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Abstract

We present a new Markov chain Monte Carlo algorithm, implemented in soft-
ware Arbores, for inferring the history of a sample of DNA sequences. Our princi-
pal innovation is a bridging procedure, previously applied only for simple stochas-
tic processes, in which the local computations within a bridge can proceed inde-
pendently of the rest of the DNA sequence, facilitating large-scale parallelisation.
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1 Introduction
A central problem in population genetics is to infer genealogical histories over a set
of homologous DNA sequences, including e.g. shared lineages of genome segments
back to their most recent common ancestors (MRCAs), or recombination, mutation
and other genomic events that underlie the observed sequence variation. A Bayesian
approach judiciously combines structured probability models for the evolution of ge-
nealogies backwards in time (i.e. prior probabilities) with information in the DNA se-
quences to provide posterior probabilities of lineages. It also gives rise to the highly
complex computational challenge of probing the deduced posterior distributions. We
make considerable progress towards achieving this goal by developing a new Markov
chain Monte Carlo (MCMC) algorithm, and accompanying software Arbores. Our
methodology adopts a data augmentation direction and implements a bridging proce-
dure to impute the latent sequence of genealogical trees between given trees at two
genome sites.

A prominent probabilistic evolutionary model for DNA sequences is the coalescent
with recombination — an extension of the single-locus (Kingman’s) coalescent [10,
11]. The ancestral recombination graph (ARG) [6, 5] is a graphical representation of
this evolutionary model. Essentially, ARG is graph representation of gene genealogies
and the centre of our attention in this work. ARG is central in population genetics and,
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more generally, in biology, and describes the relationship between sequences under-
going recombination. Recombination is one of the most important evolutionary forces
as it increases genetic diversity and promotes adaptation through exchange of genetic
material [1]. Conscientious modelling and learning of recombination is fundamental
to gaining a better understanding of many biological processes, e.g. genome structure
[1], phenotypic diversity [26], or mapping of disease genes. See [1] for a review of
possible applications of ARG-based models. In Bayesian inference, ARG is necessary
for determining the likelihood function of a sample of observed chromosomes in a pop-
ulation genetic model, and, as such, for parameter estimation and hypothesis testing.
Unfortunately, due to the complexity of the ARG representation and the computational
difficulties associated to inferring an ARG given a sample of chromosomes, ARGs have
not been widely used and inference is often based on summary statistics and univariate
techniques, with inevitable loss of information.

More formally, a coalescent with recombination model can be thought of as spec-
ifying a prior law for an ARG. We follow the original definition and treat the ARG as
a random graph, whereas some authors use this term to refer to a fixed graph, usually
the one representing the true but unknown underlying genealogy or an estimate of it.
The inference from an observed set of DNA sequences can then, in theory, proceed
by deriving the corresponding posterior ARG distribution. We adopt a discrete ap-
proximation to the infinite-sites mutation model, which implies that one of at most two
alleles can be found at any given genomic site (in practice, triallelic DNA sites exist but
are rare). It follows that an observed set of N homologous DNA sequences, each com-
prised of S genomic sites, can be represented as a binary matrix D with Di,j ∈ {0, 1}
for 1 ≤ i ≤ N , 1 ≤ j ≤ S. Inferring the ARG conditional on the dataD is notoriously
difficult and has been a renowned challenge in computational genetics. Firstly, the
posterior distribution is highly concentrated compared to the prior, so that elementary
approaches based on importance or rejection sampling from the prior distribution are
unacceptably inefficient. Secondly, the ARG is defined on a large and complex space
involving a high-dimensional product of continuous and finite spaces, such that an ex-
haustive iteration even over the finite spaces is infeasible. Standard MCMC methods
can nowadays be usefully applied in some high dimensional models (e.g. large hier-
archical models, or inverse problems [1]), but small changes in the random variables
that specify an ARG can give substantially different graphs (i.e. the likelihood surface
is highly discontinuous), so that standard random-walk type MCMC methods are very
difficult to implement for ARG inference.

Earlier attempts to address this sampling task have involved mainly importance
sampling [5, 4] or MCMC [16, 13]. In [16], the primary motivation is the estimation
of the ‘global’ recombination rate, rather than the full ARG, enabling the use of less
informative observations which makes the problem substantially simpler than the one
considered here. The method of [13] is based on proposing a replacement for a part of
the ARG in proportion to its prior probability. These methods scale badly with S and
N . More recently, [15] introduced the sequentially-Markov coalescent (SMC) approx-
imation of the ARG which assumes that the sequence of genealogical trees at genome
sites forms a Markov process. The authors demonstrated that the approximation is ac-
curate over a wide range of recombination rates. The SMC, coupled with the observed
sequences, can be viewed as a hidden Markov model, with coalescent trees as hidden
states, from which the dataD are generated under the mutation model. The most recent
advance in this field, [17], exploits the Markovian structure of the SMC approximation
and proceeds by re-simulating the sequence of coalescent subtrees that correspond to a
specific subset of observed haplotypes. With some resemblance to the method of [13],
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Figure 1: The data augmentation scheme for the SMC model. Given left and right
conditioning trees our method samples an intervening bridge of coalescent trees, which
is consistent with the relevant observed sites. In this example, the trees are comprised
of 7 nodes (4 of which, at the bottom of the graph, are the leaves).

under the Markovian assumption, the resulting algorithm is a Gibbs sampler capable
of performing inference on a moderately sized sample of sequences representing the
complete genome.

1.1 Overview of the proposed method
A key contribution of our methodology is to reduce the computational complexity of
the MCMC algorithm by dividing the inference task into a large number of subtasks,
amenable to parallel computations. For each pre-specified genome segment, the coa-
lescent trees at the initial and terminal sites are fixed, while a new sequence of trees is
proposed at the intervening sites, compatible with the data D and the terminal trees.
The proposed sequence is accepted or rejected according to the Metropolis-Hastings
(MH) acceptance test. Due to the Markovian structure of the SMC process, these cal-
culations require no information from outside the chosen genome segment, see Figure
1. This is crucial to the algorithm’s ability to localise the computations and control the
combinatorial complexity.

This approach is similar in principle to bridging methods for discretely-observed
diffusion processes (see e.g. [19]) or Markov jump-processes (see e.g. [2]). In recog-
nition of this conceptual similarity, we refer to the proposed sequence of coalescent
trees over a genome segment as a bridge, and to our algorithm as the tree-bridging
MCMC sampler. We are not aware of previous uses of bridging in such a complex
state space. The major challenge for our algorithm involves developing an efficient
way of generating bridges, which requires three main steps:

1. Tree Scanning: We construct a bridge by a method inspired by the tree scanning
algorithm [22, 23], [7, page 328]. Starting with the left conditioning tree (see
Figure 1), the tree at each subsequent site is either the same, corresponding to an
identity operation, or a subtree is cut off (pruned) and then reattached (regrafted)
onto another branch, which is called a subtree-prune-and-regraft (SPR) opera-
tion [22, 20, 21]. We iterate exhaustively over all such operations at each site,
until all possible paths of coalescent trees have been generated up to the right
conditioning site.
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Tree scanning delivers paths of trees, each endowed with a total time ordering of
the nodes (i.e. the coalescences or branch merges), but the exact times associated
with the nodes are not yet fixed. Moreover, most tree paths will typically not
match the right terminal condition.

2. Time Adjustment: Node times at the leftmost tree are fixed by the conditioning.
Each non-identity SPR operation within a tree path introduces a new node. For
each path, we check whether the times of the new nodes can be set so that the
times in the right terminal tree are realised. If not, the path is discarded, other-
wise the times of the nodes that are present in the right conditioning trees are
fixed to their value in that conditioning tree.

3. Sampling: The last step is the generation of the complete bridge with all nodes af-
fixed (i.e. their times determined). We choose a coalescent tree path at random
from the set resulting after Step 2. For this path, we generate times for each
node not present in either terminal tree, from the uniform or exponential distri-
bution (see later sections for details) in the permitted interval that respects the
tree structures and node orderings.

The process is repeated for a number of bridges spanning the genome region, and
overlapping so that each genome site is non-terminal in at least one bridge, thus is able
to vary.

The remainder of this paper is organised as follows. Section 2 reviews the Marko-
vian dynamics of the SMC model, and the corresponding likelihood of the observed
DNA sequences. Section 3 presents the MCMC algorithm for sampling from the ARG
posterior distribution. Section 4 shows some heuristics for reducing the computational
cost of the MCMC proposal. Section 5 gives numerical results from an example appli-
cation of the new algorithm. We conclude with some remarks in Section 6.

2 Hidden Markov model for ARG inference
The adoption of the SMC approximation for the law of the ARG enables us to formu-
late the inference problem in the hidden Markov model framework as described in this
section.

2.1 Hidden tree process
A realisation of the SMC process is a sequence (or path) of coalescent trees T =
(Ti)1≤i≤S , where each Ti is a rooted binary tree. A tree branch is a directed edge iden-
tified by an ordered pair of nodes. Branches are named after the child node, so (u, v) is
referred to as branch v. Each tree has a unique root node that has no parents. Any other
node v has a parent pa(v). The children of v are denoted by ch(v). Associated with
each observed sequence is a leaf node v such that ch(v) = ∅. We identify the nodes of
each Ti with integers {1, . . . , 2N−1}, the first N nodes being the leaves. Each tree Ti
is fully specified by its topology Ci and node times ti = (ti,1, . . . , ti,2N−1) as exem-
plified in Figure 2a. The topology Ci can be represented as a (N−1)×2 matrix whose
kth row includes the two elements of ch(N+k). The two elements of each row of Ci

are placed in increasing order. We have ti,n = 0 for the leaf nodes, while non-leaf
nodes are indexed in increasing time order.
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Figure 2: (a) A graph representation of a coalescent tree Ti having the topology Ci

shown in (b), with node times ti = (0, 0, 0, 0, 0, 0, 1, 2, 3, 5, 8), ui = 7, vi = 9,
ri = 2.5,wi = 4. (c) The resulting tree after applying the SPR operation (ui, vi, ri, wi)
to the coalescent tree Ti.

Given Ti = (Ci, ti), for some 1 ≤ i ≤ S − 1, the next tree Ti+1 is determined by
the occurrence (or not) of a recombination between sites i, i+ 1, and the specification
of such recombination. A recombination is represented here via an SPR operation
characterised by a quadruple consisting of two nodes, ui, vi, and two positive real
times ri, wi. If no recombination happens between sites i and i+1 then by convention
(ui, vi, ri, wi) = (0, 0, 0, 0), representing the identity SPR operation, and consequently
Ti = Ti+1. If a recombination does occur, then the subtree1 rooted at node ui is pruned
from the tree at time ri and subsequently regrafted back into the tree onto branch vi at
time wi > ri, as shown in Figure 2.

We proceed to a detailed description of the dynamics of the hidden tree process.
We need to provide a few definitions. For measurable spaces (X,X ), (Y,Y), (Z,Z)
and probability kernels K1 : X × Y → [0, 1] and K2 : Y × Z → [0, 1] we define the
probability kernel K1K2 : X× (Y ⊗ Z) so that for x ∈ X, A ∈ Y ⊗ Z

(K1K2)(x,A) =

∫
K1(x, dy)

∫
K2(y,dz)IA(y, z).

For a kernel K : X × Y → [0, 1] and a probability measure µ : X → [0, 1] we define
the probability measure µK : X ⊗ Y → [0, 1] such that, for A ∈ X ⊗ Y

(µK)(A) =

∫
µ(dx)

∫
K(x, dy)IA(x, y).

For probability measures µ1, µ2 defined on (X,X ), (Y,Y), respectively, we let µ1⊗µ2

denote the product measure on (X × Y,X ⊗ Y). The k-fold iterate of a kernel K is
written as Kk.

The SMC process is initiated with a standard coalescent tree, followed by Marko-
vian transitions defined via SPR operations. Formally, we define the initial distribution
µ and the kernel K via the coordinate-wise decompositions

µ = µC,tKuKrKwKv, K = KC,tKuKrKwKv,

from which we obtain the law of the SMC process as µKS−1. We now define the
probability measure µC,t and kernels KC,t, Ku, Kr, Kw, Kv . First, we note that µC,t

1Without exception we use subtree to refer to a tree whose leaves are also leaves in the original tree.
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simply corresponds to the law of the standard coalescent tree [11, 10, 8] with a formal
definition as follows. The law µC of the initial canonical form C1 is defined such
that for all 1 ≤ i ≤ N − 1 the pair (C1(i, 1),C1(i, 2)) – where C1(i, j) denotes the
element on the ith row and jth column of C1 – is uniformly distributed over the set

{
(j, k) ∈ Ni−1 ×Ni−1 : j < k

}
,

starting from the set of leaves N0 = {1, . . . , N}, and then having, for 1 ≤ i < N − 1,

Ni = (Ni−1 \ {C1(i, 1),C1(i, 2)}) ∪ {N + i}.

To define the law µt of the coalescence times t1, we write f(x;β) = βe−βx, x ≥ 0,
for the probability density of the exponential distribution with parameter β > 0 and
define µt = µt1 ⊗ · · · ⊗ µt2N−1

, where

µti(dx) =





δ0(dx), 1 ≤ i ≤ N
f (x;β0) dx, i = N + 1

f
(
x− ti−1;βi−(N+1)

)
dx, i > N + 1

and βi =
(
N−i
2

)
, 0 ≤ i < N − 1. The initial distribution is simply µC,t = µC ⊗ µt.

Conditionally on a given coalescent tree Ti = (Ci, ti), 1 ≤ i ≤ S − 1, with some
probability there will be no recombination between sites i and i + 1, or there will be
a recombination at a position chosen uniformly along the branches of the tree, with
involved recombination rate parameter ρ > 0. Formally, the conditional law of ui is

Ku(Ti,dx) =
(
1− e−ρLi

) 2N−2∑

n=1

li,n
Li

δn(dx) + e−ρLiδ0(dx),

where the total branch length Li and branch lengths li,n of Ti are defined as

Li :=

2N−2∑

n=1

li,n. where li,n := ti,pa(n) − ti,n. (1)

For a given coalescent tree Ti and a pruned node ui, the conditional law of the pruning
time ri is defined as

Kr(Ti, ui,dx) = I(ui 6= 0)
I(x ∈ [ti,ui

, ti,pa(ui)])

li,ui

dx+ I(ui = 0)δ0(dx).

The indicator functions I(ui = 0) and I(ui 6= 0) specify the conditional distributions
of ri in the two cases: recombination occurs (ui 6= 0) or it does not (ui = 0). Next, the
SMC model assumes that branch ui is pruned at time ri, so the segment of the branch
above this time is deleted. The remaining part of the separated branch is extended back-
wards in time from ri and is re-attached to the main body of the tree according to the
standard coalescent tree dynamics, i.e. according to a Poisson process with rate equal
to the number of existing branches at any time instance. Formally, given (Ti, ui, ri), let
k be the number of nodes above the pruning time ri, including the parent node pa(ui),
and t̃1 < · · · < t̃k their times with the convention t̃0 = ri, t̃k+1 =∞. The conditional
law of the coalescence time wi given (Ti, ui, ri) is

Kw(Ti, ui, ri,dx) = I(ui 6= 0)fTi,ui,ri(x)dx+ I(ui = 0)δ0(dx),

6



where, for F ( · ; β) denoting the cumulative distribution function of Exp(β), β > 0,
and F̄ = 1− F ,

fTi,ui,ri(x) =

k∑

j=0

f(x− t̃j ;βj) I [x ∈ (t̃j , t̃j+1) ]

[
j−1∏

l=0

F̄ (t̃l+1 − t̃l;βl)
]
,

with

βj =

{
k + 1− j, t̃j ≥ ti,pa(ui)

k − j, otherwise.

The conditional law of the regraft node vi given (Ti, ui, wi) is

Kv(Ti, ui, wi,dx) =
I(ui 6= 0)

|A(Ti, ui, wi)|
∑

n∈A(Ti,ui,wi)

δn(dx) + I(ui = 0)δ0(dx),

where

A(Ti, ui, wi) =
{
n ∈ {1, . . . , 2N − 1} \ {ui} : wi ∈ (ti,n, ti,pa(n))

}
.

The variables ui, vi, wi specify an SPR operation that applies to a coalescent tree Ti
to determine the next one which we denote by SPR(Ti, ui, vi, wi), hence we formally
write

KC,t(Ti, ui, vi, wi,dx) = δSPR(Ti,ui,vi,wi)(dx).

2.2 Observation process
Information about the tree process T = (Ti)1≤i≤S , is obtained through the data D =
(Di,j) = (Di), with columns Di ∈ {0, 1}N . The mutation model generating D given
T is a discrete version of the infinite-sites model [6], and involves a mutation rate
parameter θ > 0. Given Ti, for a site 1 ≤ i ≤ S, the model specifies that with
probability exp(−θLi) no mutations occur at site i, forLi is as defined in (1), otherwise
exactly one mutation arises, and the place where the mutation occurs is uniformly
distributed over the branches of Ti. If a mutation has occurred at a site i, we can now
infer fromDi the branch on which it arose: it is the unique branch bi such thatDi,n = 1
if either n = bi or n is a descendant of bi, otherwise Di,n = 0. The assumption of at
most one mutation per site plays a role in our method as it implies that the sequences
of trees inconsistent with it are not permitted. Under this assumption, the likelihood at
site i is

Li(Ti) = P (Di|Ti) =

{
e−θLi ,

∑
nDi,n = 0,(

1−e−θLi
) li,bi
Li
,
∑
nDi,n > 0.

(2)

Given T = (Ti)1≤i≤S , mutations occur independently at each site, so the joint like-
lihood over any set of sites is the product of Li(Ti) over i in the set. If Li(Ti) > 0,
then we say that Ti = (Ci, ti) is compatible with Di, and since the compatibility of
Ti depends only on the topology Ci and not on ti, we also say that Ci is compatible
with Di. If Ci is compatible with Di for all i ∈ {1, . . . , S}, then we say that T is
compatible with D.
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Figure 3: Segregating sites s1, . . . , s20 are highlighted. Sites within jth segment (j =
0, . . . , 4) are illustrated with conditioning sites marked as ×.

3 Tree-bridging MCMC algorithm
We develop a Metropolis-Hastings MCMC algorithm for sampling from π = P (T |D),
the distribution of the tree process T over a genome interval, given the observation
process D. Convergence of the algorithm is assured from any initial state for T , given
regularity conditions on the chain (e.g. Harris recurrent, see e.g. [18, page 221]). How-
ever, a choice of initial state that is realistic given D can give an important reduction in
the time to convergence. One way to generate a good initial state is to use an existing
algorithm from the literature to obtain a point estimate ARG by seeking to minimise
the number of recombinations. Arbores uses a variant of the SHRUB algorithm of [24]
(see also [7, page 312]) for this purpose.

3.1 Segment selection
The bridges are constructed over genome segments, which can be selected in various
ways. All sites should be non-fixed, i.e. not the conditioning sites, in at least one
segment, allowing them to vary. The two end sites of the genome must be treated
separately as they will involve only one-sided conditioning. By default, Arbores defines
the segments so that, for a chosen m ≥ 1, the first segment stops at and conditions
upon the (m+ 1)th segregating site (site where at least one 0 and one 1 are observed).
Other segments contain 2m + 1 consecutive segregating sites (including the left/right
conditioning sites, which are always segregating) of which the leftmostm+1 are shared
with the preceding segment. The last segment (with a left-side only conditioning)
includes m + 1 segregating sites from the preceding segment, plus up to m additional
segregating sites to reach the right end site of the genome. An example of the segment
selection procedure is given in Figure 3. More formally, the segments are defined as
follows. Let mS denote the number of segregating sites and let s = (s1, . . . , smS

), be
the indices of the segregating sites in a strictly increasing order. We call 2m + 1 the
bridge length and assume that m � mS. For each jth segment, where j = 0, . . . , J ,
the initial and terminal site indices (αj , βj) are defined as follows. For j = 0, we set
(α0, β0) = (1, sm+1), and thereafter

αj = sm(j−1)+1, βj = sm(j+1)+1, 1 ≤ j < J,

where
J := max {j ∈ N : mj + 1 < mS} ,

and (αJ , βJ) = (sm(J−1)+1, S). Figure 3 shows an example illustration of the deduced
segments for a case when m = 4 and mS = 20.
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3.2 Generation of bridge proposals
We now focus on a specific bridge, so let T and π here denote the restrictions of the tree
process and target distribution onto this chosen bridge. We denote by q(T ) the proposal
distribution for the bridge tree process given its current state. A bridge is updated by
first sampling T ′ ∼ q(T ), and then, with probability

min

(
1,
π(T ′)q(T )

π(T )q(T ′)

)
,

the current state T is replaced with T ′; otherwise the current bridge T is retained. We
now describe the mechanism for generating bridge proposal from q(T ). Each quadru-
ple (ui, vi, ri, wi) specifying an SPR operation for coalescent tree Ti, L ≤ i ≤ R,
must either be equal to (0, 0, 0, 0), representing the identity operation, or satisfy the
following conditions: i) ui is not the root, ii) vi /∈ {ui,pa(ui)} (this follows simply by
our definition of vi), iii) wi > ri.

3.2.1 Step 1: Tree scanning

The first step is to generate the set of all possible sequences of tree topologies over the
bridge, compatible with the data D and the assumption of at most one recombination
between adjacent sites. We start with CL, the topology of the left conditioning tree TL,
and subsequently construct a sequence, or a path, of topologies (Ci)L<i≤R according
to all possible choices of SPR operation nodes, (ui, vi). Paths that include a topology
not compatible with the data are discarded. For the first (leftmost) segment, we have
conditioning from the right but not from the left, and so we proceed in reverse direction,
from right to left, but otherwise the construction is the same. The tree scanning step
is theoretically straightforward, but can be computationally intensive. Each topology
at site i can give rise to O(N2) topologies at site i + 1 (see [21]); the complexity of
constructing these topology paths over the segment can be exponential in its length.
Heuristics to make the algorithm practically feasible are described later in Section 4.

3.2.2 Step 2: Time adjustment

By construction, the topology paths generated in Step 1 are consistent with CL, but
many of them may not be consistent with CR (this is not required for the rightmost
segment, for which this time adjustment step can be skipped). Given a topology path
(Ci)L≤i≤R, one can associate any non-identity transition from Ci to Ci+1 with the
deletion of a node in Ci and the creation of a new one in Ci+1. We view this pair of
events as a move of a single node: the composition of all such moves from site L to
site R for a node make up the trajectory of that node. Thus, when Ci 6= Ci+1, one
node in Ci moves to a new position, while all other nodes are unchanged. Figure 4
shows an example of the node trajectories from L to R. The dashed lines depict node
trajectories over consecutive sites. The leaf nodes never move and are therefore omitted
from Figure 4.

For each site i and non-leaf node n, we define the indicators κ−(i, n) and κ+(i, n)
so that κ−(i, n) = 1 (resp. 0) if node n at site i moved (resp. did not move) at the sites
from L to i. Indicators κ+(i, n) are defined in a similar manner, but referring to sites
from i toR. Given these definitions we proceed as follows. First, we remove paths that
do not terminate at CR. Then, for each path (Ci)L≤i≤R we identify the subset F of

9
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{L, . . . , R} × {N+1, . . . , 2N−1} defined as

F =
{

(i, n) : κ−(i, n) = 0 or κ+(i, n) = 0
}
. (3)

We now take the times tL, tR of the left and right conditioning trees, TL and TR, also
under consideration. All nodes in F will be affixed to some time instance in tL (if
κ−(n, i) = 0) or tR (if κ+(n, i) = 0). The nodes in F are termed affixed while all the
other nodes are free. Free nodes can only appear in trajectories involving at least two
node moves, otherwise they will be affixed to a time either in tL or tR.

Not all topology paths will be compatible with TL and TR. In practice, we iterate
over the entire set of topology paths and verify for each individual path whether the
free nodes can be affixed according to TL and TR; if not, the path is discarded. Figure
5 shows two paths: one can be affixed while the other cannot.

3.2.3 Step 3: Sampling

After Step 2, we have a set of topology paths that are compatible with the two-sided
conditioning. To fully specify the bridge proposal we sample one of these paths uni-
formly at random, then generate the times of its free nodes and the pruning times. In
Figure 4, there are four free nodes but two free times to sample as the four nodes are
comprised of two pairs, the paired nodes being positioned at the same time instance.
There can be at most one free time per site and we generate them from left to right.
The vertical two-headed arrows in Figure 4 depict the sampling domains for this ex-
ample. Notice that for the domain of the free node at site L+2 one must also consider
the affixed nodes on both sides, so that the obtained sequence of coalescent trees is
compatible with the orderings implied by the chosen topology path.

To provide an explicit formula, suppose that ti,n has been identified as a free time,
the first subscript i designating the site and the second subscript n designating the node.
Once ti,n is affixed, we let l ∈ {0, . . . , R−i−1} denote the number of subsequent sites
where this node will remain at the same time, and n1, . . . , nl ∈ {N + 1, . . . , 2N − 1}
the labelling of this node at these next sites. The sampling domain of ti,n is then
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Figure 5: Two paths and their generating SPR operations. Path 1 is compatible with
the right conditioning tree but Path 2 is not. For Path 2, the conditioning requires the
node at time 5 to be adjusted to time 4, but this cannot be done as it is clear from the
second tree of Path 2, that the node created by the second SPR operation must be in the
interval (4.5, 6). Hence Path 2 is not compatible with TL, TR. Nodes introduced by
the SPR operations that are affixed are depicted by • and free nodes are depicted by ◦.

D(ti,n) = [t↓i , t
↑
i ], where

t↓i := max{ti,n−1, t↓i+1,n1
, . . . , t↓i+l,nl

},
t↑i := min{ti,n+1, t

↑
i+1,n1

, . . . , t↑i+l,nl
},

and t↓i+s,ns
(resp. t↑i+s,ns

) denotes the largest (resp. smallest) affixed time below (resp. above)
node ns at site i+s, for 1 ≤ s ≤ l. Note that some of the times involved in the min can
be +∞ if there is no node with affixed time above the node of interest, so the domain
D(ti,n) may or may not be bounded from above. For bounded domains we choose
a uniform distribution and for unbounded domains we choose the shifted exponential
distribution with density exp(−x+ s), for all x > s where s = inf{x ∈ D(ti,n)}. The
sampling of the pruning times is easier as, once all nodes are affixed, we simply have
the sampling domains

D(ri) =
[
ti,ui

, min(ti,pa(ui), wi)
]
, L ≤ i < R.

Again, we choose a uniform distribution. The generation of the bridge proposals is
thus completed.

3.3 Acceptance probability
We introduce the notation T̃i = {Ti, ui, vi, ri, wi} to refer to the coalescent tree Ti
endowed with its pruning and regraft nodes and times. We write T ′ = (T̃ ′L, . . . , T̃

′
R) for

the bridge proposal and T = (T̃L, . . . , T̃R) for the current state, with TL = T ′L, T̃R =
T̃ ′R. As the tree process is Markovian and the observations independent (given the
trees), the target distribution ratio in the Metropolis-Hastings acceptance probability
can be written as

π(T ′)

π(T )
=

∏R−1
i=L K(T̃ ′i−1, T̃

′
i )
∏R−1
i=L+1 Li(T ′i )∏R−1

i=L K(T̃i−1, T̃i)
∏R−1
i=L+1 Li(Ti)

, (4)
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under the convention that K(T̃ ′0, T̃
′
1) = µ(T̃ ′1). Let QP denote the proposal probability

mass function of the topology paths after Step 2, let (C′L, . . . ,C
′
R) denote the topology

paths corresponding to T ′, and let M ′ denote the number of free times (f ′1, . . . , f
′
M ′)

for T ′ with joint densityQf (f ′1, . . . , f
′
M ′). Also, we letQr(r′L, . . . , r

′
R−1 | f ′1, . . . , f ′M ′)

denote the conditional joint density for the pruning times. The corresponding quanti-
ties for the current position are defined analogously in the obvious way by omitting
the prime. We complete the specification of the acceptance probability in our bridging
algorithm via the calculation

q(T )

q(T ′)
=
QP(CL, . . . ,CR)

QP(C′L, . . . ,C
′
R)
× Qf (f1, . . . , fM )

Qf (f ′1, . . . , f
′
M ′)
× Qr(rL, . . . , rR−1 | f1, . . . , fM )

Qr(r′L, . . . , r
′
R−1 | f ′1, . . . , f ′M ′)

.

(5)

The above algorithm corresponds to an Independence Metropolis-Hastings algo-
rithm. It is easy to check that, under reasonable choices for the proposal, supT π(T )/q(T ) <
∞, with the supremum taken over the support of π(·), thereby guaranteeing uniform
ergodicity for the bridge sampler. To see that, notice that the number of the permitted
topology paths is finite, so one only needs to assign non-zero probability to each one
of them (e.g. via the discrete uniform mentioned earlier in the text); then, the number
of free regraft and pruning times is also finite, and one needs to select a lower bounded
density for the times of finite support (e.g. the continuous uniform referred to earlier)
and a proper density for the unbounded times (e.g. the ‘prior’ exponential density cho-
sen above will dominate the posterior density). In terms of the complete method, the
use of overlapping blocks implies that uniform ergodicity will also hold as long as all
topologies over the complete genome supported by the posterior can be visited by the
proposal during the execution of the algorithm. We conjecture that this is true due to
the flexibility of the method, but a rigorous proof requires elaborate work on a theme
exceeding the scope of the paper. Such ergodicity results are of qualitative nature, and
the efficiency of the method is determined by more practical considerations, e.g. the
computing cost for the realisation of the proposal or the size of the acceptance proba-
bility.

3.4 Coalescent time sampling
Arbores implements an additional MCMC step that proposes the movement only of the
coalescence times. This time sampling is scheduled for execution after each complete
execution of all bridge segment steps. The sampling is done via a standard Metropolis-
Hastings step for each coalescence time separately in a manner that preserves the coa-
lescence time ordering throughout the entire sequence. The sampling distribution used
in this step is a truncated version the conventional exponential distribution for coales-
cence times (see e.g. the discussion following equation (4) in [9]). Truncation is needed
to ensure the preservation of the coalescent time ordering.

4 Enabling heuristics
The above ‘idealised’ algorithm outlined can be too computationally expensive to be
implemented in practice. This is mainly due to the worst case exponential size of the
set of topology paths in the number of sites within the bridge segments. Therefore, we
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need to introduce heuristics, some of them approximative, to deliver a practical algo-
rithm. The main principle underlying the choice of heuristics is the one of minimum-
recombination. That is, we allow the data to enforce recombinations when required,
and we avoid placing recombinations at positions not supported as such by the data.
At the same time we require the algorithm to traverse the space of different recombi-
nations, at different sites, so we perform another heuristic to also allow for this. One
can think of our algorithm as one that follows principles from deterministic minimum-
recombination algorithms used in a separate stream of the subject literature to reduce
computing costs, while still being a proper (if approximate) posterior sampling MCMC
algorithm. Due to this minimum recombination approach, we expect the approxima-
tions to improve as the ratio of mutation rate over recombination rate per site increases.
We also wish to acknowledge that, due to some of the heuristics, our approximation
is not guaranteed to be reversible. However, problems due to the irreversibility are
expected to be rare and hence this is considered an acceptable approximation. The
heuristics are described below.

4.1 Parsimonious SPR operation
The first heuristic aims to reduce the cardinality of the set of proposed tree paths, by
switching from an exhaustive tree scan to one that adopts a parsimonious approach as
regards to the number of SPR operations, taking under consideration the information
available in the data.

For non-segregating sites any tree is compatible, so in the generation of the topol-
ogy paths we omit non-segregating sites and perform SPR operations only between
consecutive segregating sites – if necessary, i.e. if none of the currently generated
topologies is compatible with the next segregating site. This leads to a substantial
reduction in the computational cost. Some further considerations are needed here, as
it may well be the case that more than one SPR operation is needed between two seg-
regating sites to generate trees compatible to the data. Thus, we iterate – if necessary
– over the number of SPR operations. In practice, Arbores attempts to construct the
topology paths with none, one, or (at most) two SPR operations between each pair of
consecutive segregating sites. Topologies available at the current step that require more
SPR operations than others are removed (their path is deleted from the set of currently
constructed paths). In the numerical applications we have looked at, requiring more
that two SPR operations between consecutive segregating sites was a rare event; in the
cases that this does occur, Arbores skips the update on that segment. Even if a seg-
ment update is skipped at an iteration of the MCMC sampler, it is likely that due to the
updates of the other segments, the skipped segment can be updated the next time it is
processed.

4.2 Extra recombinations
The parsimonious rules for allowing SPR operations described above come with a
drawback: for a given bridge, by adopting, effectively, a minimal number of recom-
binations principle, one can deduce that all generated topology paths will have the
same number of recombination sites along the bridge and, in fact, the same number of
recombinations between all pairs of segregating sites contained in the bridge. To over-
come this rigidity, we allow in a controlled way the topology paths to consist of more
than the minimum number of SPR operations. This is done by first performing the tree
scan as described in part (a), resulting in a set of tree topology paths. After this we
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repeat the tree scan in a sightly modified way. For the first pair of consecutive segre-
gating sites that does not require an SPR operation, we nevertheless introduce one. For
the remaining pairs of segregating sites the tree scan proceeds normally by introducing
SPR operations only if needed. The resulting topology paths are added to the set of
previously generated paths. We repeat this modified tree scan step for each remaining
pair of consecutive segregating sites where no SPR is required. In this way we allow
only one extra SPR operation for one pair of consecutive segregating sites at a time,
with the aim of keeping the combinatorics manageable. At the same time, these addi-
tional SPR operations are enough to allow mobility in the number of recombinations
and their positions.

4.3 Subtree search
The computationally most expensive part of the algorithm, even after implementing
the heuristics described above, is the iteration over the possible SPR operations in the
construction of the topology paths. In a naive implementation, one would simply apply
all possible sequences of SPR operations and then check for each individual outcome
whether the resulting tree is compatible with the data or not. Some computation can
be saved by observing that certain operations are known in advance to produce an
incompatible tree. We identify the operations that may produce a compatible tree as
follows. Consider a tree at a segregating site i. We assign colours (black or white) to
its leaf nodes, by specifying that the leaf n is black if the nth observation at the next
segregating site, say j, equals 1 and white otherwise. Note, that we are considering the
data at the next segregating site j > i because the aim is to characterise the operations
that produce a tree compatible with the data at site j. The colouring is extended to all
nodes by recursively defining the colour of a node to be equal to the common colour
of its children, if such colour exists, and grey otherwise, as demonstrated in Figure 6.
Note also that the role of black and white nodes is not interchangeable, because for a
tree to be compatible with the data, it must contain exactly one subtree whose all nodes
are black and which is not a subtree of another subtree with black nodes only. Such
condition is not imposed on the white nodes. We then have to consider only two types
of SPR operation nodes (ui, vi):

(i) ui is black and pa(ui) is not black and vi is black,

(ii) ui is white and pa(ui) is not white and vi is white, gray or black and pa(vi) is
not black.

It is not guaranteed that these operations yield compatible trees, but in the case of single
SPR operation between segregating sites, it can be proven that the set of operations
yielding a compatible tree is a subset of such operations. The proof is included in the
Appendix, Theorem 1 in Section A. This implies that this heuristic does not introduce
any additional approximations. Indeed, one can see in Figure 6, showing all SPR
operations yielding a compatible tree, that each of these operations are either of type
(i) or (ii) defined above. For more than one SPR operation between segregating sites,
this is not true and the reduction of the SPR operation search set to operations of type
(i) or (ii) will result in an approximation.

4.4 Output
We note that – through the heuristics – the algorithm aims to provide a principled
approximation to the idealised MCMC algorithm defined in the previous sections. Ul-
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Figure 6: All SPR operations that yield a compatible tree. Each operation is of kind (i)
or (ii).

timately, the proposal will provide samples from the support of the idealised posterior:
e.g. when the proposal, using the heuristics, has determined a recombination between
two successive segregating sites, the non-segregating sites are also taken under consid-
eration and the recombination site is selected in some manner (e.g. at random) amongst
the intermediate non-segregating sites and the right-side segregating one, yielding a
topology path over all sites.

5 Numerical experiments
We carried out two numerical experiments with the proposed algorithm. In the first ex-
periment, we ran the algorithm on the well-known Kreitman data [12] and in the second
experiment we carried out a comparison with the recently proposed ARGweaver algo-
rithm [17], sometimes perceived as the state-of-art method for this problem.

5.1 Kreitman data
The Kreitman data were first preprocessed by removing duplicate rows and columns
with minor allele count less than two. The resulting data consisted of DNA polymor-
phisms of 9 sequences across 2,287 sites of which 30 were segregating. We set the
mutation parameter to θ = 0.013 corresponding to approximately 30 mutations on av-
erage for the data of the given size. The recombination rate was set to ρ = 0.0035
corresponding to approximately 8 recombinations in average. The minimum number
of recombinations for these data is known to be 7 (see, e.g. [7, page 144]).

The chain was run for 2×105 iterations. Iteration here means either the processing
of a single segment or sampling a single coalescent time. This number of iterations
amounts to all segments having been sampled approximately 6,500 times, the exact
number slightly varying according to the number of recombinations at a given state of
the chain (see the discussion at the end of Section 44.1). To confirm the consistency of
the results, the algorithm was run four times independently.

Figure 7a shows the trace plots of unnormalised log posterior densities accompa-
nied with the trace plots for the number of recombinations. Each of the chains appears
to spend most of the time sampling ARGs with the minimum number of recombina-
tions, but occasional visits to up to 10 recombinations can be seen.

Figure 7b shows the maximum a posteriori (MAP) tree sequences for the four runs.
The coalescent times of these MAP trees are the sample averages over the sequences
with matching tree structure. Each of these sequences corresponds to an ARG. One
can see that although the MAP ARGs are similar, they are not identical. This leads
us to believe that in the posterior, there are ARGs with slightly different structure but
approximately same posterior probability, hence the MAP ARGs in different runs do
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Figure 7: (a) The unnormalised log posterior and the number of recombinations trace
plots for four independent runs. (b) The maximum a posteriori tree sequences of four
independent runs. Coalescence times are calculated as the averages of coalescence
times over all tree sequences with matching structure. The site of the first occurrence
of a given tree is shown below each tree.

not have to be precisely the same (sampling variation might also have an effect). Each
of the MAP ARGs is displaying 7 recombinations which is consistent with the number
of recombinations trace plots in Figure 7.

The algorithm was implemented in C and is available at https://github.com/
heinekmp/Arbores. The running time of the algorithm is random. For the numerical
experiments reported here, the running time was approximately 10 hours on an off-the-
shelf MacBook Pro (2.9 GHz Intel Core i7).

5.2 Comparison with ARGweaver
In our second experiment, we run both Arbores and ARGweaver on the same simulated
data. The data were first generated with MaCS software of [3] after which it was
preprocessed by removing sites with minor allele count less than two; the data ware
also shifted so that first segregating site was given index one. After preprocessing, the
data consisted of eight sequences across 10,000 sites of which 24 were segregating.
The datasets and the exact calls of the algorithms are available at https://github.
com/heinekmp/Arbores/tree/master/test_runs.

We compare the outputs of the algorithms against each other rather than against the
true ARG that was used for generating the data. This is done because with Bayesian
MCMC methods the actual target is the posterior distribution which may or may not be
an accurate representation of the generating ARG.

Figure 8 shows the trace plots for the number of recombinations for both algo-
rithms. The initialisation of Arbores aims at starting with the minimum recombination
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Figure 8: Trace plots of the number of recombinations for ARGweaver and Arbores.
For Arbores the horizontal axis shows all iterations which amounts to all segments
being sampled roughly 15,000 times.

Figure 9: Histograms of TMRCAs for Arbores (red) and ARGweaver (black). See the
text for the definition of TMRCA. The title on each histogram indicates the pair of
observed sequences indexed by {0, . . . , 7}.

ARG but this is not guaranteed. The results nevertheless seem to suggest that the min-
imal number or recombinations for this dataset is 5. In some simulations ARGweaver
sampled ARGs with fewer than 5 recombinations but in all such cases the sampled
ARG was not compatible with the data. It is worth pointing out that Arbores never
returns an ARG that is not compatible with the data. From Figure 8 we see that ARG-
weaver mixes somewhat better between different numbers of recombinations although
the trace plots are similar. This may be due to genuinely different mixing properties,
or that the algorithms target different posteriors.

In order to compare the resulting approximate posterior structure of the ARG, Fig-
ure 9 shows the histograms of the times to most recent common ancestor (TMRCA) for
both algorithms. Note that to better capture the structure of the ARG we use a slightly
non-standard definition of TMRCA. TMRCA was calculated for each pair of observed
sequences (indexed by {0, . . . , 7}) by calculating the minimum time to the most recent
common ancestor at each site and then by taking the minimum over all sites. TMRCAs
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were also scaled so that the greatest mean over all histograms for both algorithms is
equal to one.

Our first observation from the results reported in Figure 9 is the impact of the time-
discretisation adopted within ARGweaver. Time-discretisation is not required for the
algorithm suggested in this paper, whereas for ARGweaver it is a necessity as the algo-
rithm develops on a finite state-space for ARGs. For both algorithms the histograms are
calculated similarly with 40 equally spaced bins, but only for Arbores the histograms
appear to represent the densities of continuous distributions as desired. Particularly
for the pairs with large mean, e.g. (3,6), ARGweaver returns truncated one tailed dis-
tributions which is not an accurate representation of the reality. Adjustment of the
parameterisation, e.g. the maximum time or higher resolution of the time discretisa-
tion, are an obvious remedy to this issue, but due to the logarithmic scale of the time
discretisation in ARGweaver, a large number of discrete times would be required to
allow high resolution at large times, which will slow down the algorithm: doubling the
number of time-discretisation points from 40 to 80, the computation time of 10,000
samples would increase from 1.5 hours to around 7.5 hours. Arbores took approxi-
mately 10 hours to generate 15,000 samples. The computing equipment used was as
described in Section 55.1.

We also see that for some pairs of sequences, both algorithms identify a very recent
common ancestor, see the pairs (1,3), (1,4), (1,7), (2,5) and (3,4). For some pairs both
algorithms also agree on more distant common ancestor, see the pairs (0,1), (0,3), (1,6)
and (3,6). Other histograms suggest that one of the algorithms was not able to explore
all the modes, see e.g. pairs (0,4), (1,5) and (1,6). Further discrepancies between the
histograms can be explained by the fact that ARGweaver had the additional degree
of freedom to decide which of the two alleles appearing at a given segregating site
was the mutated one while for Arbores the data determines the mutated alleles; data
entries equal to one are mutated. While such flexibility may sometimes be desired, it
also increases additional variation to the results in cases where the mutated alleles are
known.

6 Concluding remarks
We have proposed an MCMC algorithm for simulating ARGs from the Bayesian pos-
terior distribution given observed DNA polymorphism data. The algorithm is based on
a novel bridging procedure which enables us to reduce the high dimensional problem
into a set of substantially smaller scale problems. The main benefit of the algorithm is
its suitability for parallel computing systems. This is due to the fact that to some extent
the bridge segments can be processed in parallel independently of each other.

Further research is still needed to improve the scalability of the algorithm in the
number of observed sequences. In particular, we believe that substantial improvements
can be made by replacing the tree scanning step with more sophisticated methods that
reduces the number of discarded paths in the time adjustment step, and thus avoid
redundant computations. A potential approach is a node scoring approach whereby
nodes are assigned a score between 0 and 1 according to the data at its leaf descendants.
Score 1 (resp. 0) would correspond to all leaf descendants assuming value 1 (resp. 0).
These scores might be indicative of the compatibility of the tree with the data and could
be used for steering the tree paths in a manner which reduces the number of discarded
paths. Other aspects of the algorithm warrant further investigation, e.g. non-uniform
distributions for the choice of the proposed topology path could be tried. In general,
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Arbores provides a conceptually simple approach for sampling ARGs and as such,
further potential improvements are seemingly easy to incorporate into its algorithmic
framework.

Our comparison with ARGweaver shows that although its flexible parameterisation
allows it to be used for more realistic problems than Arbores, the time-discretisation
is a limitation which may be manifested already with modestly sized datasets. While
a more thorough experimentation with ARGweaver might have lead to a parameteri-
sation that efficiently mitigates the impact of time-discretisation, it can be argued that
methods based on modelling continuous phenomena by discretisation, can reach the
same accuracy as methods based on continuous models, such as Arbores, only asymp-
totically.

We have used SMC as an the Markovian approximation to ARG; our methodology
can be applied without modification with the more accurate [25] SMC’ approximation
[14].

Ethics: The project did not involve research on humans or animals.

Data: The Kreitman data set is reported in [12] and can also be found in [7, page
144]. Other datasets and the exact calls of the algorithms are available at https:
//github.com/heinekmp/Arbores/tree/master/test_runs

Contributions: M.D.I, A.B., A.J., D.B. planned and designed the project, M.D.I,
A.B., A.J., D.B., and K.H. carried out the research and wrote the manuscript.
K.H. implemented the algorithm and carried out the numerical experiments.

Competing interests: We have no competing interests.

Funding: This work was supported by the EPSRC grant “Advanced Stochastic Com-
putation for Inference from Tree, Graph, and Network Models” (ref: EP/K01501X/1).

Acknowledgements: A.B. also acknowledges support from a Leverhulme Trust Prize.

References
[1] M. Arenas. The Importance and Application of the Ancestral Recombination

Graph. Frontiers in Genetics, 4(206), 2013.

[2] Richard J Boys, Darren J Wilkinson, and Thomas BL Kirkwood. Bayesian infer-
ence for a discretely observed stochastic kinetic model. Statistics and Computing,
18(2):125–135, 2008.

[3] G.K. Chen, P. Marjoram, and J.D. Wall. Fast and flexible simulation of DNA
sequence data. Genome Research, 19:136–142, 2009.

[4] P. Fearnhead and P. Donnelly. Estimating recombination rates from population
genetic data. Genetics, 159:1299–1318, 2001.

[5] R. C. Griffiths and P. Marjoram. Ancestral inference from samples of dna se-
quences with recombination. Journal of Computational Biology, 3(4):479–502,
1996.

[6] R. C. Griffiths and P. Marjoram. An ancestral recombination graph. In P. Donnelly
and S. Tavare, editors, Progress in Population Genetics and Human Evolution,
pages 257–270. Springer Verlag, 1997.

19

https://github.com/heinekmp/Arbores/tree/master/test_runs
https://github.com/heinekmp/Arbores/tree/master/test_runs


[7] D. Gusfield. ReCombinatorics. The MIT Press, 2014.

[8] J. Hein, M. H. Schierup, and C. Wiuf. Gene Genealogies, Variation and Evolu-
tion. Oxford University Press, 2005.

[9] R.R. Hudson. Gene genealogies and the coalescent process. Oxford Surveys in
Evolutionary Biology, 7:1–44, 1991.

[10] J. F. C. Kingman. The coalescent. Stochastic Processes and Their Applications,
13:235–248, 1982.

[11] J. F. C. Kingman. On the genealogy of large populations. Journal of Applied
Probability, 19:22–43s, 1982.

[12] M. Kreitman. Nucleotide polymorphism at the alcohol dehydrogenase locus of
drosophila melanogaster. Nature, 304:412–417, 1983.

[13] M. K. Kuhner. Maximum likelihood estimation of recombination rates from pop-
ulation data. Genetics, 156(3):1393–1401, 2000.

[14] Paul Marjoram and Jeff D Wall. Fast ”coalescent” simulation. BMC genetics,
7(1):16, 2006.

[15] G. A. T. McVean and N. J. Cardin. Approximating the coalescent with recombi-
nation. Phil. Trans. R. Soc. B, 360:1387–1393, 2005.

[16] R. Nielsen. Estimation of population parameters and recombination rates from
single nucleotide polymorphisms. Genetics, 154(2):931–942, 2000.

[17] M. D. Rasmussen, M. J. Hubisz, I. Gronau, and A. Siepel. Genome-wide infer-
ence of ancestral recombination graphs. PLOS Genetics, 10, 2014.

[18] C. P. Robert and G. Casella. Monte Carlo statistical methods. Springer Sci-
ence+Business Media Inc., 2nd edition, 2004.

[19] Gareth O Roberts and Osnat Stramer. On inference for partially observed non-
linear diffusion models using the metropolis–hastings algorithm. Biometrika,
88(3):603–621, 2001.

[20] Y. S. Song. On the combinatorics of rooted binary phylogenetic trees. Annals of
Combinatorics, 7(3):365–379, 2003.

[21] Y. S. Song. Properties of subtree-prune-and-regraft operations on totally-ordered
phylogenetic trees. Annals of Combinatorics, 10(1):147–163, 2006.

[22] Y. S. Song and J. Hein. Parsimonious reconstruction of sequence evolution and
haplotype blocks: Finding the minimum number of recombination events. Algo-
rithms in Bioinformatics, 2003.

[23] Y. S. Song and J. Hein. Constructing minimal ancestral recombination graphs.
Journal of Computational Biology, 12:159–178, 2005.

[24] Y. S. Song, Y. W. Wu, and D. Gusfield. Efficient computation of close lower and
upper bounds on the minimum number of recombinations in biological sequence
evolution. Bioinformatics, 21(1):i413–i422, 2005.

20



[25] Peter R Wilton, Shai Carmi, and Asger Hobolth. The SMC’ is a highly accurate
approximation to the ancestral recombination graph. Genetics, pages genetics–
114, 2015.

[26] Y.X. Zhang, K. Perry, V.A. Vinci, K. Powell, W.P. Stemmer, and S.B. del Car-
dayre. Genome shuffling leads to rapid phenotypic improvement in bacteria. Na-
ture, 415, 2002.

Appendix A SPR operation search heuristic
In this section we prove the claim made earlier that the subtree search heuristic intro-
duced in Section 4.3 does not introduce any error under the assumption of at most one
recombination between consecutive segregating sites.

In addition to the black, grey, white colouring of the nodes described earlier, we
introduce another classification of nodes depending on whether a node is the root of
a maximal subtree of their respective colour or not. A subtree is said to be black
(resp. white) if all its nodes are black (resp. white). A black (resp. white) subtree is
said to be maximal if any strictly larger subtree containing it is not black (resp. white).
A grey node cannot be a root of a subtree consisting only of grey nodes, so all grey
nodes are classified as branch nodes by convention.

With this classification together with the node colouring we can construct equiva-
lence classes of SPR operations which we denote by (x, y, z, w), where x, z ∈ {B,W,G}
denoting the colours (black, white, grey) of the pruning and regrafting nodes respec-
tively, and y, w ∈ {r,b} denoting the classifications (root of a subtree, branch) of the
pruning and regrafting node, respectively. Also we use ∗ as a wildcard to denote any
possible value of a given entry. We have the following theorem:

Theorem 1. Let the colours black, white and grey be assigned to the nodes of Ti as
described above, and assume that Ti contains more than one maximal black subtree.
The SPR operation that results in a tree containing at most one maximal black subtree
(i.e. makes Ti compatible with the data), if such operation exists, belongs to (B, r,B, ∗),
(W, r,W, ∗), (W, r,G, ∗) or (W, r,B, r).

Proof. All possible SPR operations can be expressed as a set of equivalence classes:

(B, r,B, ∗), (B, r,W, ∗), (B, r,G, ∗), (B,b, ∗, ∗), (W,b, ∗, ∗),
(W, r,W, ∗), (W, r,G, ∗), (W, r,B, r), (W, r,B,b), (G, ∗, ∗, ∗).

Each of the Lemmata 1 – 5 below, shows that the SPR operations within a specific
equivalence class cannot yield a compatible tree. This leaves us with the operations
mentioned in the statement of the theorem.

Lemma 1. Operations in (B, r,W, ∗) or (B, r,G, ∗) do not reduce the number of max-
imal black subtrees.

Proof. The classification of a node as a subtree root can only change if either 1◦ the
colours of its descendants change or 2◦ the colour of its sibling changes. Suppose we
have two black subtree root nodes, b1 and b2. Let us first consider how the pruning of
b1 affects the subtree root status of b2.

The pruning of any node u can only affect the colours of the ancestors of u. Due
to being a black subtree root, b1 cannot be a descendant of b2 and therefore pruning
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b1 cannot affect the colours of the descendants of b2. Therefore the subtree root clas-
sification of b2 can only change if the pruning of b1 turns the sibling of b2 black. By
considering all possible scenarios we see that after pruning b1 the ancestors of b1 either
remain grey or turn white and hence the sibling of b2 cannot turn black due to the prun-
ing of b1. In conclusion, pruning b1 will not change the status of b2 as a black subtree
root.

Let us then consider the effects of regrafting the subtree rooted at b1. Regrafting
can only affect the colours of the ancestors of the regrafting node. Since b1 is regrafted
either to a white or a grey node, it cannot be regrafted to a descendant of b2 and there-
fore the status of b2 can only change if the sibling of b2 is an ancestor of the regrafting
node and if it is black after regrafting. Regrafting a black node to a white or a grey
node results in all the ancestors of the regrafting node being grey, so the status of b2
as a black root is unchanged. Moreover, b1 remains as a black subtree root, so the
resulting tree has exactly the same number of maximal black subtrees as the original
tree.

Lemma 2. Operations in (B,b,W, ∗), (B,b,B, ∗) or (B,b,G, ∗) when applied to a
tree with more than one maximal black subtree cannot produce a compatible tree.

Proof. We only need to consider regrafting, because after the pruning, the number of
maximal black subtrees remains unchanged. From the proof of Lemma 1 we know that
regrafting a black node to a white or a grey node cannot change the status of the existing
black subtree roots but it introduces a new maximal black subtree. So the resulting tree
cannot be compatible.

Regrafting a black node to a black branch node means inserting a black subtree
into a black subtree whose root node remains unchanged. Regrafting a black node to a
black subtree root, say b, implies that the new node introduced by the regraft operation
becomes a new black subtree root and the classification of b changes from subtree root
to branch. In any case, the number of black subtree root nodes remains unchanged.

Lemma 3. Operations in (W, r,B,b) cannot produce a compatible tree.

Proof. After the regrafting, the black branch node, say b, to which the white node was
regrafted becomes a black subtree root. Also the sibling of b becomes a black subtree
root. Hence the resulting tree has at least two maximal black subtrees and cannot be
compatible.

Lemma 4. Operations in (W,b,B, ∗), (W,b,W, ∗) or (W,b,G, ∗) when applied to
a tree with more than one maximal black subtrees cannot produce a compatible tree.

Proof. Pruning a white branch node does not affect the number of maximal black sub-
trees so we only need to consider regrafting. As in Lemma 3, regrafting to a black
branch node will cause the regrafting node and its sibling to become black subtree
roots and thus the tree will not be compatible.

When regrafting to a black subtree root, the black subtree root remains unchanged
and all its ancestors become grey. Hence the classification of any black subtree root
remains unchanged as a change would require its sibling to turn black which cannot be
the case.

Regrafting a white node to a white branch node will have no consequences outside
the white subtree containing the regrafting node. Regrafting to a white subtree root
causes the new node introduced by the regraft operation to become a new white subtree
root instead of the regrafting node, but the rest of the tree will remain unchanged.
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When regrafting to a grey node, only the ancestors of the regrafting node will be
affected, but because the ancestors of a grey node are grey, they will remain unchanged.

Lemma 5. Operations in (G, ∗, ∗, ∗) when applied to a tree with more than one maxi-
mal black subtree cannot produce a compatible tree.

Proof. Regrafting a grey node to a black node (subtree root or a branch) results in a
tree containing at least two maximal black subtrees: one rooted at the regrafting node
and another one must be contained by definition in the subtree rooted at the pruned
grey node.

Regrafting to a white or a grey node will cause all the ancestors of the regrafting
node to become grey. This means that the classification of each black subtree root in the
tree must remain unchanged, but since the subtree being regrafted contains, by defini-
tion, at least one maximal black subtree, the resulting tree must have at least one more
maximal black subtree than the tree after pruning. If the tree after pruning contained
at least one maximal black subtree, then the resulting tree would be incompatible and
if the tree after pruning did not contain any maximal black subtrees, then the pruned
subtree must contain at least two maximal black subtrees, since the original tree was
assumed to have at least two maximal black subtrees. In any case, the resulting tree
will be incompatible.
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