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Abstract

Computer vision aims to provide computers with a conceptual understanding of
images or video by learning a high-level representation. This representation is typ-
ically derived from the pixel domain (i.e., RGB channels) for tasks such as image
classification or action recognition. In this thesis, we explore how RGB inputs can
either be pre-processed or supplemented with other compressed visual modalities,
in order to improve the accuracy-complexity tradeoff for various computer vision

tasks.

Beginning with RGB-domain data only, we propose a multi-level, Voronoi
based spatial partitioning of images, which are individually processed by a convolu-
tional neural network (CNN), to improve the scale invariance of the embedding. We
combine this with a novel and efficient approach for optimal bit allocation within
the quantized cell representations. We evaluate this proposal on the content-based
image retrieval task, which constitutes finding similar images in a dataset to a given
query.

We then move to the more challenging domain of action recognition, where
a video sequence is classified according to its constituent action. In this case, we
demonstrate how the RGB modality can be supplemented with a flow modality,
comprising motion vectors extracted directly from the video codec. The motion
vectors (MVs) are used both as input to a CNN and as an activity sensor for pro-
viding selective macroblock (MB) decoding of RGB frames instead of full-frame
decoding. We independently train two CNNs on RGB and MV correspondences and
then fuse their scores during inference, demonstrating faster end-to-end processing

and competitive classification accuracy to recent work.
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In order to explore the use of more efficient sensing modalities, we replace the
MV stream with a neuromorphic vision sensing (NVS) stream for action recogni-
tion. NVS hardware mimics the biological retina and operates with substantially
lower power and at significantly higher sampling rates than conventional active
pixel sensing (APS) cameras. Due to the lack of training data in this domain, we
generate emulated NVS frames directly from consecutive RGB frames and use these
to train a teacher-student framework that additionally leverages on the abundance
of optical flow training data. In the final part of this thesis, we introduce a novel
unsupervised domain adaptation method for further minimizing the domain shift

between emulated (source) and real (target) NVS data domains.
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Chapter 1

Introduction and Literature Review

Humans associate with objects in their environment through their sensory modali-
ties, such as vision or sound. In the case of sensory impairment (e.g., blindness),
a human can still identify objects using their remaining senses; however, the task
becomes more difficult, as they can not rely on the mutual information present be-
tween their sensory modalities. For example, both oranges and apples feel spherical
in shape but only oranges are also visibly orange in colour; the combination of both
information sources facilitates classification of the fruit. Many computer vision sys-
tems typically rely on learning features only within a single modality (e.g., text, im-
ages or audio). Multimodal machine learning aims to build models that can jointly
process and relate information across multiple input modalities, with the intention
of leveraging on the different statistical properties in order to improve performance

on a given task, such as classification.

In this thesis, we focus primarily on two computer vision tasks, content based
image retrieval (CBIR) and action recognition. Conventionally, both tasks ingest
whole RGB images as inputs to a learned embedding function. The objective of
this thesis is to explore how the RGB inputs can either be additionally processed or
supplemented with compresseidual modalities (with minimal associated sensing

and acquisition complexity), in order to improve the accuracy-complexity tradeoff.
CBIR based on visual queries is a topic of intensive research interest since it

finds many applications in visual searcj,[detection of copyright violations?],

recommendation service8][and object or person identificatiod][ The task con-
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stitutes finding matches to an image query in a large database, based on the content
(raw pixel data), rather than associated metadata such as tags or descriptions. There
are a number of retrieval engines commercially available that utilize CBIR; one
such example is Google Image Search, which allows the user to upload an image
or image URL as a query. The system combines reverse image search with avail-
able metadata to find matches over the billions of images in Google’s databases. In
this thesis, we investigate whether the RGB images can be additionally processed
for CBIR by adaptively partitioning the input image, in order to extract more in-
variant features. As such, an overarching retrieval system should be able to better
handle both small region-of-interest (ROI) queries and whole image queries. We
aim for our approach to be detector/descriptor agnostic, such that it can be easily
slotted into existing frameworks, with the intention of adding to the scale invariance

of existing shallow and deep-learned descriptor proposals. The end goal is to im-
prove overall retrieval performance on image datasets and subsequently extend this
to efficient video indexing and retrieval, to the point of deployment in a commercial

application.

Action recognition refers to the task of classifying video sequences based
on their constituent human action (e.g., ‘running’ or ‘playing tennis’). Examples
where this task plays a pivotal commercial role are video surveillabic@@iman-
computer interactiong] or robot learning 7]. Conventional methods for action
recognition typically employ a combination of RGB frames and dense optical flow
modalities for modelling both the spatial (static) and inter-frame motion dependen-
cies respectively. The problem with optical flow is it is expensive to compute; the
flow field is generated by computing partial derivatives at every voxel position. In
this thesis, we explore how to design competitive recognition systems with less ex-
pensive motion based alternatives to optical flow. We first consider how motion
vectors, which constitute a key component of standard video compression algo-
rithms, can be extracted directly from the video codec and employed as the second
modality to supplement selectively decoded RGB frames. We design an efficient

two-stream framework for processing the RGB frames and motion vector frames
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per video in a synchronous fashion.

The problem with optical flow and motion vector inputs for multimodal action
recognition is that they rely on a conventional active pixel sensing (APS) camera for
producing the video recording. APS cameras are limited by framerate, power con-
sumption and shutter speed and thus are not practical for certain applications such
as drone surveillance. Instead, we investigate whether we can substitute conven-
tional APS-based sensing with asynchronous neuromorphic vision sensing (NVS)
in order to provide a motion based input at low power and storage cost. NVS hard-
ware like the iniLabs DAVIS and the Pixium Vision ATIS camer&s9, 10, 11]
emulate the photoreceptor-bipolar-ganglion cell information flow and their output
consists of asynchronous ON/OFF address events (a.k.a., spike events) that indicate
the changes in scene reflectance. Existing NVS cameras can produce spike rep-
resentations that can be rendered into frame representations comprising up to 2000
frames-per-second (fps), whilst operating with robustness to changes in lighting and
at low power, on the order of 10mW. However, the events generated by NVS cam-
eras are typically sparse and substantially more difficult to train on than APS flow
based variants and there is currently very little data available for training. Therefore,
in this thesis we propose improvements to NVS emulators that generate emulated
NVS events directly from RGB images for the purpose of training action recog-
nition systems with labelled NVS data generated from RGB video datasets. We
consider how such emulators can be embedded into a multimodal transfer learning
framework that carries out heterogeneous transfer from optical flow (of which there
is an abundance of dense frames available) to emulated NVS during training. At
inference, assuming the domain shift is small between the emulated NVS data and
the real NVS data generated from a camera, we can directly infer on the real data

and sparsely selected RGB frames.

It is worth noting that the emulator parameters have to be manually fine-tuned
in order to minimize the domain shift between the emulated and real NVS data.
Furthermore, in order to accurately quantify the domain shift, this requires a suf-

ficient amount of real NVS data. Given the scarcity of real NVS data and that
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any recorded data would typically be unlabelled, we can pose this as an unsuper-
vised domain adaptation problem. Domain adaptation refers to methods in which
we leverage on a source data distribution in order to learn a different (but related)
target data distribution, with the intention of improving accuracy on a given com-
puter vision task. This finds application in numerous fields ranging from medical
imaging [L2] to spam filtering L3], where there is a scarcity of (labelled) data in
the target domain and synthetic versions of the target data are required in order
to improve performance on classification based tasks. Likewise, in this thesis, we
wish to learn a model that minimizes the distance between the labelled (source)
distribution of emulated NVS instances and unlabelled (target) distribution of real
NVS instances. We design a framework that builds on existing adversarial domain
adaptation methods by embedding task knowledge directly into the discriminator
that tries to distinguish between the real and emulated domains. Whereas existing
domain adaptation methods are typically evaluated on RGB image datasets only,
we additionally aim to demonstrate that in the case of NVS based classification, we
are able to substantially minimize the domain shift between emulated and real NVS

events.

1.1 Literature Review

In this section, we review current work published in the field of large scale content

based retrieval, unimodal and multimodal action recognition and domain adapta-
tion, which constitute the three core vision components of this thesis. Before de-
tailing the current state-of-the-art deep learning methods in each domain, we briefly

discuss methods prior to deep learning.

1.1.1 Content Based Image Retrieval

A generic retrieval system should typically have an offline and online component:

» Offline: For a given database, the system learns and subsequently encodes
the comprising images, such that similar images have similar encodings and

dissimilar images have dissimilar encodings.
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* Online: For a given query, the system finds relevant matches by mirroring
the encoding of the database images on the query. We can then search the

database and retrieve images with encodings similar to the query.

The encodings need to carry over enough information about their associated
image, such that matching images can be found reliably. The inherent difficulty in
retrieval is that database images deemed as ‘matching’ may be subject to viewpoint,
lighting or scale changes, or the object-of-interest may be occluded. Therefore, any
functional encoding has to be invariant to these changes, so corresponding images
are viewed by the system as matches. Furthermore, there is an inevitable tradeoff
between retrieval performance and efficiency. Retrieval performance is typically
measured as a combination of precision (the fraction of retrieved images that are
matches) and recall (the fraction of matching images that are retrieved) and reported
in terms of mean average precision (mAP), defined as the mean of average precision
(mAP) scores over all queries. Efficiency can be broken down into storage, (offline)
computation and (online) processing. For fast retrieval, we are restricted to storing
the entire encoding set for the database on random access memory, thus enabling
efficient database access. The computation and processing must be fast enough to

allow for real-time comparison between the query and database images.

1.1.1.1 ‘Shallow’ Global Descriptors

A global descriptor is a single vector encoding that is representative of the entire
image. The motivation behind global descriptors is that we can sacrifice some dis-
criminatory power achieved by local descriptors for a more compact representation
with concomitant lower complexity. That is, the structural information in an image
can be condensed into a single vector, then image matching can be reduced to com-
puting some distance metric between two vectors, rather than an exhaustive search
over matrices.

Bag of Words: Most notably, the Bag-of-Words (BoW) representatiad] [draws
parallels to text retrieval implementations by employing vector quantization (K-
means) to learn a vocabulary of ‘visual words’ by grouping local descriptors. The

local descriptors extracted over image patches are hard assigned to a visual word and
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the image is thus represented by a histogram of visual word frequencies. Again, bor-
rowing from text retrieval, visual words that possess higher entropy (i.e. rare words)
are deemed more discriminative. As such, the histogram tends to be weighted using
term frequency (TF) and inverse document frequency (IDF), with the final BowW
image representation being a TF-IDF vector. Assuming document (indagegp-
resented byK-dimensional vectot, whereK is the vocabulary size, for thieth
component:

Nig N

wherenyq is the number of occurrences of warth document, ng is the total num-

ber of words in documert, n; is the number of occurrences of ternm the whole
database anhll is the number of documents in the whole database. Similarity be-
tween two images can be computed as the Euclidean distance between BoW vectors
in K-dimensional space, with a smaller distance equating to higher similarity. The
BoW vector is inherently sparse, and the search space can be reduced further with
dimensionality reduction via PCA and whitenirfh| 16]. This can be coupled with
sparse coding, spatial pooling7q or learning over multiple vocabularieg§], in

order to encode a more discriminative representation (at the codiroks training

computation fom vocabularies).

A number of successful extensions have been applied to BoW, that go be-
yond K-means clustering and hard-assignment. One approach is to replace hard-
assignment with a 'descriptor space soft-assignmdd. [ Weights are assigned
to each cluster as a function of the standard deviaticend distance from lo-
cal descriptors to the cluster center, ex?:—z In essence, this applies a 'smooth-
ing’ effect to the visual word histogram, diffusing a bin count to neighboring bins.
This soft assignment slots into the BoW encoding process; a TF-IDF weighting
(and spatial re-ranking) can still be applied, and the resulting mAP gain over hard-
assignment is roughly 10-20% on standard image datas@tsAnother variant of
soft-assignmentl[9] is to create a ‘kernel codebook’ using radius-based clustering

instead of K-means.
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Vector of Locally Aggregated Descriptors (VLAD): Vector of Locally Aggre-
gated Descriptors (VLAD) is a fixed-size compact image representation that stores
first-order information associated with clusters of image salient pa2@<2[1]. In
the offline part of the VLAD encoding, based on a training ségfr-dimensional
SIFT descriptorsZ2] derived fromY training images, a visual word vocabulary is
first learned using K-means clustering. This vocabulary compKselsisters with
Dsier-dimensional centroidM = {1, U, ..., Hk }-

For each new test imagk (out of a test dataset comprising images),
N interest points are detected (using an affine invariant detector) and described
using Dg|rr-dimensional SIFT descriptors, thus forming a descriptor ensemble
X = {X1,X2,...,Xn}. The descriptors,, 1 < n <N, are assigned to the nearest
cluster in the vocabulary via a cluster assignment functiof). VLAD then stores
the residuals of the SIFT assignments from their associated centroids. The VLAD

Dsirr-dimensional encoding for thek-th cluster, 1< k < K, is given by RO, 21]:

Vik = Z (Xn— Hy)- (1.2)
VXn: T (Xn)=K

The VLAD encodings for each cluster are concatenated into a single descrip-
tor @(1) = [vq,... ,vK]T with fixed dimensiorK Dget, Which is independent of the
number of the SIFT descriptors found in the image. The VLAD vectors are then
sign square-rooted ang-normalized R1]. The intuition behind sign-square root-
ing (power normalizing) the vector is that it effectively regularizes the vector by
removing burstiness in dimensiorss].

In a practical system, the SIFT descriptor len@gr is typically 128; if
the feature space is coarsely quantized tlset to 64, then the VLAD image
descriptor has 8192 dimensions. As with the BoW vector, further dimensionality
reduction is achieved with PCA (learned on an independent image dataset), which
further minimises the memory footprint associated with each image.KDhgrr
x D projection matrixR used by VLAD comprises only the largest eigenvectors

of the covariance matrixitp, 16]. The projected VLAD,(Notest, of each image in the
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test dataset is thdp-normalized, thereby completing the offline part of the VLAD
generation.

During online retrieval between a ROI query and test image (for example),
after the VLAD encoding and projection of the ROI query has been carried out, the
similarity between that and the (projected) VLAD of a test dataset inﬁg@,and
?i)test, can be simply measured using the squared Euclidean distafjca/ith L,

normalized vectors, this is a monotonic function of the inner product, such that:

SRoltest= <E’ROI7 E’test> : (1.3)

where the similarity scor€go testfanges between -1 (completely dissimilar) to 1
(perfect match).

As with BoW, there have been a number of extensions proposed to enhance the
performance of the VLAD descriptor. For example, intra-normalizats) is a
normalization scheme that is presented as an improvement to sign-squared rooting,
in removing burstiness from visual elements. The sum of residubjsnermalized
within each clustek, and the entire vector is re-normalized, with the result being
consistent improvement in retrieval performance. This can be coupled with a cluster
center adaptatior2f3], which resolves the problem of inconsistent vocabularies by
refining the center positiop, using the assigned local descriptors, as new images
are added to the database online. More recent work has also looked at providing a
more discriminative VLAD representation by assigning local descriptors to multiple
bins based on their dominant orientation intra-cluster and computing residuals for
each bin separate2f]] - thus incorporating weak geometric information. The
method exhibits improved retrieval performance on the standard Holidays dataset.

However, for ROI-based retrieval, VLAD and the similarity measurelod)(
will produce sub-optimal results for small ROI, because information encoded from
the remaining parts of the dataset image will distort the similarity sco8fy In
this thesis, we propose a method for directly improving ROI-based retrieval that

also generalizes to whole images.
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Fisher vectors: The Fisher Vector35, 26] is a generalised case of VLAD that can

be extended to convey both first and second order information. A Gaussian Mixture
Model (GMM) with parameter® = (L, 2k, Tk : k= 1,...,K) is trained offline on
atraining set of SIFT descriptorX,= {X1,Xz,...,Xn}, Whereu, ¥ andrt represent

the mean, covariance matrix and component prior respectively. The mixture param-
eters are optimised as per convention, using Expectation Maximization (EM). The
first order Fisher vectau is the derivative of the log-likelihood with respect to the

mean:

Xji — Hik

1 N
Ujk—N\/T—‘ki;Qik - (1.4)

To derive the second order Fisher veotpthe derivative of the log-likelihood

with respect to the covariance is computed as:

o1 N - )
VJk—Wi;qk[( o, )—1] (1.5)

Compared to the VLAD vector, the first order Fisher vector essentially weights

the SIFT assignments to clusters by the posterior probability; this is analogous to the
soft assignment described, as a BoW extension. The dimensionality of the second
order Fisher vector iskDgrr. Generally, a second order Fisher vector presents a
more discriminative representation for the same vocabulary size than, at the cost of
greater training and assignment computation.

Indeed, the same tricks used to improve the performance of Bow and VLAD,
such as power normalization (sign-squared rooting) are transferable to the Fisher

vector.

1.1.1.2 Deep Learning for Content Based Image Retrieval

CNNs are feed-forward neural networks comprising multiple layers, and typically
trained for the classification task on largepriori labelled datasets, such as Ima-
geNet R7]. Following their superior performance in image classificatiaf],[ it

has been shown that extracted features from intermediate layers are transferable to
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other visual recognition tasks, including image retrie8, [30]. Descriptors de-
rived on these extracted features are competitive or superior to “shallow” learned

alternatives, based on VLAIR2()] or Fisher vectors31].

Recent work B2, 33, 34, 35] has been aimed at improving the geometric in-
variance of the CNN-based descriptors with region or patch-based methods. Earlier
methods, such as the work of Goagal. [32], extract image blocks from a grid
over multiple scales, which are subsequently fed into the CNN in order to derive
features to be aggregated with a VLAD pooling. However this is an exhaustive
approach and many blocks may not be informative. Paatlial. [34] improve on
this type of approach by selectively extracting patches at keypoints using a Hessian-
Affine detector 86|, which is coupled with a convolutional kernel network. While
these approaches have been shown to achieve competitive performance to the state-
of-the-art, they are heavily influenced by traditional methods that use hand-crafted

features and require external components such as feature detectors.

To avoid the use of such external (or hand-crafted) components, Btles
[37] proposed the use of region-based max pooling directly on the activations as
the means to derive a region-of-interest oriented descriptor. This takes advantage
of the correspondence between the input semantics and the activations. In other
related work, Babenket al. [38] proposed the SPoC descriptor, which combines
sum-pooling of the layer activations with a spatial weighting via a center prior.
More recently, Kalantidigt al. [39] extended on the SPoC descriptor with a cross-
dimensional spatial and channel weighting (CroW) and unresized inputs. Their
weighting scheme normalizes the activations by the sum of the channel responses
and weights the channels by considering the number of non-zero activations per
channel. The general framework of all these approaches involves aggregation of the
final pooling or convolutional layer and application of principal component analysis
(PCA), whitening and truncation in order to derive the resulting global descriptor. It
is worth noting that more recent woré(), 41] has looked at end-to-end training with
siamese networks and achieved state-of-the-art of results; however, in this thesis we

focus on ‘weakly supervised retrieval’ with pre-trained ImageNet models.
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1.1.1.3 Efficient and Accurate Matching

In a practical retrieval system, there is an inevitable tradeoff between accuracy and
efficiency in the online component of the system. When querying an image on a
dataset, an exhaustive nearest neighbours search equates to computing the distance
metric between the query and all members of the dataset. For a dataselfesize

with K dimensional vector representations, the order of complexigg(is x W);

there is linear growth in search complexity as the dataset grows in size.

Borrowing again from text retrieval systems, an inverted inde ¢an sig-
nificantly improve efficiency by mapping from visual word to image index (rather
than vice versa). This capitalises on the sparsity of Bow vectors, which means that
each image contains only a subset of the visual word vocabulary. Thus, the search
space is reduced, as it is only necessary to search lists that are indexed by the visual
words in a query. Recent work2] has also looked at improving the efficiency of
inverted index traversal, by computing an impact score to weight visual words and
‘prune’ the query. This is complemented with early termination, which sorts index

entries by their impact, such that the most promising entries are accessed first.

As is evident, an inverted index relies on sparsity in the descriptor to improve
search efficiency, and therefore does not fit naturally into a system built on the
denser VLAD and Fisher vector variants. Nonetheless, the general idea is trans-
ferable; in order to improve the search efficiency and memory footprint over large
datasets, whilst maintaining accuracy, the search space must be compressed intelli-
gently. Approximate Nearest Neighbor (ANN) algorithrdg,[44, 45] are readily

employed for such compaction over large datasets.

Hashing and Embedding:Hashing schemes quantize the search space by mapping
the data to a hash key via a hash function. Euclidean Locality Sensitivity Hashing
(E2LSH) [43] is a popular extension of basic hashing for nearest neighbour search.
In essence, the algorithm maps each vectdd tdistinct hash keys using a random

projection, each with an associated hash table. This is conceptually similar to an

inverted index, as only dataset vectors mapped to the same hash key as the query
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need to be searched and the Euclidean distance computed. The hash function for

the random projection of a vectgiis of the form:

(1.6)

hix) — {aT):N— bJ

wherea is a random projection vector drawn from a stable distributiontaad is

drawn from O tow.

More recent work attempts to improve performance by using vector quantiz-
ers such as K-means or Hierarchical K-mea#§],[to learn a projection, rather
than using a structured or random projection. Generally, this does improve nearest

neighbour recall, albeit with an extra pre-processing step.

LSH has two fundamental problems. First, the multiple hash tables have to be
stored in main memory to allow for fast access. Multi-probe L8H httempts to
rectify this, by taking a similar approach to soft assignment on Bow and search-
ing multiple cells nearest to the query hash key, rather than using mutliple hash
functions. The second problem relates to the fact that the exact Euclidean distance
is computed for those image vectors in the relevant search space; as such, these
vectors also need to be loaded into main memory, which means that LSH can lose
efficiency very quickly as the dataset size grows. A practical solution is to binarize
the vectors based on their hash ked4 f8]. Assuming that the search space is par-
titioned byN random planes, a vector is now described withtits. The angular
similarity between two binarized vectoogx) andb(y) can then be expressed as a
function of the Hamming distande[49]:

T

6 = 2 h(b(x),b(y)) (.7)

Essentially, the binarization forgoes some potentially discriminative informa-

tion for heavy compaction and efficiency (bit comparisons).

Product Quantization: A popular method for ANN search is product quantization

(PQ) [BQ]. In order to further reduce the search complexity and the required memory
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footprint when handling large dataseB,dimensional vectors are typically quan-
tized to produce compad®-bit representationssp]. Consider aD-dimensional
query vectorx. K-means maps the vectare RP to a vectorq(x) in codebook

C ={ci,1 <i <k}. For quantizeq with k centroids, the total number of bits used

to encodex is B = log, (k). For a 64 bit encoding of a 128-D vector, (0.5 bits per
dimension)k = 254 centroids must be learned using K-means, which is clearly not
feasible. Product quantization (PQ) is an effective solution that reduces the learning
and storage requirement by using multiple sub-quantizers rather than a single global
quantizer. Importantly, we can couple product quantization with an inverted index
for a non-exhaustive search(. In short, each vectox is coarsely quantized by
quantizerQ and the residualg(X) are product quantized and stored in inverted

lists. The residual vector is thus defined as:

rq(x) = x—Q(X) (1.8)

As such, the query is coarsely quantized and assignedwonésarest clusters.
Distances are computed between residuals only within the correspomdingrted

lists.

1.1.2 Action Recognition

Action recognition or classification is the task of assigning an action label to a video
clip. The recognition process can be preceded by action localization to pinpoint the
start and end of the relevant action in a longer video clip; however, in this thesis
we consider recognition on short video snippets of about 10s that only contain the
relevant action. Recognition performance is typically quantified in terms of clas-
sification accuracy; i.e., the proportion of correctly classified videos from the test
dataset. Prior to deep learning methods, the state-of-the-art for video classifica-
tion systems relied on a combination of hand-crafted feature detection, description
and aggregation. Wanet. al[51, 52] were able to achieve promising accuracy
for action recognition using dense trajectories. Essentially, given a set of extract

frames from a video, feature points are densely sampled at multiple spatial scales
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and tracked over time at these points using dense optical 88wbH]. Thus, for

each trajectory neighbourhood, several local descriptors can be computed (HOG,
HOF and MBH), and outliers removed with RANSAC for homography estimation.
Finally, these descriptors can be aggregated into a global representation using Bow
or Fisher Vectors and classification performed with an SVM. Importantly, the core

principles behind dense trajectories are transferable to deep learning system design.
1.1.2.1 Deep Learning for Action Recognition

a) LSTM + CNN b) Flow + RGB c) 3D RGB CNN
Action Action

L) Action

A BA DA Bs

timé .‘gg’ .‘g\@'
[Donahue et al., 15] [Zisserman et al., 14] [Tran et al., 15]

Figure 1.1: State-of-the-art methods for action recognition typically fall into one of three
categories, or a combination of categories: a) fusing an LSTM with a CNN by
using an LSTM to model the CNN encoded frames over time; b) two-stream
CNN that synchronously ingests an RGB frame and flow frames into their re-
spective CNNs, with the encoded logits being fused with averaging/SVM to
generate the final prediction; ¢) 3D RGB CNN that encodes multiple RGB
frames with 3D convolutions and spatio-temporal activations.

With increasing dataset sizes and complexity in classification and retrieval,
there is a need for deeper and scalable models to learn more complex representa-
tions and with larger learning capacity. Subsequently, due to their stand-out per-
formance in image classificatio2g], deep convolutional neural networks (CNNSs)
have recently come to the forefront in video classification. Karpathyal [55]
proposed extending the CNN architecture from image to video by performing
spatio-temporal convolutions in the first convolutional layers over a 4D video chunk
V € RWXHXCXT '\whereW, H are the spatial dimension8,is the number of chan-

nels andT is the number of frames in the chunk. This is the premise behind their
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slow-fusion architecture, which uses 3D convolutions on RGB frame chunks in the
first 3 layers, thus encompassing the full spatio-temporal extent of the input. No-
tably, experiments demonstrated that feeding a single RGB frame versus multiple
frames into this architecture did not have any significant effect on accuracy; in other
words, the CNN was not effectively learning on the motion information. &taal

[56] attempt to improve accuracy by using a deep 3D CNN architecture (resembling
VGGnet B7]) together with spatio-temporal convolutions and pooling in all layers.
They combine this with a bagging approach over 3 nets and improved dense trajec-
tories, to achieve state-of-the-art accuracy of 90.4% on UCF-48]1 d&lbeit with
heavy computational cost. 3D CNNs typically demonstrate better performance as
they model spatio-temporal abstractions of data unlike than their 2D counterparts,
albeit at the cost ofi) higher complexity due to the extra kernel dimension, and
(i) subsequent difficulty in training. Additionally, it has been arguzg] {hat mod-

elling temporal dependencies only constitutes a fraction of the recognition accuracy,
and the majority of performance gain actually comes from the spatial invariance in-

herent in motion based inputs. Therefore, 2D CNNs still remain a viable option.

Simonyaret. al[60] argue that the problem is not the depth or spatio-temporal
extent of the architecture but rather the nature of the RGB input that does not ef-
fectively present motion information to the CNN. They propose using a 2D archi-
tecture with dense optical flow to represent the temporal component of the video.
Notably, this temporal CNN outperforms an equivalent 2D spatial stream ingesting
RGB frames. However, performance can be improved further by fusing the tempo-
ral and spatial streams using a simple score averaging. This two stream architecture
achieves 88.0% on UCF-101; however, the computational cost is still relatively high
due to the requirement to extract optical flow for the temporal stream (reported as

0.06s for an image pair).

One of the main issues with the above approaches is the short temporal ex-
tent of the inputs; each input is a small chunk of frames that only encapsulates a
second or so of the video. However, this does not account for cases where tempo-

ral dependencies extend over longer durations of video. Feichtengtofat[61]
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attempt to resolve this issue by using multiple copies of the two stream network
above. The copies are spread over a coarse temporal scale, thus encompassing both
coarse and fine motion information with an optical flow input. The architecture is
spatially and then temporally fused using a 3D convolution and pooling. Whilst this
does surpass performance of ensemble averaging, it can incur a substantial increase
in the number of weights when the number of channels in the preceding convolu-
tional layer is large. Additionally, only the fusion layer learns a true spatio-temporal
feature map. Wanget. al[63] present a similar approach with temporal segment
networks. Essentially, the video is divided into snippets and each snippet is fed
into a two-stream network. The temporal and spatial components are independently
fused over snippets using a segmental consensus function over their outputs, prior
to class fusion. This is combined with warped optical flow input to the temporal
streams, where camera motion is compensated for by estimating the homography
matrix (analogous to improved dense trajectories). Alternatively, Lagitesl [64]

argue that increasing the temporal extent is simply a case of taking the optical flow
component over a larger temporal extent. In order to minimize the complexity of
the network, they downsize the frames, thus reducing the spatial dimensions. Com-
bining their two stream architecture with improved dense trajectories yields 92.7%

on UCF-101 action recognition dataset.

Another method of generating CNNs with a long temporal extent is to integrate
an RNN into the architecture. In principle, an RNN would give you infinite temporal
context up to the present frame. The idea of appending a 3D CNN with an LSTM
was originally introduced by Baccoucké al[65] in 2011; the LSTM appended to
the fully connected layers effectively models global motion in the video, whereas
the 3D CNN models the fine temporal cues. Donaéueal [66] follow a similar
approach but use a 2D CNN to extract features from individual frames. These are
subsequently fed into a stack of LSTMs for sequence learning over the input. Due

to parameter sharing over time, this model scales to arbritrary sequence lengths.

IAlternatively, it is worth noting that the recently proposed ActionVLAE2] follows a method
more in line with trajectory based methods, by aggregating the feature maps generated per time step
into a VLAD representation of the action.
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Ng et. al[67] extend this by considering the effects of appending the CNN with
feature pooling versus an LSTM, prior to class fusion. Their results demonstrate that
pooling is a good alternative to using an LSTM and achieves competitive accuracy
(88.2% vs 88.6% on UCF-101). They also note that simply appending a 2D CNN
with an LSTM stack has its limitations. For one, the LSTM is likely to only focus
on global temporal motion, such as shot detection and not the fine temporal cues
inherent in groups of consecutive frames. Bals al [68] propose integrating

the RNN units directly into the CNN. Essentially, CNN layers from different time-
steps are passed through a GRU to generate a new layer that contains temporal
information from both layers. In this way all activations are temporally connected.
With an optical flow input, this can achieve 85.7% on UCF-101 (split 1).

Finally, there has been some recent work into unsupervised learning for video
representations. The advantage of unsupervised methods are that they do not require
pre-labelled data, which can be expensive to collate. Srivastaval [69] use an
LSTM to map the input to a feature descriptor, which can then be passed to decoder

LSTMs to perform various tasks, and finetuned for supervised learning.

1.1.2.2 Choice of Modality

The choice of modality constitutes a significant point of contention between recent
work, with most methods opting for a combination of an RGB and optical flow-
based input, as evident above. The problem with optical flow as an input is that it
represents a substantial bottleneck in the processing pipeline. In order to generate
optical flow, the video needs to be fully decoded and the flow field generated from
consecutive frames. Recent workQ[ 71, 72] has experimented with extracting
the motion vector (MV) fields directly from the video codec. Whilst performance
is usually diminished when training on motion vectors compared to optical flow
(as MV fields comprise lower-resolution and noisier representations), no additional
computation is required as motion vectors are directly extractable from the com-
pressed video bitstream at very high speed. Kanteta! [73] initially introduced

the MPEG flow model for motion vector based action recognition; however their

method was limited to the shallow global descriptors described previously. Re-
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cently, Zhanget al. [71] utilized codec MVs as an input to a 2D CNN in their
action recognition, termed EMV-CNN; however their approach requires upsampled
MV fields which diminishes the complexity saving. In this thesis, we show how
the video codec can be leveraged to additionally allow for selective decoding of the
RGB frames and we directly process low resolution MV frames, thus improving
the complexity saving. We also demonstrate how emulated and real neuromorphic
vision sensing (NVS) based frames can be leveraged to replace expensive optical

flow whilst maintaining competitive performance.

1.1.2.3 Benchmarks

Benchmarking for action recognition is typically performed on UCF-101 and
HMDB-51 datasets, which respectively contain about 7000 and 13000 video clips
for training and inference. These datasets are relatively small, particularly when
compared to benchmarks in the image classification domain. Caetegla [74]
recently introduced the Kinetics video dataset, consisting of 400 action classes and
over 400 video clips per class. The larger video dataset translates to more discrimi-
native features learnt during training. Pre-training with Kinetics is coupled with an
inflated Inception-V1 architecture for both RGB and motion streams, where the In-
ception kernels and pooling are extended in the temporal dimension and initialized
with the scaled pre-trained ImageNet weights. The result is a significant improve-
ment in performance when subsequently fine-tuning on UCFA8bf HMDB-51

[79]. However, the sheer size of the input volume (64 frames for both streams) is
extremely complex to train on, requiring 16 GPUs for fine-tuning on UCF-101 with
synchronous training74]. Due to lack of resources, in this thesis we do not re-
port results with this dataset for the action recognition task and instead restrict our
investigations to the well-established UCF-101 and HMDB datasets.

1.1.3 Unsupervised Domain Adaptation

In transfer learning nomenclature, unsupervised domain adaptation falls under the
category of transductive transfer learning, where labels are available in the source

domain but not in the target domain but the task is shared between domains. The
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domainD has an associated marginal probability distributf§X) over image sam-
plesX = {x'}N ;€ 2" and a conditional distributioR(Y|X) between source images
and labels, wher¥ = {yi}}\‘:O € %, whereZ is the feature space? is the label
space and\ is the set cardinality. Let us denote the source domaisand target
domain asZt. The domain adaptation scenario arises when there is a domain shift
between the source and target; i@s # 2t andP(X1) # P(Xs). For homoge-
nous domain adaptation, we assume that the feature representations are the same;
i.e., Zs= Z7. In addition, for the transductive setting we assume that the label
sets are shared between the source and target domair&gi-e %4 . As the source
domain is labelled, we can leaR{Y g|Xs); the aim is then to learR(Yt|Xt) and
classify the target instances by leveraging on the source distributions.

Prior to deep learning, methods for homogenous domain adaptation included
instance reweighting7p], which typically assumes that the conditional distribu-
tions match, but there is a covariate shift between the source and target domains.
Other methods that remove the assumption of matching conditional distributions
were based on feature augmentation or feature space alignment; for example, by

minimizing the Bregman divergence between the source and target PCA subspaces

[77].

1.1.3.1 Deep Learning for Domain Adaptation

We briefly discuss recent developments in deep learning for unsupervised domain
adaptation. In general, we can segment recent work into discrepancy based, adver-

sarial based or reconstruction based methods.

Discrepancy based methodsDiscrepancy based methods minimize the domain
distribution discrepancy directly, typically using an IPM based metric such as max-
imum mean discrepancy (MMDYH] loss for this purpose. MMD maps the original
data to a reproducing kernel Hilbert space (RKHS), where the source and target dis-
tributions are assumed separable. Notably, the MMD is commonly used with a
Gaussian kernel, which from the Taylor expansion enables matching between all

moments of distributions, albeit with some cost in processing. For examidle, [
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proposed the deep domain confusion (DDC) method which applied a joint classifi-
cation and linear MMD loss on an intermediate adaptation lay€l. gxtended on

DDC by adding multiple task-specific adaptation layers and minimizing the domain
shift with a multiple-kernel maximum mean discrepancy. Rather than matching the
marginal distributions, the joint adaptation network (JAR}][aligns the domain

shift between the joint distributions of input features and output latX,Y).
Alternatively, CORAL BZ2] matches only the mean and covariance between distri-
butions,which despite its simplicity in only matching second order moments, still
maintains competitive performance. More recently, Haeusssal. [83] proposed
associative domain adaptation that replaces the MMD with an efficient discrepancy-
based alternative that reinforces association between source and target embeddings.
The basis of associativity is the two-step round-trip probability of a random walker
starting from a labelled source feature and ending at another source feature via tran-
sition to a target feature. Associative cycle probabilities are encouraged to be close
to a uniform distribution. Effectively, associative domain adaptation uses the clus-
tering assumption, where target and source samples from the same class should be
located in high density regions of the feature space, with low density regions be-
tween classes. Similarly, this assumption is adopted byeshl [84], who add an
additional penalty loss function to their adversarial learning framework, in order to

punish violation of the clustering assumption.

Adversarial based methods. Adversarial based methods opt for an adversarial
loss function in order to minimize the domain shift. The domain adversarial neu-
ral network (DANN) B5] first introduced a gradient reversal layer that reversed the
gradients of a binary classifier predicting the domain in order to train for domain
confusion. Training is performed jointly with a cross entropy loss that classifies
the source examples, in order to learn a shared task-based embedding. Other re-
cent proposalsge, 87, 88] have explored generative models such as GA3®s 90

to learn from synthetic source and target data. These approaches typically train

two GANs on the source and target input data with tied parameters. In order to
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circumvent the need to generate images, Adversarial Discriminative Domain Adap-
tation (ADDA) [91] was recently proposed as an adversarial framework for directly
minimizing the distance between the source and target encoded representations. A
discriminator and target encoder are iteratively optimized in a two-player game akin
to the original GAN setting, where the goal of the discriminator is to distinguish the
target representation from the source domain and the goal of target encoder is to
confuse the discriminator. This implicitly aligns the target distribution to the (fixed)
source distribution. The simplicity and power of ADDA has been demonstrated in
visual adaptation tasks like MNIST, USPS and SVHN digits datasets. The recently
proposed DIFA 92] extends this discriminative adversarial framework further by
training a generator to generate source-like features that can be used to supplement
the source examples during target adversarial training. Finally, $aiah [93]
propose an interesting yet simple proposal of training a feature generator and two
classifiers in an adversarial fashion. Their proposal is based on the assumption
that target examples that fall outside the support of the source will be misclassified
by two different classifiers. They alternately maximize a discrepancy based loss
function to train the two classifiers and minimize the same function to train the gen-
erator, such that the generator will eventually generate target features that fall inside

the support of the source and thus are more easily classified.

Reconstruction based methods:Reconstruction based methods use the recon-
struction of source and target examples as an auxiliary task for learn a shared en-
coding between the source and target domains. This is exemplified by the deep
reconstruction network (DRCNYf], which is comprised of a shared encoder over
source and target examples and a two component loss function; a cross entropy loss
that classifies the source examples over the shared encoder and a reconstruction
loss over a target decoder and shared encoder that reconstructs target examples, in
order to ensure that the shared encoder generalizes to the target features Domain
separation networks (DSNY%$] also adopt a similar strategy but instead use a com-

bination of private and shared encoders to learn private and shared domain features
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and a shared decoder that aids generalization between domains. The reconstruction
based methods introduced above use a traditional convolutional autoencoder con-
figuration; however, more recently there has been growing interest in adversarial-
based reconstruction methods that translate images between domains with a com-
bination of multiple generators and discriminators. As this is typically an under-
constrained problem, adversarial reconstruction methods adopt a cycle consistency
loss that ensures that an image can be translated back to it's original domain. One
such example is CycleGANDB] which uses two generatofs and G to translate

from source to target and target to source domains. A source and target discrimina-
tor is employed to distinguish between translated and real images for each domain
and train each generator adversarially. A cycle-consistency loss is used to ensure
that we are able to invert the translation; i.e., for source and target inxagesl

X, Xs — G(Xs) — F(G(Xs)) = Xs andx; — F (%) — G(F(x)) =~ xs. Whilst Cycle-

GAN learns a separate latent space for the target and source domain, 9NIT [
enforces a shared latent space by splitting each generator into encoder and decoder
components and tying weights around the encoder output and decoder input layers.
More recently, Leeet al. [98] proposed to disentangle the latent spaces between
encoder-decoder pairs into a shared content spaaad an attribute space’ for

each domain. The attribute space contains domain-specific information, analogous

to the private and shared encoder of the DSN.

1.2 Thesis Outline and Research Outcomes

The remaining chapters of the thesis can be divided into the three core compo-
nents as discussed in the literature review; content based image retrieval (CBIR),
action recognition and unsupervised domain adaptation. Inline with our main the-
sis objective of improving the accuracy-complexity tradeoff for CBIR and action
recognition, we begin by exploring improvements to unimodal pixel domain CBIR
systems and extend to compressed multimodal representations for action recogni-
tion. We ultimately transition from the pixel domain only to the spike domain with

neuromorphic vision sensing (NVS) based recognition.
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In Chapter 2, we consider the CBIR task and RGB modality only, where we in-
vestigate whether we can improve the geometric invariance of our embedding. The
objective is to design a retrieval system that can handle queries comprising arbitrary
regions-of-interest (ROI) rather than entire images. Our proposal is a compact im-
age descriptor that combines the state-of-the-art in content-based descriptor extrac-
tion with a multi-level, Voronoi-based spatial partitioning of each dataset image.
The proposed multi-level Voronoi-based encoding uses a spatial hierarchical K-
means over interest-point locations, and computes a content-based descriptor over
each cell. In order to reduce the matching complexity with marginal or no sacrifice

in retrieval performance:

» we utilize the tree structure of the spatial hierarchical K-means to perform a

top-to-bottom pruning for local similarity maxima;

* We propose a hew image similarity score that combines relevant information

from all partition levels into a single measure for similarity;

» we combine our proposal with a novel and efficient approach for optimal bit

allocation within quantized descriptor representations.

By deriving both a Voronoi-based VLAD descriptor (termed as Fast-VVLAD)
and a Voronoi-based deep convolutional neural network (CNN) descriptor (termed
as Fast-VDCNN), we demonstrate that our Voronoi-based framework is agnostic
to the descriptor basis, and can easily be slotted into existing frameworks. We
demonstrate this capability by designing and implementing a large scale retrieval
system for image or video frame retrieval.

In Chapter 3, we consider how the RGB modality can be supplemented with
an additional compressed flow based modality in order to improve performance for
video classification. Specifically, we investigate action recognition via a two-stream
convolutional neural network (CNN) design that directly ingests information ex-
tracted from compressed video bitstreams. Our approach begins with the observa-
tion that all modern video codecs divide the input frames into macroblocks (MBs).

We demonstrate that selective access to MB motion vector (MV) information within
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compressed video bitstreams can also provide for selective, motion-adaptive, MB
pixel decoding (a.k.a., MB texture decoding). This in turn allows for the derivation

of spatio-temporal video activity regions at extremely high speed in comparison
to conventional full-frame decoding followed by dense optical flow estimation. In
order to evaluate the accuracy of a video classification framework based on such ac-
tivity data, we independently train two CNN architectures on MB texture and MV
correspondences and then fuse their scores to derive the final classification of each
test video. We find that:

* a CPU-based realization of our MV extraction is over 977 times faster than

GPU-based optical flow methods;
* selective decoding is up to 12 times faster than full-frame decoding;

 our proposed spatial and temporal CNNs perform inference at 5 to 57 times

lower cloud computing cost than the fastest methods from the literature.

In Chapter 4, in order to improve on the sensing efficiency, we circumvent
the limitations of conventional active pixel sensing (APS) cameras by replacing
motion vectors with neuromorphic vision sensing (NVS) events. Neuromorphic
vision sensing (NVS) hardware is now gaining traction as a low-power/high-speed
visual sensing technology that circumvents the limitations of cameras. While object
detection and tracking models have been investigated in conjunction with NVS,
there is currently little work on NVS for higher-level semantic tasks, such as action
recognition. This is partly due to the lack of available labelled NVS training data.
We attempt to fill this gap by introducing new options and associated parameters
on a recently proposed NVS emulator framework, in order to minimize the domain
shift between real NVS events and emulated events generated from APS video. We
then embed the improved emulator into a multimodal transfer learning framework
that, contrary to recent work that considers homogeneous transfer between flow
domains (optical flow to motion vectors), carries out heterogeneous transfer from

optical flow to NVS. The potential of our framework is showcased by the fact that:
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« for the first time, our NVS-based results achieve comparable action recogni-

tion performance to motion-vector or optical-flow based methods;

 the improved NVS emulator and NVS camera hardware offers 3 to 6 orders of
magnitude faster frame generation (respectively) compared to standard Brox

optical flow.

In Chapter 5, we complete our transition from pixels to spikes by further ad-
dressing the inevitable domain shift that arises when training on emulated NVS
events and inferring on real NVS events. The scarcity of real labelled NVS data
means we can present his as an unsupervised domain adaptation problem. Ad-
versarial discriminative domain adaptation (ADDA)] is an efficient framework
for unsupervised domain adaptation, where the source and target domains are as-
sumed to have the same classes, but no labels are available for the target domain.
While ADDA has already achieved better training efficiency and competitive accu-
racy in comparison to other adversarial based methods, we investigate whether we
can improve performance by incorporating task knowledge into the adversarial loss
functions. We achieve this by extending the discriminator output over the source
classes and leverage on the distribution over the source encoder posteriors, which
is fixed during adversarial training, in order to align a target encoder distribution
to the source domain. We additionally consider how the extended discriminator
can be regularized in order to further improve performance, by treating the dis-
criminator as a denoising autoencoder and corrupting its input. Our final design
employs maximum mean discrepancy and reconstruction-based loss functions for
adversarial training. We first demonstrate on standard pixel domain datasets that
our proposal is able to compete or outperform the state-of-the-art in unsupervised
domain adaptation, whilst offering lower complexity. Finally, we show that the im-
proved performance generalizes to the spike domain by introducing and evaluating
on a neuromorphic vision sensing (NVS) sign language recognition dataset, where
the source domain constitutes emulated neuromorphic spike events converted from
APS video and the target domain is experimental (real) spike events from an NVS

camera.
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1.2.1 Research Outcomes

The work completed during the PhD has resulted in two journal publications and
three conference publications. There is also a conference paper and journal paper

currently under review. We only present part of the work in this thesis.

Conference papers:

» Aaron Chadha and Yiannis Andreopoulos. "Region-of-interest retrieval in
large image datasets with Voronoi VLAD.” in International Conference on
Computer Vision Systems (ICVS), 2015.

» Aaron Chadha, Alhabib Abbas, and Yiannis Andreopoulos. "Compressed-
domain video classification with deep neural networks: There’s way too much
information to decode the matrix.” in IEEE International Conference on Im-

age Processing (ICIP), 2017.

» Abbas, Alhabib, Aaron Chadha, Yiannis Andreopoulos, and Mohammad
Jubrani. “Rate-Accuracy Trade-Off In Video Classification With Deep Con-
volutional Neural Networks.” in IEEE International Conference on Image
Processing (ICIP), 2018.

» Aaron Chadha, Yiannis Andreopoulos. “Improving Adversarial Discrimina-

tive Domain Adaptation.” (arXiv preprint arXiv:1809.03625).

» Aaron Chadha, Yin Bi, Alhabib Abbas, Yiannis Andreopoulos. ‘Neuromor-
phic Vision Sensing for CNN-based Action Recognition” submitted to IEEE
International Conference on Acoustics and Signals Processing (ICASSP),
2019.

Journal papers:

» Aaron Chadha, Yiannis Andreopoulos. “Voronoi-based Compact Image De-

scriptors: Efficient Region-of-Interest Retrieval With VLAD And Deep-
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Learning—based Descriptors.” in IEEE Transactions on Multimedia (TMM),
2017.

» Aaron Chadha, Alhabib Abbas, Yiannis Andreopoulos. “Video Classification
With CNNs: Using The Codec As A Spatio-Temporal Activity Sensor” in
IEEE Transactions on Circuits and Systems for Video Technology (TCSVT),
2017.

 Mohammad Jubran, Alhabib Abbas, Aaron Chadha, Yiannis Andreopoulos.
“Rate-Accuracy Trade-Off In Video Classification With Deep Convolutional
Neural Networks” in IEEE Transactions on Circuits and Systems for Video

Technology (TCSVT).

Awards and other accomplishments:

» Awarded Industrial Fellowship from the Royal Commission for the Exhibition

of 1851 for work on “High-Speed Analysis of Big Video Data”.

* Google Cloud & YouTube-8M Video Understanding Challenge, Kaggle,
2017. Task: Develop a classification algorithm which accurately assigns
video-level labels using the YT-8M V2 dataset released by Google (7 mil-
lion videos, 450,000 hours). Ranked in top 7% (out of 650 teams) with 7

submissions (username ‘DelveVideo’ on leaderboard).

» Designed and implemented a retrieval system for industrial sponsor BAFTA
within the VideoClarity project, a BAFTA research project sponsored by
Innovate UK (101932), with potential commercial application in logo
detection/de-duplication services; the retrieval system is discussed further

in AppendixC.



Chapter 2

Voronoi-based Compact Image
Descriptors: Efficient Region of
Interest Retrieval with VLAD and

Deep-Learning-based Descriptors

In this chapter, we focus on the content based image retrieval (CBIR) task, which is
conventionally treated as a unimodal task on pixel domain (RGB) images. There-
fore, rather than supplementing with an additional modality, we instead consider
how to additionally process the images in order to extract more invariant features
that can potentially improve matching capabilities. Specifically, we are interested
in the problem of designing a visual-query based retrieval system that is capable
of handling both small and large-size “object”, or, more broadly, region-of-interest
(ROI) queries over image datasets. Given a ROI representing a visual query, the
proposed system should return all images from the database containing this query,
with matching complexity and storage requirements that remain of the order of stan-
dard encodings. This is considerably more challenging than whole-image retrieval
systems, as the query object may be occluded or distorted, or be seen from different
viewpoints and distances in relevant imag@9|[ This is also the reason why the

original VLAD proposal does not perform as well for this proble2][

There have been a number of VLAD-derived approaches that tackle ROI based
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retrieval. Lazebniket al. [10Q introduced the concept of spatially partitioning

an image into a rectangular grid over multiple scales and encoding per block, as
a method of incorporating spatial information; this has found application in both
image classificationlf00, 101] and retrieval L0Z. Similarly, the Multi-VLAD de-
scriptor R3] attempts to improve VLAD performance for small ROI by spatially
partitioning the dataset images into a rectangular grid over three scales and com-
puting a VLAD descriptor per block. For ROI queries occupying about 11% of
image real estate, the Multi-VLAD descriptor has been shown to outperform the
single (128x 14)-D VLAD (computed over the whole image) in terms of mAP.
However, Multi-VLAD achieves 20% lower mAP than the (12814)-D VLAD

when queries occupy a sizeable proportion of the im&@@g In addition, it incurs

a 14-fold penalty in storage and matching complexity in comparison to the baseline
128-D VLAD.

We instead propose a new adaptive Voronoi-based encoding (VE), in which
we spatially partition the image, using a hierarchical K-means, into Voronoi cells
and thus compute multiple descriptors over cells. We couple this with an adaptive
search algorithm that minimizes the overall computation for similarity identification
by first finding the cells most representative to the query and then deriving a novel
single-score metric for the image over these cells. In order for our proposal to be
further amenable to big data processing, we additionally propose a novel product
quantization framework (based on symmetric distance computation) for our pro-
posal. We show that our proposed framework is agnostic to the descriptor basis
by testing on both a Voronoi-based VLAD descriptor and Voronoi-based deep CNN
feature descriptor and assessing performance against their respective state-of-the-art
variants. Our proposal is inline with grid based spatial search CNN derived methods
of Carlssoret al.[103 104, as we are not explicitly computing a global descriptor
over extracted features from multiple patches like CNN+VLAR][and CKN-mix
[34] (which require additional computational pre-processing, e.g., for learning en-

coding centers).

The Voronoi-based encoding is discussed in Sedidnland constitutes the
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offline component of our system. Secti@ril.2describes the proposed accelera-
tion for online Voronoi-based ROI query search and possibilities for memory com-
paction to reduce storage requirements. Se@i@iconsiders integration of a mod-

ified product quantization approach, both for efficient Voronoi-based search and for
memory compaction (to reduce storage requirements). Finally, Sec8pnesents
experimental results for the accuracy-complexity tradeoff on the Holid&&s and
Caltech Cars (Rear)Lpg datasets, and extends the Voronoi-based patrtitioning to
whole images, demonstrating that we can achieve competitive accuracy compared

to state-of-the-art methods at modest computational overhead.

2.1 Proposed Voronoi-based Encoding and its Fast

Online Implementation

In this section, we present our proposed Voronoi-based encoding and its fast variant
for efficient online Voronoi-based ROI query search. Tablé summarizes the

important nomenclature to be used in the remainder of this chapter.

2.1.1 Voronoi-based Encoding and Compact Descriptors

Instead of spatially partitioning the images into a rectangular grid, we propose to
partition the image into Voronoi cells overlevels (scales), using hierarchical spa-

tial K-means clustering. The key intuition is that objects that may constitute ROI
queries tend to appear as clusters of salient points, potentially interspersed with fea-
tureless regions in the image. Therefore, a ROI-oriented partitioning must attempt
to adaptively isolate these spatial clusters at multiple levels.

Initially, the entire image is encoded; this comprises level 0 of the Voronoi-
based encoding. For level 1, a spatial K-means is computed over the interest point
locations in the whole image, which effectively partitions the imageVatdoronoi
cells. Next, for level 2, a spatial K-means is computed over the interest point loca-
tions within each level-1 Voronoi cell, thus partitioning each cell Mt@onstituent
cells. In general, each of thg_; cells in levell — 1 are partitioned int®, cells in

level |, with 1 <1 < L andVp £ 1. A base descriptor, whether this be VLAD or
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Table 2.1: Nomenclature Table.

Symbol Definition
U dimensions of unprojected descriptor
D,D dimensions of PCA-projected and truncated descriptor
and descriptor blocks (resp.)
Y number of training-set images
W number of test-dataset images
R U x D PCA projection matrix
A As diag. eigenvalue matrix, diag. eigenvalue sub-matrix
Proi Presy @and  PCA-projected descriptor of a query ROl and a test image
aROI,atest (resp.), and whitening-and-normalization based product
guantization (WNPQ) descriptor of the same
B,B’ number of bits for quantized descriptor & constituent
block
2,7 number of quantization centroids per descriptor and
descriptor block
Stes1 des2 similarity score between descriptor “des1” and “des2”
M number of quantization sub-spaces (blocks) for Product
Quantization (PQ)
Cy,...Cu PQ codebook per quantization bloek1 < m<M
L number of levels (scales) used for Voronoi-based
encoding (VE)
Vi,...,. ML number of Voronoi cells perlevé] 1< <L
Viot number of Voronoi cells in VE
lph1 level that Phase 1 exits in Fast-VE adaptive search,
S - S*phl similarity score for cell with maximum similarity to the
query per level, 0 <1 <lpny
VO, -+, Vign, difference between number of interest points in query and
cell corresponding t&', 0 < | <lppy
Wo, . s Wi g L1-normalized weighting per levéifor Fast-VE,
0<I< Iphl
\3 number of cells accessed in Fast-VE
21,... 2\ covariance matrix per descriptor blook 1 < m<M

50
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aggregated deep CNN features, is encoded over each cell following the description
of Section 2.1, giving a total of
L-1 |
Vit=1+ > [] Vm (2.1)
I=1m=1
encodings perimage. When PCA-projecting each cell descriptor, we aggregate each

levell into a single matrix®,.

A three-level Voronoi partitioning for an image from the Caltech Cars image
dataset with/; =V, = 3 is illustrated in Figur@.1 The detected points are shown
in color in the left image of Figur2.1, and the level-1 and level-2 Voronoi cells are
superimposed with dashed lines on the middle and right image (resp.), with their

corresponding descriptors appearing with different colors.

In essence, there are two variables to consider when implementing a Voronoi-
based encoding; the number of leveland the number of Voronoi celg, 1 <1 <
L, to encode. For the purposes of this chapter, we will condidés be constant
for all levelsl. In addition, it is worth noting that for the Voronoi-based encoding,
we construct a single PCA projection matrix using the entire images of the training
set. This is because we found that there is very little gain in retrieval performance
when learning separate PCA projection matrices for each Voronoi partition level,
mostly due to sufficient variability in scale of ROI in the training images alone.
Finally, given we are dealing with PCA on high dimensional data, for the case
where the unprojected cell descriptor dimensldnis greater than the training size
Y, we use the manipulation described by Bish@f7. In essence, we define the
covariance matrix for th& x Y training descriptor matrix®t as CD%DT, which
provides for a lower dimensional x Y matrix to work with. Following singular
value decomposition, we then rotate the derived projection ma&gr, into the
original covariance data space to obtain the D projection matrix,R, using the

equivalence:

R = ®rRrotA 1, (2.2)
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1

_1
where A = diagA; ?,A, %,...,Ay ?) is the diagonal matrix of eigenvalues of
(NG

We conclude this subsection by summarizing the VLAD and deep CNN de-

scriptors utilized for each Voronoi partition.

2.1.1.1 Voronoi-based VLAD (VVLAD)

We require a detector that is robust to scale and viewpoint changes, while also de-
tecting enough points in salient regions to allow for reliable partitioning. Therefore,
for VVLAD, we use the Hessian Affine detectdsd, 108, which is based on the
multi-scale determinant of the Hessian matrix (computed locally), and detects affine
covariant regions. SIFT descriptors are produced based on the detected points. It is
worth noting that{(i) salient point detection is an implicit step in each VLAD com-
putation and not additional processing) unlike Multi-VLAD, there is no need

to preprocess the image and exclude featureless regions. As shown in the example
of Figure2.1, smaller Voronoi cells are adaptively formed around regions of tight

clusters of detected points.

2.1.1.2 \Voronoi-based Deep CNN (VDCNN)

In this case, the salient point detection constitutes additional pre-processing. Nev-
ertheless, this can be achieved efficiently by using the FAST corner det&0ghr [
which classifies a pixel as a corner based on its relative intensity to a set of con-
tiguous pixels. As for the case of VVLAD, the image is partitioned into Voronoi
cells based on the location of detected points. Since the deep CNN must take a
rectangular input image segment, we compute a bounding box over the constituent
points of each cell, and then resize and subtract an average image, as per conven-
tion, before feeding into the pre-trained deep CNN. Given that the cells are treated
independently, the feed-through can be done in parallel, using multiple copies of
the network. In terms of the deep CNN descriptor specifics, we use the CNN-S ar-
chitecture 11Q pretrained on ILSVRC-2012 with batch normalizatidirlfl]. The
network is sufficiently deep to provide a rich semantic representation of the im-

age/image partitions without overfitting to the classification task. The conventional
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approach to generating a feature descriptor from the network is to simply extract one
of the fully-connected layer2p, 28, 104. Instead, we extract the last max-pooling
layer (Layer 13) of the network, which precedes the fully-connected network and
should be less tuned to the classification task. From this layer, we generate a 512-D
feature descriptor by averaging the CNN activations over the spatial dimensions.
We can also (optionally) apply PCA-projection and truncation to achieve further

compaction to 128 dimensions.

Figure 2.1: Three-level Voronoi partitioning for an image from Caltech Cars dataset. For
illustration purposes, SIFT descriptors are color-differentiated for each cell.

2.1.2 Fast Online Implementation: Adaptive Search and Image

Similarity Score

Conventionally, we could assign an image score as the global maximum similar-
ity to a query over cells, usind.(3) for each cell. However, the proposed Voronoi
partitioning essentially gives us a tree of spatial Voronoi cells wherd, fevels,
=iV “leaf” Voronoi cells exist at the bottom of the tree. Given that there is inher-
ent mutual information between a cell and its constituent cells, rather than accessing
data for all levels and measuring similarity over\&l; cells of the tree indiscrimi-
nately, we can design an adaptive search with top-to-bottom tree pruning to find the
most relevant Voronoi cells to the query. This reduces the overall execution time
and memory accesses when performing a retrieval task, which makes our proposal
applicable to very large image databases that would contain millions of images. The
top-to-bottom search is carried out in two phases.

Phase-1: Considering the cell of levdl— 1 with maximum similarity to the
query [measured vidl(3)], in Phase-1 of the search, we assume that either this cell

or a constituent cell within it (at levé) will attain high similarity to the query. If the
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cell of levell — 1 is found to attain the highest similarity to the query, we terminate
the search for that image at ledel 1 and proceed to Phase-2. On the other hand,
if we find that a constituent cell of levehttains the maximum similarity, we repeat
Phase-1 for that cell and its constituent cells at the next lévell, until we reach

the bottom of the tree, in which case we move to Phase-2.

Phase-2: Let us denote the maximum similarity found by Phase-1 for each
levell as§" and assume that Phase-1 exited at lgygl| O < |;h1 < L. Rather than
assignings*phl as the similarity score between the ROI query and the test ifnage
the dataset, we perform a weighted sum ovetgll..,§ . To this end, we first
compute the difference, 0 <1 < |y, between the number of interest points in
the query and the number of interest points in the image dataset cell corresponding
to §'. This difference is subsequently used within a scaled inverse function. The
weight for§" (0 < | <lpny) is thus defined as:

C

= D (2.3)

W

whereC controls the order (set as the modal order of magnitude over)allThe
weight vector over all levels ils;-normalized so that the image score can be ranked
independently of the levdly,; at which Phase-1 terminated. Denoting the
normalized weight asy; the proposed similarity score between a ROI query and

dataset image after Phase-2 is:

Iphl

= mS. 2.4
SRoi,| l;wﬁ* (2.4)

For example, for a three-level partition, if a query object is small relative to the
image size, we expect that the total number of interest points over the query would
be comparable to that of a level-2 cell. Hence, the level-2 maximum dot pr&luct
should receive the largest weighting When computing the similarity score. This

is expected to be a more robust similarity scoring than just taking a global maximum
over alls;, .. .,S{phl (as in Multi-VLAD) as the similarity score, since we account

for relevant information from all levels.
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Summary: We term this two-phase search coupled with the Voronoi-
partitioning asFast Voronoi-based encodin@Fast-VE), because it reduces the
expected number of cells that are accessed at runtime. The matching complexity is

now:
min{lpn1+1,L—1}

Ve=1+ Yy v (2.5)
=1

inner products per image instead of ¥g inner products required using a global
maximum similarity measure that considers all cells. Due to the weight®.4f (

per imagel, along with the Voronoi-based encoding we also store the number of
interest points per cell, comprising,; additional values.

One of the main complexity savings that arises from employing Fast-VE over
exhaustive VE is from the matching complexity; i.e., the number of multiply-
accumulates (MACs) required to perform a query search over an image corpus.
For exhaustive VE, the number of partitiowg; is a function of the number of
levelsL and the number of partitions per lewdl VI € {1,...,L —1}. For Fast-

VE, the number of partitionsr is additionally a function of the leven; at which
Phase-1 exits. In order to visualize the matching complexity saving for Fast-VE
compared to exhaustive VE, we assume Mais independent of the level (i.e.,
V=V,Vl € {1,...,L—1} whereV is a constant) and th,; = L — 1, which gives

an upper bound on the complexity for Fast-VE. We plot in Figizthe number

of MACs required to match 128-D cell descriptors for exhaustive VE and Fast-VE
on a typical commerical retrieval engine such as Tidd€peer 17 billion images),
with varying number of Voronoi partitions per lewéland number of levelk. As

is evident, the complexity in matching all cell descriptors for exhaustive VE scales
exponentially with the number of levels, whereas for Fast-VE this scales linearly
and reduces the number of MACs by at least an order of magnitude.

There is also additional complexity in generating the cell descriptors, which
scales accordingly to the matching complexity with number of levels and cells per
level. A commercial CPU can typically process around 100GFLOPs per second.
Assuming that. = 4,V = 3 and the base architecture is VGG-16, then 624GFLOPs

lwww.tineye.com
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Figure 2.2: Plots of number of multiply-accumulates (MACs) to perform a query search
over Tineye image database a) Exhaustive VE and b) Fast-VE for number
of levelsL and varying number of Voronoi partitions per lew¢l=V,VI €
{1,...,L—-1}

are required for generating exhaustive VDCNN cell descriptors. Therefore,it would

take roughly 6 seconds to generate a single image VDCNN with these settings.
On the contrary, at most 156GFLOPs are needed for generating Fast-VDCNN cell
descriptors with the same settings, which cuts the time for generation by a factor
of 4. This saving becomes more meaningful as the number of images to query
increases.

It is worth noting that further storage compaction of the Fast-VE is feasible
using level projection. Via level projection, we can adhere to memory constraints
of a practical deployment for very-large image datasets by only storing the PCA
projected cell descriptors for the last leviel- 1 and computing the cell descriptors
for levels Q...,L — 2 at runtime by aggregating smaller-cell descriptors. Given that
such storage compaction is of secondary importance in the overall unquantized and
guantized Fast-VE design, we include its details as supplementary information in

AppendixA.

2.2 Product Quantization for Efficient VE Search

Given that quantized descriptor representations offer significantly-higher com-

paction than unquantized ones, we extend VE and Fast-VE to quantized representa-
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tions via a specially-designed product quantization framework. We consider prod-
uct quantization (PQ) based on SDC for the proposed VE appfpattere both

the query vectoy and test dataset vectbare quantizeddQ].

2.2.1 Product Quantization based on Symmetric Distance Com-

putation for Voronoi-based Encoding

To implement PQ, we consider each veotas the concatenation of M sub-vectors,
X = [X1,X2,...,Xu], each with equal dimensioD’ = D/M. Each sub-vectoxm

is encoded from its own sub-codeboGk, = {Cmj,1 <i <K}, learned using K-
means and considered to be of sktdor all m, 1 < m< M. As such, the new

codeboolC is the Cartesian product of the sub-codebooks, with totaksizek')™
C:C]_X---XCM (2.6)

Crucially, the learning complexity and storage requirement have been reduced
to 0 (MKD') = 0 (k%D) , Whilst maintaining an exponentially large codebook.
The total number of bits used to encode a veest@s now given byB =M x B/,
whereB' is the number of bits used to encode each sub-vegtdB' = log,(K')).

Previous work proposed PQ with asymmetric distance computation (ADC)
[20, 21], which only encodes the vectors of the test dataset, and PQ with symmet-
ric distance computation (SDC%()], where both query and test vectors are quan-
tized. By not encoding the query vectors, ADC reduces the overall quantization
distortion, thus enhancing the discriminatory power of the system. On the other
hand, in SDC the distances between any two subcodewords im-thesubspace
are pre-computed and stored iZ'ax Z’ lookup table, thus enabling efficient ANN
search by simple lookup table accesses. Experimental re20Jt81], have shown
that ADC and SDC variants of PQ-based VLAD achieve comparable retrieval per-
formance to unquantized VLAD representations with four to ten-fold reduction in
storage and search complexity. We opt for SDC-based rather than ADC-based PQ

because ADC-based methods require the precomputation and storage of distances

2refer to Table2.1for nomenclature and symbol definitions
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between VE query and test vectors, which is not feasible in a large-scale image
retrieval system where potentially any image could form a query.

In SDC-based PQ, the nearest neighbouy wan be approximated by opti-
mizing the distance functiod(q(y),q(t)). The distance function is typically the

squared Euclidean distanc&(]:

d(q(y),at)) = Ja(y)—at)|?
= _Z Md<Qm(ym>an<tm)) (2-7)

= Z Gm(Yim) — Gm(tm) 1%,
m=1...M

with M the number of subquantizer blocks atf).

The key intuition behind modifying PQ for VE is to treat the constituent
Voronoi cells as images and apply PQ on each query and test cell. A single PQ
codebookC is learned using K-means clustering on a training set. Each cell de-
scriptor from the test dataset is thus considered as a concatenalbaudivectors
E): [E)l, ey E)M} of D’ = D/M elements each, with each subvector being encoded
from its corresponding subcodeboBk,. In this way, there is also no dependency
on the level, as we quantize the cell descriptors from a single PQ codebook. All
possible distance values between itieand jth subcodebook vectors in time-th
subspaced(Cmi,Cm ), are pre-computed and stored iZ’ax Z’ lookup table, thus
enabling efficient ANN search by simple lookup table accesses.

As the subspaces are orthogonal,lwenormalize the product quantization of
each cell descriptor’s subquantizer blaokl < m< M, by normalizing the columns
of the PQ subcodebook, individually before computing and storing the distance
values. For th&h subcodebook vector in thme-th subspace, the normalization term
is given byy/M ||cm;||. As such, the distance value to be stored betweeitlrand

jth subcodebook vectors is

<Cm,iaCm,i>
M [|€mill||Cm ;||

d(Cmi,Cmj) = (2.8)

Quantizing from the normalized PQ subcodebooks, the distance function be-
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tween a subspace normalized and quantized query cell desayiyboand a sub-

space normalized and quantized test cell descrigigris now simply

d(a(y),q(t)) = _Z M(Qm(Ym)an(tm»a (2.9)

which is analogous to the squared Euclidean distance of normalized vectors. Im-
portantly, this bounds the similarity score between -1 and 1, which facilitates per-
formance comparisons.

Figure2.3illustrates two indicative examples of SDC-based PQ omthel28
andD = 2048 dimensional VLAD, both with and without subspace normalization.
The retrieval performance is measured in terms of mean average precision (mAP)
on the Holidays datasefl (5, using whole-image queries. It is evident from the
results of the figure that, for given dimensibh= D/M, subspace normalization
actually improves retrieval performance, effectively peaking clodd te D /4. At
this block size, the subspace dimensionality is sufficient such that each subspace
is optimally regularized. In addition, we observe that the performance margin be-
tween the VLAD descriptor and its subspace normalized counterpart increases sig-
nificantly with dimensiorD.

Essentially, we want the block size to be large enough that we encode over
a sufficient number of bits; however, beyond a certain block size, we end up nor-
malizing over too few dimensions. In this regard, it is interesting to consider the
limit case, whereM = D, i.e.,, D’ = 1. There, subspace normalization results in
storing just the sign per cell descriptor. In this extreme case, the similarity between
cells can be computed very efficiently by using the Hamming distance, i.e., without
accessing any lookup tables.

Concerning storage requirements, assuming that the components of the un-
guantized cell representation are kept as 32-bit floating-point numbers, their offline
storage requirement B x 32 bits per test image. On the other hand, our product-
quantized cell descriptor requir€g: x B bits per test image, which is independent
of the dimensionD. In addition, for the entire test dataset, the total storage require-

ment for the quantization lookup tablesgsx Z’ x M. As the test dataset grows in
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Figure 2.3: Plot of mean average precision (mAP) with varying number of PQ blddks,
for PQ VLAD descriptors on the Holidays dataset.

size, this value becomes negligible in comparison to the storage requirement for the

product-quantized descriptors.

Finally, with regards to the search complexity, the inner products have been
replaced by read accesses to the look-up tables. As such, the product quantized Fast-
VE now has an upper bound on complexityMfx Vi reads, which is independent

of the descriptor dimension per cell.

2.2.2 Optimal Bit Allocation via Whitening and Subspace Nor-

malization

Given the presence of multiple cells in the Voronoi-based encoding, it is important
to derive an appropriate bit allocation strategy that minimizes the quantization dis-

tortion.

Assumption 1. We consider successive samples of each subspace-normalized
VE component (dimensior) (1 <i < D/M) to be modelled by independent,

normally-distributed, random variables, with corresponding variaoce

Under Assumption 1, the normalized random vecﬁ),t;sof all subspacem,

1<m< M, canthen be represented by independent and identically-distributed mul-
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tivariate Gaussiads with corresponding diagonal covariance matrigas The
rate-distortion function for independent, normally-distributed random variables
[114) can be extended to the multivariate case in order to derive the optimal bit

allocation strategy for VE. This leads to the following proposition.

Proposition 1. Under Assumption 1, optimal bit allocation after subspace normal-

ization in VE can be achieved by balancing the variances of the subspaces.

See Appendix B.

Recent work 113 employs an optimized product quantization (OPQ) that ef-
fectively leads to balanced subspace variances by assigning principal components
to a subspace with the objective of balancing the product of eigenvalues per sub-
space. This corresponds to performing a permutation of the principal components
to achieve balanced variances. Jegbwal. [21] propose balancing the compo-
nent variance with a random orthogonal rotation, but this removes the decorrelation
achieved by PCA. A different approach is proposed by Brandil. [112: one
can achieve a constant quantization distortion per subspace by varying the number
of bits assigned to each principal component, at the cost of increased training and
runtime complexity. Finally, Spyromitros-Xioufet al. [115 consider the effects
of applying a random orthogonal rotation on PCA-projected and whitened VLAD
vectors prior to product quantization. However, whitening inherently balances the
subspace variances by settilg to the identity matrix for alim, which also pre-
serves decorrelation and mitigates descriptor bias from visual word/component co-
occurrenceslb, 16]. As such, we propose a simple and effective solution for the bit
allocation that adheres with the theoretical result of Propositiare use a whiten-
ing approach after PCA (and prior to the product quantization), together with the
subspace normalization described in the previous section (and shown to be benefi-
cial by the tests of Figur®.3). Specifically, per cell, we can express the relationship
between a projected descripfb,t;] and its whitened and normalized counterpﬁﬁt

in them-th subspace as:

3The Gaussian assumption is necessary for some of the theoretical derivations, but is also proven
to hold in practice {12, 113.
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-~ AS.,m&m

m= ~ (2.10)
e

whereAsm = diag()\;r%l,/\afz, . ,)\;+%D,) is the diagonal subspace matrix of eigen-
values of the training-set covariance matrix, wkhassociated with theth largest
eigenvector and = D'(m—1).

The advantage of using whitening and normalization against previous ap-
proaches is that there is no need for any additional pre-processing, such as learning
a rotation matrix or variability in the bit allocation across the principal compo-
nents. We term our approagvhitening & normalization based product quantiza-

tion (WNPQ).

2.3 Experimental Evaluation

2.3.1 Datasets

We measure performance on the Holidays and Caltech Cars (Rear) test image
datasets. For both datasets, a set of predefined queries and hand-annotated ground

truth is used.

Caltech + Stanford Cars[106 116: This test dataset consists of 1155 (360

240) photographs of cars taken from the rear. Subsequently, we test on a subset of
416 images from the Caltech Cars (Rear) dataset, from which we select 10 images
and perform three testgi) we mimic a surveillance test by selecting only the [i-
cense plates as ROI-querié¢isy we select as mid-scale ROI-queries a section of the
car trunk, andiii) use the whole images as queries. An example of the query subset
is given in the left part of Figur@.4. For the license plate test, we manually create
“good” and “junk” ground-truth files over matching image39[; “junk” ground

truth comprises any image in which the query (i.e., the license plate) is barely visi-
ble or not distinguishable by the interest point detector. To provide a more rigorous
and diversified test, we combine the Caltech Cars subset with another independent

set of 1000 distractor images from the Stanford Cars datdd€}, [comprising
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various car models and orientations, giving the Caltech + Stanford Cars dataset.

Holidays [105: The Holidays test dataset consists of 1491 images, mainly consist-
ing of holiday photos. There are 500 “whole image” provided queries of a distinct
scene or object. In order to test on a smaller scale, we also select salient regions

from a subset of 40 query images as ROI queries into our system. An example ROI

query with its corresponding matching image set is shown in the right part of Figure
2.4,

Figure 2.4: (Left) Example queries for the Caltech Cars dataset. (Right) Example ROI
query (top left) and matching image set for the Holidays dataset (remaining
images).

2.3.2 Accuracy-Complexity Tradeoff

Inline with our thesis objective, we report the accuracy-matching complexity trade-
off for our proposal with and without quantization versus baseline descriptors and
Multi-VLAD or Multi-CNN variant that both use a conventional grid based parti-
tioning. A Multi-CNN descriptor can be devised analogously to Multi-VLAD, i.e.,
by dividing the image at levdl into an (I + 1) x (I + 1) grid and computing the
similarity score between two images as the global maximum inner product over all
partitions. For the general caselofevels, the total number of partitions (incl. the

whole image as level 0) is:

L-1
Ao |;(| f12— (L+1)(LJ%2)(2L+3) 2.11)
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Matching complexity is defined as the number of multiply-accumulate (MAC) op-
erations for unquantized descriptors, or the number of look-up table reads for quan-
tized descriptors, which scales with the size of the image corpus we are searching
over.

For Caltech + Stanford Cars, we compare our proposed Fast-VVLAD descrip-
tor with baseline VLAD descriptors of varying dimensionality (128-D, 768-D and
1664-D) and the Multi-VLAD descriptor. For Holidays, we compare our proposed
Fast-VDCNN descriptor with a baseline 128-D and full unprojected 512-D CNN
pooled feature descriptors, and the Multi-CNN descriptor. Unless stated otherwise,
all vectors are whitened and re-normalized post-PCA. The retrieval performance is
measured by creating a ranked list and computing the mAP over all queries. Per
descriptor, we compute the matching complexity averaged over all tests and nor-

malized to the baseline 128-D descriptor complexity.

2.3.2.1 Setup

Caltech + Stanford Cars Due to the specificity of the Caltech + Stanford Cars
dataset, together with the lower ROI resolutions, using a deep CNN pre-trained on
ImageNet is not a viable option. For example, ImageNet (ILSVRC2012 dataset
[111]) does not contain any substantial number of images (and associated labels)
corresponding to car license plates; therefore, the pre-trained deep CNN descriptor
will not be suitable for such images. For these reasons, we have established that, in
this dataset, the utilized deep CNN descriptor is outperformed by VLAD descriptor
variants, particularly on license-plate queries. Thus, we use this dataset to test how
the proposed Voronoi-based encoding performs with the “shallow” learned VLAD
descriptor of Subsectioca1.11.

For the VLAD computation, we follow the design of Subsectioh.1.1 The
PCA projection matrix, visual word centers and PQ codebook are learned on an
independent dataset of 2000 car images from the Stanford Cars date§etqor
Fast-VVLAD, we setK =64,L =3,V =V; =V, = 3, with 128-D VLAD per cell
and compile a ranked list from the relevant similarity score. For VLAD, we use:

128-D, 768-D and 1664-D sizes, in order to align the VLAD matching complexity
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with that of the Fast-VVLAD descriptor. We sét= 3 for the Multi-VLAD de-
scriptor, such that it is inline with our Voronoi partitioning. This results in a (¥28

14)-D descriptor size per imaged], as derived fromZ.11).

WNPQ Parameter SelectiohVe setM = 32 for the quantized 128-D VLADSs.
For the 768-D and 1664-D quantized VLADs, we respectively set the block size
to M = 96 andM = 208. For the quantized VVLAD, we sdi = 32 for all cell
VLADs. Finally, quantized Multi-VLAD also useM! = 32. These settings for the
block size were chosen to align the matching complexity of the quantized 1664-
D VLAD with that of the quantized Fast-VVLAD, whilst providing the 768-D
VLAD as a solution with mid-range complexity. Notably, we # = 256 for alll
experiments. Higher values f&@' increase the computational load for each block
quantizer, whilst increasing the storage requirement of the look-up taB(@&)),
which is an important detriment as these tables need to be sufficiently small to fit in

cache memoryq0Q].

Holidays: The Holidays dataset provides a less controlled test for our system.
The scenes in the Holidays dataset are better represented by a deep CNN architec-
ture trained on ImageNet, particularly due to their high resolution. Similar to prior
work [38], we have confirmed that deep CNNs substantially outperform VLAD
descriptors for this dataset. Therefore, we use this dataset to test how the proposed
Voronoi-based encoding performs with the deep CNN descriptor of Subsection
2.1.12.

For the utilized CNN-S architectur@1d, all images and image partitions are
resized to 224 224 and fed into the network after subtracting an average image.
The final feature descriptor is 512-D, which can then be normalized, PCA-projected
to 128-D and whitened. However, following a similar approach to the instance re-
trieval pipeline on the VLAD descriptor, we normalize, sign-square root and re-
normalize the feature descriptor prior to PCA and whitening, with the intention of
minimising the burstiness of dimensions and thus adding to descriptor invariance

[21]. It is worth noting that contrary to recent work3§, 40], we do not manu-
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ally rotate the images in the Holidays dataset as we do not deem this to be a fair
representation of data ‘in the wild'.

Parameter selection for the Voronoi partitioningor the VE of all cases, the
FAST corner detectorl09 is used, and we learn the PCA projection matrix and
PQ codebook on a subset of 4000 images from the ILSVRC-2010 validation set.
For Fast-VDCNN, we setl. = 3,V =V; =V, = 3, with a 128-D CNN feature
descriptor per cell and compile a ranked list from the relevant similarity score. For
Multi-CNN, we use the same grid partitioning as Multi-VLAD, with= 3, thus
producing a128x 14)-D size per image.

WNPQ Parameter SelectionlVe setM = 32 for the quantized 128-D CNN
feature descriptors. For the 512-D quantized CNN feature descriptor, we set the
block size toM = 128. For the quantized Fast-VDCNN, we 8&t= 32 for all cell
descriptors. Finally, quantized Multi-CNN also udds= 32. As with the VLAD
descriptors, we fixx’ = 256 for all experiments to keep the storage requirement for

the lookup tables constant.

2.3.2.2 Results with Unquantized Descriptors

Caltech + Stanford Cars Figure 2.5@a) summarizes the retrieval performance
of all unquantized VLAD methods on the Caltech + Stanford Cars dataset. The
first observation is that the Fast-VVLAD descriptor offers competitive performance
to the larger 1664-D VLAD, whilst decreasing the matching complexity by more
than 50%. In addition, Fast-VVLAD performs significantly better on license plate
queries (blue stem) than both the 128-D VLAD and its 768-D VLAD complexity
counterpart, yielding respective mAP gains of over 200% and 41%. Fast-VVLAD
maintains consistently-good mAP even with the larger ROIs of car trunks (green
stem) and whole-image queries (red stem), and is only outperformed on whole-
image queries by VLAD by (up to) a 7% margin. Finally, Fast-VVLAD maintains
competitive performance to Multi-VLAD on all query types, whilst offering lower

dimensionality and matching complexity.

Holidays: Figure2.5b) summarises the retrieval performance for the 500 whole-
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Figure 2.5: Plots of mean average precision (mAP) versus number of multiply-accumulates
(MACs) for unquantized descriptors for (a) Caltech + Stanford Cars and (b)
Holidays datasets. For Caltech + Stanford Cars, each descriptor is evaluated
on license plates, trunks and whole images. For Holidays, each descriptor is
evaluated on query regions-of-interest (ROI) and whole images. The stems for
each query set are overlaid into a single plot. ‘'VLAD’ and ‘CNN desc.’ refer
to the baseline VLAD and CNN(Layer 13) descriptors respectively.

image queries and 40 smaller ROI queries on the Holidays dataset. Interestingly,
the Fast-VDCNN remains competitive on whole image queries. This is attributed to
the Fast-VDCNN similarity score oR(4) that considers all partition levels, which
provides robustness against false positives. The Fast-VDCNN is found to outper-
form Multi-CNN for whole image queries (red stem) and maintain very competitive
performance on ROI queries (green stem), while offering more than 50% reduc-
tion in the matching complexity. Fast-VDCNN was also found to substantially
outperform the lower dimensional CNN feature descriptors for ROI queries (gains
exceeding 50% in mAP). Given that the utilized CNN-S descriptor derived from
Layer 13 is limited to 512 dimension&1(, we also benchmarked using the first
fully connected layer (FC1), which allows for a large 4096-D feature descriptor.
Nevertheless, the FC1 descriptor performed significantly worse than our 512-D

Layer 13 descriptors for both query ROI and whole images, scoring mAP of 28.3%

4We have also validated that this saving translates to practical runtime saving: by adding a large
distractor set (thereby scaling the dataset size to 150K images), we found that Fast-VDCNN based
retrieval is 40% faster than Multi-CNN retrieval, with execution time comparable to the baseline
512-D CNN feature descriptor.
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and 71.4%, respectively. This serves as an additional validation for our choice for
the utilized CNN layer.

2.3.2.3 Results with Quantized Descriptors

128-D VLAD 768-D VLAD 1664-D VLAD
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Figure 2.6: Comparison of stacked mean average precision (mAP) for optimized (OPQ),
random rotation pre-processing (RRPQ) and our proposed whitening and nor-
malization (WNPQ) product quantization methods. Top: Caltech + Stanford
Cars dataset: mid blue = license plate, light blue = whole image, dark blue =
trunk. Bottom: Holidays: dark blue = query ROI, light blue = whole image. We
consider 128-D descriptors on Holidays dataset and 128-D, 768-D and1664-D
descriptors on Caltech + Stanford Cars dataset.

WNPQ against other quantization methods:We first consider the performance
of the proposed WNPQ method against other state-of-the-art methods, namely the

parametric optimized product quantization (OPQ@)3 and product quantization
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Figure 2.7: Plots of mean average precision (mAP) versus number of lookup table reads for
WNPQ quantized descriptors for (a) Caltech + Stanford Cars and (b) Holidays
datasets. For Caltech + Stanford Cars, each descriptor is evaluated on license
plates, trunks and whole images. For Holidays, each descriptor is evaluated on
query regions-of-interest (ROI) and whole images. The stems for each query set
are overlaid into a single plot. ‘VLAD’ and ‘CNN desc.’ refer to the baseline
VLAD and CNN(Layer 13) descriptors respectively.

with a random rotation pre-processing (RRPX3)[ As the OPQ and RRPQ de-
scriptors are not normalized, we use the squared Euclidean distance metric for
these methods and compare retrieval performance on both datasets. The results of
Figure2.6 show that the proposed WNPQ method outperforms RRPQ and, for the
majority of the tests, also outperforms OPQ. Essentially, the WNPQ maintains its
high retrieval performance when the dimensionality is increased from 128-D to the
768-D and 1664-D VLAD descriptors. To ensure a fair comparison, and because
the proposed WNPQ was shown to provide for the best overall performance, we

use it to quantize all the descriptors under comparison.

Caltech + Stanford Cars:Figure2.7(a) summarises the performance of the various
descriptors with WNPQ on the Caltech + Stanford Cars dataset. On whole images,
coupled with the aggregated similarity score, Fast-VVLAD offers superior perfor-
mance to the 128-D VLAD, with an mAP gain of 6%. The 1664-D VLAD, which

is now of comparable complexity to the Fast-VVLAD, is outperformed on the small

license plate queries, with mAP gain of 9%, but remains superior for whole-image
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queries. However, it is worth mentioning that the gain from Fast-VVLAD on small
queries outweighs any loss on larger queries, thus making it favorable. Finally,
the quantized Multi-VLAD offers marginally superior mAP to Fast-VVLAD, al-

beit at the cost of twice the matching complexity and higher descriptor storage size

Holidays: For the Holidays dataset, as illustrated in Figdr&b), the quantized
Fast-VDCNN maintains its mAP gain on query ROI over the quantized 128-D and
512-D CNN feature descriptors, while the descriptor storage has been reduced by a
factor of 16 compared to its unquantized counterpart. In addition, the Fast-VDCNN
still performs better than quantized Multi-CNN on whole image queries, with an
MAP gain of 4%.

2.3.3 Further Improvements on Whole-image Search

The experimental results of the previous section show that Fast-VVLAD and Fast-
VDCNN clearly outperform their counterparts for ROl image search, while being
competitive for whole-image search. The performance on whole image queries
is primarily controlled by the dimension of the level-0 (whole image) component.
For experiments in the previous section, we set the dimension uniformly across all
components of the Voronoi-based descriptor, i.e., 128-D descriptor per cell. As a
result, mAP for the Voronoi-based descriptors on whole images is comparable to
that of the 128-D reference descriptors. One option to tailor performance towards
whole image queries or smaller ROI queries is by tapering the dimension across
levels; we leave this as a topic for future study.

Another approach to boost performance for whole image queries is by account-
ing for multiple scales iboththe query and dataset images. In other words, rather
than applying Voronoi partitioningnly on the dataset images, we can also apply

Voronoi partitioningon the query imagever multiple levels and submit each of the

S|t is worth noting that, given we use a single PQ codebook for quantizing all cell components of
Fast-VVLAD and Fast-VDCNN, all quantized based systems ha&&/e<aZ’ x M bit cost for storing
the look-up tables. This means that, for example, although the 1664-D VLAD offers a lower storage
size to Fast-VVLAD, there is an additional 1.7MB cost to store the look-up table, versus 262kB
for Fast-VVLAD. However, as mentioned previously, the significance of this additional storage cost
diminishes when increasing the test dataset size.
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Viot query partitions as a subquery. Notably, using the Fast-VDCNN for the dataset
image encodings, each subquery is matched only against representative cells in the
dataset images (i.e., between 4 to 7 cells), which are determined by the adaptive
search proposed in Secti@ril.2 The inner product between the original query im-

age and a datasetimage is taken as the average inner product dygsalqueries.

While this incurs linear increase in the search complexityMby, this scales better

than the quadratic search complexity achieved by Carlesah [104, 103, where

exhaustive search amongst all subqueries is carried out.

Table 2.2 compares the retrieval performance of the proposed Fast-VDCNN
descriptor against the current state-of-the-art on the Holidays dataset that use net-
works pre-trained on ImageNet. The Fast-VDCNN descriptor is generated un-
der the configuration of Sectio®.3.2.1 albeit now also partitioning the queries
with Vi =V, = 2 and resizing image partitions to 448448. Beyond bench-
marking against the grid-based spatial search method of Carktsah [104],
we also compare our results with the recently-proposed CNN+VL32), [CKN-

mix [34], the hybrid FV-NN approach of Peronneét al. [117], as well as lower-
dimensional but more computationally-intensive propo8aiet perform competi-
tively [38, 40, 118. Evidently, the additional scale and location invariance provided
by the Voronoi partitioning leads to the proposed Fast-VDCNN achieving compet-
itive performance to other CNN derived frameworks and hybrid variants, without
manually rotating the images, and despite the fact that our feature descriptor is built
directly from a pre-trained network and incurs modest computational and storage

requirements.

6In particular: the SPoC descriptadg] offers the best performance to dimensionality, but uti-
lizes a deeper and a more computationally heavy CNN (144M parameters vs 76M parameters for
our architecture) and a larger image input size, the R-MAC based descriptor uses Siamese learn-
ing with supervised whitening, and NetVLAD requires additional processing (soft assignment and
normalizations within the NetVLAD layer) to encode VLAD from the network activations. On the
contrary, under the chosen configuration, the proposed Fast-VDCNN approach allocates only 128
dimensions per cell and accesses between 4 to 7 cells for each image subquery.
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Table 2.2: Comparison of whole-image retrieval performance (mAP) with state-of-the-art

for the Holidays dataselD5. The proposed approach allocates 128 dimensions
per partition cell.

Diot Whole
Image

Proposed Fast-VDCNN 1.66K (128) 0.821
FV-NN (Peronniret al) [117] 4K 0.835
CNN + VLAD [32] 2K 0.802
CNN (Carlssoret al)) [104] 4K-15K 0.769
CKN-mix [34] 4K 0.829
SPoC (w/o center prior)3g] 256 0.802
R-MAC [40Q] 512 0.825
NetVLAD [11§ 256 0.799

2.4 Conclusion

We improve on unimodal content-based image retrieval by additionally processing
the RGB images to generate more invariant features. Namely, we propose a novel
descriptor design, termed Voronoi-based encoding. We show how VE could fit
into a practical ROI-based retrieval system via the proposed fast search, memory-
efficient design, product-quantization based lossy compression techniques, and ro-
bust similarity scoring mechanisms. We test retrieval performance on two datasets,
using VLAD and a deep CNN as our descriptor basis. Our results show that our ap-
proach is descriptor agnostic; the proposed Fast-VVLAD and Fast-VDCNN main-
tain competitive retrieval performance over diverse ROI queries on two datasets and
significantly improve on the retrieval performance (or implementation efficiency)
of their respective descriptor variants with a grid spatial search, when dealing with
smaller ROI queries. Moreover, improved scale invariance results in competitive

retrieval performance to the state-of-the-art on whole image queries.



Chapter 3

Video Classification With CNNs:
Using The Codec As A

Spatio-Temporal Activity Sensor

In this chapter, we move from the image based retrieval task to video classification.
Inline with our thesis objective, we want to improve the accuracy-complexity trade-
off by either additionally processing pixel domain representations or supplement-
ing with additional modalities. Whilst image partitioning for retrieval had minimal
computational overhead in the previous chapter, most current methods for high-
level semantic description in video require additional memory, compute-intensive
decoding and additional processing of the pixel domain, in order to generate the
optical flow modality B0, 64, 71]. However, it has consistently been shown in re-
cent work B0, 64, 71] that supplementing pixel domain (RGB) frames with such
a flow modality improves results for action recognition. Nonetheless, the high res-
olution & high frame-rate nature of decoded video and the format inflation (from
standard to super-high definition, 3D, multiview, etc.) require highly-complex con-
volutional neural networks (CNNs) that impose massive computation and storage
requirementsi19.

Notably, because of storage and data-transfer limitations, all camera chipsets
and video processing pipelines provide compressed-domain video formats like
MPEG/ITU-T AVC/H.264 [L12( and HEVC [L21]], or open-source video formats
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like VP9 [122 and AOMedia Video 1 instead of uncompressed video. Impor-
tantly, video codecs can be tuned at the macroblock (MB) level. For example,
the MPEG/ITU-T AVC/H.264 and HEVC codecs divide the input video frames into
16 x 16 pixel MBs that form the basis for the adaptive inter (and intra) predic-
tion. Inter-predicted MBs are (optionally) further partitioned into blocks that are
predicted via motion vectors (MVs) that represent the displacement from matching

blocks in previous or subsequent frames.

We therefore propose to consider the video encoder as an imperfect-yet-highly-
efficient sensor that derives spatio-temporal activity representations with minimal
processing. With regards to the temporal activity, we demonstrate in Sexfion
that we can obtain MV representations from the compressed bitstream that are
highly correlated with optical flow estimates and as such, can replace optical flow
as a flow approximation in a multimodal framework. In Sectdbo2we propose a
three-dimensional CNN that directly leverages on such MB MV information and
compensates for the sparsity of these MB MVs with larger temporal extents. With
regards to the spatial activity, we show that selective MB texture decoding can take
place based on thresholding of the MB MV information. By superimposing such
selectively-decoded MB texture information on sparsely-decoded frames, we ob-
tain spatial representations that are shown to be visually similar to the correspond-
ing fully-decoded video frames. This allows for the parsimonious use of a spatial
CNN to augment the classification results derived from the temporal stream. We
present results in Sectidh3 with the fusion of this two-stream CNN design on
two widely-used datasets, where we show that competitive accuracy is obtained
against the state-of-the-art, with end-to-end complexity that is found to be one to
three orders-of-magnitude lower than that of all previous approaches based on pixel
domain video. Importantly, the complexity gains from using compressed MB bit-
streams will increase commensurably as video, multi-view and 3D video format
resolutions and frame rates increase to accommodate advances in display technolo-
gies. This paves the way for exabyte-scale video datasets to be newly-discovered

and analysed over commodity hardware.
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Brox Ground Truth

Figure 3.1: RGB frame from the MPI-Sintel dataset and pseudocolored images of the mo-
tion information amplitude. The H.264/AVC MB motion vectors are correlated
with Brox optical flow extracted from decoded video fram&283[ 124 and the
ground-truth motion available for this synthetic video.

3.1 Selective MB Motion Vector Decoding
Video compression standards like MPEG/ITU-T AVC/H.264, and HEVC rely on

motion estimation and compensation as their main method to decorrelate successive
input frames. Macroblock motion vectors are derived by temporal block matching
and can be interpreted as approximations of the underlying optical 112&{[/ 3],
as shown in the example of FiguBel

To derive a temporal activity map from encoded motion compensation param-

eters, we apply the following steps:

1. Motion vectors are extracted from certain compressed MB information of the

utilized video codet

2. If necessary, motion vectors are interpolated spatially to generate a finer rep-

1Based on FFMPEG's widely-usdithavcodec library (which supports most MPEG/ITU-T
standards)12€], we make use of thAVMotionVector  structure (declared within thevutil.h
header file) as explained in the following. Whidnavcodec  attempts to read the compressed
bitstream of a video frame using tla _read frame()  function, our MB MV extractor calls
theav frame _get _side data() function to extract the MV parameters and place them in the
AVMoationVector  structure. Once the file parsing is completed, the horizontal and vertical coor-
dinates of MVs of each MB within this structure are written in 16-bit integer binary format to disk
in order to be used by the proposed 3D CNN. By limiting the bitstream access to solely using this
function for the MB MVs, one can achieve the speed gains reported in S&c8on
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resentation of motion activity in the video, i.e., with resolution corresponding

to 8 x 8 or 4x 4 blocks, and also to “fill in” for macroblocks where the video

encoder may have used an intra prediction mode.

Figure 3.2: Two scenes from UCF-101 with & without camera motion (top & bottom
row respectively); (a) Reference frame; (b) Selective decoding of MB texture
(A= 0); (c) Rendered frame; (d) Fully decoded frame corresponding to the
rendered frame.

Figure 3.3: MV activity maps corresponding to FiguB2(b).

For the spatial stream, we employ selectively-decoded MB texture information
using the extracted MVs as activity indicators. We do this by decoding one frame
everyX frames, withX set to inf indicating that only the first frame of the video is
decoded. In between fully-decoded frames, “rendered” frames can be produced at
frame intervalR, with 1 < R < X. Each rendered frame is initialized as a copy of
the immediately preceding fully-decoded frame. Then, texture information at active
MB positions is decoded and replaces the initialized values in the corresponding lo-

cations in the rendered frame. Two examples of this process are shown inE@ure
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We consider the area within a macroblock to be active when the corresponding MV
information exceeds a specified thresh8ldA > 0. As an illustration, Figur&.3
shows a grayscale activity map derived from the MVs of Figuigb). To achieve
such blockwise selective MB texture decoding vialthavcodec library [126],

we use the motion vectors fro&VMotionVector to acces®\VFrame::data

and write decoded MB texture data wherever the conditions specifi¢X iy, A}

are met. By increasing the values foX,R A} we can decrease the frequency of
full decoding and selective MB texture decoding in order to achieve any extraction
speed desired within a practical application context. In addition, even though it is
not explored in this chapter, we can investigate adaptive contrfpkKdR A} based

on the average MV activity level within each video sequence.

3.2 Proposed Framework For Compressed-domain

Classification

In this section we describe the proposed framework for training a temporal stream of
MB motion vectors extracted directly from the video bitstream and a spatial stream
comprising selective (motion-dependent) MB RGB texture decoding, and consider
how the two streams can be fused during testing. Figut@utlines our proposed

selective decoding and classification framework.

3.2.1 Network Input

3.2.1.1 Temporal Stream

For our temporal stream input, we extract and retain only P-type MB MVs, i.e., uni-
directionally predicted MBs121, 12(. The standard UCF-1058] and HMDB-51

[75] datasets are composed of 32@40 RGB pixels per frame. Therefore, for a
frame comprising P-type MBs, a block size ot 8 pixels results in a motion vector
field @1 € RMr<HrxKr of dimension 40« 30 x 2, whereWr x Hr is the motion
vector spatial resolution and the number of chanKels- 2 refers to thedx anddy
motion vector components.

In order to compensate for the low spatial resolutiénx Ht, we take a long
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Proposal

Fully decoded Selective decoding ACEion

%

Figure 3.4: Proposed framework for compressed-domain classification: Only macroblocks
containing motion are decoded and processed by an RGB CNN. Low resolution
and long temporal extent motion vector volumes are encoded by a second 3D
CNN and the results are fused across modalities with simply averaging. We
generate a rendered texture frame for input to the spatial CNN by replacing
the zero (non-decoded) blocks from the selectively decoded frame with texture
blocks from a previous fully decoded frame.

temporal extenf over consecutive P frames, wiih > 100. This is contrary to
recent proposals based on high-resolution optical fl6@ 55], which typically
ingest only a few frames per input (typically around 10). This is because, even
with the latest GPU hardware, a long temporal extent cannot be processed without
sacrificing the spatial resolution of the optical flod0[ 55]. On the other hand,
given that our MB motion vector input is inherently low-resolution, it is amenable
to a longer temporal extent, which is more likely to include the entirety of relevant
action that is essential for the correct classification of the video. For example, we
have found that the accuracy increases greatly for UCF-101 evaluated on our 3D
CNN when moving from 10 to 100 frames, but eventually plateaus whagcomes
sufficiently large such that the input extends to almost all P-type frames of the video
files of the dataset. Therefore, we fix the temporal extetat 160, which is roughly

the average number of P-frames per video in UCF-101.

In order to make our network input independent of the video resolution, we
use a fixed spatial sizdr x Nt which is cropped/resized fro®y. In this chap-
ter, we sefNy = 24, which is large enough to encompass the action region without

compromising accuracy, whilst allowing for data augmentation via random crop-
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Convl Pool Conv2 Pool Conv3 Conv4 Convs Pool FC6 FC7 Softmax
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Figure 3.5: 3D CNN architecture: the blue, orange and yellow blocks represent convolu-
tional, pooling and fully-connected layerns;is the filter size for the convolu-
tional layers (or window size for pooling), formatted as widtheight x time;

Sis the filter/window strideD is the number of filters (or number of hidden
units) for the convolutional and fully-connected layers.

ping. Furthermore, given it is divisible by eight, the P-frames can be continuously
downsampled by a factor of 2 with pooling layers, without requiring any padding.
Our final network inpui®y € RN <NrxKrxT s thus 4D and can be ingested by a
3D CNN. As exemplified in numerous worksY, 56], the advantage of using a 3D
CNN architecture with a 4D input, versus stacking the frames as channels and using
a 3D input of sizeNt x Nt x TKy with a 2D CNN, is that, rather than collapsing

to a 2D slice when convolving within the CNN, we preserve the temporal structure

during filtering.

3.2.1.2 Spatial Stream

Previous work has shown that stacking RGB frames channel-wise and ingesting
such volumes into a 2D CNN does not necessarily improve perform&océy).
Indeed, one option is to train a deep 3D CNN on a 4D RGB frame input, which
is the proposed configuration for our temporal stream (with MV inputs). Whilst
this has been shown to improve performance with RGB frarbéls it is far more
computationally expensive to implement when the inputs are at pixel resolution, i.e.,
typically 224x 224 for CNNs trained on ImageNetT|. Therefore, the complexity
of the network in terms of activations and weights quickly becomes unmanageable.
Our approach alleviates these problems by simply ingesting single RGB frames
from the video as inputs to a 2D CNN, in order to exclusively model the scene
semantics in the image; these comprise geometry, color and background informa-
tion that can not be extracted from the P-frames directly. For example, in the case
of action recognition, the green grass and net and racket texture patterns in the
frame could distinguish a sequence as being related to tennis, rather than swim-

ming. Given that such spatial structures and color information tends to be persistent
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across frames belonging to the same type of scene, we can gain substantial storage
and complexity savings by our proposed sparse full-frame decoding and selective
superpositioning of MB RGB texture decoding according to the motion activity, as
described in Sectio8.1and illustrated in Figur8.2and Figure3.3.

In order to make our input independent of the video resolution, we follow the
approach of Simonyast al. [60]. That is, we first resize the RGB frame, such
that the smaller side is equal to 256 and we keep the aspect ratio. From the resized
frame®g € RWs*Hs*Ks we crop/resize a fixed spatial sikie x Ng; Ng = 224. Our

spatial stream input is thus of size 22424 x 3.

3.2.2 Network Architecture

Our 3D CNN architecture is illustrated in FiguBeb. All convolutions and pooling

are spatiotemporal in their extent. 3D pooling is performed ovex @ 2 2 window

with spatiotemporal stride of 2. The first two convolutional layers use 3D filters of
size 3x 3 x 3 to learn spatiotemporal features. With ax224 x 2 x 160 motion
vector input, the third convolutional layer receives input of size @x 2 x 10.
Therefore, we set the filter size of the third, fourth and fifth convolutional layers to
2x 2x 2, asthis is sufficiently large to encompass the spatial extent of the input over
the three layers whilst minimizing the number of parameters. In order to maintain
efficiency when training/evaluating, we also use a temporal stride of 2 in the first
and second convolutional layers to quickly downsize the motion vector input; in all
other cases we set the stride to 1 for convolutional layers. The temporal downsizing
substantially minimizes the number of activations (and thus, the number of floating
point operations) in the lower layers. All convolutional layers and the FC6 & FC7
layers use the parametric ReLU activation functib@{).

It is important to note that our network has substantially less parameters and
activations than other architectures using optical flow. In particular, our 3D CNN
stores 29.4 million weights. For comparison, ClarifaiNE2§ and similar configu-
rations that are commonly used for optical-flow based classificai@rY[L] require
roughly 100 million parameters.

For the spatial stream, we opt for the commonly used VGG5IH4rchitec-
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ture, as itis sufficiently deep to learn complex representations from the input frames.
The CNN is typically trained on ImageNe2T] for image classification. While we
have also obtained similar results with shallower networks, VGG-16 allows for bet-

ter generalization to larger datasets.

3.2.3 Network Training

We train on the temporal and spatial streams independently, as this permits sequen-
tial training on a single GPU and simplifies management of resources such as GPU
RAM. It additionally permits evaluation on a single stream for faster runtime. The

training details for each stream are as follows.

3.2.3.1 Temporal Stream

We train the temporal stream using stochastic gradient descent with momentum set
to 0.9. The initialization of Heet al. [127] is extended to 3D and the network
weights are initialized from a normal distribution with variance inversely propor-
tional to the fan-in of the filter inputs. Mini-batches of size 64 are generated by ran-
domly selecting 64 training videos. From each of these training videos, we choose a
random index from which to start extracting the P-frame MB motion vectors. From
this position, we simply loop over the P-type MBs in temporal order until we ex-
tract motion vectors over consecutive P frames. This addresses the issue of videos
having less thail total P frames, e.g., cases where the video is only a few seconds
long. For UCF-101, we train from scratch; the learning rate is initially set t& 10
and is decreased by a factor ofl@very 30k iterations. The training is completed
after 70k iterations. Conversely, for HMDB-51, we compensate for the small train-
ing split by initializing the network with pre-trained weights from UCF-101 (split
1). The learning rate is initialized at 1®and decayed by a factor ofDevery 15k
iterations, for 30k iterations.

To minimize the chance of overfitting due to the low spatial resolution of
these motion vector frames and the small size of the training split for both UCF-
101 and HMDB-51, we supplement the training with heavy data augmentation.

To this end, we concatenate the motion vectors into a sWgle Hy x 2T vol-
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ume and apply the following step8) a multi-scale random cropping to fixed size
Nc X N x 2T from this volume, by randomly selecting a value fdyfrom Nt x ¢

with ¢ € {0.5,0.667,0.833 1.0}; as such, the cropped volume is randomly flipped
and spatially resized thit x Nt x 2T; (ii) zero-centering the volume by subtract-
ing the mean motion vector value from each motion vector f@®id in order to
remove possible bias; th& and dy motion vector components can now be split
into separate channels, thus generating our 4D network ﬁnpuDuring training,

we additionally regularize the network by using dropout ratio of 0.8 on the FC6 and

FC7 layers together with weight decay of 0.005.

3.2.3.2 Spatial Stream

We also train the spatial stream independently using stochastic gradient descent
with momentum set to 0.9. As with the temporal stream, mini-batches of 64 are
amalgamated over 64 randomly selected videos. We take advantage of the transfer-
ability of features from image to video classification, and pretrain all layers of our
VGG-16 architecture on ILSVRC'12p]; all layers are subsequently fine-tuned on

the video training sets. The learning rate is initialized at®land decayed by a

factor of Q1. We complete training at 15k iterations.

Again, due to the small training sizes, we risk overfitting during training;
therefore we set dropout and weight decay on the first two fully connected lay-
ers to 0.8 and 0.005 respectively. We also use a multi-scale random cropping
of the resized RGB frame by randomly selecting a value fidgnx d with d €
{0.857,1.0,1.143}; the cropped volume is subsequently randomly flipped, spatially

resized td\s x Ng x 3 and zero-centered as per the temporal stream.

3.2.4 Testing

During testing, per video, we generate 2 volumes of temporalBizem which

to evaluate on the temporal stream. The starting indices for the volumes are at the
first P-frame and at half the total number of P-frames. Per volume, we crop the four
corners, the center of the image (and its mirror image) tolize Ny x 2x T. In

order to generate our prediction for the video, we take the maximum score over all
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crops. Due to the low resolution and short duration of the HMDB-51 and UCF-
101 videos, taking these extra crops and volumes is often redundant as the spatial
resolution of the P-frames is low and the temporal exemtf the input is large
enough to encompass the entire video duration. However, our approach is better
suited to videos “in the wild” and we can afford the use of extra crops due to the
low complexity of our 3D CNN.

We evaluate on the spatial stream by extracting only 5 frames from the set per
video, albeit with only a single center crop (and its horizontal flip) of Blge Ng x
3. In our experiments, we have found this to be sufficient for the case of trimmed
action recognition, where most frames are relevant to the associated video label.
The frames are extracted at evenly spaced intervals from the video. To generate
our prediction, we again compute the maximum score over all extracted frames.
In order to produce a final score for the fusion of the two modalities, we simply
average their maximum scores, which is equivalent to combining knowledge from

the most relevant input in each stream.

3.3 Experimental Results

3.3.1 End-Point Error and Speed of MB MV Extraction and De-
coding vs. Optical Flow Methods used in Video Classifica-
tion

In order to examine the accuracy and extraction time of our approach versus de-

coding and optical flow estimation, we perform a comparison against the B8bx [

and FlowNet2 124 optical flow estimation methods that were respectively used

(amongst others) by Simonya al. [60] and Broxet al. [124]. Table3.1presents

the motion field estimation accuracy, measured in terms of end-point error (EPE) on

MPI-Sintel, for which ground truth motion flow is also available (see Figif.

Since our CNN architecture downsamples the optical flow before ingeéithrme

measure the EPE for our MV flow estimation at the resolution of our CNN input.

Under these settings, Takiel shows that the EPE of our approach is 1.75 to 4.86

times higher than that of optical flow methods. Despite the detrimental accuracy,
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Table 3.1: Motion field end-point error (EPE) for the proposed approach, B&Sk &nd
FlowNet2 [124).

Input EPE
Proposed, MV  15.26
Brox 8.70

FlowNet2 3.14

our EPE results remain low enough to indicate high correlation with the ground-
truth motion flow and the optical-flow based methods. Indeed, the results presented
in the following subsections show that the codec MB MV accuracy suffices for
classification results that are competitive to the state of the art.

In order to measure flow estimation and decoding speed (with I/O) in terms of
frames per second (FPS), we now use video content that corresponds to our video
classification tests, i.e., 100 video sequences from UCF-101 (see next subsection
for the details of this dataset). All CPU-based experiments were carried out on
an Amazon Web Services (AWS) EC2 r3.xlarge instance (Intel Xeon E5-2670 v2
CPU), while all GPU-based experiments were carried out on a AWS EC2 p2.xlarge
instance (Tesla K80 GPU). For our selective decoding approach described in Sec-
tion 3.1, we select values for the decoding inter¥athat correspond to the settings
used in our video classification tests. The results of this experiment are summarised
in Table3.2 In terms of flow estimation speed, our CPU-based MV flow extraction
is more than 1500 times faster than FlowNet2 and more than 977 times faster than
Brox flow (both running on a GPU), as it does not require video decoding or any
optical flow computation. At current AWS priciAgGPU instances require more
than 2.7 times the cost of CPU instances; as such, our AWS-based implementation
has more than 2600 times lower cost. This means that, for the public cloud cost that
an optical flow method will process 1 hour of video, our approach will be able to
process more than three and a half months of video footage.

In terms of decoding speed, Tald& shows that selective decoding is an order
of magnitude faster than the full-frame decoding required for Brox and FlowNet2.

We illustrate the influence of selective decoding on the achieved FPS in more detail

2AWS EC2 spot pricing(r3.xlarge vs. p2.xlarge N. Virginia, Sept. 2017)
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Table 3.2: Flow estimation and decoding speed results for the proposed approach, Brox
[53] and FlowNet2 124].

Frames Per Second (FPS)
Flow Estimation Decoding
ProposedX = 10 18226 (CPU) 1180 (CPU)
ProposedX =50 18226 (CPU) 2016 (CPU)

Input

Brox 18.64 (GPU) 168 (CPU)
FlowNet2 12.08 (GPU)  166CPU)
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Figure 3.6: Achieved FPS of selective decoding for varying decoding intexval
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Figure 3.7: Structural similarity index metric (SSIM) for varying decoding inter¥al

in Figure3.6. The results show that the decoding FPS increases rapidlyuntb0
and begins to saturate after this point. In order to associate this speed up with
a measure for the expected visual quality of the selective decoding and rendering

approach, we plot the average structural similarity index (SSINY[for multiple
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values ofX in Figure3.7, using the fully-decoded video sequences as reference. By
combining the two figures, it is evident that, as the decoding speed increases and
reaches a saturation at around 2500 FPS, the quality of all rendered frames decreases
and plateaus at SSIM values around 0.85. We next assess whether the motion flow
accuracy and visual quality allow for high-performant video classification with the

proposed CNN-based architectures.

3.3.2 Datasets used for Video Classification

Evaluation is performed on two standard action recognition datasets, UCKBJ01 [
and HMDB-51 [75. UCF-101 is a popular action recognition dataset, comprising
13K videos from 101 action categories with 32@40 pixels per frame, at replay
rate of 25 frames per second (FPS). HMDB-51 is a considerably smaller dataset,
comprising only 7K videos from 51 action categories, with the same spatial reso-
lution as UCF-101, and at 30 FPS replay rate. Finally, unless stated otherwise, we

always cross-validate on the standard three splits for both datasets.

3.3.3 Evaluation Protocol and Results

For each dataset we follow the testing protocol of Sec8¢éh4 Each UCF-101
training split consists of approximately 9.5K videos, whereas each HMDB training
split has 3.7K videos. We report all single stream feedforward network runtimes
without 1/O, in order to isolate the efficiency of our proposed architecture. Speed
is reported in terms of FPS, which is computed as the number of videos each net-
work can process per second multiplied by the average number of frames per video
(we use the average length of UCF-101 videos, i.e., 180 fra6@s [By using

FPS as our metric, we account for both the network complexity and the number
of inputs processed per video at inference, i.e., the number of crops and volumes
taken, as reported in the respective papers. For frameworks where the number of
inputs is a function of the video size, we again assume an average video length of
180 frames. All speed results correspond to a batch size of 32 on an AWS EC2

p2.xlarge instance, which comprises a single K80 GPU.
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Table 3.3: Classification accuracy and speed (FPS) against state-of-the-art flow based net-
works. “Proposed 3D CNN" refers to our temporal stream that ingests MB mo-
tion vectors.

Framework Input Accuracy (%) FPS
Size UCF  HMDB

Proposed 3D CNN Z42x160 77.2 480 3105
TSCNN-Brox B0Q] 2242x20 812 554 185
LTC-Brox [64] 58°%x2x100 82.6 56.7 <100
LTC-Mpegflow [64] 58°%x2x60 63.8 - <100
TSCNN-FlowNet2 24  2242°x20 79.5 - 185
EMV-CNN (ST+TI) [71] 224°x 20 79.3 - 1537

Table 3.4: Complexity of proposed 3D CNN vs EMV-CNN with respect to millions of
activations and weights (#A, #W), summed over conv, pool and FC layers in the
utilized deep CNN of each approach.

Framework Complexity
#A(X10P)  #W(x 10°)
Proposed 3D CNN 4.0 29.4
EMV-CNN [7]] 2.0 90.6

3.3.3.1 Temporal Stream
Table 3.3 presents the results of temporal stream CNNs on split 1 of the datasets,
for which our method achieves 77.2% and 48.0% on UCF-101 and HMDB-51, re-
spectively. When cross-validating on all three splits for both datasets, our accu-
racy is higher and we achieve 77.5% on UCF-101 and 49.5% on HMDB-51. It
is evident that our approach performs competitively to recent proposals utilizing
highly-complex optical flow, whilst minimizing the network complexity via the low
number of activations in the lower convolutional layers and small spatial size of the
input. As a consequence of the lower resolution inputs and longer temporal extents,
our proposal is able to achieve 2 to 30-fold higher FPS in comparison to all other
frameworks.

The closest competitor is the MV based EMV-CNN meth@d],[ which
achieves approximately half the FPS of our approach and therefore warrants fur-

ther discussion. During test-time, EMV-CNN stacks 10 P or B frames as input to

3We remark that Laptest al. [73] made a proposal that uses codec MVs; their method is based on
the encoding of such MVs into Fisher vectors (instead of CNNSs) to classify video activity. However,
that approach is only capable of achieving an accuracy of 46.7% on HMBJBaf a much lower
frame rate (130 FPS) compared to recent CNN methods.
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their temporal stream, whereas we stack 160 P-frames per input to our 3D CNN.
According to the GOP structure, for every P-frame, EMV-CNN must additionally
extract and process 2 B-frames, whereas our 160 P-frame temporal extent typi-
cally constitutes processing the entire video in one forward-pass. As such, we only
require 12 inputs (2 volumes, 6 crops per volume) to classify a video from UCF-
101, whereas EMV-CNN evaluates on 25 inputs per video. Importantly, unlike our
approach, EMV-CNN requires upsampled P and B-frame MV fields due to supervi-
sion transfer, which leads to reduced MV extraction and CNN processing speed in
comparison to our proposal.

In order to go into more detail on the complexity of our CNN against the one
proposed within EMV-CNN, we present their network complexity in Tedbte The
EMV-CNN architecture requires (approximately) 3 times the number of weights
(and thus 3 times the memory) of our 3D CNN.

Finally, as discussed in Secti@?2.4 due to the low resolution of our input,
taking a large number of crops is redundant in our proposal. Therefore, it should
be possible to achieve similar performance even in the case of with one-shot recog-
nition. Indeed, when evaluating our temporal stream on a single center crop, we
achieve 76.2% on UCF-101 (split 1) and 46.7% on HMDB-51 (split 1). Such a

simplification increases the frame rate to 7452 FPS.

3.3.3.2 Spatial Stream

With regards to the spatial RGB stream produced by the proposed selective de-
coding, Table3.5 presents results with two values Xf The network is evaluated

and accuracy is subsequently averaged over cross-validation with the three splits
for both datasets. The first resuX & 10) fully decodes every 10 frames, whilst

the second result corresponds to selective decoding and rendering every 10 frames
and full decoding every 50 frames. In the latter case, we set the rendering frame
interval toR = 10 and threshold\ = 0, i.e., selectively decoding and writing the
RGB texture of macroblocks corresponding to non-zero motion vectors once every

10 frames. As the number of crops/volumes that the network evaluates on is fixed
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Table 3.5: Classification accuracy and runtime (FPS) against state-of-the-art RGB based
networks. For our proposed spatial streams, we fully decode one frameXevery
frames.

Framework Input Accuracy (%) FPS
Size UCF  HMDB
ProposedX = 10 22£%3 79.3 424 1228
ProposedX =50 224x3  77.7 396 1228

TSCNN [60] 224%x3  73.0 405 252
SFCNNB5  170°x3x10 654  — 216
LTC [64] 71°x3x100 824 - <100
C3D[56] 112°x3x16 82.3 - <300

and independent of the fully decoding intervéland rendering frame interva,

the network FPS reported in TabBeb5 is the same for both cases. However, the
decoding runtime foK = 50 is approximately 1.7 times faster than o= 10 (see
Table3.2). The results demonstrate that the performance drop from selective de-
coding is marginal and that our spatial stream proposal significantly outperforms
TSCNN [60] and SFCNN 55 on UCF-101, whilst performing inference with ap-
proximately 5 times higher speed. We achieve this speed by restricting the inputs to
single frames and only evaluating on 10 inputs per video, which counterbalances the
higher complexity of our pretrained VGG16 network. On the contrary, approaches
like LTC [64], TSCNN [60] and C3Dp6€] evaluate on many more frames and mul-
tiple crops per frame, thereby incurring higher computational overhead and signif-
icantly lower frame rate for their evaluation process. However, it is worth noting
that when comparing our proposed temporal and spatial stream FPS, the tempo-
ral stream runs approximately 2.5 times faster, which further motivates training the
streams independently, as we can easily allocate more resources to processing the

slower stream.

3.3.3.3 Spatio-temporal stream fusion and complementarity in pre-
dictions

Table 3.6 presents the summary of the classification performance of our proposed
two-stream approach (averaged over the standard three splits) when fusing the spa-

tial and temporal streams. Our two-stream network utilizing selective decoding
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Table 3.6: Comparison against state-of-the-art fusion based frameworks. For our proposed
two stream networks, the spatial stream ingests one fully-decoded RGB frame
everyX frames.

Framework Accuracy (%)
UCF HMDB
ProposedX = 10 89.8 56.0
ProposedX =50 88.9 546

TSCNN (avg. fusion)0] 86.9 58.0
TSCNN (SVM fusion) 0] 88.0 59.4

CNN-pool [67] 88.2 -

C3D (3 nets)+IDTH6] 90.4 -
LTC[64] 91.7 64.8

EMV + RGB-CNN[71] 864  —
IP+SVM [130 - 59.5
Line Pooling [L3]] 88.9 62.2
TDD [137 90.3 63.2

achieves 89.8% accuracy on UCF-101. Overall, our approach is within a few per-
centile points from the best results reported for both datasets, whilst skipping the
complex preprocessing inherent with decoding and optical flow based methods.
TSCNN, LTC and Line Pooling all use Brox optical flow in their temporal streams,
whilst IP+SVM uses a combination of optical flow, pixel values and gradients for
descriptor computation. On the other hand, methods such as C3D+IDT and Line
Pooling use trajectory-based descriptor computation in their fusion based frame-
works, in addition to deep CNN computation, which adds even further complexity
to the classification pipeline. Line Pooling also adopts VGG-16 in their spatial
stream as in our case, but forgoes our simpler end-to-end approach for frame pool-
ing and VLAD encoding on an intermediate convolutional layer, which requires
additional codebook learning.

Given that our spatio-temporal stream fusion strategy increases the accuracy
by 8%-12% in comparison to independent stream evaluation, further investigation
of the inference properties of the spatial and temporal CNNs is warranted. The
temporal stream ingests inputs of low spatial resolution with long temporal extent,
whereas the spatial stream ingests inputs with high spatial resolution but low tem-
poral resolution (single frames). As such, the temporal and spatial stream raters

are expected to be more disjoint in their learned representations, which translates
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Figure 3.8: Cohen’s kappa matrix over all rater combinations for UCF-101 (split 1). For
the spatial streanX = 10,R= 10.

to higher information gain and a significant increase in accuracy when their infer-
ences are fused. To quantify their pairwise agreement, we compute Cohen’s kappa
k [133 between the raters producing labels for the: temporal stream, spatial stream,

two-stream and the ground truth (i.e., “null” model)

Po— Pe
K =
1-pe

(3.1)

wherep, is the relative observed agreement amongst raters (equivalent to ac-
curacy) andoe is a hypothetical probability of random agreement, which is summa-
tion of marginal probabilities multiplied between raters. Cohen’s kappa ranges from
k = 1.0 (raters of in complete agreement)ko< 0 (no agreement amongst raters
other than random expectation). We plot the symmetric matrix @&lues over
all rater combinations for predictions on UCF-101 (split 1) in FigBri@ As ex-
pected, there is high inter-rater agreement between the spatio-temporal two-stream
architecture and the ground-truth, wifitwo-stream, ground-trujh= 0.893. How-
ever, there is low inter-rater agreement between the independent spatial and tem-

poral streams, i.ex(spatial, temporal= 0.665. This low inter-rater agreement
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Figure 3.9: Recall difference graph for UCF-101 (split 1). Red line equates to a temporal
bias, blue line equates to spatial bias. Classes are in alphabetical order.
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Figure 3.10: Recall difference graph for HMDB-51 (split 1). Red line equates to a tempo-
ral bias, blue line equates to spatial bias. Classes are in alphabetical order.

suggests that the temporal and spatial streams learn heterogenous representations
that reliably classify different video subsets from the dataset. As such,the spatial
and temporal streams complement each other and this translates to a substantial
increase in accuracy when fusing the streams during inference, in comparison to
inference on either stream independently. Indeed, if these video subsets were very
similar to each other, ther(spatial, temporalwould be approximately equal to

min(k (spatial, ground-truth k (temporal, ground-truth = 0.769; however, this is
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approximately 10% higher than the actual valuekg@$patial,temporaland also

turns out to be the average gain obtained by the spatio-temporal fusion.

In order to reinforce this point, we measure the difference in recall values for
each class between the spatial and temporal stream, and plot this in Bi§arel
Figure 3.10 for UCF-101 and HMDB-51 respectively. If the two streams are in
complete agreement, one would expect the recall difference to be close to 0; in
other words, the two streams agree on the same video subsets. However, what we
observe is that the temporal and spatial streams exhibit distinct biases in terms of
class, depending on the nature of the activity. For UCF-101, the temporal stream is
favorable for “high activity” classes, such as “high jump” (class 39), “jump rope”
(class 47) and “salsa spin” (class 76). Conversely, the spatial stream performs better
for “low activity” classes where a scene representation is more informative, such as
“cutting in kitchen” (class 24), “rowing” (class 75) and “table tennis shot” (class
89). Intuitively, this means the stream fusion provides better generalization over all

classes, or a lower network variance.

3.3.4 Accuracy-Cost Tradeoff

Finally, in order to associate our implementation results with the cost incurred by
the fastest competing methods from TaBlé(namely, TSCNN (avg. fusion), EMV

+ RGB-CNN and LTC), we present the AWS deployment cost of each method in
Table3.7. The table shows the cost incurred per component of each method, as
well as the total end-to-end co€ii;. The four components benchmarked in the
table are: flow estimation, decoding, temporal stream inference and spatial stream

inference, with costs:

A Peomponent
— 3.2
Ccomponent 3600 X Fcomponen% (3.2)

where: A is the average number of frames required for inference in UCF-101
split 1 (180 frames/videa 3783 videos in split 1)FcomponencOmprises the FPS re-
sults reported in Table3.1-3.5for component {flow, decode, t-stream, s-stream

of each method, anBLomponents the $/hr cost of the AWS instance used to achieve
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Table 3.7: Cost per component and end-to-end €gtfor our proposed two-stream frame-
work versus competitive frameworks to perform inference on UCF-101 (split 1).

Cs-stream($)  Crot ($)

Framework Cﬂow ($) Cdecode($) Ct-strean{$)

ProposedX =10 0.003 0.053 0.055 0.139 0.250

ProposedX = 50 0.003 0.031 0.055 0.139 0.228

TSCNN (fusion) p0] 9.133 0.375 0.920 0.676 11.103

EMV + RGB-CNN [71] 0.006 0.375 0.111 0.676 1.167
LTC [64] 9.133 0.375 1.702 1.702 12.912

the reported FPS. Specifically, based on the on-demand cost for a p2.xlarge (K80

GPU instance) and r3.xlarge (quadcore CPU) instance:

* R.stream= Ps-stream= 0.9 $/hr andPyecode= 0.333 $/hr,

* Biow = 0.333 $/hr for our proposal and EMV-CNN,
* Biow = 0.9 $/hr for TSCNN because it requires GPU-based Brox flow esti-

mation.

The total cosCic to process the UCF-101 (split 1) is:

Ciot = Chiow + Cdecodet Ct-streamt Cs-stream (3.3)

From Table3.7, it is evident that the cost of dense optical flow in TSCNN
and LTC completely overshadows all other costs. On the other hand, our MV flow

incurs less than 0.005% its cost. In addition, the combination of:
» selective decoding (that incurs only 8.3% the cost of full frame decoding with
X =50),
* the more efficient CNN processing, and

* the costCyq, Of our MV flow estimation being approximately half that of
EMV + RGB-CNN due to our temporal CNN only requiring 24824 crops
of the P-frame MV field (while EMV-CNN ingests upsampled P and B-frame

MYV fields to carry out the supervision transfér]),
lead to the proposed method incurring only 20% of the cost of EMV + RGB-CNN

for inference.
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Figure 3.11: Accuracy-complexity plot for our proposed two stream framework with fully
decoding ratX = 10 andX = 50 versus the fastest competing methods. Com-
plexity is denoted in terms of end-to-end c@g; and plotted on a logarithm
scale. We do not plot accuracy for EMV-RGB CNN and C3D (1 net) on
HMDB-51 as these are not provided in the paper.

Inline with our thesis objective of improving the accuracy-complexity tradeoff
by supplementing with compressed visual modalities, we now plot the accuracy ver-
sus end-to-end complexity, which we define in term&gf, in Figure3.11 From
the figure, we note that our proposed two stream framework is able to substantially
outperform the fastest competing methods in terms of complexity, whilst remaining
competitive in terms of accuracy. In particular, whilst LTC is able to slightly out-
perform our proposal in terms of accuracy, the performance gain is negated by the
substantially heavier processing and cost at inference. This cost is largely attributed
to the use of optical flow, which contributes to 71% of the total cost; however,
we also note that our temporal stream is 30 times cheaper in performing inference
than the LTC temporal stream. We also plot C3D (1 net), which only relies on the
RGB modality, and show that despite no flow computation, the combination of full

decoding and computationally heavy architecture leads to higher cost and worse
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performance that our proposed framework. Overall, our approach is found to be 5
to 57 times cheaper to deploy on AWS than the most efficient methods from the

state-of-the-art in video classification.

3.4 Conclusion

We extend from the unimodal retrieval task to multimodal action recognition, where
the RGB frames are conventionally supplemented with a flow modality such as op-
tical flow. We aim to improve on the complexity of dense optical flow generation
whilst minimizing the detriment to classification accuracy. Namely, we propose
a 3D CNN architecture for video classification that instead utilizes compressed-
domain motion vector information for substantial gains in speed and implementa-
tion cost on public cloud platforms. We fuse the 3D CNN with a spatial stream
that ingests selectively decoded frames, determined by the motion vector activity.
Our MV extraction is found to be three orders of magnitude faster than optical flow
methods. In addition, the selective macroblock RGB decoding is one order of mag-
nitude faster than full-frame decoding. By coupling the high MV extraction and
selective RGB decoding speed with lightweight CNN processing, we are able to
classify videos with one to two orders of magnitude lower cloud computing cost in
comparison to the most efficient proposals from the literature, whilst maintaining
competitive classification accuracy (TabB8§and3.7). Further refinements of our
approach may allow for the first time CNN-based classification of exascale-level
video collections to take place via commodity hardware, something that currently
remains unattainable by all CNN-based video classification methods that base their
training on full-frame video decoding and optical flow estimation. Source code re-

lated to the proposed approach is available onlinkttpt//www.github.com/mvcnn


http://www.github.com/mvcnn

Chapter 4

Neuromorphic Vision Sensing For

CNN-based Action Recognition

Conventional recognition systems typically classify active pixel sensor (APS) video
according to the illustrated human activity (“tennis match”, “cooking”, “people
marching”,...). Indeed, both optical flow computation and motion vector extrac-
tion considered in the previous chapter have an APS video requirement. Motion
vectors require access to the video codec, whereas optical flow requires full ex-
traction and decoding of the APS video frames. However, APS-based video rep-
resentations are known to be cumbersome for machine learning systems, due to
[134): limited frame rate, too much redundancy between successive frames, cali-
bration problems under irregular camera motion, blurriness due to shutter adjust-
ment under varying illumination, and very high power requirements. Inspired by
these observations, hardware designs of neuromorphic sensors, a.k.a., silicon reti-
nas [L35 8], have been proposed recently that improve on the sensing efficiency.
Silicon retinas mimic the photoreceptor-bipolar-ganglion cell information flow of
biological retinas by producing coordinates and timestamps of on/off spikes in an
asynchronous manner, i.e., when the logarithm of the intensity value of a CMOS
sensor grid position changes beyond a threshold due to scene luminance changes.
Unlike conventional frame-based cameras that tend to blur the image due to slow
shutter speed, silicon retinas capture the illumination changes caused by fast object

motion and are inherently differential in nature. In practice, this means that neu-
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romorphic vision sensing (NVS) data from hardware like the iniLabs DAVIS and
the Pixium Vision ATIS cameras3[ 9, 10, 11] can be rendered to representations
comprising up to 2000 frames-per-second (fps), whilst operating with robustness
to changes in lighting and at low power, on the order of 10mW. Conversely, a typ-
ical APS video camera only captures (up to) 60 fps at more than 100 times the
active power consumption and with shutter-induced blurriness artifacts when rapid
illumination changes take place. The combination of these advantages makes NVS-
based sensing particularly appealing within Internet-of-Things (IoT) and robotics
contexts 136 137, 138, where NVS data would be gathered at very low power and
streamed to cloud computing servers for back-end analysis with deep convolutional

neural networks (CNNSs).

Recent work 135 136, has advocated possibilities for ingesting NVS data
into frame-based deep CNN architectures deployed with state-of-the-art libraries
like TensorFlow, in order to gain from the lower power and high frame-rate in-
herently available with an NVS camera. However, most activities relate to low-
cost on-board processing for robotics and guidance systems and do not consider
higher-level tasks like human action recognition or semantic scene analysis. In ad-
dition, all existing work is hampered by the lack of annotated NVS training data
[135 139 140. To mitigate the latter issue, several proposals recorded annotated
APS video datasets under controlled conditiobd1] 142, 134, 143, i.e., video
frames displayed in a monitor under controlled frame-rate and brightness/contrast
conditions and recorded with a DVS camera. Such experimental approaches are
very valuable as they provided the first available annotated video datasets in NVS
format. However, their scale-up to larger datasets is hampereg) lilge recording
being potentially affected by environmental and monitor conditions (e.g., lighting,
monitor flicker, vibrations, etc.) and being specific to the utilized NVS camera (i.e.,
needing to be repeated as new generations of NVS hardware em@jgeighly-
accurate synchronization being required between the played-out video frames and
the corresponding NVS because of drift between the playout device timing and the

DVS camera timestamping (especially as the dataset grows in §idejhe slow
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passage of real time and the expense of the physical hardware involved (e.g., when
considering that APS video datasets like YouTube-8M4 and Kinetics [L45
comprise hundreds of thousands of clips). To this end, Kb#t. [146 and Mueg-

gleret al. [139 proposed models to generate neuromorphic spiking activity using
piecewise linear interpolation of the pixel intensity given by successive rendered
images. The recently proposed PIX2NVS framewdtk7 and work by Furber

et al. [148 provide for parametric software-based solutions for the conversion of
pixel-based videos to neuromorphic spike events. While initial results have been
presented with a small number of videos and a limited set of conversion options,
there is currently no validation of performance for deeper semantic tasks like action

recognition.

In this chapter we address these issues. First, in Settione briefly explain
the NVS camera operation that we are trying to emulate. In Sedtibwe address
the lack of training data for NVS based recognition by improving on recently pro-
posed emulator frameworkd47, 148 that can generate emulated neuromorphic
vision streams from any APS video format. Notably, we introduce new options for
spike event generation, reference frame updating and frame grouping, resulting in
emulated frames that can be ingested directly by a convolutional neural network.
We also tune the parameters of an NVS emulator framework configured with our
proposed additions, in order to minimize the domain shift between real and emu-
lated spike event distributions. As such, by converting pixel-domain video datasets
such as UCF-101 and HMDB-51 with the improved emulator, we are able to pro-
vide an abundance of data on which to train a CNN in the NVS domain. For the
action recognition task, we show in Secti/3 how such an emulator can be em-
bedded into a larger multi-modal teacher-student framework, where we capitalize
on the availability of optical flow labelled data by employing a pre-trained opti-
cal flow stream as a teacher network to transfer knowledge to the emulated NVS
student network. Contrary to recent workl] that considers homogeneous trans-
fer between flow domains (optical flow to motion vectors), we propose an hetero-

geneous or multimodal transfer from the flow to NVS domains. The motivation
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is that: (i) despite the difference in modality, there is still more information em-
bedded in the (softened) logits of a pre-trained optical flow teacher network about
inter-class dependencies than in ground-truth labels, which we can leverage on in a
teacher-student framewor{i) the emulated NVS events and optical flow are both
derived from intensity variation between frames. Finally, in Sectidiwe evaluate

the performance of the framework on emulated NVS data and compare with recent
APS-based methods on standard action recognition datasets. Our results show that,
for the first time, an NVS-based CNN approaches the accuracy of complex methods
based on optical flow extraction from APS video at lower CNN complexity, thus
making NVS inputs a very competitive alternative to APS-based cameras and op-
tical flow extraction for low-power 10T and robotics applications requiring action

recognition.

4.1 Neuromorphic Vision Sensing Camera Opera-
tion
We illustrate in Figuret.1(a) the operation of an NVS camera in generating change
detection events. Contrary to an APS video camera, where visual information is
acquired and recorded at a constant sampling rate (i.e., the framerate) over the pixel
array, each individual pixel in an NVS camera optimizes its own sampling based on
the luminance variation that it receives. Specifically, the NVS camera uses level-
crossing samplinglf49, where the luminance of each pixel is tracked continuously
and independently and a change detection event or spike is only recorded when
the shift in luminance is greater than a defined threshold. As such, the events are
generated and timestamped asynchronously over the pixel array, agthtlegent

exp

is recorded with its spatio-temporal positioxt' ", ye P =

t&P) and polarity, P
+1. The polarity indicates whether the log luminance has increased or decreased by
the preset threshold (ON or OFF). The camera outputs a stream of events over time,
which resembles the signals transmitted between photoreceptors and ganglion cells
in the human visual system. The low power of the NVS camera is attributed to the

per-pixel sampling rates and the fact that a pixel remains idle to avoid unnecessarily
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Figure 4.1: (Best viewed in color) Graphs of log pixel luminance and polarity versus time
for an example pixel intensity variation. (a) is representative of the real NVS
camera operation, whereas (b)-(d) represent our improved emulator framework
with varying parameter settings. The blue curve on the luminance-time plots
shows the continuous analog luminance varying with time. The orange step
function shows the points where the change in luminance exceeds the preset
thresholdTiap= 0.4. These are translated to on and off change detection events
which we plot as event streams on the polarity-time plots. We mark the video
frame timestamps F1-6 on the time axis.

acquiring redundant information when there is no change in luminance.

4.2 Improving Neuromorphic Emulator Frame-

works

Conventional neuromorphic emulator frameworkist], 148 retrieve a pixel-
domain video that may be encoded and wrapped in any standard format container
(e.g., MP4, MKYV, etc.) and extract a series of pixel-domain video frames. The emu-

lator generates event tuplES™ = (xgMY, yeMU tgM PE™Y) over the video sequence:
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analogous to the NVS camera, the first two parameters correspond to the spatial co-
ordinates of thesth event within a frame, and the event polarityl(, representing

ON or OFF) is indicated bys™". All event tuples are stored in a text file and/or

in an AEDAT stream 135. The aim of the emulator is to produce emulated NVS
events that are as similar as possible to the ones that would have been generated
if the equivalent scene would have been captured with an NVS-generating device
like iniLabs DAVIS or Pixium ATIS hardware. Given that the resolution of event
timestamps is restricted to that of the input video framerate, its use is in recognition
and classification tasks that involve activities lasting between 0.1-10 seconds, such
as recognition of human actions or scene classification.

Figures4.1(b)-(d) represent our improved emulator framework with varying
emulator parameters. Contrary to the real NVS camera in Figifa), which op-
erates on the continuous analog luminance values (blue curve) for event detection,
the emulator operation is discrete in terms on of both luminance and time. Specifi-
cally, when converting APS video to NVS events, we only have access to the video
frames (marked at F1-6 on the figure). In the case of luminance, this means we are
restricted to the digital values (0-255) as derived from the RGB channels and not the
analog values that the NVS camera would receive. On the other hand, in the case
of time, this means we can not track the pixel intensity variation between frames
- as such, we propose methods for accurate event approximation between frames.
Namely, in the following parts of this section, we introduce additional options in
spike event generation and reference frame updating along with their associated
parameters for improving the similarity of the emulated NVS events to that of a

conventional NVS camera.

4.2.1 Spike Event Generation

We generate emulated spikes through colocated differentiidy f the nth video
frame log-scaled luminance valukg/[n] with the previous reference frame lumi-

nance valuedy[n— 1.

Ay [N = Ixy[n] = Ixy[n—1] (4.1)
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Theeth spike corresponding to threh frame (out ofeyt[n| spikes detected in
that frame) is generated iftlyy[n]| > Tmap With Tmap & preset threshold; in such

a case, the polarity of the spike iBs™ = sgrn(dyy[n]) and the coordinates of the

spike areXS™ ye™) = (X,y).

4.2.1.1 Local Inhibition

As correlation in small spatial neighborhoods of natural images is known to be
high [150, we assume that neighboring pixels transmit redundant information. We
therefore consider emulating local inhibition in the framework by applying a local
maximum on non-overlapping patches of the differengggn|, with dimensions

B x B:
(X*7yk) =arg maxd(X—i-SxL(y—FSy) [n]) VS@S)/ € {07 1a ) B} (42)

Hence, when local inhibition is enabled, within each patch, we only keep
dxy[n] for the (x*,y*) positions corresponding to the locally maximum difference

values.

4.2.1.2 Number of Spikes

We denote the number of spikes to generate per position per framMgag. Stan-

dard emulator framework4 f7 only generate a single spike per position per frame;

i.e., Myy[n] = 1. However, in this way, the number of generated spikes per position
are limited by the frame rate; this does not encapsulate cases where the pixel in-
tensity differencedyy[n] is high [14§ relative to the preset thresholbha, We
address this issue by allowing more than one spike to be generated between frames
following an approach similar to Furbet al. [148. First, we assigiMmax as the

maximum number of spikes per position per frame. We then conigé|, as:

Myy[n] = min (Mmax, {dx’y[n]D (4.3)

Tmap

and these additional spikes are assigned a timestaioy linearly interpolating
between the timestamps of the- 1-th andn-th frames 147]. We can visualize the

effect of increasing the number of spikes by comparing Figdré®) and (c). In
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Figure4.1(b), the maximum number of spikédmax iS set to 1; therefore, only a
single spike will be generated per frame if the intensity variation exceeds the preset
thresholdTynap On the other hand, increasiiMmax to 5 allows us to generate more
spikes for larger intensity variation, which improves the similarity of the emulated

event stream to the real event stream in Figudéa).

4.2.2 Reference Frame Update

The default option of many NVS emulation tools like PIX2NVB1[] is to update
the reference framl§7y[n] based on the log-scaled value computed during the con-
version process, i.elyy[n] = Ixy[n]. However, the above reference update method
only refers to the current frame and does not consider the transient response of neu-
romorphic sensors. Similar to Furbet al. [148, the reference frame update can
alternatively be modeled by considering an exponential moving average over past
frames. This provides a potentially more accurate representation by accounting for
the capacitive memory of neuromorphic sensors. We define the new reference up-
date for thenth frame as:

I_ij[n] _ lxy[0], B ifn=0 4.2)

Elyy[n + (1—¢€)lxy[n—1], otherwise

where 0< € < 1 is the update rate, which can be tuned to match the capacitive
properties of a neuromorphic sensor. Current NVS cameras only update the log-
scaled values of recently-detected positions. If we follow this approach then we
only update the reference frame for positigmsy) where a spike is detected, i.e.,
V(XY) € {(X1,Y1),---, (Xao Yaor) - We can visualize the effect of the exponential
moving average by comparing Figuréd(c) and (d). In Figuret.1(c), we set the
parameter to 1.0, which equates to no moving averdfa@[m] = lxy[n]). We note
that the emulator is unable to detect any events between video frame timestamps F2
and F3, even events are recorded by the NVS camera in Hgi(as. We are able
to subtly improve the event stream approximation by decreasitng0.5. In this

chapter, we fix the parameter= 0.5.
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4.2.3 Frame Generation

We can aggregate the spikes into a single NVS frame correspondencertdhthe
APS video frame by summing the polarities at each spatial pogition for spike
events falling between the— 1-th andn-th video frame timestamps. For theh
video frame, we refer to the summed emulated polarities per pOSitiﬁ’ﬁ%].l
While this frame grouping is artificial, it allows for the introduction of quantization

in time [11, 10] and the use of CNNs for the recognitiobdq.

4.2.4 Validation of the Emulation by Quantifying the Domain
Shift

We quantify the domain shift between generated events and real NVS events with
Earth Mover’s distance (EMD), by incorporating our proposed options into the
PIX2NVS framework 47. EMD has been proposed as the means to quantify the
dissimilarity between two signaturesq1], which is defined as the minimum “cost”

that must be paid to transform one signature into the other, where there is a “ground
distance” between the basic features that are aggregated into the signature. Thus,
EMD is an effective method of measuring the domain shift between the real and
emulated spike datasets. Essentially, we want to find the@®oew/[g(i, j)| between

the aggregated spikes in emulated and real eventEets{ < xgmu yemu PRV >

e <OEMUYPMU PEMU S} and R = {< X7 Py O PR >, <GP YTE PP > )

that minimizes the “work optimization” problem stated below:

minimize ~ W(E,R G) = lz\ i g(i, j)d(, j)
=i

subjectto  g(i,j) >0, 1<i<I,1<j<J,

pexp

|
1<ji<I S o)) S|P
i; ol

J
, L<i<icy g, j) < |PEM,
=

)

IWe similarly denote the sum of real event polarities betweemthd-th andn-th video frame
timestamps as$*[n].

exp
P

B
and iZ“Zlg(i, j) = min (; ™ ’sz

(4.5)
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(a) APS video frame (b) DAVIS spike recording (c) PIX2NVS, settings of (d) Improved PIX2NVS,
first row of Table I settings of last row of Table I

Figure 4.2: (Best viewed in color) Comparison of emulator conversion for (c) original
PIX2NVS and (d) PIX2NVS with our proposed improvements against (b) the
spike events recorded with a DAVIS camera . Green/red points correspond to
+1/-1 (or ON/OFF) spike polarity.

wherePf™ and Pzexp are the summed polarities per position for the emulated
and experimental (real) NVS events respectively. After initializing the flow uni-
formly, this optimization problem can be solved using linear programmniiad] [
We set the “ground distance” to
di, j) = [OF™4ye™) — (5P, y7P) |, where (x*™ y*™) and (x**P,y**P) represent

the spatial positions of the emulated and experimental summed events respectively.

EMD can thus be interpreted as the minimum work required to “transport” the po-
larity between emulated and real spike event &#mnd R such that both sets are

evenly distributed, normalized by the total optimum flQajy, i.€.,

S A ZZJQOPI( )i, j)
EMD(E,R) = i Y jGopt(i, )

(4.6)

The size of the flow matrixG grows exponentially with the number of spike
events and, as such, becomes non-trivial to compute. We are able to partially off-
set the complexity by dividing each frame into a grid of spike blocks and com-
puting the EMD between spatially corresponding blocks of real and emulated
spikes. Denoting the subset of emulated and real spikes in klasIEE € E and

RE cR respectively, the distand® for framen is now computed over ¥ k < K:

D(n) = 5X , EMD(E}, R}). In this chapter, we sé&¢ = 16. The final distance for a

video sequence is computed by averadir{g) over all frames.

We report the obtained distances for an indicative set of parameters in Table

4.1, by using the real UCF-50 NVS recordings from Muegg@teal. [139 as ground
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Table 4.1: EMD (smaller is better) between UCF-50 real and emulated spikes, w.r.t. our dif-
ferent parameter settings for our improved PIX2NVS framewodw=TRUE
enables the selective update when a spike is detected (Setfad and
exp=TRUE enables the exponential updating df4). The original emulator
provides results corresponding to the top two rows of the table.

7]
Tog B Mmax Tmap new exp EMD
20 2 1 0.4 False False 2.448
0 2 1 0.2 False False 2.597
0 2 1 0.2 False True 2.467
0 2 1 0.2 True True 2.434
0 1 3 0.2 True True 2.307

Table 4.2: Accuracy on emulated events on UCF-101 (split 1) without teacher supervision
for original PIX2NVS settings and improved PIX2NVS with our proposed op-
tions enabled. Accuracies are reported @ingle shoof 8 frames.

2]
Tog B Mmax Tmap hew exp Accurag/(%)
Original 20 2 1 0.4 False False 59.3
Improved 0 1 3 0.2 True True 71.0

truth. The first two rows correspond to the original PIX2NVS framework, without

our proposed improvements. The bottom row has the smallest distance and thus

should represent the optimal parameter&gfor the improved PIX2NVS frame-

work, where both our proposed selective and exponential updates are enabled and

we increase the threshold for the number of spikes generated at each pdsitien

In this case, we expect the emulated event distribution is closest to the real event

distribution. We validate the improvement from the original settings by visually

assessing the similarity between emulated frames generated with the parameter set-

tings of the first and last rows of Tabiel, as compared to real NVS recordings

in Figure4.2 Evidently, with our proposed modifications, the emulated frames are

more visually similar to the real NVS frames. Finally, we validate the improve-

ment in terms of accuracy on emulated events on UCF-101 (split 1) in flable

using the network configuration in Sectidr8 butwithoutteacher supervision (i.e.,

a = 0,8 = 1). The accuracy for the improved PIX2NVS with our proposed mod-

ifications is 12% higher than for the original framework. Therefore, we fix the
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parameters to this optimal set for the remainder of the chapter.

4.3 Teacher-Student Framework

In order to validate NVS inputs as a low-cost activity-based alternative to optical
flow traditionally used for action recognition, we propose to embed the improved
PIX2NVS emulator with the best parameter 8&into a teacher-student framework
based on knowledge distillatiori$2, where we essentially transfer knowledge
from a pre-trained optical flow teacher network to the NVS student network by
drawing pairwise correspondences and minimizing the cross entropy between the
output distributions. The framework is illustrated in Figu¥& for the training

and inference stages. After training the student model, the emulator component of
the framework can potentially be replaced by an NVS camera during inference, to
perform action recognition on either real or emulated events directly on the student,

without the use of optical flow.

4.3.1 Cost Function and Training

We leverage on the recently introduced large-scale Kinetidkdction recogni-

tion dataset. Our choice of architecture is a variant of the Inception-3D (I13D)
[74] CNN, which is essentially Inception-VI with inflated spatio-temporal filters
Notably, we replace the final pooling layer with a spatio-temporal global average
pooling. Our implementation first involves initializing the optical flow 13D with
the Kinetics trained weights and then fine-tuning on the target action recognition
dataset, such as UCF-101. Secondly, we use the improved PIX2NVS framework to
extract the emulated NVS events from RGB video frames, which provides us with
training data correspondences for the NVS domain. Next, we initialize the student
NVS CNN with the teacher weights. It is worth noting that our NVS inputs are only
single-channel, whereas flow is dual-channel fordk@nddy components respec-
tively; in order to apply an exact copy of our teacher network as the student, we
simply replicate the NVS input channel-wise. The teacher network is now fixed and

we train the student using a two-term cross-entropy loss for NVS frame volumes
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Figure 4.3: Teacher-student framework using the improved PIX2NVS emulator.

Vs ~ Vs, teacher flow volumeg ~ V; and labels/ ~ Y

K

= —BE(vgy)~(vs,V) z Ky 109(P(Vs)) — TR iy v (v, v AVt T) log(p(Vs))
k=1

(4.7)

The first term represents the standard cross-entropy loss between the soft-
max output of the student networkvs) and a one-hot encoded vector derived
on the ground truth labelg. The second term is the teacher supervision cross-
entropy loss between the teacher softmax ouggwt, T) and p(vs). The temper-
atureT is the parameter that scales the logit®f the teacher network, such that
g(w,T)= % This softens the teacher distribution over classes, which can
exemplify the class inter-dependencies for the student to learn a more informative
representation. We treat the parameterand 8 as simply binary coefficients on
the loss terms, responsible for enabling/disabling the label cross entropy loss and
teacher supervision loss respectively.

We train both the teacher and student CNNs with momentum and a decay rate
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of 0.9. Every convolutional layer is followed by batch normalizatiadl] with

a decay rate of 0.9. The networks are trained with an initial learning rate of 0.01
and the learning rate is decayed when the validation accuracy saturates. Our pre-
processing constitutes a per-frame normalization and extracting a distorted bound-
ing box crop from the original resized frame with a random horizontal flip. Impor-
tantly, we only infer on a single shot, extracted at the point of maximum motion
activity, in order to minimize the temporal footprint during inference. This paint

is localized by using the emulated NVS frames as an activity sensor and finding the

n*-th frame with the maximum sum over absolute summed polafies

n = argmax<z Peln](x y>|) 4.9

n Xy
4.3.2 Ablation Study

Table 4.3 represents a basic exploration over the parametef® and T in (4.7).

We note that we only ingest inputse RP*WxDxC of size 224x 224 x 8 x 2 for

both the flow and NVS streams, in order to speed up convergence. As configured,
the optical flow CNN achieves 84.4% on a single input. The emulated NVS CNN,
when trained without the teacher supervision loss and inferring on a single shot of
emulated NVS frames, achieves 71.0%. This shows that incorporating the teacher
supervision loss results in a substantial accuracy increase, with optimum accuracy
attainable when the teacher logits are additionally softenedWwith2. Increasing

T beyond 2 causes a decrease in accuracy, as the output begins to converge to a
more uniform distribution. For the remainder of the chapter, wexfix 1, 3 =1

andT = 2.

4.4 Comparison with APS-based Methods

Finally, we compare the proposed framework against current state-of-the-art APS-
based methods. Given the combination of global average pooling and 3D convo-
lutional layers in our proposal, this inherently means that the number of weights
per CNN layer is not a function of the input temporal resolutidn Therefore,

we initially train the optical flow teacher CNN on a larger input temporal resolution
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Table 4.3: Recognition accuracy on UCF-101 (split 1) for the teacher and student, when
varying parameters, B and T of (4.7). Accuracies are reported onsingle
shotof 8 frames. For the student, both training and inference is performed on
emulated NVS events generated by the improved PIX2NVS emulator.

a B T Accuray(%)

Teacher - - - 84.4
o 1 - 71.0
1 0 1 73.1
Student 1 1 1 75 9
1 1 2 77.0

DFIow — 32, We then initialize NVS student CNN with the flow pre-trained weights,
but reduce the input temporal resolutionc= 16 when training with teacher su-
pervision and during inference. In this way, we transfer long temporal dependencies
encoded in the teacher output during training, whilst minimizing the student com-
plexity, without directly modifying the student architecture as proposed by Hinton
et al. [152. For our final implementation of the trained NVS student, we therefore

infer only on a single shot of emulated frames with size 2224 x 16 x 2.

As discussed in the previous chapter, conventional APS-based methods typ-
ically use a combination of RGB frame and highly complex optical flow inputs
during training and inference. Conventional NVS cameras, such as the iniLabs
DAVIS240C are equipped with an onboard RGB camera. The DAVIS240C camera
has an array size of 240180 pixels with an APS bandwidth of 35 FPS. There-
fore, we propose to combine the trained NVS student with an RGB stream dur-
ing inference, which we restrict to ingesting inpw3C8 e RH*WxDxC of gjze
224 x 224 x 8 x 3. Our choice of architecture is I3D, pre-trained on Kinetics and
fine-tuned on the target action recognition dataset. We train the RGB stream inde-
pendently with momentum set to 0.9 and pre-processing with a distorted bounding
box crop, as in Sectiod.3.1 During inference, we infer on a single shot of RGB
frames only; we seek the video segment with the maximum motion activity, again
by employing the NVS stream as an activity sensor [4e®]( We cross-reference
the timestamp of the maximum motion NVS frame to the RGB stream and ex-

tract a single shot of frames at this point for inference, which can be uploaded and
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processed on the cloud, as with the NVS recorded events. In order to minimize the
latency in uploading the RGB frames compared to the NVS frames, we downsample
captured RGB frames by a factor of 2, and only upsample to the original resolution
prior to CNN processing. Subsequently, we fuse the NVS and RGB modalities by
following Simonyanet al. [60] and simply average the scores per video instance,
thus generating our prediction.

Table 4.4: Recognition accuracy on UCF-101 and HMDB-51 for stream modalities utilized

during inference. The NVS stream is trained in the teacher-student framework
with {a,B3,T} ={1,1,2}.

Accuracy(%)
UCF-101 HMDB-51
NVS (emulated) CNN 78.6 51.6
RGB CNN 84.0 55.9

NVS (emulated)-RGB CNN 89.0 62.0

In order to isolate the performance of each stream utilized during inference,
we first report the accuracy of each modality separately in Téldl@nd compare
this to the accuracy when the streams are fused for the UCEB)afd HMDB-
51 [79] action recognition datasets. As is evident, the performance of the RGB
CNN is boosted by the NVS CNN, despite complexity savings in opting for a short
temporal extent for both streams and only inferring on a single shot at maximum

motion activity.

4.4.1 Accuracy-Complexity Tradeoff

Our final results for the NVS-RGB CNN are reported along with recent external
methods in Tablé.5 We report complexity for CNN processing in terms of total
GFLOPs by multiplying the GFLOPs per input to the CNN with the number of
inputs required during inference per video. Our proposed NVS-RGB CNN is able
to achieve a competitive accuracy-complexity trade-off when compared to state-of-
the-art methods utilizing highly complex optical flow or motion vectors. The only
method substantially outperforming our approach in terms of accuracy is7idD |
however, 13D requires optical flow for both training and inference (and substantial

APS activity for 13D (RGB-only)) and comprises a deep CNN with 3.7 to 7.7 times
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Table 4.5: Accuracy and complexity versus the state-of-the-art (results reported where
available) for UCF-101 and HMDB-51. Results are reported after averaging
over the three splits per dataset. We also report the theoretical GFLOPs for
CNN processing of all inputs per video during inference.

Method > GFLOPs UCF-101 HMDB-51
inc. optical flow
Two-Stream §0] 150 88.0 59.4
3D Conv Fusion§]] 153 92.5 65.4
Action-VLAD [62] - 92.7 66.9
ST-ResNet153 - 934 66.4
Two-Stream 13D 74] 648 97.8 80.9
no optical flow
EMV-CNN [71]] 150 86.4 -
CoVIAR[72] 110 90.4 59.1
C3D [56] 385 82.3 51.6
Res3D [L54 193 85.8 54.9
13D (RGB only)[74] 324 95.1 74.3
LTC (RGB only) [155 308 82.4 -
Proposed, NVS (emulated)-RGB CNN 84 89.0 62.0

more GFLOPs than our NVS-RGB CNN. Additionally, the speed in generating
conventional Brox optical flowl56 compared to emulated and real NVS frames

is reported in Tablel.6 in terms of framerate; our improved PIX2NVS emulator
can generate NVS frames at 357 FPS whilst the real NVS camera can output NVS
frames at 2000 FPS (3 to 6 orders of magnitude faster than Brox flow). We therefore
note that any RGB-derived model can easily be fused with our NVS stream for

performance gain with lightweight computation in input generation and processing.

Table 4.6: Average framerate over 4600 video frames for Brox optical flow (CPU) and
emulated (improved PIX2NVS) (CPU) and real (DAVIS240C) NVS frame gen-

eration.
FrameratFPS)
Improved PIX2NVS 357
DAVIS240C NVS cameral57] 2000
Brox optical flow [L56] 0.314

Assuming we use a p2.xlarge AWS instance for CNN inference, which is
equipped with a single K80 GPU that can process 8-9 TFLOPs/second, we can
compute a theoretical approximate number of videos that can be processed per sec-

ond (VPS) from the theoretical number of GFLOPs in TabE It is worth noting
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Figure 4.4: Accuracy-complexity plot for our proposed NVS(emulated)-RGB CNN versus
the fastest competing methods with and without optical flow. Complexity is
denoted in terms of the number of video processed per second (VPS).

that this is only an approximation, as we do not consider GPU memory, CPU and
RAM bottlenecks. Nonetheless, it represents an upper bound to the true number of
videos processed per second. Inline with our thesis objective, we plot an accuracy-
complexity graph in Figurd.4, where complexity is denoted by the upper bound

on the VPS. From the graph, we note that Two-Stream I3D performs better than
all other methods but with much lower VPS. Furthermore, Two-Stream 13D re-
quires 250 optical flow frames, which each takg1@t* = 3.2 seconds to generate;

this presents a substantial bottleneck to the end-to-end VPS. Our NVS framework
is able to circumvent this cost with emulated/real NVS frames and offers a better

accuracy-complexity tradeoff compared to other frameworks.

4.5 Conclusion

We improve the sensing efficiency for multimodal action recognition by replacing
conventional APS-based flow modalities with NVS frame representations for sup-
plementing sparsely extracted RGB frame inputs. Namely, we propose the first

method for NVS-based action recognition that performs competitively to state-of-
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the-art APS methods on standard datasets. We achieve this by first proposing im-
provements to current emulation frameworks that minimize the domain shift be-
tween real and emulated events. This provides us with an abundance of training
data, as we are able to convert any APS dataset to the NVS domain. As such, we
incorporate our proposed options into the PIX2NVS emulator and report a 12%
improvement in accuracy for action recognition compared to the original settings.
The improved NVS emulator is subsequently embedded into a large multi-modal
teacher-student framework, in order leverage on the availability of labelled data for
training with highly complex optical flow. Given its promising recognition perfor-
mance and low complexity, our framework could become a viable solution within
loT and robotics contexts, where NVS data would be gathered at very low power

and streamed to cloud computing servers for the back-end CNN processing.



Chapter 5

Improving Adversarial

Discriminative Domain Adaptation

One of the limiting factors of the neuromorphic vision sensing (NVS) framework
described in the previous chapter is the domain shift between the emulated and
real NVS events, which we try to minimize by tuning the emulator parameters and
quantify with the Earth Mover’s distance in Sectiér2.4 Essentially, generating
representative neuromorphic data can be considered a domain adaptation problem
[89, 86], where the source domain is centered on the real NVS data, as produced
by an NVS camera, and the target domain is the emulated NVS data. Unsupervised
domain adaptation directly aims at improving the generalization capability between
a labelled source domain and an unlabelled target domain. Deep domain adaptation
methods can generally be categorized as either being discrepancy based or adver-
sarial based, with the common end goal of minimizing the difference between the
source and target distributions. Adversarial methods in particular have become in-
creasingly popular due to their simplicity in training and success in minimizing the
domain shift. One option would be to use a generative model, such as a generative
adversarial network (GAN)89, 9(] for aligning the target domain to the (fixed)
source domain. The advantage of a GAN over other generative methods is that
there is no need for complex sampling or inference during training; the downside
is that GANs are notoriously difficult to train, and this is made substantially worse

due to the lack of available data in the source domain (i.e., real NVS data).



5.1. Improving Adversarial Adaptation 117

In this chapter, we focus on the recently proposed adversarial discriminative
domain adaptation (ADDA)]1], which is related to generative adversarial learning
and uses the GANSE] objective to train on the target domain adversarially until
it is aligned to the source domain. We assume the transductive setting, where the
label sets are common between the source and target domains. Whilst ADDA only
pretrains the source encoder with source dataset labels, in SBctiare improve
on the ADDA framework by first extending the discriminator output over the task
classes, in order to additionally incorporate task knowledge into the adversarial loss
functions. In adversarial training, we leverage on the fixed distribution over source
encoder posteriors, in order to propose a maximum mean discrepancy (MED) [
and reconstruction-based loss function for training the target encoder and discrim-
inator respectively. Subsequently, in Sectm@, we provide an analysis of how
our method extends over a simple multi-class extension of ADDA as well as other
discriminative variants of semi-supervised GANS$ 159. In Section5.3, we
validate our proposal on conventional pixel domain datasets; namely, the digits and
Office-31 datasets, on which we surpass the performance of ADDA by up to 13%
and remain competitive to other recent proposals. Finally, we introduce and validate
our proposal on a new emulated-to-real NVS dataset for sign language recognition,
in which we substantially improve on accuracy compared to ADDA and training on

the source only.

5.1 Improving Adversarial Adaptation

We illustrate the framework for improving unsupervised adversarial discriminative
domain adaptation in Figu 1 Let Xs= {(xi,y4)}\5, represent the set of source
image and label pairs, whef&s,ys) ~ Ds, X1 = {(x{)}{io represent the set of
unlabeled target imagex, ~ Dt. Let Eg(Xs; 6s) represent the source encoder func-
tion, parameterized b§s which maps an images to the encoder outputs, where
(hs,ys) ~ Hs. Likewise, letE;(x;; 6;) represent the target encoder function, param-
eterized by6 which maps an image; to the encoder output, whereh; ~ Hr.

In addition, Cs represents a classifier function that maps the encoder ohtfut
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Figure 5.1: Proposed improvements for adversarial discriminative domain adaptation. The
figure shows the best configuration for training and inference explored in the
chapter.

class probabilitieg. In this chapter, we only considbg andh; as representing the
source and target logits respectively and theref@ysimply denotes the softmax
function on the logits. Finally, leEq4(h; @) represent an encoder mapping frém
to an intermediate representation, &drepresent a softmax function on said rep-
resentationEg andCy jointly constitute our discriminator mapping, which we refer

to asD = C4(Ey).

Our objective is to substantially improve the adversarial training of the target
encoder by maintaining the class separation during domain alignment. Rather than
training the discriminatoD and target encodef; with the standard GAN loss for-

mulations (i.e., training a logistic function on the discriminator by assigning labels
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1 and 0 to the source and target domains respectively and training the generator with
inverted labels§9]), our approach is inspired by semi-supervised GANs§ 159,

where it has been found that incorporating task knowledge into the discriminator
can jointly improve classification performance and quality of images produced by
the generator. Under the discriminative adversarial framework, we can equivalently
incorporate task knowledge by replacing the discriminator logistic function with a
K + 1 multi-class classifier. However, unlike the GAN setting, the discriminator
inputs and outputs can now both be represented Mithl dimensions, with each
dimension representing a class; we can directly leverage on this fact in our pro-
posed loss formulations in Sectiofd.2.1and5.1.2.2to improve the convergence

properties of our framework.

We begin by outlining three main steps for our proposed adversarial frame-
work, which involve learning the source mapping on the source dataset, adversarial
training to align the source and target domains and finally inferring on the target
dataset. The classifi€ls is fully interchangeable between the source encéder
and the target encodgt. This means we can emb€dinto the adversarial training

of the target encoddt; and discriminatoD.

5.1.1 Step 1: Supervised Training of the Source Encoder and

Classifier

Given that we have access to labels in the source domain, we first train the source en-
coderEs and classifie€s on the source image and label paixg §/s € {1,...,K}) in

a supervised fashion, by minimizing the standard cross entropy losKwveithsses:

K
Ls = —E(x,ye)~Ds kzl Li—yq 109 (Cs(Es(Xs) k) (5.1)

The source encoder parametégsre now frozen, which fixes the distribution
Hs. This becomes our reference distribution for adversarial training, analogous to
the real image distribution in the GAN setting, where our aim is now to align the

target distributiorHt to Hgs by learning a suitable target encodiig



5.1. Improving Adversarial Adaptation 120

5.1.2 Step 2: Adversarial Training of the Encoder

5.1.2.1 Discriminator loss functiodfRE¢

We train a target encoder adversarially by passing the source and target encoder
logits, hs and h, to a discriminatoD. In doing so, we implicitly align the target
encoder distribution to that of the source; iB.(%) ~ Hs. As the source encoder
has fixed parameters, we learn an asymmetric encoding with untied weights, which
is the standard setting in both ADDARJ] and GAN implementations3p, 90]. In
addition, we can improve the convergence properties by first initializing the target
encoder weights with the source encoder weights;ée=,6s.

We extend the discriminator outpgto aK + 1 dimensional vector represent-
ing the class probabilities, in which the fitstdimensions represent the joint distri-
bution over source domain and the task specific classes an&finalth dimension
represents the target domain. We denotekthel class labels age {1,... , K+ 1},
where each source encoder |dgitis assigned its task labgk ys € {1,...,K} and
the ‘target domain’ labey = K + 1 is only assigned to target encoder lodits.
However, contrary to semi-supervised GANs where the discriminator inputs are
images, the discriminator inputs and outputs now share common supports over the
K task classes. For the source domain, we can leverage on this fact by effectively
modelling the discriminator as a denoising autoencotiéd][ where we can jointly
train the discriminator to reconstruct the source encoder logits and encourage the
discriminator to potentially learn a more informative representation by corrupting
the logits. A denoising autoencoder is an effective method of approximating the
underlying source logit manifold and ensures that the discriminator deviates away
from learning a simple identity function. We refer to the corruption process as
N(hg|hs), which represents the conditional distribution over the corrupted source
encoder IogitsﬁS given the source encoder logits. Therefore, the first term of
our discriminator loss function is effectively a reconstruction loss, which we set as
the cross entropy between the transformed source encoder posfgrot(hs)||0
and source discriminator posteriag(i.e., post-softmax), wherg denotes a con-

catentation operation:
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LB = —E(heye)~ 5B (o) (Cs(hs) |0+ log(D(hs)))
K (5.2)
= ~E(hg yo)~EsEhg (i hs) kzl Pskl0g(sk)

Notably, we append a zero to the source encoder posteriors to repred€nt the
1-th ‘target domain’ class, which maintains a valid probability distribution (sums to
1), whilst enforcing a zero probability that the posteriors were generated by the
target encoder. In this chapter, the corruption prodéss simply configured as
dropout on the encoder logits.

We also apply dropout independently to the target encoder lhgiis order
to symmetrize the source and target encoder inputs presented to the discriminator.
However, we want the discriminator to distinguish between the source and target
encoder logits. We train the discriminator to assign khe 1-th ‘target domain’
class to the corrupted target encoder Io&t,ssuch that they lie in an orthogonal
space to the source domain. In other words, the second term of our discriminator

loss function for the target encoder logits is:

LB%" = ~Ensir Efy oy ) log(D(h)k+1) (5.3)

~ ~

whereD(ht)k+1 is theK 4 1-th dimension oD(h;). The discriminator loss func-
tion L= is thus simply the sum o6(2) and 6.3): L§E¢ = L§C+LE5C. In order

to further motivate this reconstruction based loss function, we derive a loss func-
tion akin to a discriminative variant to semi-supervised GANs in Se@&idriLand

compare with our proposed formulation.

5.1.2.2 Target encoder loss functipf™MP

In order to train the target encoder adversarially, we want the target encoder to gen-
erate an output that is representative of one of theKitsisk-specific classes rather
than theK + 1-th ‘target domain’ class that it is assigned when training the dis-

criminator. To achieve this, we leverage on the two source postepges Cs(hs)
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andqg = D(ﬁs), generated by the source encoder and discriminator respectively.
Contrary to supervised domain adaptation methods, there are no known source
and target pairwise correspondences and we cannot formulate a paired test over
the posteriors. However, we can formulate the problem as a two-sample test by
considering the distribution over target discriminator posterigrs; D(h), com-

pared to the distribution over the source encoder postepgreshere our null hy-
pothesis is that the distributions are equal. We consider a set of target discrim-
inator posteriorT = {q,...,q"} ~ Qr and a set of source encoder posteriors
Ps= {ps,...,pl} ~ Ps, wheren is the set cardinality anfts andQr are the re-
spective posterior distributions. Effectively, we want to minimize the distance be-
tweenPs andQr without performing any density estimation. To this end, we adopt
the Maximum Mean Discrepancy (MMDY§] metric as a measure of distance be-
tween the mean embeddings pf andq,. For reproducing kernel Hilbert space
(RKHS) 7, function class# = {f : ||f|| < 1} and infinite dimensional feature

mapg: 2 — 2 the MMD can be expressed as:

Iuvp = sup  |Eppsf(Psl|0) —Eq~qr f ()]
feZ 1l w<1 (5.4)

= “EpS~PS(P< Ps/|0) — Eq~qr P(a) H%”

The distributionPs over source encoder posteriors is fixed during adversarial
training and, as such, we are effectively aligning the distribu@@nover target
discriminator posteriors tBs. We again append a 0 to the source encoder posteriors
to represent the ‘target domain’ class probability, such that both source and target
posteriors ar& 4 1 dimensional prior to mapping té¢’. This zero constraint on
the K + 1-th class acts as a stronger prior upon which to learn the target encoder;
as such, the source encoder posterior provides a more informative representation
than the source discriminator posterior. The feature gap(5.4) corresponds to a
positive semi-definite kernésuch thak(x,y) = (¢(X), ¢(y)) ,», which means we
can rewrite .4) in terms ofk. The loss function on our target encoder that we wish

to minimize can thus be written for aligniri@r to Ps as:
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LYMP (Ps — Qr) = Do =Ep, pi--25K( P[0, P4/[0)
- EPSthNPSaQT k( ps‘ ‘qut> (5.5)

+ Eq.q~0r.0r k(a, )

In this chapter we opt to use a linear combinatiorr ahultiple radial basis
function (RBF) kernels over a range of standard deviations, suchkiigy) =
St exp{—z—%,r Ix—y]||?}, whereg; is the standard deviation of tiieth RBF kernel.
We find that the standard RBF kernel as above performs better in practice than a gen-
eralized RBF kernel with a distribution based metric such as chi-squared distance
or squared Hellinger’s distance, although these are viable options. By introducing a
linear combination over varying bandwidths, we improve the generalization perfor-
mance over different sample distributions. This method of generalization with fixed
kernels is commonly used both in generative mode&l[162 and other domain
adaptation discrepancy based methdl3 P5]. In order to further motivate our
proposed MMD loss formulation, we introduce alternative target encoder loss func-
tions in Sectiorb.2and a full ablation study on all introduced discriminator-encoder

loss combinations in Sectidn3.1.2

5.1.3 Step 3: Inference on the Target Dataset

After training the target encoder, we can now perform inference on the target
dataset. However, we have effectively trained two sets of target predictions; namely,
the mapped target encoder out@dth;) and the discriminator outpag. In the op-

timal setting, where we have trained the discriminator to equilibrium, we would
expect the discriminator mapped source and target distributions would be aligned.
However, we empirically find that evaluation gpis marginally worse ("1%) than
evaluation orCs(h;). Therefore, for the remainder of the chapter, we infer on the

target encoder output. The class predictgqis given as:

= i 5.6
Ypred afgje{T%}(ht,J) (5.6)
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5.2 Bridging the Gap from ADDA to Our Proposal

We provide further insight on the design of our adversarial loss formulations by first

demonstrating in Sectiob.2.1how we can extend from ADDAY], to a multi-

class version of ADDA with separate task and domain classification heads and,
finally, to a framework with a single classification head. For the latter, we perform

a detailed comparison between our proposal and discriminative variants of semi-

supervised GANs]58 159 in Section5.2.2

5.2.1 Transitioning from Two Heads to One Head

Let us denote a discriminator classification head as the ldyand the preceding
discriminator layers aB’. We begin with ADDA, which is typically trained with
a domain classification hedtlhomain in Which the discriminator assigns a domain
labely, € {0,1} to instances (where 1 corresponds to the source domain instance
and 0 to the target domain instance). The discriminator loss function can be written
as P1]:

| ADDA

D Hiomain — — L=(hs.ys)~Hs!09 (Pdomair(¥b = 1/hs)) (5.7)

— E(hy)~7 109(1 — Pdomair(Yo = 1/ht))
where pgomaidYo = 1/h) is the posterior probability output bifgomain D’ (h))
that logit h is from the source domain. Similarly, the target encoder can
be trained in an adversarial setting with a minimax loss functigf* =
E (h)~7 109(1 — Pdomain(Yo = 1|h) or an inverted label loss functiob™V =
—E ()~ 109( Pdomair(Yb = 1/ht)).

The simplest extension of ADDA to a multi-class variant that leverages on
source task knowledge would be add anotketimensional hea#l;si to the dis-
criminator. This additional head performs task classification, and trains the discrim-
inator to classify the source examples only based on their task kajsell, . .. K}.

This setup is analogous to the DANBH] except we have separate domain encoders
and we replace the gradient reversal layer with a discriminator and adversarial train-
ing. In order to simplify the expressions, we can write the discriminator loss func-

tion for two heads in terms of posteriors as:
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LMULTI = E(h&ys)NHslog ( ptask()’s, hS)) + Lél’?HDcﬁ)main (58)

D/7H{domaintask} o

where paskYs = klhs) is the posterior probability output biask(D’(hs) )k that
source logithg is from class with labeys = k. The first term represents the cross
entropy loss with source task labels and the remaining terms equh@?&gmm.

As we only train the domain head adversarially, the adversarial loss function for
training the target encoder is simglf'V or LYAX 1

We can rewrite §.8) as:

L s =~ B 200 (Paskyolhe)-paomariyo = 1)

—]E(ht)NHT l09(1 — Pdomair(Yo = 1/ht))

As is evident from the first term in5(9), with two heads we are effectively
optimizing the likelihood of the joint posterior distribution over the task classes and
source domain, but treating source domain classification and task classification as
independent events. Notably, as we only have access to labels in the source domain,
the task classifier is only trained on source domain examples. As such, we can
improve generalization by removing the independence assumption and model with

a single multi-task classification headghp:

L\IJDIO-,:_’?jIOTint - E(hs,ys)NHslog ( pjomt(ys’ Yo= 1|h3 )

(5.10)

)

— E (h)~H7 109(1 — Pioint (Yo = 1[ht))
= — E(hg yo)~ 115109 ( Pjoint (Ys|hs, Yo = 1) Pjoint (Yo = 1/hs))
)

— E(h[)NHT log(1— pjoint<yb =1|h)

By directly optimizing the joint posterior distributiopint(Ys, Yo = 1|hs), we

1Another option would be to traiklask adversarially in addition tédgomain by alternately min-
imizing and maximizing a distribution metric betweblgsi(D’(hs)) andHias(D'(hy)). However,
as there is no ‘target domain’ class, this intuitively means that the only way for the discriminator
to maximize the metric would be to introduce intra-class confusion within the target domain - thus
leading to instability during training.
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can now also implicitly model a conditional dependepgyqt(ys|hs, Yo = 1) for task
classification given the source domain. Furthermore, if we marginalize over the task
labelsys, we end up with the standard ADDA loss formulatib@EHD(ﬁmam, of (5.7).

As in our proposal, we can writ® (10 in terms of a singl& + 1 classification
head withK + 1 labelsy € {1,...,K+ 1}, where the firsK classes model the joint
distribution over task classes and source domain an& thd -th class models the

distribution over the target domain:

Loy b = — Ehey)~i109 (Pioint(y, Y < K+ 1] hs))

—Emnwm- 109( Pioint (Y = K + 1]ht
(hy)~Hr 9(Pjoint (Y ht)) (5.11)

- E(h&ys)NHslog ( pjoint(Ys‘ hs))
— Eh)~my log(Pjoint(y = K+ 1]ht))

With the above notationpjoint(y = K 4+ 1|h) = (1 — pjoint(Yo = 1/h)) and
Pioint (Y, Y < K+1|hs) = pjoint(Ys, Yo = 1|hs)). Finally, we can rewrite§.11) in terms
of the discriminatoD (h)x = pjoint(y = k|h) andD = Hjoint(D’), which gives us the

loss function for a discriminative variant of semi-supervised GANsS[159:

K
LEONT = — B yomiis S Lieyg 109 (D(hs)k)
(hoye)-tis 2 Ty (5.12)

— E(n)~mr 109(D(ht)k +1)

We denote the first expectation term 5112 asL{NT and the second expec-

tation term ag 2T,

5.2.2 From Discriminative Variants of Semi-Supervised GANs
to Our Proposal

Given the above derivation, we now compare our proposed loss formulations (as de-
tailed in Section$.1.2.1and5.1.2.9 with the conventional loss functions adopted

in semi-supervised generative adversarial networks, repurposed for the discrimina-
tive setting. The discriminator is trained using the loss fundﬂﬁHNT in (5.12 for

discriminative variants of semi-supervised GANs. Our proposed discriminator loss
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.

(a) JOINT; FEAT (feature matching) (b) RECQ MMD (proposed)

Figure 5.2: (Best viewed in color) Computational graphs showing the discriminator-
encoder loss formulations for a) feature matching as in semi-supervised GANs
and b) our improved framework for discriminative adversarial training. Blue
nodes/arrows represent the source domain components and green nodes/arrows
represent the target domain components. Uncolored and colored nodes repre-
sent fixed and trainable elements during adversarial training. Red and black
arrows represent the discriminator and encoder loss components respectively
and their arrow direction represents the direction of alignment for asymmetric
losses.

function LREC follows the same format, except we substitute lobifer noisy log-

its h ~ N(h|h) and substitute the indicator functiondy, with the source encoder

posteriorsps = Cs(hs), thus emulating a denoising autoencoder in the first term.
Semi-supervised GANs are typically trained adversarially with either a mini-

max or feature matching objective function. For a discriminative variant with the

minimax objective, the target encoder is trained by simply maximizng. For

feature matching, the target encoder is trained to minimize a L2 distance-based loss

on the averaged intermediate source and target activatitm®f the discriminator:

LEEAT = 1B g oy F (1)) — By (F (B)| 5 (5.13)

In particular, Figure5.2 presents the computational graphs showing the
discriminator-encoder loss formulations for (a) feature matching as in semi-
supervised GANs with JONT and LFEAT | and (b) our proposal with3E¢ and
L-'}"'V'D for training the discriminator and target encoder respectively. Each node is
represented with its modelled distribution; for example, for the source en&der
LLs represents the source label distributi@r; represents the source data distribu-

tion andPs andQs represent the distribution over source encoder and discriminator
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posteriors respectively. We defifig as a unit impulse at = K+ 1. We note from
Figure5.2(a) that forLEEAT, both f (hs) and f (h;) are not fixed but changing with
time, as the discriminator parameteggare trained during adversarial alignment.
Thus, the target encoder is more prone to experiencing internal covariate shift, due
to the changing source refererfcdn the case of domain adaptation with feature
matching, the constantly changirighs) adds noise to the target encoder alignment
and destabilizes training. On the other hand, in our proposal we recognize that
the distribution of the source encoder posteripgs- Ps is fixed and only changes
stochastically with mini-batch; as such, we show in Fighit%€b) that we centralize

our discriminator and encoder loss functions around this distribution. Thatis, for the
proposed encoder lo&§™P | Qr is aligned to the fixeds. This, along with the im-
posed zero constraint on the source encoder posteriors f&r-thk-th class proba-

bility, is key for stabilizing training of the target encoder compared to both minimax
and feature matching objectives. It is also worth noting that MMD employed in our
proposed target encoder loss function can also be interpreted as matching all mo-
ments between the source and target posterior distributions, whereas conventional
feature matching of513) is only empirically matching the first order moments
(means) of the intermediate discriminator layer activations.

For the sake of completeness, we propose a final discriminative variant in-
spired by unsupervised GAN training, where the generator is typically trained with
an inverted label objective (i.e., inverting the generator label and training with cross
entropy), instead of maximizing (12, in order to stabilize training. As the inverted
label objective is not viable for a multi-class discriminator output in our proposal,
we instead propose a pseudo-label objective for training the target encoder in the
discriminative setting. This objective draws parallels to unsupervised domain adap-
tation work that use pseudo-labels (typically in conjunction with co-training). The
pseudo-label is taken as the index of the maximum of theKidiscriminator logits

hy. In other words, denoting = argmax.; _x hg, we train the target encoder by

2Internal covariate shift is the phenomenon wherein the distribution of inputs to a layer in the
network changes due to an update of parameters of the previous layers, and is typically synonymous
with batch normalization][11], which tries to minimize internal covariate shift by normalizing each
layer to be zero mean and unit variance.



5.3. Experimental Results and Analysis 129

minimizing:

K
LPSEUPO= _E )y > L=y log(D(ht)y) (5.14)
=

We note that, unlike our proposed target encoder loss function that is distribution-
based, both inverted label assignment and our pseudo-label assignment are instance-
based. This potentially means they are more prone to instability from noisy exam-
ples in the training batch.

In order to motivate our proposed adversarial loss functions compared to these
discriminative variants of semi-supervised GANs, we perform an extensive ablation

analysis in Sectioh.3.1.2on the SVHN— MNIST domain adaptation task.

5.3 Experimental Results and Analysis

We present experimental results and analysis on the unsupervised domain adapta-
tion task. In order to compare with ADDA and other recently proposed methods,
we experiment on four digits datasets of varying sizes and difficulty: MNIST-M
[85], MNIST [163, USPS and SVHN164. We demonstrate substantial gain over
ADDA and other recent methods, which is evident on the more difficult domain
adaptation tasks such as SVHN MNIST. We additionally report accuracy on

the Office-31 datasetlpg compared to the current state-of-the-art methods. Fi-
nally, since neuromorphic vision sensing presents a pertinent application for domain
adaptation, we additionally introduce and validate on a new NVS sign language
dataset, demonstrating substantial gain in target accuracy compared to training with
the source domain only. For each domain adaptation task, we extract 5% of each
target adversarial training split for validation, in order to tune the hyperparameters.
To ensure consistency and demonstrate lack of sensitivity to hyperparameters, we
fix these globally over all tasks. Specifically, for the MMD kernel combinakion

we found that on average, the optimal performance for our framework is achieved
with a summation over five kernels, with = 10~",r € {0,...,4}. Finally, as the
discriminator is typically overcomplete (more nodes in the hidden layers than input

classes), we add an L1 regularization term3@) on the discriminator weightsy
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to improve the feature selection with regularization coefficient 0.001 for all

cases.

5.3.1 Digits datasets

We consider four standard domain adaptation scenarios between dataset pairs drawn
from MNIST-M [85], MNIST [163, USPS and SVHN164] digits datasets, which

are each comprised &€ = 10 digit classes (0-9). Specifically, we evaluate on
MNIST — USPS, USPS—~ MNIST, SVHN — MNIST and MNIST — MNIST-

M. The difficulty in domain adaptation task increases as the variability between
datasets increases. We follow a similar training procedur@4f For the MNIST

— USPS and USPS- MNIST experiments, we sample 2000 images from MNIST
and 1800 from USPS, otherwise we train and infer on the full datasets. For MNIST
— MNIST-M, we generate the unlabelled MNIST-M target dataset by following the
process described bg%]. For all experiments we use a modified LeNet architec-
ture [L63 for the source and target encoder. The discriminator is comprised of 2
fully connected layers with 500 hidden units and a final fully-connected layer with
K 4+ 1 = 11 hidden units that outputs the logits. With this setup, our network is
roughly the same complexity as ADDA in terms of number of parameters. In step
1, the source encoder is trained with the Addiq optimizer for 10k iterations

with a batch size of 128 and learning rate of 0.001. In step 2, the target encoder is
trained with a batch size of 128 per domain for 5k iterations on the smaller datasets
MNIST — USPS, USPS- MNIST and 10k otherwise, with a lower learning rate

of 0.0002,3; = 0.5 andf, = 0.999. We resize all images to a fixed size of288

prior to CNN processing. Additonally, we use data augmentation for MN{ST
MNIST-M by randomly inverting the MNIST grayscale values and replicating the
MNIST inputs channel-wise to match MNIST-M dimensions. Our results are pro-
vided in Table5.2 compared to the current state-of-the-art and when training on
source only. We focus our comparison on ADD&I] and DIFA [92], which are

recently proposed adversarial methods.
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Figure 5.3: Graph of dropout keep probabiligversus accuracy on subset of target dataset
used for validation for various digits domain adaptation tasks

5.3.1.1 Parametric exploration for discriminator loss functi§h®

In Figure5.3we perform a parametric exploration over different values of dropout
keep probabilityz by computing the accuracy on the validation set for various digits
domain adaptation tasks. It is worth noting that a keep probalzility0.5 gener-

ally maintains overlapping class supports between the encoder and discriminator
posteriors and the accuracy can drop substantially tar0.5; therefore we only

plot z for [0.6,1.0]. No denoising corresponds 6= 1.0. We note from the figure

that including denoising either improves or maintains accuracy; in particular for the
most difficult task SVHN-MNIST, the accuracy improves by 5% when decreasing
zfrom 1.0 to 0.7. Az = 0.7 provides the most consistent gain for the four tasks,

we fix zto this value for the remainder of the chapter.

5.3.1.2 Ablation Study

In order to illustrate the performance of our method and better understand where
the performance gains are coming from, we perform an ablation analysis over var-
ious discriminator-encoder loss combinations for the most difficult digit domain

adaptation task, SVHN-MNIST. This includes the loss formulations introduced in
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Table 5.1: Accuracy on SVHN— MNIST task with 3 (0,1 and 2) and 10 classes for all
considered discriminatot fy y)-encoder i) loss combinations (as detailed in
Section5.2). Each loss function is denoted by its corresponding column and
superscript (e.g., ADDA- Lé?ﬁ(ﬁﬁam). Ps — Qr refers to distribution alignment

of Q7 to Ps.
Lo n Lt 3 classes 1@lasses
ADDA INV (Inverted label) 0.831 0.787
MAX (Minimax) 0.866 0.799
MULT] INV (Inver_tgd label) 0.847 0.783
MAX (Minimax) 0.868 0.796
MAX (Minimax) [ 159, 15§ 0.856 0.753
JOINT FEAT (Feature matchingLlp9 0.805 0.772
PSEUDO (Pseudo-label) 0.863 0.800
MMD (Pg— Qr) 0.895 0.856
MMD (Qs — Qr) 0.878 0.804

REC (proposed) \,\\ (Ps — Q) (proposed) 0.948  0.890

Section5.2 Our results are presented in Tablé, for all considered loss combina-
tions, when training on 3 classes only (0,1 and 2) and all 10 classes. All hyperpa-
rameters and the training procedure are as described above for digits datasets; the
only distinction is that for 3 classes we train on the source for only 5000 iterations

to minimize overfitting.

One head versus two headsin the first two parts of TablB.1, we evaluate perfor-
mance of training with ADDA versus a multi-class variant of ADDA (MULTI) with
two classification heads (as introduced in Sec&dhl). For these two benchmarks,

we train the target encoder with the inverted label setting or minimaxi-{¥ and

LMAX respectively. The results show that adding the additional task classification
headH,sk has little effect on accuracy compared to baseline ADDA. We attribute
this to the fact that the inputs and outputs ofHs(D’(hs)) are both learned with

the source labels, and the output is not conditioned on the domain. The task clas-
sification headHz5k Simply learns to invert the mapping learned by the preceding
discriminator layer®’; Hiask~ D’~L. This further motivates our proposed learning
with a single classification head that models the joint distribution between the task
and source domain classification, as definedbii?). However, the third part of

Table5.1 shows that there appears to be a stronger discriminator bias and a slight
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Figure 5.4: (Best viewed in color) 3D scatter plot of source and target logits for S\VVHN
MNIST domain adaptation task on 3 classes only (0, 1 and 2) for our proposed,
minimax and feature matching loss formulations. Source and target examples
are randomly selected from the SVHN and MNIST test datasets respectively
for visualization.

detriment in accuracy for JOINF MAX compared to the baseline ADDA MAX
discriminator-encoder loss combinations. This motivates the need for our proposed

encoder loss functiobyMP.

ProposedLREC, LMMD versus discriminative variants of semi-supervised GANS:

We next consider how our proposed MMD based target encoder loss function
LMMD (p5 — Qr), improves over conventional minimdX¥/*X | feature matching
LFEAT and pseudo-label?SEUPOencoder loss formulations, as defined in Section
5.2 In order to isolate the performance of our proposed MMD loss function and
perform a fair comparison, we fix the discriminator loss functiongg'NT. The

third part of Table5.1 shows that, on both 3 and 10 classes our proposed MMD
loss formulation outperforms all other target encoder loss variants. In particular,
when compared to feature matching, our proposal provides accuracy gains of up
to 9% on both 3 and 10 classes. In order to establish the source of this gain, we
present 3D scatter plots in Figube4 of the source and target logits when trained

on 3 classes only from the SVHN MNIST domain adaptation taskAs shown in

the figure, both minimax and feature matching are prone to overfitting on the source
dataset. While both formulations result in a tight bound on the source distribution,

they forego a good class separation close to the source origin, where the distribu-

3We opted for this approach instead of using a reduction method such as 8K Eat intro-
duces additional hyperparameters such as perplexity to visualize the domain shift.
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tion over classes is more uniform and the target encoder loss would be smaller in
magnitude, potentially unfavourably biasing towards the discriminator. This mis-
classification around the origin is most noticeable for the ‘0’ digit class and is worst
for feature matching which validates its poor accuracy results on 3 classes in Table
5.1

Having validated the performance gain from our proposed target encoder loss
function, we now switch the discriminator loss function fra®®™NT to our pro-
posed reconstruction Iosls§'5C , with z= 0.7. Combining our two proposed loss
formulations for adversarial training, 3¢ and LYMP (Ps — Qr), we are able to
achieve the best performance on 3 and 10 classes. This is due to a combination
of increased separability between the source and target domains in RKHS, and the
fixed source distribution and hard zero constraint on the ‘target’ class that mini-
mizes the internal covariate shift when training to align the distribution over target
discriminator posterior®y. In order to isolate the detriment from internal covariate
shift, we also consider aligning the distributions over source and target discrimina-
tor posteriorQs — Qr) in LYMP "with g, ~ Qs andq, ~ Qt. The second last
row of the table shows the performance if we align to Qs in our encoder loss
function; our accuracy drops substantially to 87.8% and 80.4% for 3 and 10 classes
respectively, which illustrates the effect of the internal covariate shift, as in feature

matching?

5.3.1.3 Adaptation on digits datasets

Finally, we report accuracy for our proposed method. In order to isolate the perfor-
mance gain from domain adaptation, we compute the percentage increase (relative)
over the source only accuracy reported in the chapter (shown in parentheses in Ta-
ble5.2). On average over all datasets, our proposals outperform DIFA and ADDA.
Our proposed loss formulations lead to an accuracy of 93.2% and 92.0% on USPS

— MNIST and MNIST— MNISTM, surpassing all other methods and surpassing

4Whilst feature matching also suffers from internal covariate shift, it is also only aligning the
empirical means between distributions, as discussed in Sétfon
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Table 5.2: Accuracy for our proposed method compared to the current state-of-the-art. In
order to isolate the performance gain from domain adaptation for our propos-
als, we report in parentheses the percentage increase (relative) over the source-
only accuracy, as reported in the respective papers for D&2hgnd ADDA
[91].*UNIT [ 97] and DTN [88] use additional SVHN data (131 images and 531
images respectively). **This is our implementation of ADD&1] on MNIST
— MNIST-M, as this task is not used in the original paper.

Method SVHN— MNIST USPS— MNIST MNIST — USPS MNIST— MNIST-M

Source only 0.644 0.597 0.754 0.705
DANN [85] 0.739 0.730 0.771 0.529
DDC [79] 0.681 0.665 0.791 -
DSN [95] 0.827 - - 0.832
DTN [8§] 0.844* -
UNIT [97] 0.905* - -
CoGAN [86] no convergence 0.891 0.912 -
ADDA [9]] 0.760 (26%) 0.901 (58%) 0.894 (19%) 0.800 (14%)**
DIFA [92] 0.897 (32%) 0.897 (43%) 0.923 (28%) -
Proposed 0.890 (38%) 0.932 (56%) 0.881 (17%) 0.920(30%)

Table 5.3: Accuracy for proposed configurations, compared to state-of-the-art on the
Office-31 dataset.

Method A—W A—-D D-—A
Source only  0.707 0.720 0.581
DANN [85]  0.730 0.723 0.534

DDC [79] 0.618 0.644 0.521
DRCN[94] 0.687 0.668 0.560

JAN [81] 0.752 0.728 0.575
ADDA[91] 0.751 - -

Proposed 0.821 0.799 0.610

the recently proposed DIFA by 3.5% on USPSMNIST. DIFA only achieves a
marginally higher (0.07%) accuracy on the SVHNMNIST task, at the expense

of additional complexity in feature generation prior to adversarial training. Further-
more, our method achieves achieves a higher relative percentage gain over source

only accuracy than DIFA.

5.3.2 Office-31 dataset

We report results on the standard Office-389 dataset in Tabl&.3. The Office-31
dataset consists of 4,110 images spread across 31 classes in 3 domains: Amazon,
Webcam, and DSLR. Our results focus on the three of the more difficult domain

adaptation tasks; Amazon» Webcam (A— W), Amazon— DSLR (A — D)
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and DSLR— Amazon (D— A). In order to demonstrate the strength of our pro-
posal, we use VGG-16 pre-trained on ImageNet and fine-tune only the final fully-
connected layer. We train with stochastic gradient descent and a learning rate of
0.001. We set the dropout keep probability 0.7 as in the digits task. Our discrim-
inator is restricted to only 500 hidden units per layer and we only train adversarially
for 2k iterations. We note that the number of training parameters is 377 thousand in
total, compared to over 6 million utilized for ADDA[L]. Despite only training on

a small subset of total parameters, our proposal remains competitive or surpass the
performance of other recent methods. We additionally note that under our training
setup, ADDA consistently obtains a degenerate solution due to instability during

training.

5.3.3 NVS ASL dataset

We introduce a new sign language recognition dataset for NVS-based unsupervised
domain adaptation. The primary motivation behind creating the dataset and vali-
dating our framework with it is that progress in neuromorphic spike-based event or
action recognition is severely hampered from the lack of NVS training data with
reliable annotationsl6§. This is partially addressed via emulators, which convert
annotated APS video datasets into emulated NVS data in order to train advanced
discriminative models in a supervised manner. However, beyond the unavoidable
gap between the experimental and the emulated NVS data distributions, the NVS
camera technology is in constant evolution and new versions of hardware devices
like DAVIS and ATIS [169 and their multiple settings cause further domain shift
against their previous versions and previously-released software emulation frame-
works.

Our experimental dataset is comprised of 1200 unlabelled real recordings and
1200 labelled emulated recordings, each representing a different static sign of 24
letters (A-Y, excluding J) from the America Sign Language (ASL). We note that
similar to other APS-based sign language recognition takkg [ letters J and Z
are excluded as their ASL designation requires motion. Figuseshows the re-

qguired hand pose for each letter of the dataset. As is evident from the figure, sign
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Figure 5.5: Signs for letters A-Z from the American Sign Language dataset. Note that
some letters such as M and N only have subtle differences. Letters J and Z are
excluded given that they are not static signs and require a particular gesture.

Figure 5.6: (Best viewed in color) Select frames from the NVS American Sign Language
recognition dataset. The source domain constitutes emulated NVS frames (top
row) which are generated from APS recorded video with PIX2NYA]. The
target domain constitutes real NVS frames (bottom row) as recorded by an
iniLabs DAVIS240c NVS camera. The green/purple points correspond to the
+1/-1 (or ON/OFF) spike polarity.

language recognition presents a substantially more difficult task than digit recogni-
tion, considering that for some letters (e.g., M and N) there is very little variation in
fingers’ positioning.

In order to generate the emulated spike events we first record APS video of
someone performing the sign for each letter with translational and rotational motion
over the video duration, thus increase the difficulty of the recognition task. Next,
the APS video is recorded with a standard laptop camera, and consecutive APS
frames are passed into the PIX2NVS emulator. PIX2NVS converts the APS frames
to the corresponding emulated NVS frames, and this constitutes our source domain.
The real NVS recordings are recorded directly with an iniLabs DAVIS240c NVS
camera, again with rotational and translational motion over the video duration.

Figure5.6 shows a selection of emulated (top row) and real NVS frames (bot-

tom row) from the dataset. There is a discernible domain shift between the emulated
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Table 5.4: Overall and per-letter recognition accuracy for select letters of the NVS ASL
dataset. We evaluate on the source-only, ADDA and our proposed method.

Letter A B E F M N S T U \Y owrall
Sourceonly 0.928 0.738 0.800 0.124 0.127 0.414 0.846 0.157 0.302 0.996 0.611
ADDA 0.988 0.962 0.261 0.865 0.1520.808 0.810 0.562 0.954 1.000 0.837
Proposed 1.000 0.966 0.831 0.950 0.4180.670 0.771 0.747 0.942 1.000 0.875

and real spike events, with the real NVS events exhibiting a substantially higher
spike density that increases the visibility of the signed letter, despite also carrying
some background ‘salt & pepper’ noise. Nonetheless, we are able to demonstrate
that our proposed method can reduce this domain shift. As the recordings repre-
sent static signs we train on individual frames and remove a subset of frames from
the start and end of the recording where there may be no sign distinguishable. As
such, we have- 80,000 emulated NVS frames for source training an&0,000

real NVS frames. We use 40000 of the real NVS frames for domain adaptation
and ~ 10000 for inference. The frame resolution in both domains is>2480.

Our source encoder is VGG167], which we train in step 1 on the emulated NVS
frames using stochastic gradient descent with momentum set to 0.9. The learning
rate is set to 0.001, the batch size to 24 and we complete training at 15k iterations.
In terms of data augmentation, we first resize the input such that the smaller side
is 256 and keep the aspect ratio. We then use a multi-scale random cropping of
the resized RGB frame; the cropped volume is subsequently randomly flipped, and
normalized according to its mean. In step 2, we initialize the target encoder from
the source pre-trained weights and follow the same procedure with data augmenta-
tion on both input domains, but only train the target encoder fully connected layers
adversarially for 10k iterations and fix all convolutional layers. Contrary to the APS
datasets, the discriminator is again restricted to 500 hidden units per layer. We infer

on the target dataset by extracting a single center crop.

We present both the overall and per-letter recognition accuracy in badble
when evaluating on the NVS ASL dataset. For clarity, we only include letters in the
table with subtle differences in sign configuration such as M and N. We include re-

sults on our proposed framework, with both variants of target encoder loss function,
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along with results when evaluating with the source only. Our proposal provides
substantial increase in accuracy compared to training on the source only, and also
outperforms ADDA on most letters and overall, by 4%. By looking at the per-letter
accuracies we can distinguish where ADDA substantially underperforms compared
to our proposal; namely, on the €t= {E,M,N,S,T}. If we cross-reference with
Figure 5.5, we note that the letters in this set are not easily distinguishable from
each other, which would be made worse when transforming to the NVS domain.
Whereas ADDA generally performs poorly on all letters in the set, and effectively
misclassifies the majority of instances of the letterandM in order to align the
target to the source domain, our proposal is able to better transfer some of the class
separation learned from training on the source domain with labels and maintains

consistently good accuracy across the set.

5.4 Conclusion

We extend adversarial discriminative domain adaptation by explicitly accounting
for task knowledge in the discriminator during adversarial training and leveraging
on the fixed distribution over source encoder posteriors, with which we derive re-
construction and MMD loss formulations for adversarial training. In particular, we
consider the discriminator as a denoising autoencoder with a reconstruction loss
function and minimize the maximum mean discrepancy between the discriminator
posterior and source encoder posterior distribution to train the encoder. We compare
and analyse how our method improves over conventional semi-supervised GAN loss
formulations. Our framework is shown to compete or outperform the state-of-the-
art in unsupervised transfer learning on standard datasets, while remaining simple
and intuitive to use. Finally, we show that our proposal allows for unsupervised
domain adaptation between emulated and real neuromorphic spike events for a sign
language recognition application, in order to improve performance compared to
source training only. As such, the recognition model from Chapter 4 can be embed-
ded into this domain adaptation framework in order to improve generalization from

the emulated to real NVS domain.



Chapter 6

Conclusions

In this thesis we have successfully transitioned from unimodal learning in the pixel
domain to efficient multimodal recognition in the spike domain. Notably, we have
worked to improve the trade-off between recognition performance and compu-
tational overhead that inevitably increases when adding additional processing or
modalities into a framework. In the case of multimodal recognition in particular,
we have worked to design framewaorks that are able to leverage on compressed mo-
tion representations such as motion vectors or neuromorphic vision sensing (NVS)
events that offer improved sensing efficiency and acquisition complexity. Specifi-
cally for NVS based recognition, we have worked to overcome the scarcity of real
labelled NVS data by generating emulated data and worked to minimize the domain

shift between real and emulated datasets via unsupervised domain adaptation.

We began in Chapter 2 with the content based image retrieval (CBIR) task,
which involves finding matching images to a given query from a corpus of images.
In order to improve retrieval performance on arbitrary sized regions-of-interest
(ROI), we propose to additionally process the RGB images with an multi-scale spa-
tial Voronoi partitioning, which extracts more semantically relevant blocks than a
conventional grid based spatial partitioning. We showed that with a combination
of a tree-pruning mechanism over partitions and product quantization of the cell
representations, our proposed Voronoi encoded variants can improve performance
with ROI queries and also generalizes well to whole image queries. Finally, we

demonstrated the capability of our method by designing and implementing a large



141

scale image video frame retrieval system, as a deliverable to our industrial partner
BAFTA Research.

In Chapter 3 we moved from CBIR to action recognition, where multimodal
learning is commonplace, with many recent methods modelling spatial and tempo-
ral dependencies with flow and RGB modalities respectively. The flow is typically
derived from the pixel domain by computing partial derivatives between consecutive
frames under a brightness consistency constraint or generating with CNN; however,
in both cases this presents a major bottleneck in the recognition pipeline. We pro-
posed to circumvent this by extracting the motion vectors (MVs) directly from the
video codec and adopting them as both a flow approximation to replace conven-
tional dense optical flow and a spatio-temporal activity sensor for only selectively
decoding regions of RGB frames which correspond to non-zero macroblocks; i.e.,
regions with activity. We ultimately designed a low-cost multimodal framework for

processing the the selectively decoded frames and motion vectors.

In Chapter 4, we considered replacing the APS-derived motion stream with a
neuromorphic vision sensing (NVS) stream for the action recognition task. APS
hardware is restricted by power and framerate constraints, which limits the pro-
cessing capabilities for high-speed recognition in commercial application such as
drone surveillance. These restrictions are effectively removed with asynchronous
event based sensing. We addressed the scarcity of labelled NVS data for training -
we showed how conventional NVS emulators can be repurposed for the recognition
task, by first proposing new emulator options for minimizing the domain shift be-
tween the emulated and real data. We then addressed the inherent sparsity of NVS
representations by leveraging on the large amount of labelled optical flow data to
train a teacher-student framework between flow and emulated NVS frames - for the
first time showing competitive accuracy for action recognition when inferring on

NVS data singly and jointly with only a single shot of RGB frames.

In Chapter 5, we revisit the domain shift problem between emulated and real
NVS events. We presented this as an unsupervised domain adaptation problem,

where there is a scarcity of labelled data in the real NVS target domain compared
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to the emulated NVS source domain. Building upon recent work in adversarial

methods for domain adaptation, we proposed a novel solution to the domain adap-
tation problem, in which we embedded task knowledge into the discriminator and

leveraged on the fixed source encoder posterior in order to stabilize and improve
convergence during the adversarial training. We showed that our proposed method
is able to surpass or compete with existing domain adaptation methods in the pixel
domain on standard domain adaptation datasets. In order to verify that this per-
formance extends to the spike domain, we introduced a new neuromorphic sign
language dataset, on which we are able to improve on the source only accuracy by

over 20%.

6.1 Major Challenges

There were two main challenges that had to be overcome during the course of the
PhD. Most of the current state-of-the-art methods in content-based image retrieval
and action recognition are deep learning-based and rely on GPU processing for
efficient computation. Given that at the start of the PhD we did not have access
to a GPU cluster for training, we decided to focus on shallow learning methods
such as VLAD for content-based image retrieval that could efficiently be trained on
a CPU. This led to the Voronoi VLAD descriptors discussed in Chapter 2, which
we eventually extended to Voronoi deep-learning descriptors. However, these deep
learning descriptors were derived from small ImageNet pretrained CNN models
that did not require additional training for ‘weakly supervised’ retrieval and could
efficiently perform inference on a CPU. After completing the work in Chapter 2 and
moving towards multimodal action recognition, we began to use AWS instances for
training on a GPU, along with a GPU cluster that was funded through the Industrial
Fellowship by the Royal Commission for the Exhibition of 1851. Nonetheless,
whilst being a challenge, starting with fewer resources helped in appreciating the
importance of complexity saving, which constitutes one of the core motivations in
this thesis. The other challenge arose from dealing with the lack of structure and

independent learning that is in some ways an implicit part of the process when
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undertaking a PhD. This was initially a problem at the start of the PhD, as the goal
of obtaining a PhD at that point seemed so distant. However, as we began to submit
and publish papers, focus was shifted to paper submissions as intermediate goals to

work towards.

6.2 Future Work

There are a number of ways the work presented in this thesis can be extended in
future work. We note that in the context of deep learning, our proposed Voronoi
encoded CNN descriptors in Chapter 2 are currently restricted to weakly super-
vised retrieval, where the networks are pre-trained on an auxiliary task such as Im-
ageNet. In addition, the current method of Voronoi partitioning does not account
for background noise, especially with a simple feature detector that could distort
the partitions. If the feature detection and Voronoi partitioning was trainable in an
end-to-end framework, in which we could learn what better constitutes a ‘region-

of-interest’ in the image and tune the partitioning around these regions.

Due to limited resources, for our work on multimodal action recognition we
were only able to train on datasets UCF-101 and HMDB-51, which have since been
surpassed in size by the substantially larger Kinetics dataset. In future work, it
would be interesting to see whether performance of our motion vector (MV)-based
action recognition framework in Chapter 3 scales up to these larger datasets, partic-
ularly due to the low resolution of the MV frames, which are quantized by a factor of
the macroblock size. It is worth noting that following the work completed in Chap-
ter 3, we have since published work which considers how we can adaptively tune the
guantization parameter (QP) in the macroblock bitstream, in order to further reduce

the required bitrate, whilst maintaining competitive recognition performance.

The work in Chapters 4 and 5 paves the way for more commercially viable
NVS based recognition and tracking systems that are able to capitalize on the ad-
vantages of the NVS camera over APS, in order to achieve superhuman levels of
performance. However, we note that our current implementation for NVS frame

generation foregoes one of the advantages of NVS cameras; the high frame-rate.
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Namely, in order to generate denser NVS frame representations for CNN training,
we aggregate per-pixel events over time, at the video frame-rate. This is nhecessary
for learning from optical flow in our teacher student framework. It would be inter-
esting to see if we could extend the framework to work directly on the NVS event
stream, or design a more adaptive frame grouping based on the motion activity in
the video. Finally, in Chapter 5, whilst we demonstrate that our proposed method
for unsupervised domain adaptation generalizes and substantially improves accu-
racy on both NVS and APS datasets, we note that our method currently forgoes
some of the class separability on more easily confused classes for a better domain
separation, as is evident from the NVS results; we intend to work on maintaining

more of this class separability in future work.



Appendix A

Level Projection for VE Storage

Compaction

In order to decrease the storage requirements for unquantized Voronoi-based en-
coded (VE) representations in Chapter 2, the descriptor over two constituent cells
andy (i.e., spatially-neighboring cells belonging to the same cell of the upper level),

can be approximated as:

6xuy = 5x + 5y- (A1)

This holds because both PCA and whitening are linear mappings, therefore, if we
do not consider the vector truncation and subsequent normalization of the individual
cell vectors, the additivity property holds in the projected domain as well. Given that
directionality is preserved under normalizatio,X) provides an approximation to

the normalized encoding computed directly over the two cells. Therefore, we can
trade-off computation for memory by solely storing the last-level PCA-projected de-
scriptors (leveL — 1) and computing all other cell encodings for all lower levels at
runtime via repetitive application ofA(1) amongst constituent cells and renormal-
izing before carrying out the similarity measurementhf). This is an appealing
proposition for practical systems because vectorized addition and scaling for nor-
malization is extremely inexpensive in modern SIMD-based architectures. As such,
this approach requires storing oW;llw cell descriptors, instead ™, cell vec-

tors. Naturally, there is a dependency on the projection error, which will evidently

be greater with less dimensions retained post-PCA.
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We can integrate product quantization with a modified level projection for
guantized VE storage compaction. As before, we only store the last-level (quan-
tized) descriptors offline. However, as the inner product satisfies the distributive
law, we should now directly approximate the inner product between a query encod-

ing and a level — 1 cell descriptor as ab; nhormalized summation:

1 M
SRolj-1= \Zi;%ouia—l (A.2)

where each inner product is read from a look up table.



Appendix B

Proof of Proposition 1

Proof. In order to optimize the bit allocation to the various descriptions (subspaces),

we optimize the rate distortion expression:

‘zl l|
R(E)= mi E log—— B.1
( ) zEn:——nE =1 g Em ( )

whereE, is the product of the sub-component distortiofas,| is the determinant
of the covariance matrix,, andE is the overall distortion value. The minimum
rate for giverk is derived when all distortions,, are equal, i.e Ey, = E/M.

Using results derived from rate distortion theofy’f], En, for the m-th sub-

space can be approximated by:

D/
Em~ |Zm| r!himz-Zbim = | Zpn| 225, (B.2)
=

wherehjy, = %2 {ffm fim (X) dx}3 is a variable determined by the univariate Gaus-
sian of the normalized components;, (x), andbiy, is the average number of bits
encoded per dimension. Due to the independence property, the prodiygirothe

mrth subspace yields the variabig, which is now determined by the multivariate
Gaussian distribution for the normalized subspace random vectors. This distribution
is independent of subspace, and, as shghs constant for alm. Similarly, if the

size of the bit encoding and block dimensibhis fixed per subspace, th@&, is a
constant for alim. For Ey, to be equal for alim, |Zr,| must be constant, independent

of subspace. ]



Appendix C

Retrieval System Implementation

Based on the work detailed in Chapter 2, we have developed a two-component
retrieval system within the remit of the VideoClarity project, a BAFTA research

project sponsored by Innovate UK (101932). The system:
1. Extracts Fast-VDCNN signatures and thumbnails from a large corpus
2. Returns matches to queries from the corpus based on similarity

Fundamentally, the system has been extended to work on both images and videos,
by breaking down videos into representative frames using shot/scene detection and
extracting the Fast-VDCNN signature on representative frames. Signature extrac-
tion for the database videos is performed offline. Representative frames are ex-
tracted using shot detection with over-compensation. The process flow is high-
lighted in FigureC.1, with the retrieval system represented as a ‘black box’. In
this example, the user feeds in a screenshot from the a clip of the film ‘Alien’. The
screenshot is queried against a corpus of video folders where each folder can con-
tain mutliple videos/screenshots. Per folder, the Fast-VDCNN signatures for listed
video content is contained in a binary file and indexed in a corresponding text file.
The retrieval system outputs the thumbnails for matching frames, with their name
and timestamp, thus providing both matching and localisation utilities. Two ver-
sions of the system have currently been delivered to BAFTA, which respectively

use unquantized and product quantized signatures (with lookup tables).
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Figure C.1: High Speed Analysis of Big Video Data: Retrieval System

Such a system is intended to integrate with an overarching web interface, where
a user could upload a query video to match to a database of videos crawled offline
from various sites. The matching process is expected to be performed online and
in real time. Notably, the system has been tested by the industrial partner, BAFTA

Research and has exhibited state-of-the-art performance. In particular:

1. Video signature extraction is "700x faster than real-time playback using a

single 32 core server

2. The system can search through 232 hours of content within 20 seconds
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