩΛ = 0.685, σ8 = 0.829, and ns = 0.9655, consistent with
Planck Collaboration et al. (2016). All gas in the box is as-
sumed to be initially neutral and composed of 76% H and
24% He by mass.

We use the version of RAMSES presented in Katz et al.
(2017); Kimm et al. (2017) to model the gravity, hydrody-
namics, radiation transfer, and non-equilibrium chemistry
in the cosmological box. The radiation is evolved using a
moment method using the M1 closure for the Eddington
tensor Levermore (1984). The radiation is split into eight
frequency bins: infrared, optical, Habing, Lyman-Werner,
H-ionizing, H2 ionising, He-Ionising, and HeII-ionising, as
listed in Table 2 of Kimm et al. (2017). The radiation is
coupled to the gas by photoionisation, photoheating, and
radiation pressure (both UV and IR). Details of the thermo-
chemistry model for H and He can be found in Rosdahl et al.
(2013), details regarding the H2 implementation, cooling,
and coupling to radiation can be found in Katz et al. (2017);
Kimm et al. (2017), while the radiation pressure descrip-
tion is presented in Rosdahl & Teyssier (2015). In addi-
tion to gas cooling from primordial species, we also em-
ploy temperature and density metal line cooling tables that
have been computed with CLOUDY (Ferland et al. 1998) for

T > 104K. At lower temperatures, we employ the cooling
rates from Rosen & Bregman (1995). In order to model the
radiation pressure on dust, we assume a mean dust opacity
of 10cm2g−1 in the IR radiation bin and 103cm2g−1 in all
other radiation bins, consistent with Rosdahl et al. (2015).
The dust mass for each cell is computed using the metallic-
ity dependent dust-to-metal ratios from Rémy-Ruyer et al.
(2014) as implemented into RAMSES by Kimm et al. (2018).
Furthermore, we assume that the dust has been destroyed
in all cells with T > 105K.

Because we employ an explicit solver to model the ad-
vection of radiation, the simulation time step is limited by
the RT-courant condition. For this reason, we reduce the
speed of light in the simulation to csim = 0.01c on all AMR
levels to reduce the constraint on the global time step. Since
we do not aim to model the global reionization process and
only focus on a very over-dense region of the Universe, this
approximation is justified (see Katz et al. 2017). Even with
this reduced speed of light, at early epochs, the time step in
the simulation is still dominated by the RT-courant con-
dition. Hence we subcycle the radiation up to 500 times
on each level thereby reducing the number of hydrody-
namic time steps that need to be computed. The method
for RT subcycling can be found in Commerçon et al. (2014);
Rosdahl et al. (2018).

The only sources of radiation in the simulation are star
particles. Star formation is modelled using a Schmidt law
(Schmidt 1959) where the star formation rate density is re-
lated to the gas density divided by the gas free-fall time,
modulated by an efficiency parameter. Stars are only allowed
to form inside the zoom-in region and on the maximum AMR
refinement level. We search cells with ρgas > 100cm−3 to
determine whether their thermo-turbulent Jeans length is
unresolved (see Equation 8 of Kimm et al. 2017). If a cell
satisfies these conditions, we then compute the efficiency of
star formation based on the thermodynamic properties of
the cell (see Equation 2 of Kimm et al. 2017). With this ef-
ficiency, the number of newly formed star particles is drawn
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from a Poisson distribution with a minimum stellar mass of
1000M� .

Once a star is formed, it injects radiation into its
host cell. The spectra of each star particle is interpolated
based on age and metallicity using the BPASSv2 model
(Stanway et al. 2016; Eldridge & Stanway 2009), assuming
a maximum stellar mass of 300M� . The total luminosity of
each spectra is scaled with the total mass of the star particle.
Stars also impact the gas via supernova (SN) feedback. For
each SN, 1051ergs is injected in the form of momentum and
these occur during the first 50Myr of the lifetime of the star
particle by sampling a delay time distribution. The model
we use for momentum injection is presented in Kimm et al.
(2015, 2017); Rosdahl et al. (2018) and it is designed to cap-
ture the right amount of momentum at the end of the snow-
plow phase which is dependent on the resolution and prop-
erties of the cell that hosts the star particle. We assume a
mass fraction of 0.2 is recycled back into the gas for each star
particle. Metals are also returned with this gas assuming a
metallicity of 0.075. In order to calibrate the feedback to re-
produce the high redshift stellar mass-halo mass relation, we
follow Rosdahl et al. (2018) and boost the total number of
SN for each star particle by a factor of four. In the left panel
of Figure 3, we show the stellar mass-halo mass relation for
all uncontaminated galaxies at z = 9.2 compared with the
predictions from abundance matching (Behroozi et al. 2013)
and there is a strong agreement between the two due to the
calibrated feedback. In the centre and right panels, we show
the SFR histories of the 20 most massive systems and the
stellar mass assembly histories of the same systems. We have
highlighted the three most massive systems, AD1, AD2, and
AD3 in red, green, and black, respectively, on all three plots.
These are the three systems we will focus on in the majority
of our analysis and it is clear that even among these three
objects, there is a diversity in star formation and mass as-
sembly histories that will affect the shapes of the SEDs.

As the simulation evolves, we allow the cells to adap-
tively refine to obtain higher spatial and mass resolution
in the regions of interest. We allow for up to 19 total lev-
els of refinement in order to maintain a roughly constant
maximum physical resolution of ∼ 13.6pc throughout the
simulation. Cells are refined in a quasi-Lagrangian fashion
when cells have DM masses of eight times the particle mass
or gas masses that are eight times Ωb

ΩDM
mDM. Furthermore,

we refine cells when the Jeans length is not resolved by at
least four cell lengths. When a cell is refined, it is split into
eight children cells.

After the simulation is completed, we run a halo finder
on the snapshots in order to isolate the halo locations and
characterise their properties. We use the AMIGA halo finder
(AHF, Gill et al. 2004; Knollmann & Knebe 2009), and set
the virial radius to be such that the mean density of the
halo would allow for collapse assuming a spherical over-
density against an expanding background for our cosmology
at each redshift. At the redshifts we sample, this value cor-
responds to ∆ ∼ 200. We only consider haloes that are not
contaminated by any low resolution dark matter particles
and that have a DM halo made up of at least 300 DM par-
ticles. This sets a lower limit to the halo mass we consider
of 1.2 × 107M�h−1 which is well below the atomic cooling
threshold.

To compute the SEDs of each of the simulated galaxies,

we use the age, metallicity, and mass of each star parti-
cle to compute the shape and normalisation of the intrinsic
SED. Here we have used the BPASSv2 model (Stanway et al.
2016; Eldridge & Stanway 2009), assuming a maximum stel-
lar mass of 300M� ; however, our results are similar when
using the BC03 SED as used in Hashimoto et al. (2018).
We then compute the optical depth of dust to each star
particle (following the same dust-to-gas ratio as used in
the simulation when modelling IR radiation pressure) for
a given viewing angle (either either face-on or side-on) us-
ing the R = 3.1 dust grain model of Weingartner & Draine
(2001) and attenuate the SED. Summing over all star par-
ticles gives the total stellar continuum SED of the galaxy.
In addition to the stars, we add the contribution from the
nebular continuum which has been shown to be important
for the total SED (e.g. Wilkins et al. 2016). Details of that
calculation are described in Appendix A and this contribu-
tion is also dust attenuated in the same way as the star
particles. Note that at the redshift of interest, the Balmer
break of JD1 is likely unaffected by nebular lines and hence
we only focus on the continuum. Our modelling neglects
scattering by dust which is quite computationally expen-
sive as it requires post-processing each galaxy with radiation
transfer. The effects of neglecting scattering are described
in Kaviraj et al. (2017) where they compare the SUNSET

code (which uses a very similar method to that in our work)
with the full dust radiation-transfer code SUNRISE (Jonsson
2006; Jonsson et al. 2010).

4 RESULTS

Determining whether the simulations described in this pa-
per can reproduce the strong Balmer breaks observed at
high redshifts is the main goal of this work. Although the
simulation contains thousands of galaxies, we focus on the
three most massive systems, AD1, AD2, and AD3, which
have halo masses of 1011.1, 1010.2, and 1010.1M� at z = 9,
respectively. A full list of properties for each galaxy as a
function of redshift in the range 9.2 ≤ z ≤ 12 can be found
in Table 2. Throughout the range in redshifts, the galaxies
exhibit a diverse set of metallicities, star formation rates,
and stellar masses that may be representative of the high-z
galaxies that have already been observed.

4.1 Structural Properties

In Figure 4, we show the gas column density, H2 column
density, density weighted temperature, metal surface mass
density, dust surface mass density, and stellar surface mass
density for each of the three galaxies at z = 9.6 for two
viewing angles with the primary angular momentum axis ei-
ther oriented into the page (face-on) or in the plane of the
page (edge-on). At this redshift, AD1 exhibits a well defined
cold, gaseous disk with strong features indicating ordered
rotation. The molecular content of the galaxy is confined to
the disk and the temperature can reach� 105K surrounding
the cold , � 103K, central region. The H2 primarily follows
the metals and dust, which are also very prominent in the
disk, as the formation rate of H2 on dust is much more ef-
ficient than via the primordial H− channel. In the bottom
right of the face-on metal and dust map for AD1, a plume of
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Redshift z = 12.0 z = 11.5 z = 11.0 z = 10.5 z = 10.0 z = 9.8 z = 9.6 z = 9.4 z = 9.2

AD1

Halo Mass 10.38 10.46 10.54 10.62 10.83 10.91 10.98 11.02 11.06

Stellar Mass 8.76 8.89 9.04 9.13 9.37 9.41 9.49 9.54 9.58
Gas Mass 9.51 9.60 9.68 9.75 10.02 10.08 10.15 10.19 10.22

SFR 6.21 13.99 18.51 8.23 16.51 20.37 25.99 29.35 24.10

Metallicity 1.87e-3 1.96e-3 2.15e-3 2.71e-3 2.57e-3 2.49e-3 2.45e-3 2.51e-3 2.61e-3
H2 Mass 8.26 8.35 8.41 8.67 8.90 8.92 8.96 8.99 9.04

re 0.16/1.43 2.12/2.19 0.10/0.71 0.12/0.66 0.13/0.68 0.12/0.72 0.10/0.75 0.10/0.66 0.73/1.02
A1500 1.78/1.98 1.02/1.08 3.22/3.31 2.86/3.01 2.46/2.46 2.67/2.72 2.56/2.54 3.27/3.22 2.83/2.85

AD2
Halo Mass 9.96 10.01 10.08 10.13 10.16 10.18 10.20 10.21 10.22

Stellar Mass 7.83 7.94 7.96 8.01 8.10 8.16 8.34 8.37 8.41

Gas Mass 8.99 9.07 9.21 9.31 9.38 9.43 9.45 9.50 9.52
SFR 0.78 0.47 0.24 0.53 1.28 1.39 5.34 1.28 1.96

Metallicity 5.98e-4 7.46e-4 6.64e-4 5.75e-4 5.75e-4 5.95e-4 7.05e-4 8.74e-4 9.81e-4

H2 Mass 7.28 7.08 7.18 7.55 7.42 8.01 7.89 7.87 8.03
re 0.18/0.12 0.17/0.16 0.26/0.26 0.24/0.25 0.08/0.22 0.48/2.42 2.74/2.76 2.61/2.74 0.18/0.33

A1500 0.40/0.78 0.18/0.43 0.11/0.10 0.13/0.12 0.50/0.63 0.30/0.41 0.54/0.52 0.44/0.41 1.21/1.41

AD3

Halo Mass 9.71 9.77 9.82 9.87 9.92 9.93 9.95 9.98 10.03

Stellar Mass 8.11 8.25 8.31 8.40 8.48 8.49 8.51 8.54 8.58
Gas Mass 8.91 8.95 9.00 9.05 9.11 9.13 9.15 9.20 9.27

SFR 2.91 2.94 1.20 2.43 2.18 1.12 1.42 1.66 2.06
Metallicity 1.28e-3 2.12e-3 2.69e-3 2.83e-3 3.00e-3 3.09e-3 3.09e-3 2.93e-03 2.59e-3

H2 Mass 7.41 7.63 8.09 8.08 8.10 8.30 8.31 8.32 8.30

re 0.07/0.18 0.07/0.15 0.10/0.24 0.07/0.29 0.08/0.36 0.08/0.40 0.08/0.41 0.10/0.46 0.08/0.46
A1500 2.30/2.24 2.94/2.29 3.05/3.15 2.80/3.07 2.80/3.01 2.01/2.60 2.69/3.10 2.91/3.08 2.55/2.83

Table 2. Simulated galaxy properties as a function of redshift. All masses are quoted in log10 (M/M� ) and radii are listed in kpc.

Metallicities represent the mean mass-weighted gas-phase metallicity, while the SFRs are in units of M�/yr averaged over the previous
10Myr. re represents the effective radius of the galaxy. The two values show the results from the face-on configuration in the case without

dust, and with dust, respectively. A1500 represents the number of magnitudes of extinction at 1500Å. The two numbers represent the
face-on and side-on configurations of the galaxy, respectively. The morphology can change rapidly due to disruption from stellar feedback

and mergers, hence also changing the direction of the principle angular momentum axis.

metals and dust can be seen moving away from the galaxy
due to SN feedback driving enriched material away from the
system. Note that the dust map is not a simple rescaling of
the metallicity map as the dust-to-metal ratio scales with
metallicity and we have also assumed a constant dust sub-
limation temperature of 105K, hence there being almost no
dust outside of the cold, central disk. Inside the central re-
gions of the galaxy, the dust surface mass density can reach
> 108M�kpc−2. The last column of Figure 4 shows the distri-
bution of stellar mass in the galaxy. There is a bright central
region with a surrounding halo and two stellar arms, curl-
ing over the top and under the bottom of the central region
in the face-on image of AD1. Additionally, there is a small
star-forming clump at a projected distance of ∼ 750pc above
the central cluster. Comparing the dust map with the stellar
map, it is evident that the dust is preferentially located in
the same regions as the stellar mass and this will indeed be
reflected in the SED of the galaxy.

While AD1 appears to be a well-ordered, rotating disk,
AD2, in contrast, is significantly more diffuse and does
not contain any ordered structure. The stellar mass is dis-
tributed more evenly throughout the central region, without
any strong, central bulge and the surface mass density of
dust is significantly reduced compared to AD1.

Despite having very similar halo mass to AD2, AD3

is more reminiscent of AD1, and has a dense central re-
gion with signs of rotation. The column density of dust in
AD3 is significantly higher than that of AD2, and similar to
AD1. The strong features in the stellar mass distribution of
AD3 are also reflected in the dust map; hence, a significant
amount of attenuation is expected for AD1 and AD3.

4.2 The Spatial Distribution of Dust

Understanding the spatial distribution of dust is key for pre-
dicting the amount of attenuation in high-redshift galaxies.
If the spatial distribution is biased towards a specific stellar
population, this could affect the interpretation of the Balmer
break. We have measured the mass weighted probability dis-
tribution function of the dust attenuation, log10(e−τdust,1500Å ),
for different populations of stars, binned by stellar age, for
one viewing angle (down the x-axis of the simulated box)
at z = 9.6 for each of the three galaxies (see Figure 5 but
note that the exact curves will change based of viewing
angle and the affect of viewing angle on the SED is dis-
cussed later). For AD1, and AD3, the strongest peak in
the PDF occurs at log10(e−τdust,1500Å ) = −5 where nearly all
of the 1500Å luminosity is absorbed. The PDF has a sec-
ond smaller peak at log10(e−τdust,1500Å ) = 0 where we expect
complete transparency at this wavelength. Interestingly, in
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Figure 4. Maps of total gas column density, H2 column density, density weighted temperature, metal surface mass density, dust surface

mass density, and stellar mass surface density for our three systems, AD1, AD2, and AD3 in both face-on and side-on views at z = 9.6.

the right panel of Figure 5, the attenuation PDFs for AD3
for different stellar age bins deviate from one another when
log10(e−τdust,1500Å ) → 0 such that the young stars have a much
lower peak in the PDF at high transmission. The probability
that the line of sight is completely optically thin for a set of
old stars is > 10 times more likely compared to the youngest
stars in AD3. This difference is not seen as strongly for AD1
and thus AD3 is our best example of a galaxy where the
UV radiation from the youngest stars is most preferentially
absorbed by dust. Hence AD3 is a very good example of a
galaxy where the strength of the Balmer break may provide

misleading information about the total stellar population
and assembly history.

The dust attenuation PDF for AD2 has a completely
different shape than that of AD1 or AD3. The strongest peak
occurs at log10(e−τdust,1500Å ) = 0 where we expect complete
transmission for UV photons. The PDF falls off very steeply
towards stronger attenuation factors. The diffuse morphol-
ogy of AD2 is the culprit for this effect. Thus, despite having
a nearly identical stellar and halo mass to AD3, these two
galaxies have different UV magnitudes.

In Table 2, we list the amount of attenuation at a wave-
length of 1500Å (A1500) for each galaxy as a function of red-

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/stz281/5301419 by U

niversity C
ollege London user on 05 February 2019



8 H. Katz et al.

−4 −3 −2 −1 0

log10(e
−τ

dust,1500Å )
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Figure 5. Mass-weighted probability distribution functions (PDFs) of the logarithm of the transmission at 1500Å (log10 (e−τdust,1500Å ))
for stars binned by stellar age in each of our three galaxies, AD1 (left), AD2 (centre), and AD3 (right) at z = 9.6. The legend indicates

the mean age of the stellar population and the width of the bins is 50Myr. High values of log10 (e−τdust,1500Å ) indicate that most of the

emission escapes the galaxy unattenuated while very low values indicate that much of the emission is absorbed. For AD1 and AD3,
almost all of the very young star particles with age < 50Myr have very low transmission demonstrating a strong attenuation by dust

while many of the older star particles have high transmission after SN feedback has blown away the dense surrounding gas. In contrast,

AD2 has very high transmission for all stellar ages. The morphology of AD2 is considerably different than AD1 and AD3 (see Figure 4).

shift for two different configurations, either with the princi-
pal angular momentum axis perpendicular (face-on) or par-
allel (side-on). Depending on the instantaneous state of the
galaxy and the orientation, the amount of attenuation can
change rapidly. For example, the amount of attenuation for
AD2 viewed from side-on changes by more than a factor of
5 between z = 10.5 and z = 10.0. Comparing with other sim-
ulations, Ma et al. (2018) find that some of their brighter
galaxies can exhibit more than three magnitudes of atten-
uation at a fixed UV magnitude, consistent with AD1 and
AD3. Wilkins et al. (2018) also find that A1500 can scatter
to values > 3. However, each of these simulations was run
with different subgrid models, different dust models, and at
different spatial resolutions. We only probe three systems in
our current work so a larger sample will be required for a
systematic comparison with other simulations.

The spatial distribution of the dust has a strong im-
pact on the perceived size of a galaxy. We demonstrate
this in Figure 6 where we show the stellar effective ra-
dius (re) versus the UV magnitude of our simulated galaxies
viewed from face-on compared with the z ∼ 9 observations of
Kawamata et al. (2018). Open symbols represent the intrin-
sic distributions while filled symbols show the results after
accounting for dust attenuation. The intrinsic and dust at-
tenuated values of re are listed in Table 2. Without dust
attenuation, re tends to scatter to small values, sometimes
< 100pc and this is especially true for AD1 and AD3. In
contrast, with dust attenuation the effective radius signif-
icantly increases and all of our systems are in very good
agreement with the completeness corrected relation from
Kawamata et al. (2018).

4.3 The Impact of Dust on the SED

To demonstrate the impact of different dust distributions
on the galaxy SEDs, in Figure 7 we plot the intrinsic SEDs
(top row), the dust attenuated SED (middle row), and the

ratio between the two (bottom row) for each of the three
galaxies as a function of redshift in the range 12 ≥ z ≥ 9.2,
for a face-on viewing angle. All systems have been placed at
the luminosity distance corresponding to the redshift of the
simulation snapshot where we study the object and we have
compared observed flux density in µJy to observed wave-
length in µm. The different morphologies of the galaxies
clearly lead to significantly different amounts of attenua-
tion. The key point we aim to emphasise with Figure 7 is
that since the dust is found preferentially around young stars
in both AD1 and AD3, the strength of the Balmer break is
clearly enhanced between the intrinsic and dust attenuated
SEDs (top and middle rows) because of the enhanced con-
tribution from older stars to the total SED.

In the following subsections, we will compare the SEDs
of our three simulated galaxies to the observations of JD1,
GN-z10-3, and GN-z9-1 to determine whether the distribu-
tion of dust in the simulations is enough to reproduce the
observed photometry with the realistic star formation and
mass assembly histories shown in Figure 3.

4.4 JD1

We first compare with JD1, which is the only galaxy in our
small sample that has been spectroscopically confirmed, and
because of Frontier Fields data quality, has the most precise
photometry. In Figure 8, we compare the SEDs of AD1,
AD2, and AD3 at all redshifts and two different viewing
angles with the photometry of JD1. We have shifted each
simulated SED to z = 9.1, and renormalised the SEDs to
match the flux density in the IRAC channel 1 to compare
whether the strength of the Balmer break in JD1 can be
reproduced at any redshift by our simulated galaxies. The
renormalisation is akin to changing the stellar mass while
keeping the same star formation history shape. This can also
be interpreted as requiring magnification if the flux density
needs to be increased to match the photometry of JD1.
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Figure 6. UV Magnitude-size relation for galaxies in our simu-
lations compared with the z ∼ 9 observations of Kawamata et al.

(2018). Cyan points represent observations while the red squares,
green pentagons, and black stars represent AD1, AD2, and AD3,

respectively at different redshifts. More translucent points are

high redshift and darker points are lower redshifts. The open
symbols represents the effective stellar radius when we do not

account for dust attenuation while filled points represent the

same quantity when we include dust attenuation. The black line
and grey band represent the completeness corrected relation from

Kawamata et al. (2018) and 1σ uncertainty.

At high redshifts, shown as the lighter lines in Figure 8,
the SEDs tend to be very blue for AD1 and AD3 with very
weak Balmer breaks that are completely inconsistent with
that of JD1. As redshift decreases, the first stellar popula-
tions age, and young stars preferentially form in the dustiest
regions of the galaxy, enhancing the strength of the Balmer
break. Of the three galaxies, AD3, our lowest mass system,
is found to have an SED that can reproduce the strength of
the Balmer break in JD1, demonstrating that such a feature
can be naturally reproduced by cosmological simulations.

This is further explored in Figure 9 where we show the
z = 9.2 SED of AD3 (which has one of the largest Balmer
breaks at a very similar redshift) compared with the photom-
etry of JD1, where we have now explicitly tried to minimise
the χ2 of the fit of the AD3 SED to the JD1 photometry by
varying the amount of magnification needed to fit the nor-
malisation of the SED. Because of the large uncertainties
on stellar yields, dust production mechanisms, dust-to-gas
ratios, and dust characteristics at high redshift, we intro-
duce an additional parameter, fdust, which changes the total
mass of the dust but does not change how the dust-to-gas
ratio scales with metallicity or its spatial distribution in the
galaxy. This gives an idea of how little dust we actually need
to create a Balmer break consistent with that of JD1, where
there are only upper limits on dust mass.

In Figure 9, we show the SED for fdust =

0, 1/20, 1/10, 1/3, 1/2, & 1. For fdust = 0, the model that
assumes no dust, the SED of AD3 is completely inconsistent

with JD1. The SED is extremely blue and dominated by the
luminosity from young stellar populations. However, for all
other models that assume fdust > 0, the SED of AD3 can be
made to be appear reasonably consistent with JD1 indicat-
ing that very little dust is actually needed for the simulated
galaxy to have an SED that is consistent with JD1. In gen-
eral the absolute value of χ2 for the AD3 fits to the JD1
photometry are extremely poor due to the very small error
bars on the photometry. AD3 is clearly not the exact same
galaxy as JD1 so this is not particularly worrying as we only
aim to show the general shape of the AD3 SED is qualita-
tively consistent with that of JD1 and that dust plays an
extremely important role in reconciling the intrinsic contin-
uum SED of AD3 with the photometry of JD1.

We can check whether the dust mass of AD3 for the dif-
ferent values of fdust and magnification are consistent with
the upper limits from JD1. In Figure 10, we show the 3σ
upper limits on the dust mass of JD1 as a function of the
magnification of the object for different assumptions on the
dust temperature. If the dust temperature in JD1 is < 40K,
regardless of our assumed value for fdust, the dust mass in
AD3 is consistent with the 3σ upper limits from the non-
detection. For higher dust temperatures, lower values of fdust
are required to make the simulations compatible with obser-
vations. However, for fdust = 0.33, which provides a qualita-
tively reasonable fit to the JD1 photometry, the dust mass
of AD3 is consistent with all of the upper limits on the JD1
dust mass for dust temperatures < 60K, which is the highest
dust temperature assumed in Hashimoto et al. (2018)1. This
value is well within the uncertainties on the stellar yields,
dust-to-gas ratios, dust properties, and dust production and
destruction mechanisms.

In Table 3, we compare the observed and inferred prop-
erties of JD1 with those of AD3 for the three dust mod-
els that provide the best fits to the JD1 photometry (i.e.
fdust = 0.33, 0.50, & 1.0). In Table 3, we have adjusted the
properties of JD1 for the assumed magnification factor of
AD3 that gives the best fit for each dust model. Note that
in all cases, the magnification we must assume for AD3 is
consistent within the uncertainties of the magnification of
JD1. In general, we find that the estimated SFR of JD1 is
3 − 4 times lower for JD1 than what we measure in AD3.
This is not particularly surprising because in order to fit the
photometry of JD1, Hashimoto et al. (2018) assumed that
there was no dust attenuation for the young stellar popu-
lation in their two-component model. In contrast, AD3 has
considerably more attenuation which preferentially obscures
the young stars and hence the SFR of AD3 must be higher
than that assumed for JD1 when the SED is fit without dust.
Similarly, the stellar mass estimated for JD1 is also lower by
a factor of 2−3 for the same reason. The metallicity that we
measure in AD3 is entirely consistent with that estimated
for JD1, although there are indeed large uncertainties. As
stated before, if we assume that the dust temperature in
JD1 is close to the CMB temperature at z ∼ 9.1, the dust
masses we find for AD3 are a factor of 5 − 10 below the 3σ
upper limits for JD1.

1 Note that in the local Universe, dust temperatures >

60K are only generally observed in ULIRGs hosting AGN

(Devriendt et al. 1999).
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absorption occurs at each wavelength. Balmer breaks are very unlikely in our simulated galaxies without dust.
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Figure 9. Comparison of the AD3 SED at z = 9.2 with the photometry of JD1 (shown as red points). The top left panel shows the

unattenuated AD3 SED while the other five panels show the SED with different normalisations of gas-to-dust ratio, with fdust indicated

on the plot. The bottom right panel is our fiducial model. All models have been renormalised to minimise the χ2 of the model SED to the
JD1 photometry. The two viewing angles, face-on and side-on, are shown in black and cyan, respectively. The magnification needed to

re-normalise the SED for each viewing angle is listed in the plot as µFO and µSO. The crosses indicate the flux density in each photometric

band while the lines show the continuum SED. The strength of the Balmer break in JD1 can nearly be reproduced by AD3 when realistic
dust masses and distributions are assumed.

Property JD1 AD3 JD1 AD3 JD1 AD3
µ = 69.8 fdust = 0.33 µ = 75.9 fdust = 0.50 µ = 86.5 fdust = 1.0

SFR (M�yr−1) 0.60+0.11
−0.16 2.05 0.55+0.11

−0.14 2.05 0.49+0.09
−0.11 2.05

Stellar Mass (108M�) 1.55+0.76
−0.26 3.81 1.42+0.70

−0.24 3.81 1.25+0.61
−0.21 3.81

Metallicity 0.004 ± 0.004 0.003 0.004 ± 0.004 0.003 0.004 ± 0.004 0.003

30K Dust Mass (105M�) < 2.86 0.611 < 2.63 0.306 < 2.31 0.204

[OIII]88µ Luminosity (107L�) 1.06 ± 0.23 0.096ZO/Zgal 0.97 ± 0.21 0.096ZO/Zgal 0.86 ± 0.18 0.096ZO/Zgal
[CII]158µ Luminosity (107L�) - 1.870ZC /Zgal - 1.870ZC /Zgal - 1.870ZC /Zgal
[OIII]5007Å Luminosity (107L�) - 0.793ZO/Zgal - 0.793ZO/Zgal - 0.793ZO/Zgal
Lyα Luminosity (107L�) 1.78 ± 0.46 - 1.63 ± 0.42 - 1.43 ± 0.37 -

Table 3. Galaxy properties as a function of redshift. All masses are quoted in log10 (M/M� ). Metallicities represent the mean mass-
weighted gas-phase metallicity, while the SFRs are in units of M�/yr averaged over the previous 10Myr.

4.4.1 Emission Line Properties

JD1 was also observed by ALMA where the far-infrared
[OIII] 88µm line luminosity has been constrained. Upcom-
ing observations with ALMA and potentially JWST will
likely also constrain the luminosities of the [CII] 158µm
fine-structure line and the [OIII] 5007Å nebular emission
line. Since our simulations contain the density, temperature,
metallicity, and inhomogeneous radiation field for each cell,
we can post-process the simulations with a photoionisation
code (i.e. CLOUDY) to obtain the emission line luminosi-
ties for AD3 (see also Moriwaki et al. 2018 for high-redshift
[OIII] luminosity predictions from simulations). Details of
our method are presented in Appendix A.

Our method predicts that the [OIII] 88µm luminosity

of AD3 is about a factor of 10 smaller than that for JD1. We
expect some differences in the luminosity due to the fact that
they are indeed different objects; however, a factor of 10 may
seem excessive if they are indeed very similar. Steidel et al.
(2016) have shown that highly super solar [O/Fe] ratios are
expected for z ' 2 − 3 star-forming galaxies which would
naturally occur if the dominant metal enrichment channel is
via core-collapse SN. For these same galaxies, they find that
while the stellar metallicity is ∼ 0.1Z� , which is very simi-
lar to that of AD3, the nebular oxygen abundance must be
∼ 0.5Z� . This gas phase is not always explicitly resolved by
our simulation. Hence, if we apply their factor 5 correction
to our luminosities, we find that our [OIII] 88µm luminosi-
ties are within a factor of ∼ 2 of JD1 which is in much better
agreement. Because our systems are at such a high redshift,
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Figure 10. Dust mass as a function of magnification for JD1
for different assumptions on the dust temperature. All lines show

the 3σ upper limits. The dust mass was estimated using a mod-
ified blackbody for the dust emission and an emissivity index of

βd = 1.5 using a model for the dust mass absorption coefficient

as a function of frequency κ = κ0 (ν/ν0)βd , where κ0 = 10cm2 g−1

at 250µm. The black and cyan lines represent the dust masses of

AD3 at z = 9.2 as a function of magnification needed to fit the

JD1 photometry for the face-on and side-on viewing angle, re-
spectively. The different points indicate the different dust-to-gas

ratio normalisations shown in Figure 9. In all cases, the AD3 dust

mass is in agreement with the observations for dust temperatures
less than 40K. For higher dust temperatures, a lower dust-to-gas

ratio must be assumed.

we expect that core-collapse SN are the dominant enrich-
ment mechanism as it is unlikely that type-Ia SN would
have had time to occur. We have added a factor of Z/Zgal to
all our metal line luminosity predictions in Table 3 to em-
phasise that they should be rescaled based on the expected
elemental abundance in the [OIII] emitting regions with re-
spect to the global metallicity of our galaxy that assumes
solar abundance ratios.

Although [CII] 158µm and [OIII] 5007Å have not yet
been observed for JD1, we can make predictions for their
expected luminosities based on AD3. Assuming the same
factor 5 boost in oxygen abundance, we would expect that
the [OIII] 5007Å luminosity is within a factor of ∼ 2 of ∼ 4 ×
107L�ZO/5Zgal while the [CII] 158µm luminosity is within a

factor of a few times 1.870×107L�ZC/Zgal. Such magnitude
[CII] 158µm luminosities have already been detected in z >
7.5 objects (e.g. Knudsen et al. 2017).

The final line luminosity that has been constrained for
JD1 is Lyα. This line is much more difficult to model be-
cause it is resonant and thus requires Monte-Carlo radiation
transfer to simulate how the photons diffuse both spatially
and in frequency. Interestingly, the Lyα line is blue-shifted
with respect to the [OIII] 88µm. This could, for instance, in-
dicate that we are seeing an inflow; but this would require a
massive ionised bubble around the source such that the Lyα

isn’t absorbed by the IGM. Alternatively, it could be the
case that neither line represents the true systemic redshift
of the object. In our simulations, [OIII] 88µm probes the hot
gas around star forming regions and thus the line may be
picking up the local velocities of the individual star forming
regions. Because of the compact nature of high-redshift ob-
jects, these velocities can be hundreds of km/s offset from
systemic. Due to the intricacies in modelling Lyα, we leave
a more complete discussion of this line to future work.

In summary, a Balmer break with the same strength as
that in JD1 can be easily reproduced by one of our three
simulated galaxies at the same redshift, indicating that ob-
jects like JD1 might not be uncommon at these redshifts.
Even though the dust content in simulations is highly un-
certain, we show that our simulated SEDs are reasonably
consistent with the photometry from JD1, even when it is
modulated down by a factor of ∼ 10 because the dust is pref-
erentially located near young star-forming regions. If AD3
is indeed a JD1 analog, it requires a large magnification fac-
tor, a significantly super-solar solar oxygen abundance, and
the [CII] 158µm and [OIII] 5007Å should be observable by
ALMA and JWST, respectively. Furthermore, the star for-
mation rate history of this object would not be exponentially
declining, but rather have a peak at ∼ 350Myr after the Big
Bang, and remain bursty, but on average decline by a factor
of a few ever since.

4.5 GN-z10-3 & GN-z9-1

Although our simulated galaxies can broadly match the
properties of JD1 which provides insight into the ISM, dust
properties, and star formation history of the galaxy, there
remains a large uncertainty on the magnification of the ob-
ject. It remains an open question of whether or not JD1 is a
unique object, or if strong Balmer breaks are commonplace
at high redshifts. Despite having only photometric redshifts,
if GN-z10-3 and GN-z9-1 are confirmed to be at their max-
imum likelihood photometric redshift, they will also be in
a regime where their IRAC channel 2 excess is caused by
a Balmer break rather than nebular emission lines. For this
reason, we compare whether any of our simulated SEDs can
reproduce the potential Balmer breaks observed for these
galaxies.

In Figures 11 & 12, we compare the photometry of GN-
z10-3 and GN-z9-1 to the z = 9.4 snapshot of AD1. We have
redshifted the AD1 spectra to the maximum likelihood red-
shift for each object and show the SED for the six different
values of fdust. Furthermore, we have renormalised the SED
of AD1 assuming a constant scale factor so that the flux of
our simulated galaxy in IRAC channel 2 matches the ob-
servations, so that the strengths of the Balmer breaks can
be compared. If the IRAC channel 2 excess in GN-z10-3 is
due to a Balmer break, our simulated galaxies would have
a difficult time reproducing its strength. The most consis-
tent AD1 models can fit the Hubble and IRAC channel 2
fluxes but reside towards the upper limit on the 1σ error
bar in the IRAC channel 1 band. The error bars on the flux
in this band are large so it could be argued that our simu-
lated galaxy is formally consistent with this measurement;
however, if the centroid of this distribution is confirmed, our
simulated SEDs would be inconsistent with this galaxy. In
order to fit the photometry of GN-z10-3, we must also as-
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Figure 11. Photometry of GN-z10-3 compared to the z = 9.4 snapshot of AD1 for two viewing angles. All lines and points are the same

as in Figure 9.
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Figure 12. Photometry of GN-z9-1 compared to the z = 9.4 snapshot of AD1 for two viewing angles. All lines and points are the same
as in Figure 9.

sume a stellar mass that is ∼ 2 − 3 times larger (depending
on dust mass) than that of AD1 at z = 9.4, which gives a
stellar mass estimate of ∼ 7 − 10 × 109M� . This stellar mass
could be lowered if the dust in AD1 was distributed more
like it is in AD3, where there is a much stronger preference
for the dust to be around young stars (see Figure 5).

In contrast to GN-z10-3, the Balmer break, although

present, is weaker for GN-z9-1. In Figure 12, we show that
the z = 9.4 SED of AD1 appears to be in much better agree-
ment with this galaxy than for GN-z10-3. The agreement
once again relies on dust. In the top left panel of Figure 12,
one can see that without dust, the SED of AD1 is much too
blue to match the photometry of GN-z9-1. Even with a very
small amount of dust (i.e. fdust = 0.05), the shape of the
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AD1 SED is in very good agreement with the photometry
of GN-z9-1. In order to match the normalisation, depending
on dust content, the stellar mass of GN-z9-1 must be ∼ 2− 4
times that of AD1. Once again if the dust distribution in
GN-z9-1 was slightly different to AD1, this number may de-
crease. Regardless of the exact normalisation, it is clear that
this potential Balmer break is naturally reproduced by our
simulations. We argue that these types of objects are not
weird or abnormal, rather they can form in a hierarchical
structure formation scenario, within a ΛCDM cosmology, as
long as dust is accounted for.

5 DISCUSSION AND CONCLUSIONS

We have compared the SEDs of galaxies in a high-
resolution cosmological radiation hydrodynamics simula-
tions with the photometry of three z ∼ 9 galaxies (one
spectroscopically confirmed and two with photometric red-
shifts), MACS 1149 JD1, GN-z10-3, and GN-z9-1, to deter-
mine whether the observed Balmer breaks can be reproduced
by simulations. The observed systems were specifically se-
lected so that their IRAC channel 2 excess is not contami-
nated by the [OIII] and Hβ nebular emission lines. Under-
standing this excess is key for determining the assembly his-
tory of high-redshift galaxies as well as the onset of cosmic
dawn. However, even for our very high redshift simulated
systems, dust is a crucial component of the SED modelling.
Our main conclusions are as follows:

• For two of our three most massive simulated systems,
the dust resides preferentially around the young star-forming
regions, thus enhancing the presence of the Balmer break,
and complicating its interpretation.
• The strength of the Balmer break in JD1 can be easily

reproduced by one of our three simulated galaxies, AD3,
indicating that objects like JD1 may be relatively normal at
high redshifts.
• If AD3 is a direct analog of JD1, we suggest that it has

a stellar mass of ∼ 1.25 × 108M� , a SFR of 0.49M�yr−1, a
relatively large magnification (between 20-90), a dust mass
< 105M� , and a super-solar ratio of oxygen abundance with
respect to iron. Star formation in the object likely occurred
within 200Myr of the Big Bang.
• The photometry of GN-z10-3 and GN-z9-1 can be rea-

sonably reproduced by the SED of AD1 but we require
that the stellar mass of the objects be a factor of ∼ 2 − 7
times larger than that of AD1 (which has a stellar mass of
109.54M� at z = 9.4).
• Objects with very similar instantaneous stellar masses

and SFRs (i.e. AD2 and AD3) can have extremely differ-
ent dust morphologies, leading to strong variations in SED
shape and attenuation. Interestingly, the objects that begin
forming stars first (i.e. AD2) may not exhibit Balmer breaks
as strong as those that form stars later (i.e. AD3).

Future observations that directly observe the dust emis-
sion from objects like JD1 may help to constrain the dust
content of these galaxies to determine whether the systems
that exhibit strong Balmer breaks are consistent with the
simulated objects.

Directly comparing our simulations with high-redshift
observations is extremely non-trivial and certain caveats

should be considered when interpreting our work. Firstly,
there remain little constraints on the dust production and
destruction mechanisms, evolution, and properties at these
extreme redshifts. Furthermore, we have assumed that the
dust mass scales with metallicity following the relations from
(Rémy-Ruyer et al. 2014) that have considerable scatter. If
the dust distribution is not completely coupled to the metal
distribution, the dust optical depths seen by individual stars
will be different from what is presented.

We have only considered the continuum SEDs of these
objects without any nebular emission lines. However, for old
stellar populations, which are likely to dominate the SEDs of
galaxies with large Balmer breaks, we expect that the nebu-
lar lines are extremely sub-dominant compared to the stellar
and nebular continuum. Likewise, we have only considered
attenuation from inside the galaxy rather than scattering, or
attenuation and scattering from material in the IGM. This
would require running radiation transfer in a full light cone
which is beyond the scope of this work.

With these caveats in mind, even with little amounts of
dust (i.e. < 105M�) present in these high-redshift objects, as
long as it is preferentially located around young star-forming
regions, our primary conclusions are likely robust.
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APPENDIX A: NEBULAR CONTINUUM
EMISSION

In this Appendix we describe our method for measuring neb-
ular continuum emission. We can exploit the fact that we
resolve both a multiphase ISM and an inhomogeneous ra-
diation field within each cell of our simulation to measure
the nebular continuum emission on a cell-by-cell basis within
the simulation. To do this, we employ the spectral synthesis
code CLOUDY (Ferland et al. 2017). We have run CLOUDY

on 850,000 simulation cells from the central region of AD1 at
z = 10. A slab of gas is set up in an open geometry at a large
distance from the central source. The depth of the slab is set
to the length of the cell in the simulation and we assume a
constant temperature, metallicity, and density to be consis-
tent with the simulation. The slab is irradiated with a flux
and spectral shape consistent with the simulation. We also
assume an isotropic background from the CMB. For each
model, we extract the nebular continuum using the results
from the save continuum command between rest-frame wave-
lengths of 900Å-8500Å which more than covers the range in
wavelength that we are interested in.

It is currently computationally impractical to run
CLOUDY models for the hundreds of millions of cells in
our simulation in each output and our parameter space is
too large to effectively create a grid of models. Thus, in or-
der to calculate the nebular continuum for all other cells in
the simulation, we have trained a Random Forest (Ho 1995;
Breiman 2001; Geurts et al. 2006), an ensemble machine
learning method, to use the density, temperature, metal-
licity, and radiation field within a simulation cell to predict
what the value of the nebular continuum will be at 70 differ-
ent wavelengths in the range described earlier. The sampling
of the points across the continuum is uneven as we increase
the resolution around the Balmer Jump to make sure that
this feature is not smoothed out. To assess the accuracy of
our method, the Random Forest is only trained on a subset
of the data (85%) while the remaining data is reserved to
assess the accuracy of the method. Within the training set,
we perform a cross validation to determine the optimum
number of trees in the forest (in our case we use 100). In
Figure A1, we show the percentage error difference in the
prediction of the total nebular continuum luminosity at the
70 different wavelengths for the data that was not used to
train the algorithm. At all wavelengths, the total luminos-
ity that we estimate using the Random Forest is within 2%
of that generated with CLOUDY indicating that we can ob-
tain a very accurate continuum luminosity for a simulated
galaxy using our method. Furthermore, our method is orders
of magnitude faster for generating nebular continuum emis-
sion for every cell compared to using CLOUDY. To generate
the total nebular continuum emission for each galaxy, we
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Figure A1. Fractional percentage error (|LPrediction −

LCLOUDY |/LCLOUDY) in the total luminosity of nebular con-

tinuum emission on the test data set. The points represent 70
locations where we predict the nebular continuum. The nebular

continuum is sampled much better at the locations near the

Balmer Jump to better capture this feature. In all cases, we
predict the total nebular continuum luminosity to better than

2% accuracy.

sum the results for all cells within the virial radius and per-
form the same dust attenuation calculation that is described
earlier.

A similar method is used to generate the IR land neb-
ular in luminosities discussed in Section 4.4.1; however, in
this case, the Random Forest is trained on the line emission
rather than the continuum emission.

Note that our method for calculating nebular contin-
uum emission is significantly different from others in the lit-
erature. For example, Wilkins et al. (2016) post-processed
the BlueTides simulation assuming a fixed gas density of
100 cm−3 and only perform the calculation around star par-
ticles where the metallicity of the gas is set to that of the
star. We prefer to exploit the inhomogeneous gas and radia-
tion field conditions throughout our simulation to estimate
this emission as this may impact the results. Wilkins et al.
(2016) found that nebular emission can play a significant
role in modulating the shape and normalization of the SED.
We can also confirm that under certain circumstances, the
nebular continuum emission can contribute upwards of 50%
of the total continuum luminosity of a galaxy. However, we
note that for the z = 9.2 snapshot of AD3 which is most
similar to JD1, the nebular continuum makes a subdomi-
nant contribution to the total SED compared to the stars.

This paper has been typeset from a TEX/LATEX file prepared by
the author.
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