
Monte Carlo Convolution

for Learning on Non-Uniformly Sampled Point Clouds

PEDRO HERMOSILLA, Ulm University, Germany

TOBIAS RITSCHEL, University College London, United Kingdom

PERE-PAU VÁZQUEZ and ÀLVAR VINACUA, Universitat Politècnica de Catalunya, Spain

TIMO ROPINSKI, Ulm University, Germany

Continuous ground truth Uniform sampling Non-uniform sampling
Previous

Non-uniform sampling
Ours

Space

Va
lu
e

SpaceVa
lu
e

In
pu

t
O

ut
pu

t

Space

Va
lu
e

SpaceVa
lu
e

Space

Va
lu
e

SpaceVa
lu
e

Space

Va
lu
e

SpaceVa
lu
e

Re
al

 d
at

ar
es

ul
t

Fig. 1. Non-uniform sampling, which is inherent to most real-world point cloud datasets, has a severe impact on the convolved result signal. An input signal

represented as 1D function and as projected on a 3D sphere (top row) is convolved with an edge-detection kernel to obtain the output signal represented as

1D function and as projected on a 3D sphere (bottom row). The four columns illustrate the impact of the sample distribution on the convolution result. The

ground truth continuous signal’s filter response (first column) is faithfully captured when convolving uniformly sampled point clouds (second column). In
the case of non-uniformly sampled point clouds, state-of-the-art convolutional methods severely deviate from the desired filter response (third column).
With our interpretation of non-uniform convolution as a Monte Carlo estimate in respect to a given sample density distribution (illustrated by the pink line),

we can compensate this deviation and obtain a filter response faithfully capturing that of the ground truth (fourth column).

Deep learning systems extensively use convolution operations to process

input data. Though convolution is clearly defined for structured data such

as 2D images or 3D volumes, this is not true for other data types such as

sparse point clouds. Previous techniques have developed approximations to

convolutions for restricted conditions. Unfortunately, their applicability is

limited and cannot be used for general point clouds. We propose an efficient

and effective method to learn convolutions for non-uniformly sampled point

clouds, as they are obtained with modern acquisition techniques. Learning

is enabled by four key novelties: first, representing the convolution kernel

itself as a multilayer perceptron; second, phrasing convolution as a Monte

Carlo integration problem, third, using this notion to combine information

from multiple samplings at different levels; and fourth using Poisson disk

sampling as a scalable means of hierarchical point cloud learning. The key

idea across all these contributions is to guarantee adequate consideration of

the underlying non-uniform sample distribution function from aMonte Carlo

perspective. To make the proposed concepts applicable to real-world tasks,

Authors’ addresses: Pedro Hermosilla, Ulm University, Germany, pedro-1.

hermosilla-casajus@uni-ulm.de; Tobias Ritschel, University College London,

United Kingdom, t.ritschel@ucl.ac.uk; Pere-Pau Vázquez, pere.pau@cs.upc.edu; Àlvar

Vinacua, alvar@cs.upc.edu, Universitat Politècnica de Catalunya, Spain; Timo Ropinski,

Ulm University, Germany, timo.ropinski@uni-ulm.de.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

0730-0301/2018/11-ART235

https://doi.org/10.1145/3272127.3275110

we furthermore propose an efficient implementation which significantly

reduces the GPUmemory required during the training process. By employing

our method in hierarchical network architectures we can outperform most

of the state-of-the-art networks on established point cloud segmentation,

classification and normal estimation benchmarks. Furthermore, in contrast to

most existing approaches, we also demonstrate the robustness of our method

with respect to sampling variations, even when training with uniformly

sampled data only. To support the direct application of these concepts,

we provide a ready-to-use TensorFlow implementation of these layers at

https://github.com/viscom-ulm/MCCNN.

Additional Key Words and Phrases: Deep learning; Convolutional neural

networks; Point clouds; Monte Carlo integration

ACM Reference Format:
PedroHermosilla, Tobias Ritschel, Pere-PauVázquez, Àlvar Vinacua, and Timo

Ropinski. 2018. Monte Carlo Convolution for Learning on Non-Uniformly

Sampled Point Clouds. ACM Trans. Graph. 37, 6, Article 235 (November 2018),

12 pages. https://doi.org/10.1145/3272127.3275110

1 INTRODUCTION

While convolutional neural networks have achieved unprecedented

performance when learning on structured data [He et al. 2015;

Huang et al. 2016; Wang et al. 2017], their application to unstruc-

tured data such as point clouds is still fairly new. Early methods have

looked into fully-connected approaches and striven for permutation

and rotational invariance [Guerrero et al. 2018; Qi et al. 2017a,b].

Unfortunately, a non-uniform sampling typically associated with

ACM Transactions on Graphics, Vol. 37, No. 6, Article 235. Publication date: November 2018.

235:2 • Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski

real-world point cloud data, such as for instance resulting from the

projective effect of a LiDAR scan, has not been a special focus of

previous research. As the underlying sampling results in severe im-

plications, as illustrated in Fig. 1, we propose a new approach which

has been developed with a special focus on non-uniformly sampled

point clouds, achieving at the same time competitive performance

on uniformly sampled data.

To make progress towards our goals, we take into account the

original definition of convolution: an integral in an unstructured

setting. By using Monte Carlo (MC) estimation of this integral, we

will show that proper handling of the underlying sampling density is

crucial, and will produce results surpassing the state-of-the-art, yet

with a simple and natural definition and a simple implementation.

To this end, we make four key contributions.

First, we represent the convolution kernel itself as a multilayer

perceptron (MLP). Since a convolution kernel maps a spatial offset

(Laplacian) to a scalar weight, representing and learning this map-

ping through an MLP is a natural choice. This notion is inherently

invariant under translation.

Second, we suggest using Monte Carlo integration to compute

convolutions on unstructured data. Key is the adequate handling

of the non-uniformity and varying-density of points from a Monte

Carlo point of view. Averaging weighted pairs of points formally

means to sample anMC estimate of an integrand.While MC requires

to divide by the probability of each sample, this can be neglected

in a uniform setting, as it would result in a division by a constant.

However, when dealing with a varying sample density as present

in non-uniformly sampled point clouds, failing to perform this nor-

malization leads to a bias and consequently reduced learning ability.

Therefore, we claim that our approach provides a new form of ro-

bust sampling invariance, where for instance simply duplicating a

point will not change the estimated integrand. Stating convolution

as MC integration allows us to tap into the rich machinery of MC

including (quasi) randomization [Niederreiter 1992] and importance

sampling [Kahn and Marshall 1953]. Consequently, the convolution

becomes invariant under point re-orderings and typically works on

receptive fields with a variable number of neighboring points.

Third, we show how this allows generalizing convolutions which

use a single sampling pattern to convolutions that map from one

sampling pattern to a different one with a higher or lower reso-

lution. This can be used to learn (transposed) convolutions that

change the level-of-detail for pooling or up-sampling operations.

Even more general, we introduce convolutions that map from mul-

tiple input samplings to the desired output sampling allowing to

learn combining information from multiple scales.

Fourth, we introduce Poisson disk sampling [Cook 1986; Wei

2008] as a means to construct a point hierarchy. It has favorable

scalability compared to the state-of-the-art Farthest Point [Eldar

et al. 1997] sampling and allows to bound the maximal number of

samples in a receptive field.

The usefulness of these novelties is demonstrated by comparing

our approach to state-of-the-art point cloud learning techniques

for segmentation, classification, and normal estimation tasks. We

will show that we outperform the state-of-the-art when learning

on non-uniform point clouds, while we still achieve state-of-the-art

performance for uniformly sampled point clouds.

2 PREVIOUS WORK

A straight-forward method to enable learning on point clouds is

to resample them to a regular grid and then applying learning ap-

proaches originally developed for structured data. While extensions

to multiple resolutions exist, e. g., based on octrees [Wang et al.

2017], in this section, we will solely focus on those techniques

which enable learning directly on unstructured data.

PointNet [Qi et al. 2017a] pioneered deep learning on unstruc-

tured datasets. It used a fully-connected network together with a

clever machinery to achieve rotation and permutation-invariance.

PointNet++ [Qi et al. 2017b] added extensions to support localized

sub-networks, but was not yet fully convolutional. PCP Net [Guer-

rero et al. 2018] allowed the inference of local properties like curva-

ture or normals but was also not convolutional.

Klokov and Lempitsky [2017] presented a convolutional learner

which used a k-d tree. However, since the leaf nodes of the tree had

a fixed number of points, it was sensitive to varying density, being

tight to the logic of building and querying k-d trees. In contrast, our

approach uses a regular grid to access neighbors in constant time

and thus works on multiple scales.

Shen et al. [2017] also provided a translation-invariant but non-

convolutional method, where convolution was replaced with the

correlation of local neighborhood graphs and learned graph tem-

plates. While showing good performance on small problems, it

remained particularly sensitive to the underlying graph structure.

Dynamic Graph CNNs by Wang [2018] were convolutional. They

employed a general notion of learnable operations on edges of a

graph of neighboring points. In contrast to other approaches, they

changed neighborhoods during learning. This made the approach

slightly more complex to implement and less efficient on large point

clouds.

PointCNN [Li et al. 2018] was also convolutional, working on the

k nearest neighbors. They used an MLP on the entire neighborhood

to learn a transformation matrix which was used later to weight

and permute the input features of the neighboring points. Then, a

standard image convolution was applied to the transformed features.

SPLATNet [Su et al. 2018] sought inspiration from the permutohe-

dral lattice [Adams et al. 2010] where convolutions can efficiently be

performed on sparse data in high dimensions while the filter kernels

are discrete masks in lattice space. Uneven sample distributions in

the lattice are addressed by “convolving the 1” [Adams et al. 2010]

i. e., repeating the convolution on a unit signal. Our work achieves

the same, but without the complication of creating a lattice.

Atzmon et al. [2018] use radial basis functions defined on a dis-

crete set of points to represent convolution kernels. The work is

computationally demanding but provides invariance under global

uniform resampling by construction. However, non-uniform sam-

pling settings are not considered.

In concurrent work, SpiderCNN [Xu et al. 2018] used step func-

tions to represent convolutions. The authors mentioned using MLPs,

as we do as well, but found them to perform worse than step func-

tions. Nevertheless, in our architectures, we found MLPs to perform

well. We acknowledge that further work shall explore different

continuous representations to parametrize learned convolutions.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 235. Publication date: November 2018.

Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds • 235:3

Fig. 2. A k = 2-nearest neighbor receptive field (blue circle) in a scene

with non-uniform sampling of the same house-like geometry changes scale.

Groh et al. [2018] suggested using a linear function as a represen-

tation of an unstructured convolution kernel. With considerations

how dissimilar 2D convolution kernels are from linear functions, we

think an MLP to describe a kernel is worth exploring. Thanks to the

simplicity we share in our approach, they demonstrated excellent

scalability to millions of points, but the problem of non-uniform

sampling is not touched upon.

Most of the existing methods are based on convolving the k near-

est neighbors (using a hierarchical structure or not) [Groh et al.

2018; Klokov and Lempitsky 2017; Li et al. 2018; Shen et al. 2017;

Wang et al. 2018; Xu et al. 2018]. This approach is not robust in

non-uniform sampling settings, since adding more points into a

region in the space will reduce the k nearest neighbors to a small

volume around each point, capturing different features from those

the kernel was trained on, i. e. it shrinks in densely populated areas

and grows in sparse ones. We see in Fig. 2 how this would prevent

constructing a sampling-invariant “house detector”. Aztmon et al.

[2018], although not considering non-uniformity in their paper,

transform the point cloud to volumetric functions which can be

robust to non-uniformly sampled point clouds. However, some com-

putations of their method are quadratic on the number of points

which makes their method not scalable. PointNet++ [Qi et al. 2017b],

on the other hand, computes features locally, which makes it scal-

able. Moreover, it was tested with non-uniformly sampled point

clouds by simulating the properties of LIDAR scans. Nevertheless,

their method selects a fixed number of random samples within a

radius around the points and thus does not consider the point den-

sity in its computations, which, as we will demonstrate, can lead to

errors.

3 CONVOLUTION KERNELS

Here, we will first recall the definition of a convolution (Sec. 3.1).

Then, wewill introduce a kernel representation usingMLPs (Sec. 3.2)

which shall allow efficient and simple learning on irregular data.

3.1 Convolution as an integral

Recall the definition of a convolution as an integral of a product:

(f ∗ д)(x) =
∫

f (y)д(x − y)dy (1)

where f is a scalar function on R3 to be convolved and д is the

convolution kernel, a scalar function on R3. In our particular case, f
is the feature function for which we have a set S of discrete samples

xi ∈ S (our data points). If for each point no other information

is provided besides its spatial coordinates, f represents the binary

function which evaluates to 1 at the sampled surface and 0 otherwise.

However, f can represent any type of input information such as

x y x y x y z

g1 g1 g2 g1 g2 g3 g4 g5 g6 g7 g8

a) b) c)

Fig. 3. Evolution of MLP kernels: a) A naïve solution would map one 2D

offset x, y (blue dots) to one scalar result д (orange dots). b) We sug-

gest extending this to multiple outputs, e. g., д1 and д2, which speeds up

computation and reduces the number of learnable parameters. c) Our 3D
implementation uses two hidden layers of 8 neurons outputting 8 kernel

values. In this example we require 2× 8× 8+ 3× 8 = 152 operations to learn

and compute while a naïve approach needs 8 × (3 × 8 + 8 × 8 + 8) = 768.

color, normals, etc. For internal convolutions, i. e., those which are

subsequent to the input layer, it can also represent features from a

previous convolution.

Translation-invariance. As the value of д only depends on relative

positions, convolution is translation-invariant.

Scale-invariance. Since evaluating the integral in Eq. 1 over the

entire domain can be prohibitive for large datasets, we limit the

domain of д to a sphere centered at 0 and radius 1. In order to

support multiple radii, we normalize the input of д dividing it by

the receptive field r . In particular, we choose r to be a fraction of

the scene bounding box diameter b, for instance r = .01 · b. Doing
so results in scale-invariance. Note, that this construction results in

compactly-supported kernels that are fast to evaluate.

Rotation-invariance. Note, that we do not achieve and seek to

achieve rotation-invariance. Typical image convolutions are not

rotation invariant either and succeed nonetheless.

3.2 Multilayer perceptron kernels

We suggest to represent the kernel д, by a multilayer perceptron.

Definition. The multilayer perceptron (MLP) takes as input the

spatial offset δ = (x− y)/r comprising of three coordinates, normal-

ized dividing them by the receptive field r . The output of the MLP

is a single scalar. To balance accuracy and performance, we use two

hidden layers of 8 neurons each (see Sec. 8 for more details). We

denote the hidden parameters as a vector ω.
For layers with a high number of input and output features, the

number of kernels and therefore the number of parameters the

network has to learn is too high (#inputs × #outputs). To address

this problem, we use the same MLP to output 8 different д’s, thus
reducing the number of MLP’s by a factor of 8. Fig. 3 presents an

illustration of such an MLP, which takes three coordinates as input

and outputs 8 different д’s.

Back-propagation. For back-propagation [Rumelhart et al. 1986],

the derivative of a convolution with respect to the parameter ωl of
the MLP is

δ f ∗ д
δωl

=

∫
f (y)δд(x − y)

δωl
dy. (2)

ACM Transactions on Graphics, Vol. 37, No. 6, Article 235. Publication date: November 2018.

235:4 • Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski

x r

p(yj|x)

yj

a) b) d)c)

Fig. 4. Steps of our MC convolution. For a given point x (a) the neighbors within the receptive field r are retrieved (b) to be used as Monte Carlo integration

samples (c). For each neighboring point yj , its probability density function, p(yj |x), is computed using Kernel Density Estimation [Parzen 1962; Rosenblatt

1956] (d). Based on the bandwidth used (pink disk), the neighboring points have different effects on the computation of p(yj |x) (pink gradient).

3.3 Single- and multi-feature convolution

Our convolution consumesM input feature functions and outputs L
convolved feature functions. Based on the way the convolved feature

functions are calculated, we define two types of layers: Single-feature
spatial convolution and Multi-feature spatial convolution. Single-
feature spatial convolution outputs a scalar feature by convolving

a scalar input feature. Therefore, in these layers, the number of

output features is equal to the number of input features, M = L,
and the number of kernels д is also equal toM . The multi-feature

convolution, on the contrary, is similar to the layers used in stan-

dard convolutional neural networks where each output feature is

computed as the sum of all input feature functions convolved:

fo =
M∑
i=0

fi ∗ дo,i (3)

These layers are more computationally demanding since they have

to learnM × L convolution kernels д.

4 MONTE CARLO CONVOLUTION

In this section, we will show how convolutions can be stated as a

Monte Carlo estimate by relying on a sample’s density function,

which ultimately makes learning robust to non-uniform sample

distributions.

4.1 Monte Carlo integration

In order to compute the convolution in each sample point, we have

to evaluate the integral of Equation 1. Since we only have a set of

samples of our function f , we propose to compute this integral by

using MC integration [Kalos and Whitlock 1986], which uses a set

of random samples to compute the value of an integral.

Definition. In our case, these samples comprise of the input data

points or a (quasi) random subset. Therefore, an estimate of the

convolution for a point x is

(f ∗ д)(x) ≈ 1

|N(x)|
∑

j ∈N(x)

f (yj)д
(
x−yj
r

)
p(yj |x)

, (4)

where N(x) is the set of neighborhood indices in a sphere of radius

r (the receptive field), and p(yj |x) is the value of the Probability
Density Function (PDF) at point yj when the point x is fixed, i. e.,

the convolution is computed at x. Fig. 4 provides an illustration of

this computation.

Please note that, since our input data points are non-uniformly

distributed, each point yj will have a different value for p(yj |x). It
is also worth noticing, that the PDF depends not only on the sample

position yj but also on x: How likely it is to draw a point does not

only depend on the point itself, it also depends on how likely the

others in the receptive field r are.
Please finally note that, here and in the following, x is an arbitrary

output point that might not be from the set of all input points yj .
This property will later allow re-sampling to other levels or other

irregular or regular domains.

Back-propagation. Back-propagation [Rumelhart et al. 1986] with

respect to the MLP parameters ωl can also be estimated using MC:(
δ f ∗ д
δωl

)
(x) = 1

|N(x)|
∑

j ∈N(x)

f (yj)
p(yj |x)

δд
(
x−yj
r

)
δωl

. (5)

4.2 Estimating the PDF

Unfortunately, the sample density itself is not given but must be

estimated from the samples themselves. To do so, we employ Kernel

Density Estimation [Parzen 1962; Rosenblatt 1956]. The function

estimated is high where the samples are dense and low where they

are sparse. It is computed as

p(yj |x) ≈
1

|N(x)|σ 3

∑
k ∈N(x)

{
3∏

d=1

h

(yj,d − yk,d
σ

)}
, (6)

where σ is the bandwidth which determines the smoothing of the

resulting sample density function (we use σ = .25r), h is the Density

Estimation Kernel, a non-negative function whose integral equals 1

(we use a Gaussian), and d is one of the three dimensions of R3.
The PDF of a point yj in respect to a given point x is always rela-

tive to all other samples in the receptive field. Therefore, density can

not be pre-computed for a point yj since its value will be different
for each receptive field defined by x and radius r . Note that in a

uniform sampling setting p would be a constant.

5 MC CONVOLUTION ON MULTIPLE SAMPLINGS

Our construction does not only allow handling varying sampling

densities but also to perform convolution between two (Sec. 5.1) or

even multiple different samplings (Sec. 5.2).

ACM Transactions on Graphics, Vol. 37, No. 6, Article 235. Publication date: November 2018.

Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds • 235:5

*
a) b)

*
c) d)

*

*

* =

++

=

A

A

A

A

A

=

+

=

B

A

C

A

C

*

Same Di�erentSampling

M
ul
tip

le
Si
ng

le
Fe

at
ur
es

Fig. 5. Monte Carlo convolution for the same / different sampling (hor-
izontal) and a single / multiple feature channels (vertical). Samples are

denoted as dots, whereby lines indicate if samplings match. Colors indicate

the samplings A, B and C.

Convolution involving a single sampling is illustrated in Fig. 5

(a). Here, the sampling A of the input and the output is identical.

While the previous section has detailed how to account for varying

sampling density, we will show in this section how MC convolution

can seamlessly handle two or more samplings.

5.1 Two samplings

A more generalized setting is shown in Fig. 5 (b). Here, the input

sampling is still A, but the output is on a different sampling C.
The illustration shows a mapping from a lower sampling to a

higher sampling (also called upsampling, transposed convolution

or deconvolution). The same principle can be used to reduce the

sample resolution (pooling), as necessary for example when an

entire point cloud is successively reduced in resolution to produce a

single scalar classification value. We will make use of combinations

of up- and downsampling in a U-net / encoder-decoder architecture

[Ronneberger et al. 2015] for our segmentation application.

Previous work also operated using different samplings in a multi-

resolution hierarchy, but using fixed, non-learned interpolation,

e. g., inverse-distance weighting [Qi et al. 2017b] for upsampling

operations. Our approach allows learning these mappings instead.

The procedure explained in the previous section simply works in

the two-sampling case, as the kernelsд are defined on all continuous

offset vectors xC −yA , that can be computed at any output position

xC in sampling C, and input position yAj in sampling A. Note, that

a density estimation has to be performed respectively to A, the

input, as explained in the previous section.

5.2 Multiple samplings

Another unique advantage of our construction is to relax the sam-

pling requirements not only between the input and output sampling

A and C, but also between the different inputs. The case of multiple

input channels is seen in Fig. 5 (c) and (d). For Fig. 5 (c) the sampling

remains identical (A) between two input channels and the output.

Layer i-2

Layer i-1

Layer i

x

fi-2

pi-2

fi-1
pi-1

gi-2

gi-1

fi(x)

Fig. 6. Features upsampled from different levels for a single black point x
on layer i with respect to two previous layers. The receptive field content

fi−1 and fi−2 is shown on the right, with their respective densities pi−1 and
pi−2 in pink. Each layer is MC-convolved using an individual MLP kernel

дi−1 and дi−2 which results are concatenated to create the feature vector

for point x of layer i . We guarantee the same maximum number of points

in all receptive fields by maintaining the same ratio between the Poisson

disk and the radius of the convolutions.

In Fig. 5 (d) the sampling is mutually different between both inputs

and the output.

A typical application of this multiple-sampling approach is to

consume information from multiple resolutions in a hierarchy at

the same time. Our example shows a learned up-sampling from five

samples atA and three samples at level B which are combined into

a ten-sample result C. Note, that in the multiple-samplings case,

density estimation is to be performed relative toA when convolving

samples from A and relative to B when processing points from B.

Combining output from multiple previous layers has also been

used in DenseNet [Huang et al. 2016], but the classic tabulated

kernels do not admit to construct dense links between different

samplings.

We are not limited to use the same receptive field size on all

samplings but each can choose its own, such that the number of

samples falling into the receptive field remains roughly constant.

Note, that any deviation from this desired constant sample count, as

well as variation of density inside the receptive field, is compensated

for using the density estimation.

A particular embodiment of multi-sampling MC convolution is

shown in Fig. 6, where information from two 2D point clouds with

different resolutions are up-sampled into a third one with a higher

resolution. Note how the receptive field grows in the level with a

lower resolution.

6 POISSON DISK HIERARCHY

Deep image processing routinely reduces – and later increases again

– the image resolution to make use of both local and global informa-

tion. The same is achieved in deep point cloud processing [Qi et al.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 235. Publication date: November 2018.

235:6 • Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski

Table 1. Time for sampling a tenth of the points using different algorithms.

100/1 k 1 k/10 k 10 k/100 k 100 k/1000 k

Poisson disk 10.4ms 21.7ms 136.4ms 1,304.9ms

Farthest Point 2.4ms 11.9ms 657.1ms 108,682.8ms

2017a] usually using Farthest Point (FP) sampling [Eldar et al. 1997].

In this work, we favor using Poisson disk (PD) sampling [Cook 1986]

instead. This has two reasons: scalability and the ability to preserve

the sampling pattern while bounding the sample count per unit

measure.

Realization. PD is realized as a network layer using the Parallel

Poisson Disk Sampling algorithm [Wei 2008]. The input for these

layers are any point sampling and a parameter rp controlling the PD
radius. The output is a sampling with a minimum distance between

points equal to rp. Note that this does not bound the distance from

above, so areas with distances much larger than rp can remain.

Multiple PD layers can be combined to create a multi-resolution

hierarchy. We use this in combination with multi-samplings convo-

lution (Sec. 5) to build an encoder-decoder network [Ronneberger

et al. 2015] for point clouds.

Note that, contrary to other sampling approaches, this technique

generates a non-fixed number of samples. Therefore, our networks

cannot take advantage of acceleration techniques commonly used

by deep learning frameworks in which the memory required for a

forward pass is reserved in advance. However, we still achieve good

performance as is presented in Section 8.7.

Scalability. The main practical reason to use PD is scalability to

large point clouds as evaluated in Tbl. 1. We see, that PD sampling

presents a low compute time for the different model sizes (linear to

the number of points in the model). FP sampling, on the other hand,

does not scale well, requiring more than 100 seconds to sample 100 k

points from a 1,000 k points model.

Sample count bound. Moreover, PD allows us to limit the number

of points within the receptive fields of our convolutions. The Ke-

pler conjecture [Hales et al. 2017], provides an upper bound to the

number of points inside the receptive fields: This is illustrated in

Fig. 7. Starting from a non-uniform sampling (a), PD will retain non-

uniformity whilst maintaining a minimal distance between points

(c). Therefore, any ball, such as the receptive field of our approach

(pink circle) will at most retain a bound number

n <
π
(
r +

rp
2

)
3

3

√
2rp3

, when rp ⩽ r ,

of balls of the Poisson disk radius rp (marked in green) in a receptive

field of radius r .
In practice, the number of points is much lower than this limit

since we learn from points sampled on the surface of a 3D object.

As it is illustrated in Figure 6, we can take advantage of this fact to

compute features at different scales by maintaining a constant ratio

between r and rp. We found that a ratio between 4 and 8 provides

enough samples in our receptive fields (∼ 30).

c)a) b) Poisson diskInput Farthest point

Fig. 7. Result of Farthest Point (FP) (selecting a fix number of samples) and

Poisson Disk (PD) sampling for non-uniformly sampled inputs. Blue dots

are samples, the pink circle denotes the receptive field. Grey circles in FP (b)
are samples not fulfilling a minimal distance (overlap). Green circles in PD

(c) are balls around samples that can be packed inside the receptive field.

The most commonly used implementation of FP sampling [Qi

et al. 2017a] for learning on point clouds, selects a fixed number of

samples from the input point cloud. Contrary to PD, this method

cannot bound the number of points that fall in the receptive fields

(b). In order to generate a sampling with the same properties as PD,

this method would need to be modified to select a variable number

of points based on the distance of each new sample to the subset of

already selected ones.

7 IMPLEMENTATION

In this section, we describe several implementation details of the

building blocks of the proposed learning approach.

PDF computation. Our implementation differs from averaging

the individual contributions of the neighboring points only by the

requirement to divide by their probability values p. Therefore, our
MC approach requires two steps: computing all values of p and

querying them during MC convolution.

To compute p, we create a voxel grid with cell size r , as in [Green

2008], which enables us to perform the desired computation in time

and space linear wrt. the number of points. Further scalability would

be provided using hashing instead of a regular grid as proposed by

Teschner et al. [2003].

For lookup performance, the neighbor indices N(x) of all points
x are stored in a flat list, which is indexed by a start and end index

stored at each grid cell. Additionally, we compute the values of

p(yj |x) and store them in a list of the same size. Both lists can

get arbitrarily long with arbitrarily high density, which decreases

performance during the computation of our convolution for large

values of r . However, maintaining a good ratio between the receptive

field and the PD radius provides an upper bound on the number of

neighbors of each point.

Based on the thus constructed data structures, the neighbor in-

dices, as well as the precomputed PDF, can now be looked-up

in constant time using the computed information. When looking

up the neighbor values, they are multiplied by the kernel weight

д((x − yj)/r) and divided by the p(yj |x).
Note that the voxel grid in which points are distributed is com-

puted in parallel on the GPU, resulting in different point orderings

within the same cell for different executions. This introduces ran-

domness in the output sampled point clouds of our PD sampling

ACM Transactions on Graphics, Vol. 37, No. 6, Article 235. Publication date: November 2018.

Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds • 235:7

strategy, which is preferred during learning. Sec. 8 evaluates the

effect of the randomness on the resulting accuracy.

Multilayer Perceptron Evaluation. Evaluating the MLP during MC

convolutions requires a considerable amount of GPU memory when

using implementations as provided by standard frameworks. This

limits the number of computed features per point and the number of

convolutions used in the network architecture. In order to address

these limitations, we have implemented the MLP evaluation in a

single GPU kernel. By doing so, our networks do not require to

expand the features and coordinates of neighboring points and

also do not need to store intermediate MLP results for each layer.

However, with this implementation, we are not able to use some

features, such as batch normalization, to improve learning.

Batch Processing. Our layers process point clouds of variable size.
Moreover, as described in Section 4, our convolutions take into

account all the neighboring points to carry out their computations.

These design choices do not allow us to use the standard tensor

approach to process a batch of models in parallel.

In order to support batch processing, we use an extra vector with

an integer value for each point, denoting the model identifier to

which the point belongs to. We create an acceleration data structure

to access neighboring points (as described at the beginning of this

section) for each model, and, during the evaluation of the layers,

only the appropriate data structure is updated and queried based

on the model identifier of each point. This simple approach allows

us to process batches of models with variable size in parallel by

increasing the memory consumption linearly with the number of

points. However, in configurations with reduced GPU memory, a

more sophisticated approach can be considered, such as only storing

the number of points per model and perform extra computations

within the layers.

8 EVALUATION

Here we report the results obtained when using the machinery

explained before in a complete network on specific data for relevant

tasks. To make the reported results comparable, we introduce a

dataset with non-uniform sampling in Sec. 8.1 based on current

benchmark data. Next, we describe the specific tasks carried out in

Sec. 8.2 and the methods used in Sec. 8.3, before reporting actual

quantitative evaluation results in Sec. 8.4. Moreover, we report the

results of applying our networks to process real-world datasets in

Sec. 8.5. And, lastly, we introduce additional experiments in Sec. 8.6

and present the computational efficiency of our networks in Sec. 8.7.

8.1 Non-uniformly sampled test data

Non-uniform test data is found in typical scanned scenes. How-

ever, existing benchmarks provide data sets of uniformly sampled

models [Wu et al. 2015; Yi et al. 2016]. In order to evaluate the per-

formance of our and other state-of-the-art networks, we generated

our own data set by artificially producing non-uniform samplings

(see Fig. 8). This allows us to explicitly study the effect of sampling.

To produce such data, we start from a uniformly sampled point

cloud, and at each point perform rejection sampling, whereby the

rejection probability is computed according to one of five protocols:

UNIFORM LAMBERTIAN GRADIENT SPLIT OCCLUSION

Fig. 8. Different sampling protocols applied to the same object. Uniform is

uniformly random. Lambertian depends on the orientation, here shown as

an arrow. Locations facing this direction aremore likely to contain points. For

Gradient, the likelihood of generating a point decreases along a direction,

here shown as an arrow again. For Split, the shape is split into two halves,

here shown as a dotted line, where each part is samples uniformly random,

but with different density. Occlusion also depends on the orientation. Only

locations visible from this direction contain points.

Uniform (no rejection), Split (probability is either a random con-

stant smaller than 1 in a random half-space or 1, we used 0.25 in our

tests), Gradient (probability is proportional to the projection onto

the largest bounding box axis), Lambertian (probability is propor-

tional to the clamped dot product between the surface normal and

a fixed “view” direction) and Occlusion where probability is one

except for points invisible from a certain direction. These sampling

protocols are applied during the training and testing phase on the

data sets of the different benchmarks. Thus, each time a model is

loaded, we apply one of these sampling techniques (the one we are

currently testing) with a random seed to generate the probabilities

of each point and the view direction where applicable.

8.2 Tasks

In this section, we describe the tasks used to evaluate our networks:

classification, segmentation, and normal estimation.

Classification. This task assigns a label to each point cloud as a

whole. Its performance is measured in percentage of correct pre-

dictions (more is better). We used the resampled version of Model-

Net 40 [Wu et al. 2015] provided by Qi et al. [2017a]. This dataset is

composed of 12,311 point clouds uniformly sampled from objects

of 40 categories. The official split is composed of 9,843 models in

the train set and 2,468 in the test set. The models were sampled into

1, 024 points according to the different protocols of Sec. 8.1

Segmentation. This task assigns a label to every point. It can

be quantified by its intersection-over-union (IoU) metric (more is

better). We segment the 16,881 point clouds of ShapeNet [Yi et al.

2016], uniformly sampled from 16 different classes of objects, each

one composed of between 2 and 6 parts, making a total of 50 parts.

We use the standard train/test split for training [Qi et al. 2017b]. The

class of the point cloud is assumed to be known for this task and

used as input. We used as input of our networks the complete point

clouds, which are in the range of 1,000 to 3,000 points per object.

Normal estimation. This task computes a continuous orientation

at every point. It is analyzed by the cosine distance (less is better).

Similar to Atzmon et al. [2018], we use ModelNet 40 for evaluation,

taking 1,024 points from each model on the standard train/test split.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 235. Publication date: November 2018.

235:8 • Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski

Fig. 9. Comparison of our segmentation result for uniform (second row) and non-uniform samplings (third row) to the ground truth (first row). Non-uniform
sampling use the Gradient (first and second columns), Lambert (third and fourth columns), and Split (fifth and sixth columns) protocols.

Table 2. Performance of different methods, including ours, (rows) for dif-
ferent tasks (columns) with different measures (please see text).

Classify Segment Normals

1,2
Su et al. [2018] - 85.1 -

1
Xu et al. [2018] 92.4% 85.3 -

1
Qi et al. [2017b] 91.9 % 85.1 .47

Qi et al. [2017a] 89.2 % 83.7 -

Groh et al. [2018] 90.2 % - -

Shen et al. [2017] 90.8 % 84.3 -

Wang et al. [2018] 92.2 % 85.1 -

Li et al. [2018] 91.7 % 86.1 -

Atzmon et al. [2018] 92.3 % 85.1 .19

Klokov et al. [2017] 91.8 % 82.3 -

MC (Ours) 90.9 % 85.9 .16
1
Additional input

2
One network per class in segmentation tasks

8.3 Methods

Please see the Appendix Sec. A for training and network details.

Architecture. A different architecture is used for each task, where

we compare three variants: The first is PointNet++ [Qi et al. 2017b]

(PN++) with multi-scale grouping (MSG) , serving as a baseline. The

second is our own architecture, but without using MC convolution,

i. e., kernel-weighted averaging inside the receptive field, denoted as

AVG. The last is our architecture using our Monte Carlo convolution

(MC). Additionally, we compare to a range of methods that have

reported results for the uniform data we use.

Evaluation. We study two variants of training. The first only

trains on uniformly sampled data. The second only on non-uniformly

sampled data, i. e., a dataset produced using all sampling protocols

from Sec. 8.1 expect Uniform. Then, the trained models are tested

on all 5 sampling protocols described in Sec. 8.1. To counterbalance

the randomness introduced by the point sampling algorithm, all

measurements were averaged across five independent executions.

8.4 Results

Here we discuss the results for uniform and non-uniform sampling

as summarized in Tbl. 2 and Tbl. 3, respectively, for every task.

Classification. The results are illustrated in the first column of

Tbl. 2. Our approach generates competitive classification results for

uniform sampling, achieving 90.9 % of accuracy. More importantly,

our networks presented a robust performance on non-uniformly

sampled point clouds (see first block of Tbl. 3).

When training only on uniformly sampled point clouds, our MC
method results in better performance than PointNet++ when test-

ing on uniformly and most of the non-uniformly sampled point

clouds. Our method achieved 90.9 %, 87.6 % and 87.3 % on the Uni-

form, Split and Gradient sampling protocols, in contrast to 89.1 %,

84.4 % and 79.7 % achieved by PointNet++. For the Lambert and Oc-

clusion protocols, both networks presented a similar performance

of around 74 − 72 %. In this protocol, half the points for each model

are missing which makes the task more difficult.

Furthermore, our MC method presented slightly better perfor-

mance than PointNet++ in all protocols when training only on

non-uniformly sampled point clouds, achieving between 90.1 % and

90.6 % on the different protocols whilst PointNet++ achieved a per-

formance between 89.1 % and 89.8 %.

Lastly, when compared with the AVG network, our MC convolu-

tions obtained better performance on all protocols. The AVG network
had more difficulties to generalize, as compared with our MC net-

work, presenting severe over-fitting. In order to prevent over-fitting,

we trained the AVG network using the data augmentation strategy

followed by PointNet++ [Qi et al. 2017b].

The variance of the resulting accuracy over several executions MC
was .0367, indicating that, the observed mean accuracy is significant.

Segmentation. Results of our method are compared to the ground

truth for different models in Fig. 9. The second column of Tbl. 2

presents the performance achieved by our segmentation network on

uniform data. These are competitive compared to the state-of-the-

art methods, only slightly surpassed by PointCNN [Li et al. 2018].

Our method achieved 85.9 whilst PointCNN achieved 86.1. Please

ACM Transactions on Graphics, Vol. 37, No. 6, Article 235. Publication date: November 2018.

Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds • 235:9

Table 3. Performance comparison of different methods for three different tasks (columns) for different sampling protocols (rows). For each task, we separate

training on “uniform” (left columns) and on “non-uniform” (right columns) data, while test is always done according to a different protocol in each row.

Classification Segmentation Normal estimation

Train→ Uniform Non-Uniform Uniform Non-Uniform Uniform Non-Uniform

Test ↓ PN++ AVG MC PN++ MC PN++ AVG MC PN++ MC PN++ AVG MC PN++ MC

Uniform 89.1% 88.3% 90.9% 89.6% 90.1% 83.6 85.6 85.9 84.4 85.2 .469 .165 .161 .623 .377
Split 84.4% 83.3% 87.6% 89.1% 90.6% 82.9 84.9 84.6 84.9 85.7 .581 .220 .204 .595 .222
Gradient 79.7% 82.9% 87.3% 89.3% 90.6% 81.7 83.8 84.0 83.9 85.1 .616 .215 .201 .589 .220
Lambert 74.6% 70.1% 73.0% 89.8% 90.4% 80.7 83.1 82.7 83.8 84.9 1.61 .743 .716 1.33 .221
Occlusion 74.8% 67.9% 72.4% 89.5% 90.2% 81.3 83.4 82.7 84.3 85.5 1.49 .679 .654 1.25 .132

øoorwallunannotated table chair bathtub door sofa sink deskshelf otherfurniture

Fig. 10. Semantic segmentation results of our approach (bottom row) on ScanNet [Dai et al. 2017] compared with ground truth (top row).

note, that PointCNN is based on k-nearest neighbors convolutions,
and, as discussed in Section Sec. 2, is not the best approach to handle

non-uniformly sampled point clouds.

We state segmentation performance for non-uniform sampling

in the middle block of Tbl. 3. When trained only on uniformly

sampled point clouds, our MC network obtained better results on all

protocols than PointNet++. Moreover, when trained on only non-

uniformly sampled point clouds, although PointNet++ presented

a competitive performance, our MC network also obtained better

results than PointNet++ in all protocols.

It is also worth noticing that, as in the classification task, Point-

Net++ obtained better results when trained with non-uniformly

sampled point clouds. That indicates that the proposed sampling

protocols can also be used as a data augmentation technique.

When comparing with the AVG network, MC presented higher

accuracy on the uniformly sampled protocol (MC 85.9 vs. AVG 85.6)
and on the Gradient protocol (MC 84.0 vs. AVG 83.8). However, AVG
performed better on the Split (MC 84.6 vs. AVG 84.9), Lambert (MC
82.7 vs. AVG 83.1), and Occlusion protocols (MC 82.7 vs. AVG 83.1).
Nevertheless, the differences between these networks remain small.

Normal estimation. The results of this task are shown in the last

column of Tbl. 2. On uniform data, our network outperformed state

of the art methods, achieving a mean cosine distance of .16 and

improving thus the accuracy of .19 reported by Atzmon et al. [2018].

When tested on non-uniform data (see the last block of Tbl. 3), our MC
approach outperforms PointNet++ in all protocols when trained on

both uniformly and non-uniformly sampled point clouds. The same

network with AVG convolutions also obtained a good performance.

However, MC convolutions obtained better results.

8.5 Real-world data

We also applied our method to real-world data for a semantic seg-

mentation task from ScanNet [Dai et al. 2017]. This dataset is com-

posed of 1045 scanned rooms for training, 156 rooms for evaluation,

and 312 rooms for testing. The task requires to classify each input

point into 20 different categories as shown in Fig. 10.

We report performance as mean per-class voxel accuracy [Dai

and Nießner 2018]; a more meaningful measure than the original

ScanNet metric (overall voxel accuracy) used on PointNet++. Our

approach achieves 62.5 %, in comparison to 60.2 % of PointNet++,

50.8 % of ScanNet, and 54.4 % of the method proposed by Dai and

Nießner [2018]. When adding image information from 5 different

views, Dai and Nießner achieved 75.0%. Our network is able to gener-

ate consistent predictions on unannotated points and predict correct

classes for incorrect annotated objects on the ground truth (door in

ACM Transactions on Graphics, Vol. 37, No. 6, Article 235. Publication date: November 2018.

235:10 • Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski

Table 4. Classification accuracy

and timing for different MLP sizes.

MLP Accuracy Time

4 90.8 % 21.0ms

8 90.9 % 24.6ms

16 90.6 % 26.2ms

Table 5. Train (one epoch) and

test time for different tasks.

Train Test

Classify 454 s 24.6ms

Segment 2160 s 87.4ms

Normals 426 s 28.1ms

the second column and sofas in the third column of Fig. 10). These

point clouds have up to 600 k points, that our method can handle in

3∼5 seconds during training without splitting it into chunks.

8.6 Variants

Poisson disk hierarchy. In order to evaluate the MC convolutions

without considering the Poisson Disk hierarchy, we trained a simple

network composed of two convolutions on the normal estimation

task. First we trained it using AVG convolutions, and then using

MC convolutions. We found AVG to perform worse than MC for uni-
form (.305), split (.336) gradient (.334) and lambert protocols

(.693). Similarly, the performance of MC without PD was limited for

uniform (.282), split (.312) gradient (.310) and lambert (.662) as

well. This indicates, that at least for normal estimation, using a PD

hierarchy is essential.

MLP size. When comparing the classification accuracy at different

MLP sizes (Tbl. 4), the maximal accuracy was obtained at 8 neurons,

whilst 4 neurons achieve better timing. We decided to use 8 neurons

since it provides the best accuracy-execution time trade-off.

8.7 Computational efficiency

Tbl. 5 presents the time required to train an epoch of our networks

and the time required to compute a forward pass for a single model.

Training time is measured for one single epoch. Testing time is the

time required to process a forward pass of an individual model. Due

to our parallel implementation of all the algorithms and our acceler-

ation data structures, all networks present competitive performance.

The lowest performance is found for the segmentation network

since it requires to compute a high number of features for the initial

point set. All measurements were used an Nvidia GTX 1080 Ti.

9 LIMITATIONS

Besides the many benefits presented in this paper, the proposed

approach is also subject to a few limitations.

The main limitation is that we have to rely on KDE to obtain the

PDF, which requires to carefully select the bandwidth parameter to

obtain a good PDF approximation. In the future, we would like to

further investigate this shortcoming and inspect more advanced PDF

estimations, like the selection of σ in KDE using cross-validation,

ballooning, or otherwise automate its choice.

While our approach provides an unbiased estimate of the convo-

lution – assuming the KDE was reliable – there is a variance-locality

trade-off: on one hand, one wants a good locality, small receptive

fields and few points in them to allow for fast computation, but

these give a noisy estimate. On the other hand, a net with large

receptive fields that contain many points is slower to compute, does

not localize, but has less noisy estimates.

10 CONCLUSIONS

We have shown how phrasing convolution as a MC estimate pro-

duces results superior to the state-of-the-art in typical learning-

based processing of non-uniform point clouds, such as segmenta-

tion, classification, and normal estimation. This was enabled by

representing the convolution kernel itself using a multilayer per-

ceptron, by accounting for the sample density function, by using

Poisson disk pooling, and by realizing MC up- and down-sampling

to preserve the original sample density. Moreover, the experiments

demonstrated that our networks are more robust to over-fitting with

better generalization, being able to obtain the best performancewith-

out any data augmentation technique (something mandatory in the

classification task if the point density is not considered).

Although other methods were able to present competitive per-

formance on some tasks when trained on non-uniformly sampled

data, it is not always possible to predict the sampling of our future

input data in real-world scenarios. Our model’s ability to generalize

and become robust to unseen samplings is of key importance for

the success of this type of networks in real-world tasks.

In future work, we would like to apply our idea to inputs of

higher dimensionality, such as animated point clouds or point clouds

with further attributes, such as color. Another direction for future

research could be to consider what a non-uniform density means

when dealing with triangular or tetrahedral meshes, that typically

do not come with uniform sampling.

ACKNOWLEDGEMENTS

We would like to thank the reviewers for their comments. This

work was partially funded by the Deutsche Forschungsgemeinschaft

(DFG) under grant RO 3408/2-1 (ProLint), the Federal Minister for

Economic Affairs and Energy (BMWi) under grant ZF4483101ED7

(VRReconstruct), TIN2017-88515-C2-1-R (GEN3DLIVE) from the

Spanish Ministerio de Economía y Competitividad by 839 FEDER

(EU) funds, and a Google Faculty Research Award. We also acknowl-

edge NVIDIA Corporation for donating a Quadro P6000.

REFERENCES

Andrew Adams, Jongmin Baek, and Myers Abraham Davis. 2010. Fast High-

Dimensional Filtering Using the Permutohedral Lattice. Comp. Graph. Forum (Proc.
Eurographics) 29, 2 (2010), 753–62.

Matan Atzmon, Haggai Maron, and Yaron Lipman. 2018. Point Convolutional Neural

Networks by Extension Operators. ACM Trans. Graph. (Proc. SIGGRAPH) 37, 3
(2018).

Robert L. Cook. 1986. Stochastic Sampling in Computer Graphics. ACM Trans. Graph.
5, 1 (1986), 51–72.

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and

Matthias Nießner. 2017. ScanNet: Richly-annotated 3D Reconstructions of Indoor

Scenes. In CVPR.
Angela Dai and Matthias Nießner. 2018. 3DMV: Joint 3D-Multi-View Prediction for 3D

Semantic Scene Segmentation. (2018). arXiv:1803.10409

Yuval Eldar, Michael Lindenbaum, Moshe Porat, and Yehoshua Y Zeevi. 1997. The

farthest point strategy for progressive image sampling. IEEE Trans. Image Proc. 6, 9
(1997), 1305–15.

Simon Green. 2008. Cuda particles. NVIDIA whitepaper (2008).
Fabian Groh, Patrick Wieschollek, and Hendrik P. A. Lensch. 2018. Flex-Convolution

(Deep Learning Beyond Grid-Worlds). (2018). arXiv:1803.07289

Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J. Mitra. 2018. PCPNet:

Learning Local Shape Properties from Raw Point Clouds. Comp. Graph. Forum (Proc.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 235. Publication date: November 2018.

Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds • 235:11

Eurographics) (2018).
T. Hales, M. Adams, G. Bauer, T. D. Dang, J. Harrison, L. T. Hoang, C. Kaliszyk, V.

Magron, S. McLaughlin, T. Nguyen, and et al. 2017. A formal proof of the Keppler

conjecture. Forum Math., Pi 5 (2017).
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual Learning

for Image Recognition. (2015). arXiv:1512.03385

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. 2016. Densely Connected Convolu-

tional Networks. (2016). arXiv:1608.06993

H Kahn and A Marshall. 1953. Methods of Reducing Sample Size in Monte Carlo

Computations. 1 (1953), 263–78.

Malvin H. Kalos and Paula A. Whitlock. 1986. Monte Carlo Methods. Wiley-Interscience,

New York, NY, USA.

Roman Klokov and Victor Lempitsky. 2017. Escape from cells: Deep kd-networks for

the recognition of 3d point cloud models. In ICCV. 863–72.
Yangyan Li, Rui Bu, Mingchao Sun, and Baoquan Chen. 2018. PointCNN. (2018).

arXiv:1801.07791

Harald Niederreiter. 1992. Random Number Generation and quasi-Monte Carlo Methods.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

Emanuel Parzen. 1962. On Estimation of a Probability Density Function and Mode.

Ann. Math. Statist. 33, 3 (09 1962), 1065–76.
Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017a. PointNet: Deep

Learning on Point Sets for 3D Classification and Segmentation. CVPR (2017).

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. 2017b. PointNet++: DeepHierarchical

Feature Learning on Point Sets in a Metric Space. CoPP (2017).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional

Networks for Biomedical Image Segmentation. In Proc. MICCAI. 234–41.
Murray Rosenblatt. 1956. Remarks on Some Nonparametric Estimates of a Density

Function. Ann. Math. Statist. 27, 3 (09 1956), 832–7.
David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning repre-

sentations by back-propagating errors. Nature 323, 6088 (1986), 533.
Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. 2017. Mining Point Cloud Local

Structures by Kernel Correlation and Graph Pooling. (2017). arXiv:1712.06760

Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-

Hsuan Yang, and Jan Kautz. 2018. SPLATNet: Sparse Lattice Networks for Point

Cloud Processing. CVPR (2018).

Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat Pomerantes, and

Markus H Gross. 2003. Optimized Spatial Hashing for Collision Detection of De-

formable Objects.. In VMV, Vol. 3. 47–54.
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. 2017. O-CNN:

Octree-based Convolutional Neural Networks for 3D Shape Analysis. ACM Trans.
Graph. 36, 4 (2017), 72:1–72:11.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and

Justin M. Solomon. 2018. Dynamic Graph CNN for Learning on Point Clouds.

(2018). arXiv:1801.07829

Li-Yi Wei. 2008. Parallel Poisson Disk Sampling. ACM Trans. Graph. 27, 3 (2008),

20:1–20:9.

Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and J.

Xiao. 2015. 3D ShapeNets: A deep representation for volumetric shapes. In CVPR.
1912–1920.

Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. 2018. SpiderCNN:

Deep Learning on Point Sets with Parameterized Convolutional Filters. (2018).

arXiv:1803.11527

Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu

Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. 2016. A Scalable Active

Framework for Region Annotation in 3D Shape Collections. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) (2016).

A ARCHITECTURES

A.1 Classification

Our classification architecture is composed of several levels (Fig. 11).

Each computes a convolution on a point cloud, uses Poisson disk

sampling to reduce the number of points, and performs a down-

sampling operation to compute the features of the new points.

The convolution of the first level is a multi-feature convolution in

order to increase the number of features. However, in deeper levels,

we use a single-feature convolution for performance considerations.

In order to incorporate combinations of features in such levels, we

introduce 1 × 1 convolutions between the spatial convolutions.

Before each layer, we add a batch normalization layer to improve

training, and a ReLU layer to introduce non-linearities. Moreover,

similar to Dense blocks [Huang et al. 2016], we incorporate skip links

between the output of the down-sampling layers and the output of

the spatial convolution.

The classification network generates a point cloud hierarchy of

four levels by iteratively using Poisson Disk sampling on the input

point cloud with radius .1, .4, and
√
3 (we use the original point

cloud as the first level). The last level (4) is composed of only a single

point since the Poisson Disk radius used to compute it was equal to

the diagonal of the bounding box.

The final output of the network is a feature vector describing the

model which is processed by an MLP with two hidden layers.

In order to increase the robustness of the classification under

poor samplings, this architecture was replicated in two different

paths, which generate different probability vectors that are added

together to create the final class probabilities. However, the second

path is composed of only two layers and works directly with the

second level of the point cloud hierarchy.

Training. We use cross-entropy loss with an Adam optimizer, a

batch size of 32, and an initial learning rate of .005. The learning

rate is divided by half after every 20 epoch. To prevent over-fitting

we used a drop-out probability of .5 in the final MLPs and a drop-out

probability of .2 for the point features before each layer. Moreover,

we selected a point from the dataset with a probability of .95, which

varied the input points during training. In order to obtain a network

robust to models with different samplings, during training, we de-

activate one or none of the two paths of the network. The network

was trained for 200 epochs.

A.2 Segmentation

This network computes a four-level point hierarchy by iteratively

applying our Poisson disk sampling algorithm with radius .025, .1,

and .4. It makes use of an encoder-decoder architecture (Fig. 11).

Since the class of the model is assumed as input, as in Point-

Net++ [Qi et al. 2017b], we concatenate a one-hot vector containing
this information with the output of our network. This information

is processed by an MLP composed of two hidden layers with 512 and

256 neurons, and 50 outputs, which generates the parts probabilities.

Training. We trained using a cross-entropy loss with an Adam

optimizer and a batch size of 32. We used an initial learning rate of

.005 which was scaled by .2 every 20 epochs. As in the classification

networks, we used a drop out rate of .5 in the final MLP and .2

before each layer. Since in this task we used the complete point

set as input, we used a probability of .2 to drop out a point during

training. We trained our network for 90 epochs.

A.3 Normal estimation

Our network has an encoder-decoder architecture which generates

a point hierarchy of three levels by iteratively applying our Poisson

Disk Sampling algorithm with radius .1 and .4.

Training. We used a cosine distance loss using an Adam optimizer

and a batch size of 16. Initially, we used a learning rate of .005 which

we decreased by half every 20 epochs. We trained our network for

160 epochs.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 235. Publication date: November 2018.

235:12 • Pedro Hermosilla, Tobias Ritschel, Pere-Pau Vázquez, Àlvar Vinacua, and Timo Ropinski

1 1 0.1

64 128

64

1 2 0.2128

2 2 0.4128

256 512

2 3 0.8512

3 3 1.2512

1024 2048

3 4 √32048

[1024, 512, 40]

128 128

512 512

2 2 0.4128

128 512

2 3 0.8512

3 3 1.1512

1024 2048

3 4 √32048

[1024, 512, 40]

512 512

+

1 1 0.03

128 256

128

1 2 0.05256

2 2 0.1256

512 512

2 3 0.2512

3 3 0.4512

1024 1024

3 4 0.81024

4 4 √31024

3 2 0.2

3 3 0.41024

3072 1024

4 3 √32048

1024

1536 512

3 1 0.210242 1 0.05512

1664 512

1 1 0.03512

[512, 256, 50]

Object
Class

1 1 0.1

32 64

32

1 2 0.264

2 2 0.464

128 128

2 3 0.8128

3 3128

2 1 0.2

2 2 0.4128

384 128

3 2256

128

√3 0.8

160 64

1 1 0.13

Classi�cation Normal estimationSegmentation

2 3 0.4128 Radius
Output

point features

Spatial convolution

Level point hierarchy
center convolutions

Level point hierarchy
sample feature functions

256 512

1x1 convolution

Input
features

Output
features

MLP

1st & 2nd
hidden layer

[512, 256, 50]
Output
layer size

Point Hierarchy
[0.0, 0.1, 0.4, √3]

Point Hierarchy
[0.0, 0.1, 0.4]

Point Hierarchy
[0.0, 0.025, 0.1, 0.4]

Semantic Segmentation
Point Hierarchy

[0.0, 0.1, 0.2, 0.4, 0.8]

2 2 0.4

128 128

64

2 3 0.4128

3 3 0.8128

256 256

3 4 0.8256

4 4 1.6256

512 512

4 5 1.6512

5 5512

4 4 1.6512

1024 512

5 4512

[256, 128, 21]

1 2 0.164

5.0

1.6

1024 512

512 256

4 3256 0.8

512 256

3 3256 0.8

256 128

3 2128 0.4

512 128

4 2128 0.8

1024 128

5 2128 1.6

2 2 0.4256

512 256

640 256

2 1 0.1256

2 2 0.1512

Fig. 11. Network architectures used for the classification, segmentation, normal estimation, and semantic segmentation tasks. The three different building

blocks used to generate our networks are described at the bottom of the figure: 1 × 1 convolutions, which reduce or increase the number of point features

by combining them; Spatial convolutions, which use a level of the point hierarchy as the center of the convolution and another level to sample the feature

functions in order to generate a set of new point features; And multi-layer perceptrons (MLP), which are composed of three fully-connected layers.

A.4 Semantic segmentation

For the semantic segmentation task on real-world datasets, we use

a similar architecture to the one used for the segmentation task.

However, since the datasets used in this task are complete rooms of

varying size, this network architecture has some differences with the

segmentation network (see Fig. 11). The most important difference

is that, due to the different sizes of the rooms, we define the radius

of our operations in meters, in contrast to the segmentation network

in which were defined relative to the bounding box. Moreover, since

the point clouds for this task are composed of a higher number of

points, the network computes a point hierarchy of 5 levels instead

of 4 by applying Poisson Disk sampling with radius .1, .2, .4, and

.8 meters. Lastly, in order to reduce the number of operations and

the memory consumption, we do not compute a convolution in the

first level of the hierarchy. Instead, we use a pooling operation to

compute features in the second level based on the input point cloud.

Training. We trained using a cross-entropy loss with an Adam

optimizer. As in the segmentation task, we used an initial learning

rate of .005 which was scaled by .2 every 20 epochs. In order to

prevent over-fitting, we used a weight decay factor of 0.0001 and

a drop out rate of .5 in the final MLP and .2 before each layer.

Moreover, we used a probability of .15 to drop-out a point during

training. We trained our network for 100 epochs.

Since the models on the dataset have a varying number of points,

in the range of [10 k, 550 k], instead of defining a fixed number of

rooms per batch we defined a fixed number of points per batch.

Each train step, we select as many rooms as possible until we fill

the budget of 600 k points.

Furthermore, the number of points per class is not equally dis-

tributed (most of the points belong to the classes floor and wall).
In order to train a model which is able to classify points for all the

classes and not only the most common, we weighted the losses of

each individual points based on the class. Moreover, in contrast to

previous approaches, we consider all the unannotated points in our

input point clouds. However, the loss generated by these points are

weighted by 0 and they are not considered during the computation

of the performance metric.

ACM Transactions on Graphics, Vol. 37, No. 6, Article 235. Publication date: November 2018.

