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Abstract

In recent years, the study of exoplanetary atmospheres has flourished well be-

yond expectations. Current data are unveiling the key properties of hot massive

planets orbiting very close to their stars, but sometimes results are not easy to in-

terpret due to systematics affecting the data and degeneracies across the parameter

space. The focus of my thesis is the study of exoplanetary atmospheres through

spectroscopic observations using space and ground-based observatories.

The first part of the thesis describes the development of a new pipeline to anal-

yse the low-resolution exoplanet data recorded with the WFC3 (Wide Field Camera

3) on-board the Hubble Space Telescope (HST). The focus is on a particular dataset:

HAT-P-32b which is one of the most inflated Hot-Jupiters to date. Two different

approaches are presented: a more standard parametric method and the use of a ma-

chine learning technique such as independent component analysis (ICA) applied

for the first time on HST dataset. Water vapour and possibly more exotic metal-

oxides such as VO and TiO are found in the atmosphere of HAT-P-32b. Further

observations at longer wavelengths are needed to confirm these and other chemical

compounds.

The second part describes the development of a new pipeline to analyse

high resolution datasets recorded with ground based instruments (VLT/CRIRES,

TNG/GIANO-B). High-resolution spectroscopy (HRS) allows to resolve molecu-

lar bands into individual lines. Using radial velocity measurements and techniques

such as Cross-Correlation Function, it is possible to separate three physically dif-

ferent sources: telluric absorption, stellar absorption and planetary transmission

spectrum, which are normally entangled. The standard method used in the litera-

ture to analyse HRS data consists on applying corrections for the airmass and for

the stellar signal and the use of ad-hoc masks to eliminate residual, strong features.

The analysis method that I have developed is based on a novel use of Principal

Component Analysis (PCA) that aims to maximise the planetary signal without any

manual corrections.

The two approaches are highly complementary and may be used to constrain
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the thermal structure and the composition of the planetary atmosphere.
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Chapter 1

Introduction

“A journey of a thousand miles begins with a single step, even the

longest and most difficult ventures.”

– Laozi - 550 BC

Young Ellie: Dad, do you think there are people on other planets?

Ted Arroway: I don’t know, Sparks. But I guess I’d say if it is just us...

seems like an awful waste of space.

This was the opening of a movie which drastically marked my childhood. Con-

tact in 1997 was released worldwide and quickly became a cult movie. Obviously, it

was not the first work outlining the space observation and exploration nor was it the

last. Since the dawn of humankind we have been looking at the sky with passionate

curiosity, questioning if we are alone in the universe. After millions of years we still

have this conundrum in mind. However, we have started moving some steps towards

the answer. Finally, in 1992, the first exoplanet was discovered. The millisecond

pulsar PSR1257+12, has shown a non regular rotational period due to the presence

of small celestial bodies gravitationally bounded (Wolszczan & Frail, 1992). This

was a breakthrough result at that time. Three years later Mayor & Queloz (1995)

discovered a planetary system around a solar-type star. 51Peg is indeed a G2 star

(5793 K) like our Sun. The orbiting planet (51Peg b) is an Hot-Jupiters, a kind

of planet that is not present in our solar system. 51Peg b is a Jupiter-like planet

in terms of radius and mass, but it is ‘Hot’ (>1000 K) due to its small distance
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from the host star. Since these discoveries everything has changed and the era of

extra-solar planets (exoplanets) has begun.

Recent studies have shown that each star of our galaxy, the Milky Way, sta-

tistically hosts at least one planet (Cassan et al., 2012). Given that, our galaxy is

populated by billions of stars, billions of planets are then waiting to be discovered.

If we imagine that our galaxy is just one among millions or even billions of galaxies,

the total number of the planets in our universe probably is uncountable.

A quarter of century after the first exoplanet discovery, we count approximately

4000 exoplanets in our catalogues. These planets are different in terms of physical

and chemical properties. We can see planets with the same dimension of the Earth,

planets a few times bigger than the Earth, Jupiter-like planets and planets much

bigger than our gas giants. To this, a great variety of temperatures seems to be

present (Fig. 1.1).

Figure 1.1: The graph depicts the exoplanets population updated at October 2018.

A long-term goal is to classify exoplanets in the same way we classify stars but

we have no clues today whether a planetary analogue of the H-R diagram (Russell,

1910; Hertzsprung, 1912) makes sense or not.

Fig. 1.2 shows the number of planets detected per year and with different

techniques. The most successful methods are radial velocity and transit.
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Figure 1.2: Cumulative number of exoplanets detection per year and per dif-

ferent techniques. Figure source: https://exoplanetarchive.ipac.

caltech.edu/exoplanetplots/.

Both transit and radial velocity provide the orbital period of the planet. The

measurement of the planetary radius through transit observations (Charbonneau

et al., 2000; Henry et al., 2000) combined with the measurement of the mass with

radial velocity (Mayor & Queloz, 1995; Mazeh et al., 2000), allows a preliminary

estimate of the planetary bulk density.

Finally, most of the techniques we use today are indirect detections because

they rely on the observations of effects on stars caused by the presence of planets.

The only exception is the direct image method which is the only direct method.

1.1 Radial Velocity
The first exoplanet around a main sequence star was 51Peg b (Mayor & Queloz,

1995), and it was discovered using radial velocity technique. This method consists

on observing periodic Doppler shifts in the spectrum of a star due to the presence

https://exoplanetarchive.ipac.caltech.edu/exoplanetplots/
https://exoplanetarchive.ipac.caltech.edu/exoplanetplots/
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of an orbiting planet. Since the planet and the star orbit around a common centre of

mass (centre of gravity of the system). When we observe along our line of sight we

might detect (if the inclination of the system is not face-on, i.e. i = 0◦) the stellar

motion through the Doppler shifts of the star spectrum (Fig. 1.3). Of course, due to

the difference in mass between the star and the planet this effect is tiny on the star

spectrum.

Figure 1.3: The cartoon shows the principle behind the radial velocity method. Star

and planet orbit around a common centre of gravity. The wobble of the star results

in a Doppler shift according to the system inclination along the observer’s line of

sight.

The explanation of the Doppler effect was firstly included within the special

relativity (Einstein, 1905), regarding a photon moving in a flat space time. The

definitive description of the effect was finally comprised in the general relativity

taking into account massive celestial bodies (Eq. 1.1) (Lovis & Fischer, 2010)

λ = λ0
1+ 1

c k ·v
1− Φ

c2 − v2

2c2

(1.1)

where λ0 is the wavelength of an emitted photon in the rest frame of the source, λ is

the wavelength recorded by an observer moving with respect to the emitter, v is the
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velocity vector of the source relative to the observer, k is the unit vector pointing

towards the source from the observer, Φ is the Newtonian gravitational potential at

the source (Φ = GM/r at a distance r of a spherically source M) and c is the speed

of light.

However, if the intensity of the velocity vector v is very low compared to the

speed of light c (e.g. exoplanets’ orbital velocities) we can well describe observa-

tions by using a classical approach, neglecting the relativistic terms. In this case

Eq. 1.1 can be reduced to the more familiar classical expression of the Doppler

shift (Lovis & Fischer, 2010): let v? be the radial velocity of the star around the

system barycentre, i the orbital inclination of the system plane with respect to the

observer’s line of sight, c the speed of light and λ the observational wavelength,

then the shift is calculated as follows

∆λ = λ
v? · sin(i)

c
(1.2)

For a Sun like star and a close-in Jupiter-like planet the radial velocity is typi-

cally ∼100 m/s. This value drops to a few cm/s if we consider an Earth-like planet

around a Sun-like star.

From Eq. 1.2 we derive the projection of the orbital velocity of the star along

the line of sight K? = v? sin(i). This allows to calculate the lower limit of the mass

of the planet, resolving Eq. 1.3 (Lovis & Fischer, 2010), with the inclination of the

planetary orbit being unknown.

m3
p sin3(i)

(M?+mp)
2 =

PK3
?

2πG

(
1− e2)3/2

(1.3)

In the last equation mp is the mass of the planet, M? is the mass of the star that

can be determined from stellar models and observations, P is the orbital period and

can be calculated from the periodicity of the Doppler shifts, e is the eccentricity of

the planet’s orbit and finally, i is the inclination of the orbital plane, such that i= 90◦

is edge-on and i = 0◦ is face-on with respect to the line of sight of the observer.
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1.2 Transit
The first dedicated mission to discover exoplanets using the transit technique was

CoRoT (Convection, Rotation and planetary Transits) (Auvergne et al., 2009). It

was launched in 2006 and was operational until 2013 (Barge et al., 2008; Alonso

et al., 2008; Csizmadia et al., 2015). A substantial number of exoplanet detections

through transit were also made using ground-based facilities e.g. HATNeT (Bakos,

2018), SuperWASP (Street et al., 2003) and TRAPPIST (Jehin et al., 2011).

From Fig. 1.2 we note that the number of planets rocketed in 2014 and in

2016. This is due to the Kepler’s double program data releases (Kepler main mission

and K2) (Burke et al., 2014; Rowe et al., 2015; Coughlin et al., 2016). Kepler

was launched in 2009 and it was designed to discover Earth-size planets orbiting

other stars in our galaxy (Borucki et al., 2003). Kepler observed continuously main

sequence stars in a fixed field of view. In 2013 due to a failure of two reaction

wheels the telescope was unable to continue the primary mission and in 2014 the K2

mission (Kapler2) (Howell et al., 2014) has began using the remained capabilities

of the spacecraft.

The idea behind the transit technique is to observe the luminosity of the star

through time and study its variability. The luminosity of a star can vary for different

reasons, first of all, intrinsic variability and activity. However, it could also be due

to the presence of a planet if the variability follows a particular pattern. Similarly

to what happens when Venus crosses in front of the Sun’s disc, the luminosity of a

star drops when a planet passes in front of it (Fig. 1.4).

In Fig. 1.4 with L1 we define the luminosity of the star before the transit, i.e.

when the planet is outside the projected disc of the star, and with L2 we define the

luminosity of the star during the transit, i.e. when the planet passes in front of the

star. We can then write:

L1 = f? ∗πR2
?

L2 = f? ∗π
(
R2
?−R2

p
)

where f? is the flux of the star, R? and Rp are respectively the radius of the star and
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Figure 1.4: Geometry of the transit method with relative light-curve. Fig-

ure source: https://heasarc.gsfc.nasa.gov/docs/tess/

primary-science.html.

the planet. The dip in the light-curve (Fig. 1.4) depends on the type of planet and

star

L1−L2

L1
=

(
Rp

R?

)2

(1.4)

From Eq. 1.4, we can estimate the radius of the planet Rp in units of stellar radii.

1.3 Constraining the bulk composition through den-

sity
Using the results derived from radial velocity and transit methods, described in pre-

vious sections, it is possible to estimate the mean density of a planet. However, the

mass-radius relationship has degenerate solutions in terms of bulk composition and

planetary characteristics. The iconic example is offered by Earth and Venus which

are twin planets in terms of radius and mass but they are very different worlds.

Venus is inhospitable with a thick atmosphere made of CO2 and sulphuric acid

clouds due to a combined effect of volcanism and photochemical processes. Venus’

https://heasarc.gsfc.nasa.gov/docs/tess/primary-science.html
https://heasarc.gsfc.nasa.gov/docs/tess/primary-science.html
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surface temperature may reach 700K (Walker, 1975). On Earth, molecular nitro-

gen and oxygen are the main molecules in the atmosphere and the temperature is

appropriate for life.

1.3.1 Gaseous and icy planets

Thanks to the explorations and studies conducted in our solar system we know that

our giant planets are mainly composed of hydrogen and helium with other chemical

compounds, some condensed due to low temperature (Atreya et al., 2003). Giant

exoplanets are also expected to have similar composition, but due to the higher

temperature (see Fig. 1.1), chemical species such as H2O, CO, CO2, CH4, NH3 are

present in gas phase.

Fig. 1.5 shows the mass-radius relation for Jupiter-like planets. From this

graph it is not possible to infer the precise interior structure and bulk composition.

Figure 1.5: Mass–radius relation for giant planets, updated at Feb 2015. Figure

adopted from: Fulton et al. (2015).
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To start with, we do not know the age of these planets. We expect younger planets

to be more inflated. More in general, giant exoplanets appear to be more puffed-up,

but the reason for this is not well understood. A number of explanations have been

proposed in the literature, e.g. Batygin et al. (2011), Wu & Lithwick (2013).

1.3.2 Terrestrial planets

Our direct knowledge about terrestrial planets is limited to the four examples in our

solar system plus the giant planets moons. In spite of this, Super-Earths (not present

in our solar system) are likely to be the most common type of planets in our galaxy

(Fressin et al., 2013; Fulton et al., 2017). They are typically bigger than the Earth

(a few Earth masses up to ∼10 M⊕).

Fig. 1.6 shows the mass-radius relation for planets with masses up to 20 M⊕.

Explaining the diversity that we observe is not easy because it is the result of the

combination of a variety of factors (e.g formation and evolution processes). For

example, super-Earths may form in the same way as giant planets but then due to the

interaction with parent star, they could lose part of the H/He envelope (Leitzinger

et al., 2011; Owen & Jackson, 2012; Owen & Wu, 2013; Hansen & Zink, 2015).

According to other models super-Earths could form later in the lifetime of the disc

and they could accrete heavier elements (Lee & Chiang, 2016). The final result of

what we observe depends also where the planets formed in the disc.

In the early history of the planet, volcanic activity can transport from the inte-

rior to the atmosphere heavy sulphur-, carbon- and silicates-based molecules. Im-

pacts with meteorites or comets could contaminate the original atmospheric chem-

istry (Frei & Rosing, 2005; Moynier et al., 2009; Kleine et al., 2009; Willbold et al.,

2011). Finally, in the case of Earth, life modified dramatically the atmospheric

composition. We can speculate that a similar course of event might occur on other

planets.
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Figure 1.6: The graph depicts mass–radius relation for planets with masses <20 M⊕,

updated at January 2018. Figure source: Damasso et al. (2018).

1.4 Thesis outline

The classification of planets is expected to be even less straightforward than our

understanding of stars. Many effects have to be taken into account. All of them

combined create a complex picture that is difficult to interpret if we focus on a

small number of objects.

The focus of this Thesis is the development and the discussion of data analy-

sis algorithms used to study space and ground observations to unveil exoplanetary

atmospheres, their composition and their general characteristics.

In chapter 2, I will give a technical and detailed discussion on the characterisa-
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tion of the planetary atmospheres through transit spectroscopy from space satellites

and radial velocity from ground observatories.

In chapter 3, I will discuss the role played by machine and deep learning

algorithms applied to data analysis.

In chapter 4 the development of a new pipeline will be described. This is used

to reduce the low-resolution exoplanet data recorded with the WFC3 (Wide Field

Camera 3) on-board the Hubble Space Telescope (HST). The focus is on a particular

dataset (i.e. HAT-P-32b) related to one of the most inflated Hot-Jupiters to date.

In chapter 5, I will present the data analysis of high-resolution ground ob-

servations (taken by VLT/CRIRES) and the technical details on a new developed

pipeline will be discussed. Then, I will present the application of such pipeline

to two datasets: HD189733b and HD209458b. Finally, I will show the work in

progress on a different instrument (i.e. TNG/GIANO-B).

Chapter 6 is a brief summary of the work presented in this thesis and discusses

future projects.
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Chapter 2

Atmospheric characterization

“The important thing is not to stop questioning. Curiosity has its

own reason for existence. One cannot help but be in awe when he

contemplates the mysteries of eternity, of life, of the marvellous

structure of reality.”

– Albert Einstein - 1955

It is clear, from chapter 1, that the exoplanets population is more variegated

than we have thought for years. To answer fundamental questions, like:

• how have they formed?

• what are exoplanets made of?

• how have they evolved since their formation?

• how can we explain what we observe today?

the chemistry of their atmospheres can provide a powerful diagnostics.

There are three main techniques to study and characterise exoplanetary atmo-

spheres. The first one is the well known and established transit spectroscopy, thanks

to which today we have the largest number of results. Another method relies on tak-

ing an image of the target planet, i.e. direct imaging. Finally – inheriting Doppler

observations from the radial velocity technique and combining it with transit spec-

troscopy – high dispersion spectroscopy is bringing some valuable insights into the

atmospheric studies. These techniques rely on absorption/emission/reflection of the
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particles, atoms and molecules present in the atmosphere to unveil aspects of these

faraway worlds.

2.1 Transmission spectroscopy
Absorption occurs when the light interacts with a gas and the temperature of the

emitter is higher than the one of the absorber. The same phenomenon takes place

when the planetary atmosphere absorbs part of the starlight.

At zero-order approximation planetary atmospheres can be modelled as an an-

nulus surrounding the planetary body of radius Rp which is always opaque (i.e. op-

tically thick). The annulus that absorbs the incoming starlight has a radial height of

a few scale heights (generally four or five in the IR, (Tinetti et al., 2013)). The scale

height H is equal to kT/µg, where k is the Boltzmann’s constant, T is the equilib-

rium temperature of the planet, µ is the mean molecular weight of the atmosphere

and g is the planet’s gravity. A µ ∼ 2 a.m.u. is a typical value for Jupiters-like

planets i.e. mainly composed of H/He. The amplitude of the absorption can be

approximated as (Tinetti et al., 2013)

δ ∼ 5 ·
(

2RpH
R2
?

)
(2.1)

where Rp and R? are respectively the radius of the planet and the radius of the star.

The amplitude is especially large for hot planets characterised by light atmospheres

and low gravity.

If we want, however, to determine more precise information about the compo-

sition of the atmosphere and the atomic and molecular abundances we cannot rely

on Eq. 2.1. Given the geometry of the event (Fig. 2.1), the absorption/filtering of

the light is described by the Beer-Bouguer-Lambert law:

I(λ ,z) = I0(λ )e−τ(λ ,z) (2.2)

where λ is the wavelength, τ is the optical depth and I(λ ,z) and I0(λ ) are respec-

tively the intensity of the light after the absorption and the incoming one. Note that

the optical depth is function of the altitude, z, and to calculate the total absorption
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Figure 2.1: Geometry of transmission spectroscopy. Source of the figure: Hollis

et al. (2013).

caused at one particular wavelength, A(λ ), we need to integrate the atmospheric

opacity, 1− e−τ(λ ,z), multiplied by the differential ring element of the projected

atmosphere, 2π(Rp + z)dz, for all the z values:

A(λ ) = 2π

∫ zmax

0
(Rp + z)

(
1− e−τ(λ ,z)

)
dz (2.3)

where zmax is generally five scale heights of the planetary atmosphere. Finally, the

total amplitude of the absorption per wavelength, δ (λ ), is calculated by adding the

absorption per wavelength, A(λ ), on top of the optically thick core of the projected

planet, πR2
p, divided by the projected disk of the star πR2

?:

δ (λ ) =
πR2

p +A(λ )
πR2

?
(2.4)

where Rp and R? are the planetary radius and the stellar radius, respectively.
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2.2 Emission and reflection spectroscopy
Another way to study the composition of a gas is to observe its proper emission. In

a planetary atmosphere, this is a direct measure of the vertical and thermal structure

and its chemical composition. At zero-order approximation the amplitude of the

emission of the planetary atmosphere with respect to the host star emission can be

expressed by using the black body law (i.e. Plank function) (Tinetti et al., 2013)

η(λ ) =

(
Rp

R?

)2 Bp(λ ,Tp)

B?(λ ,T?)
(2.5)

where λ is the specific wavelength of the observation, Bp and B? are the black body

laws for the planet and star respectively, Tp and T? are the temperatures of the planet

and the star.

For a more detailed discussion on the emission signal of a planetary atmo-

sphere, we need to consider the absorption and emission processes ongoing in the

atmosphere itself. For a non-scattering atmosphere in local thermodynamic equilib-

rium (good approximation in IR light), a beam of light of intensity I(λ ) emitted by

the planet can be described by using the Schwarzschild’s equation (Eq. 2.6 or 2.7)

(Böhm-Vitense, 1992; Sportisse, 2009)

dI(λ ) =−(I(λ )−Bp(λ ,Tp))k(λ )ρdz (2.6)

I(λ ,z) = I0(λ )e−τ(λ ,z)+
∫ zmax

0
Bp(λ ,Tp(z))e−τ(λ ,z)k(λ )ρdz (2.7)

where k(λ ) is the absorption coefficient, ρ is the density of the gas, z is the altitude

of the atmosphere, Bp(λ ,Tp(z)) is the Planck function of the planetary atmosphere

and τ is the optical depth.

The first term on the right-hand side of the equal sign, on both Eq. 2.6 and

2.7, is the Beer-Bouguer-Lambert law and it describes the absorption process that

the light emitted by the source undergoes in the atmosphere. The second term is the

source function which describes the emission of thermal radiation along the optical

path. Moreover, it also unveils insights on the vertical thermal structure of the
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atmosphere given by the presence on the temperature vertical profile, Tp(z) inside

the Planck function.

Let us consider two cases: (a) τ(λ ,z)� 1, i.e. the atmosphere has a small

optical depth. This is the case of optically thin atmosphere. In this case, the source

function in Eq. 2.7 is predominant with respect to the absorption term. (b) τ(λ ,z)�

1, i.e. optically thick atmosphere. In this case, the absorption term is larger than the

source function and on the contrary, we expect to observe absorption lines (Böhm-

Vitense, 1992).

For a more general discussion covering a broader interval of wavelength (not

limited to solely IR) we need to take into account also scattering processes. The

effect of such processes is to change only the direction of a photon. Therefore, we

need to add two terms to Eq. 2.6 that takes into account the incoming flux of the star

scattered and the scatter of the light coming from deeper layers of the atmosphere

(Liou, 2002; Sportisse, 2009)

dI(λ )
dz

=−I(λ )+ωaBp(λ ,Tp(z))+
ωd

4π
F?e−τP(Ω,Ω′)+

+
ωd

4π

∫
P(Ω′′,Ω′′′)I(λ ,Ω′′′)dΩ

′′′
(2.8)

where ωa and ωd are respectively the absorption and scattering albedos, Ω is the

solid angle, P(Ω,Ω′) and P(Ω′′,Ω′′′) are the phase function which describe the

probability of a photon to be scattered in a given direction (i.e. as a function of

incident and scattering solid angle), I(λ ,Ω′′′) is the intensity of the light scattered

toward the solid angle Ω′′′ and F? is the incoming flux from the star.

Three scattering regimes are usually distinguished: the Rayleigh scattering, the

scattering represented by the optical geometry’s laws and the so-called Mie scat-

tering (Sportisse, 2009). To determine which of the three aforementioned regimes

is stronger than others, we need to compare the characteristic size, d, of a molecule

with the wavelengths, λ , of the observation. (a) if d� λ the Rayleigh scattering is

predominant; (b) if d� λ we are in the optical geometry scattering regime, finally,

(c) if d ' λ the Mie scattering regime takes place (Sportisse, 2009).

Finally, another way to study the properties of planetary atmospheres is to
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consider the reflection spectroscopy. The light emitted by the host star not only is

absorbed (Sec. 2.1) but in part it is also reflected by the planetary atmosphere. The

amount of reflected light depends on the reflectivity of the planet, which is called

albedo, a. At zero-order the reflected component is given by (Tinetti et al., 2013):

η(λ ) =

(
Rp

R?

)2

aζ

(
R2
?

D2

)
F?(λ )
F?(λ )

=

(
R2

p

D2

)
aζ (2.9)

where a is the albedo, D is the semi-major axis, ζ is the fraction of the projected

planet disk illuminated by the star and Rp and R? are respectively the planetary and

stellar radii.

2.3 Spectral modelling
To interpret the spectra obtained analysing the data presented in the following chap-

ters model spectra needed to be synthesised. The processes described in Sec. 2.1

and 2.2 are implemented in the T -REx code (Waldmann et al., 2015b,a) which is a

fully Bayesian inverse atmospheric retrieval framework. This can work in forward

and in inverse mode. The former simulates the transmission or the emission spec-

trum of a planetary atmosphere given the chemical constituents of the atmosphere

and physical parameters of the target system. The latter, on the other hand, is able

to interpret an input spectrum, obtaining information on the chemical composition,

in particular, the abundances of the constituents and orbital and physical parameters

of the target system.

In transmission spectroscopy the key information is carried by the light after

being filtered by the planetary atmosphere. The atmospheric spectrum model gener-

ated by T -REx describes the transit depth, (Rp/R?)
2, as a function of wavelength.

In emission spectroscopy the atmospheric model is expressed as ratio of the fluxes

of the planet and the star (Fp/F?).

On the processes reported in Sec. 2.1 and 2.2, the calculation of the optical

depth, τ(λ ,z), is the most complicated. This term reflects the geometrical structure

of every single different molecular species considered in the atmosphere. The cross-

sections, σ(λ ), used to calculate the optical depth, τ(λ ,z), have been computed
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from molecular line lists obtained from ExoMol (Tennyson et al., 2016), HITRAN

(Rothman et al., 2009) and HITEMP (Rothman et al., 2010). T -REx is designed to

work both with transmission or emission cross-sections. The optical depth, τ (λ ,z),

is given by

τ (λ ,z) =
Nm

∑
m=1

2
∫ l(z)

0
ςm(λ )χm(z)ρN(z)dl (2.10)

where m represents each absorbing molecule, Nm is the total number of molecules,

ςm(λ ) is the absorption cross-section, χm(z) is the mixing ratio, ρN(z) is the num-

ber density, and l(z) is the optical path length in the atmosphere of the planet. The

main molecular line lists considered in T -REx are relative to: H2O (Barber et al.,

2006), CO (Rothman et al., 2010), CO2 (Rothman et al., 2010), CH4 (Yurchenko

& Tennyson, 2014), NH3 (Yurchenko et al., 2011), VO (McKemmish et al., 2016),

HCN (Barber et al., 2014), and TiO (McKemmish et al., in prep). Inside T -REx

calculations, effects produced by Rayleigh scattering, the collision-induced absorp-

tion of H2-H2 and H2-He and presence of clouds are also included (Waldmann et al.,

2015b,a; Borysow et al., 2001; Borysow, 2002; Lee et al., 2013).

2.4 Transit method
As introduced in Sec. 1.2, a transit phenomenon occurs when a celestial body passes

in front of another one with respect to our line of sight. In the solar system, transits

of Venus and Mercury have been observed. These are special events since they are

the closest that we can observe. These transits not only provide information on the

planets but also insights into the photosphere and corona of our Sun (Mura et al.,

2009; Chiavassa et al., 2015; Reale et al., 2015).

The same event can occur when the orbital plane of an exoplanet is aligned

with our line of sight. As commonly reported in literature (Winn, 2010), when a

planet crosses in front of the disk of its host star, we call this event primary transit.

On the contrary, a passage behind the star with consequent occultation of the planet

is called secondary transit or eclipse. In both cases, information on the planetary

atmosphere are extracted from the differences in the flux recorded before one of
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the two events and in the middle of the event itself. During the primary transit

the observed planet shows us its night side and terminator, on the contrary the day

side is shown in proximity of the eclipse. In between these two events, the planet,

while orbiting its host star, progressively changes the visible phase. The modulation

observed as function of its orbital position is known as phase-variations or phase-

curve (Fig. 2.2) (Knutson et al., 2007b, 2009b; Laughlin et al., 2009; Cowan et al.,

2012; Demory et al., 2016; Krick et al., 2016).

Figure 2.2: Phase-curve of the hot super-Earth 55 Cancri e (Demory et al., 2016).

During the primary transit we can use the calculations described in Sec. 2.1

to obtain information on the composition of the atmosphere and on the abundance

of its chemical constituents. The discussion presented in Sec. 2.1 is only valid for

those planets that transit their host stars.

The eclipse and the phase-curve variation can be studied with the equations

presented in Sec. 2.2 and they can provide insights into the thermal structure and

chemical compositions of planetary atmospheres. Phase-curve observations are

not limited to transiting planets. Orbits inclined more than 85◦ are also expected

to show phase-variation and thermal emission (Harrington et al., 2006; Crossfield

et al., 2010).
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2.4.1 Primary transit observations

This method has provided the largest number of results. Observing a transit at

different wavelengths allows us to probe different parts of a planetary atmosphere.

Observations in the UV range show the behaviour of the upper atmosphere

and the interaction with stellar radiation (Reale et al., 2015). We can observe if a

planetary atmosphere is in equilibrium or in hydrodynamic escape regime (Vidal-

Madjar et al., 2003; Ben-Jaffel, 2007; Linsky et al., 2010). Detecting ions suggests

in fact that these species are moving out up to the Roche lobe and beyond (Vidal-

Madjar et al., 2004, 2013).

Moving to longer wavelengths, i.e. optical range, the transit technique shows

the presence of atomic species. In particular, the attention is driven on sodium and

potassium which have strong absorption/emission lines (sodium resonance doublet

at 5893 Å, K line at 7665 Å) (Charbonneau et al., 2002; Redfield et al., 2008;

Huitson et al., 2012; Sing et al., 2011, 2015) (see Fig. 2.3 and Fig. 2.4). The peak

values are related to the abundances of sodium and potassium, but the shape of the

features (wing shape) is linked to the presence of clouds or hazes, which could mask

part of these features.

Figure 2.3: Detection of potassium in the atmosphere of XO-2b (Sing et al., 2011).



48 Chapter 2. Atmospheric characterization

At even longer wavelengths in the near-IR and mid-IR molecules are ac-

tive due to their roto-vibrational energetic bands. Space observations have been

performed by using Spitzer Space Telescope (SST) and Hubble Space Telescope

(HST). HST/WFC3 performs observations in the near infrared (1.1−1.7µm), while

SST/IRAC provided observations at longer wavelengths in four photometric chan-

nels (3.6, 4.5, 5.8 and 8.0µm). The majority of the planets observed to date are

hot and gaseous, as they are the easiest targets to probe. Transit observations in

the IR have started to provide important insights into the chemical composition and

structure of the atmospheres of gas giants orbiting very close to their star. Com-

mon atmospheric components detected include water vapour (e.g. Barman (2007);

Tinetti et al. (2007); Grillmair et al. (2008); Deming et al. (2013); Fraine et al.

(2014); Kreidberg et al. (2014); Sing et al. (2016); Damiano et al. (2017); Tsiaras

et al. (2016a,b, 2018)) (Fig. 2.4). Condensates or hazes have also been identified

(e.g. Knutson et al. (2014a); Sing et al. (2016)). Some of the data also suggest

that carbon-bearing or more exotic species, such as TiO and VO (e.g. Swain et al.

(2009a,b); Snellen et al. (2010); Evans et al. (2016); Line et al. (2016)), are present

in some of these atmospheres. Finally, CH4 has also been detected from space ob-

servations in the atmosphere of HD189733b (Swain et al., 2008; Waldmann et al.,

2012).

Other molecules are difficult to be detected since the spectral resolution of

space instruments do not allow to disentangle degeneracies when bands of different

molecules overlap in the same wavelength range such as CO, CO2 and CH4 itself.

2.4.2 Eclipse and phase curve observations

Observations of the emission spectra provide insights into the vertical temperature-

pressure profile of the atmosphere. If a stratosphere is present, for example, molecu-

lar features might be seen either in absorption or in emission (Encrenaz et al., 2004;

Tinetti et al., 2013).

Combining the near-infrared with the mid-infrared, spectra observed during the

eclipse show modulation due to the presence of H2O, CH4, CO and CO2. These re-

sults have been achieved using both Spitzer IRAC/IRS/MIPS (Deming et al., 2005,
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Figure 2.4: First consistent population study using observations from SST/IRAC,

HST/WFC3 and HST/STIS (Sing et al., 2016).

2006; Knutson et al., 2007b; Charbonneau et al., 2008; Grillmair et al., 2008; Swain

et al., 2008) and Hubble NICMOS (Swain et al., 2009a,b).

Other studies have suggested thermal inversion on HD209458b, TrES-4b and

HAT-P-32b (Charbonneau et al., 2008; Knutson et al., 2008, 2009a; Zhao et al.,

2014), for HD209458b, however, there are some studies claiming the contrary

(Evans et al., 2015; Hoeijmakers et al., 2015). The possible correlation of thermal

inversion with the presence of molecules such as TiO and VO has been reported by



50 Chapter 2. Atmospheric characterization

Spiegel et al. (2009).

Finally, spectroscopic observations of phase-variations are very useful since

they provide at the same time information on the chemical composition and on the

vertical and horizontal thermal profile of the atmosphere. So far, only one planet has

been studied with this technique. Stevenson et al. (2014) observed the hot-Jupiter

WASP-43b which has a very short period (P=0.813 days). They have extracted the

planetary emission spectrum and finally retrieved the temperature-pressure profile

at different orbital phases of the planet.

2.5 Direct imaging
The planetary population observed through direct imaging is different from the ob-

jects observed through transit or eclipse The imaged planets are distant from their

parent stars and they are also hot and young. To perform such observations dedi-

cated instruments have been developed, equipped with an integrated field spectro-

graph. Also this technique relies on observation of the emission/reflection spectra

(Sec. 2.2) to unveil the constituents of the atmosphere of the targetted planets.

The first spectrum obtained with direct imaging was recorded using the instru-

ment NACO mounted on ESO Very Large Telescope (VLT) (Janson et al., 2010).

Subsequent observations of the same target (HR 8799c) have highlighted the pres-

ence of carbon monoxide and water in its atmosphere (Konopacky et al., 2013).

Using this technique, 51 Eri b (Fig. 2.5) (Macintosh et al., 2015; Rajan et al., 2017;

Samland et al., 2017) and HD 131399Ab (Wagner et al., 2016) have also been stud-

ied.

One limitation of spectra obtained through direct imaging, is the unknown

mass and radius of the planet. If these parameters are poorly constrained, the un-

certainties on the atmospheric structure and chemical abundances are much larger.
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Figure 2.5: The infrared spectrum of 51Eri b. The picture is part of the work of

Rajan et al. (2017).

2.6 High-Resolution Spectroscopy

In previous sections (in particular Sec. 2.4) I have discussed some details and

achievements of the transit spectroscopy, however, the resolution was not explic-

itly discussed. Observations performed from space-based instruments are made at

low spectral resolution (λ/∆λ = R < 300). One limitation is the degeneracy of the

results when bands of different molecules overlap if the spectral range probed is not

broad enough. A different approach has been pioneered by Snellen et al. (2010)

using the ground-based VLT/CRIRES instrument (CRyogenic high-resolution In-

fraRed Echelle Spectrograph). In their work a first detection of CO in the atmo-

sphere of HD209458b was presented.

This technique combines transit spectroscopy (see Sec. 2.1 and 2.2) with the

radial velocity technique (see Sec. 1.1) to sound the atmosphere of the planet and it

is based on the fact that high-resolution spectroscopy (HRS) (λ/∆λ = R > 10′000)

resolves molecular bands into individual lines. Fig. 2.6 shows the change on the

information shown by a spectrum when different resolutions are explored.

The main idea is to disentangle the planetary signal from its host star signal,
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Figure 2.6: Top panel: synthetic H2O spectrum at different resolutions. Bottom

panel: synthetic CO spectrum at different resolution (Birkby, 2018).

the Earth absorption (telluric absorption), because observations are performed in

ground-based observatories, and correlated instrumental noise. This is possible by

using a radial velocity approach because the amplitude of the Doppler shift of the

planetary signal (∆RV∼ kms−1) is higher than the host star signal (∆RV∼ ms−1)

and the telluric absorption (rest frame of the observer). Finally, the extracted plane-

tary signal is compared with different atmospheric models to determine which one

correlates more to give us information on the chemical composition.

2.6.1 HRS observations

The idea of using high resolution spectroscopy to sound exoplanetary atmosphere

was explored not long after the discovery of 51 Peg b (Mayor & Queloz, 1995).

First attempts, using high-resolution spectroscopy in the optical wavelengths, have
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Figure 2.7: Top panel: motion of the planet around the host star. Bottom panel:

Doppler shift of the planetary CO signal as a function of the orbital phase. The

planetary signal is identified without degeneracies due to higher radial velocity am-

plitude (Birkby, 2018).

found upper limits (Charbonneau et al., 1998, 1999; Collier Cameron et al., 1999).

Multiple attempts have been made to study exoplanetary atmosphere in the IR but

again only upper limits have been obtained (Brown et al., 2002; Deming et al., 2005;

Barnes et al., 2007a,b).

In 2010 using VLT/CRIRES combined with adaptive optics (MACAO at VLT)

which improved the stability of the data, CO and H2O have been detected on transit-

ing planets (i.e. HD209458b (Fig. 2.8), HD189733b) (Snellen et al., 2010; de Kok

et al., 2013; Birkby et al., 2013; Brogi et al., 2016, 2018) and non-transiting planets

such as 51Peg b, τ-Bootis b, HD179949b (Brogi et al., 2013; Snellen et al., 2014;

Brogi et al., 2014; Birkby et al., 2017). A more exotic molecule such as TiO has

been recently detected on WASP-33b (Nugroho et al., 2017). An attempt to detect

sodium and calcium on the atmosphere of 55Cnc e has been also done by using this

technique in the optical wavelength range (Ridden-Harper et al., 2016).



54 Chapter 2. Atmospheric characterization

Figure 2.8: CO signal in transmission in the atmosphere of HD209458b after the

data have been cross-correlated with the synthesised CO model. Figure adopted

from Snellen et al. (2010).

2.7 High and low resolution

From the previous sections (Sec. 2.4 and Sec. 2.6) it is clear that the two spectro-

scopic techniques are used in two different regimes. Low-resolution spectroscopy

(∆λ/λ =R< 300) is accessible from both space- and ground-based facilities. How-

ever, water and other chemical compounds, present in the Earth’s atmosphere, con-

taminate and cover the signal coming from the target which may contain same

molecules. Over a broad wavelength range observations can only be performed

by satellites.

High-resolution (∆λ/λ = R > 10′000) can only be performed from ground-

based observatories. Very Large Telescope(VLT) has four telescopes with 8 m pri-
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mary mirrors and the next generation observatory, the European Extreme Large

Telescope (E-ELT) is going to be equipped with a 39 m primary mirror. For these

reasons, these facilities can only be built on the ground.

In the next chapters (chapter 4 and chapter 5) I will give details on low- and

high-resolution methods describing two pipelines for data analysis that work in

these two regimes.
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Chapter 3

Signal decomposition

“How can a bunch of dumb particles moving around according to

the laws of physics exhibit behavior that we’d call intelligent?”

– Max Tegmark - Life 3.0 - 2017

The technological progress has delivered valuable instruments not only to sim-

plify our job but also to improve the performances and the accuracy we can reach.

Data analysis in the scientific domain has to correct for systematics that are not

always kept into account by reduction procedures. Data analysis is therefore some-

times purely experiment, because unknown systematics and errors can be present.

These effects can sometimes be treated ad-hoc, with manual intervention. How-

ever, this is not the best scenario since this procedure could introduce biased, non

reproducible and therefore non-scientific results.

In 1959 for the first time the word machine learning was used (Samuel, 1959)

to describe an ensemble of techniques aimed learning trends from the data. Today

we have moved forward by developing an entire new branch of algorithms capa-

ble of mimicking the human brain with astonishing results in a variety of fields

(Krizhevsky et al., 2012; Goodfellow et al., 2014; Lecun et al., 2015; van den Oord

et al., 2016).

Some of these algorithms are currently used in the astrophysical environment

producing successful results. In the spectral retrieval context, for example, pattern

recognition could help to pre-select molecules and abundances to be fed as prior

to a retrieval code (Waldmann, 2016). More interestingly, the entire classical re-
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trieval process can be substituted with a quantitative pattern recognition (Zingales

& Waldmann, 2018).

The instrumentations used to perform observations are not perfect and they

contribute to introduce errors and systematics that can heavily affect the data. It is

common, for example, that infrared detectors produce a ‘charge-trap’ that prevents

electrons to be read and properly counted creating ‘ramps-type’ systematics in the

light-curve (see chapter 4 and Agol et al. (2010)). The sub-optimal solution to this is

to fit an ad-hoc model to correct the data. A better approach would be let a machine

‘understand’ the trends and effectively remove them.

Time-series systematic effects may be associated, for example, with the vary-

ing atmospheric conditions, the variability of the detector efficiency or point spread

function (PSF) changes. However, these effects might vary from star to star, de-

pending on the stellar colour or on the position of the star on the CCD, a depen-

dence which is not always known. Therefore, the removal of such effects might not

be trivial.

For these reasons in this thesis I have worked on two automated pipelines.

One is able to analyse data recorded by the Hubble Space Telescope (see chapter

4) resolving also the aforementioned ‘charge-trap’ issue. Alongside that pipeline I

will describe an alternative way that has been used involving Independent Compo-

nent Analysis (ICA) to demonstrate that unsupervised machine learning algorithms

could be an alternative solution for interpreting time-series data.

In chapter 5 I will discuss a different pipeline which effectively uses Princi-

pal Component Analysis (PCA) (see Sec. 3.2) to de-trend data from time variation

systematics. PCA is an unsupervised linear transformation technique that is widely

used across different fields, most prominently for feature extraction, dimensional-

ity reduction, exploratory data analyses and de-noising of signals (Jolliffe, 2002).

This is an optimal algorithm to analyse high-resolution spectra (chapter 5) that are

affected by time-series systematics (e.g. airmass variation).

An additional algorithm discussed is SYSREM (see Sec. 3.3) that can remove

systematic effects, such as those associated with atmospheric extinction, detector
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efficiency, or point spread function changes over the detector. PCA and SYSREM

algorithms have been compared on same datasets in chapter 5.

3.1 Observing a Cocktail Party
Blind-source separation is a technique that allows to disentangle independent or un-

correlated sources. This process is also known as ‘Cocktail Party Problem’ (Hyväri-

nen & Oja, 2000; Hyvärinen, 2012). Imagine that there are n people talking to each

other in a room. The speech signals of these people are indicated by s1(t), s2(t)

... sn(t). In the same room there are m microphones that record the signals. The

observed signals x1(t), x2(t) ... xm(t) can then be expressed as:

x1(t) = a11s1(t) + a12s2(t) + . . . + a1nsN(t)

x2(t) = a21s1(t) + a22s2(t) + . . . + a2nsN(t)
...

xm(t) = am1s1(t) + am2s2(t) + . . . + amnsN(t)

(3.1)

where amn is the weighting factor (in the example proposed is the distance of

the speaker to the microphone, squared) and m, n are respectively the number of

observations and the total number of signals. Eq. 3.1 can be expressed in a compact

form using a matrix notation:

x = A · s (3.2)

where the rows of x contain the individual time series, xm, s is the signal matrix

of the individual source signal sn and finally, A is the mixing matrix. The Eq. 3.2 is

often recognised as the classical ‘Cocktail Party Problem’ (Hyvärinen & Oja, 2000;

Hyvärinen, 2012). The challenge is to estimate both the mixing matrix and the

signal matrix which are unknown using no prior information but the input matrix x.

Many algorithms have been proposed that address the described problem and

among them we can find PCA (Pearson, 1901; Oja, 1992; Manly, 1994; Jolliffe,

2002; Press et al., 2007), ICA (Comon, 1994; Hyvärinen, 1999; Hyvärinen & Pa-

junen, 1999; Hyvärinen & Oja, 2000; Hyvärinen, 2001; Comon & Jutten, 2010).
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3.2 Principal Component Analysis

PCA is a technique for data simplification used in multivariate analysis. The method

was theorised at the beginning of ’900. Today it is a well established algorithm

being useful in a variety of fields, from finance to research and it has been classified

into the family of machine learning algorithms. PCA can be used to find correlations

in the data with no prior knowledge but the data itself. The aim is to decompose

signals into their most statistically significant elements.

Let X be a non squared matrix of dimension n, we use feature extraction to

transform the data into a new d-dimensional space. As a result of transforming the

original n-dimensional data into this new d-dimensional space, the first principal

component will have the largest possible variance (the most statistically signifi-

cant direction), and all the other principal components will have decreasing value

of variance given the constraint that these components are orthogonal to the other

principal components. Even if the input features are correlated, the resulting prin-

cipal components will be mutually orthogonal and therefore uncorrelated (Jolliffe,

2002).

A key point to keep in mind is that the principal component process decompo-

sition is highly sensitive to data scaling. We need to rescale the data if the features

were measured on different scales and we need to assign equal importance to all the

features.

Among the rescaling methods the most popular are standardisation, normali-

sation and MinMax scaling. The first one consists on subtracting the mean of each

feature and dividing by its standard deviation in order to have the mean equal to zero

and the standard deviation equal to one. The normalisation consists, as the name

suggests, on dividing every feature by its mean. Finally, MinMax consists on taking

the max and the minimum of the data and map those into a new range typically [0,1]

(Raschka & Mirjalili, 2017).

The scaling method to choose depends on the problem analysed. If the fea-

tures of the matrix are not measured in the same unit (e.g. survey on commercial

products that takes into account different characteristics) the standardisation is the
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best option. In some cases one could also choose a custom scaling depending on its

set-up, for example dividing a spectrum in different bins and applying MinMax on

each singular bin (Zingales & Waldmann, 2018).

The PCA algorithm used in this work has been developed from scratch to un-

derstand the process on its every single step (see Sec. 5.4). I summarise here the

necessary steps (Jolliffe, 2002; Raschka & Mirjalili, 2017):

1. apply a pre-process method for feature scaling;

2. calculate the covariance matrix Σ ;

3. decompose the covariance matrix Σ into eigenvectors vk and eigenvalues λk

4. calculate the projection matrix W from the eigenvectors

5. derive the new projected space X’

6. reconstruct the original space with less components.

After applying one of the pre-processing methods aforementioned, the covari-

ance matrix can be calculated. The covariance σ of two features x j and xz, measures

their joint variability. In the case of a matrix the correspondents covariance matrix

measures how the elements are correlated with each other. Each element of such

matrix is calculated

σ jz =
1
n

n

∑
i=1

(
x(i)j −µ j

)(
x(i)z −µz

)
(3.3)

where µ j and µz are the mean of each respective feature j and z, n is the total number

of elements (i) contained into each feature array. If a covariance σ jz is positive, then

the two elements vary in accordance, i.e. increasing or decreasing together. On the

other hand, in case of negative covariance, they vary in the opposite direction. The

covariance matrix Σ is a k× k matrix and has the property of being symmetric and

normal. For this, we can calculate a basis of eigenvectors that satisfy the following

relation:

(Σk×k−λkIk×k)Vk×k = 0 (3.4)
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where Σ is the covariance matrix, λk are the eigenvalues that will define the eigen-

vectors’ variance, I is the diagonal identity matrix and V is a matrix that contains

eigenvectors as columns. These eigenvectors are also known as principal compo-

nents.

Since the eigenvalues define the importance of the eigenvectors, one can use

them as indicator of which eigenvector has most information content. One can

define the explained variance ratio (EVR)

EV R j =
λ j

∑
k
j=1 λ j

(3.5)

In a nutshell EVR indicates in percentage how much information of the data

is stored in an eigenvector. After eigenvectors are sorted in decreasing EVR, the

projection matrix W is constructed as follows: d eigenvectors are chosen storing

them as columns in a new matrix. The projection matrix is a k×d matrix where k

are the features of the original matrix (length of eigenvector array), and d are the

features of the new one (number of eigenvectors chosen). If we choose the whole

set of eigenvectors so that k = d; the projected space X’ is equal to (Raschka &

Mirjalili, 2017):

X’n×k = Xn×kWk×k (3.6)

X’ is similar to the original dataset; it has the same dimension, but the data is

rotated into a different coordinates frame where the axes are along the eigenvectors

directions that maximise the variance.

Since the projection matrix W is composed of the eigenvectors vk that are an

orthogonal basis for the covariance matrix (symmetric and normal), W is an orthog-

onal matrix, i.e. W−1 = WT , so the original space can be expressed by re-projecting

X’ back into X using the following equation:

Xn×k = X’n×k (Wk×k)
T (3.7)

At this point, if k 6= d, then the original space described with less component
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is obtained by taking d columns from X’ and W

Xn×k = X’n×d (Wk×d)
T (3.8)

3.3 SYSREM algorithm
The original formulation was published by Gabriel & Zamir (1979); Tamuz et al.

(2005). More recently, it has been used to correct systematics among the data and in

particular trying to correct the telluric absorption and its variability during the night

mainly due to airmass variations (Birkby et al., 2013, 2017; Nugroho et al., 2017).

Let us define the input matrix R with i wavelength bins or features (rows) and

j observations (columns). σi j is defined as the uncertainty of the element i j of

the matrix R and it is calculated by computing the root sum square of the standard

deviations of the corresponding row i and column j. Finally, we define a column

array c and a row array a whose product c·a computes the approximation of R.

Giving the initial value a(0) we then search for the optimal c(0) that minimises

S2
i = ∑

j

(
ri j− c(0)i a(0)j

)2

σ2
i j

(3.9)

It is possible to evaluate c(0) by differentiating the above equation

c(0) =
∑ j

(
ri ja

(0)
j /σ2

i j

)
∑ j

(
a(0)j

2
/σ2

i j

) (3.10)

With the same logic, a(1) needs to be evaluated by minimising

S2
j = ∑

i

(
ri j− c(0)i a(1)j

)2

σ2
i j

(3.11)

and again by calculating the derivative of the above equation, we can resolve for

a(1):

a(1) =
∑i

(
ri jc

(0)
i /σ2

i j

)
∑i

(
c(0)i

2
/σ2

i j

) (3.12)
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At this point we have to calculate again c(1) by inserting the new a(1) into

Eq. 3.10. After n iterations the product c(n) · a(n) approximates well the original

matrix R and thus can be subtracted: R(1) = R−c(n)·a(n). The process starts again

to calculate the second product that best represents R(1).

The quantity that has to be minimised is

S2 = ∑
i j

(
ri j− cia j

)2

σ2
i j

(3.13)

Iteratively, then, the algorithm finds the systematics as long as the global minimum

of S2 is achieved. Eq. 3.13 is chi-square like where R is the observation, c·a is the

model that should describe the observation and σi j is the uncertainty. If the uncer-

tainties σi j are unitary, the algorithm is reduced to the conventional PCA. However,

an important point is that this method does not guarantee the orthogonality of the

calculated a (Tamuz et al., 2005).

Finally, unlike PCA, SYSREM does not provide simultaneously all the com-

ponents, but they need to be calculated one by one iteratively. So, the more compo-

nents are searched for the more calculation time the algorithm will require. Because

of this issue the algorithm is kept to run only for the first 10-20 components (Birkby

et al., 2013; Nugroho et al., 2017).

In chapter 5, I will compare PCA and SYSREM highlighting performances

and limitations.

3.4 Independent Component Analysis
The general idea of ICA is to change the space from an m-dimensional to an n-

dimensional space such that the new space with the transformed variables (compo-

nents) describes the essential structure of the data having the constraint that the new

components (new space) are mutually independent in complete statistical sense.

Among its virtues, ICA has a good performance in pattern recognition, noise reduc-

tion and data reduction. Unlike PCA, the basis vectors in ICA are neither orthogo-

nal nor ranked in order, and the algorithm is higher-order statistic since it retrieves

components directly from input data.
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While orthogonality is an intuitive concept (see Sec. 3.2), the concept of statis-

tical independence is related to the probability density function (PDF) of a random

variable. Variables are defined statistically independent if and only if the joint PDF

is equals to the product of the single variables’ PDF:

px,y(x,y) = px(x)py(y) (3.14)

where x and y are random variables, px and py are the respective PDF and px,y is

their joint PDF.

In literature many algorithms can be found that implement the ICA technique.

The one that we adopted for analysing HST observations (see chapter 4) is the

MULTICOMBI algorithm (Tichavsky et al., 2008). MULTICOMBI is an hybrid

model that performs the separation of non-Gaussian and/or time-correlated sources.

This task is achieved by combining the strength of two popular algorithms, i.e.

EFICA (Hyvärinen & Oja, 2000) and WASOBI (Yeredor, 2000).

3.4.1 Interference-to-Signal Ratio

Before describing the ICA algorithm, it is propaedeutic to introduce the

interference-to-signal ratio (ISR) matrix. Knowing the mixing matrix A (see Eq.

3.2) and the de-mixing matrix W, we evaluate the quality of the decomposition by

defining the gain matrix G:

G = W ·A≈ I (3.15)

Ideally, the de-mixing matrix W is the inverse of the matrix A and the gain

matrix is the unity matrix. In a real case problem the gain matrix G contains non-

diagonal terms that account for the residuals among components. The ISR matrix

is then defined as:

isri j =
g2

i j

g2
ii
≈ g2

i j (3.16)

The specific interference-to-signal ratio associated to the i-th component is defined
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as

isri =
∑

n
j=1, j 6=i g2

i j

g2
ii

(3.17)

The ISR matrix, for a real case problem, can not be calculated from Eq. 3.16

since the mixing matrix A is unknown and the gain matrix G can not be obtained.

However, for specific algorithms the ISR matrix can be estimated (Yeredor, 2000;

Koldovsky et al., 2006; Tichavsky et al., 2006; Tichavsky et al., 2008).

3.4.2 COMBI and MULTICOMBI

EFICA (Hyvärinen & Oja, 2000) and WASOBI (Yeredor, 2000) are two algorithms

able to estimate the de-mixing matrix W and allowing to calculate the independent

components, s:

s = Wx (3.18)

where x is the input data. They have been designed to treat observations with cer-

tain characteristics. EFICA is able to decompose a mixture of non-Gaussian signals,

while, WASOBI is designed to separate Gaussian autoregressive signals. Real case

problems may show both non-Gaussian and autoregressive behaviour, for this rea-

son an hybrid model that takes into account the strengths of the two aforementioned

models has been developed. The COMBI algorithm (Tichavsky et al., 2006) can be

used as follows:

1. apply both EFICA and WASOBI to the input data x: calculate the source

signals sEF and sWA, the respective interference matrices ISREF and ISRWA

and the correspondent vectors isrEF and isrWA;

2. define E = min isrEF
k and W = min isrWA

k ;

3. retain all the source signals from sEF such that isrEF
k < W , and similarly

retain all the source signals from sWA such that isrWA
k < E; reject the rest of

the remaining signals;

4. if the rejected signals are more than one, start again from the first step.
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The MULTICOMBI algorithm is a hierarchical multistep COMBI in which

the input matrix is divided in clusters that are analysed separately (Tichavsky et al.,

2008; Morello, 2015).
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Chapter 4

Space observations

“The time will come when man will know even what is going on in

the other planets and perhaps be able to visit them.”

– Henry Ford - 1930

Hubble Space telescope was launched in 1990 and after almost 30 years it is

still in operation thanks to instrument substitutions and upgrades. HST orbits in

a low Earth orbit making possible for astronauts to reach it and replace its equip-

ments. In 2009 the Wide Field Camera 3 (WFC3) has been installed. This is a versa-

tile instrument with two channels collecting light in 200−1000 and 800−1700 nm

spectral windows and each channel is equipped with a variety of prisms and grisms

enabling wide-field low-resolution spectroscopy. Initially, the only way to record

exoplanetary spectra was using the staring mode but this was not efficient in ob-

serving bright targets because the detectors saturated fast. The spatial scanning

technique has then been introduced to avoid this issue. During a spatial scanning

exposure, the instrument moves slowly along the perpendicular direction of the dis-

persed spectrum instead of staring at the target. As a result, the total number of pho-

tons collected is much larger, increasing the signal-to-noise ratio (S/N), without the

risk of saturation. However, because of geometrical distortions, the shifted staring-

mode spectra, which construct each spatially scanned spectrum, are not identical to

each other. This was either partially or not taken into account in previous analyses.

In this chapter, I present a stand-alone, dedicated pipeline, which is able to pro-

duce 1D spectra from the raw scanning-mode spectroscopic images. This pipeline
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uses a new method to calibrate and extract the 1D spectra, eliminating possible

issues caused by the scanning process (Tsiaras et al., 2016a). Adopting such an

approach allows the efficient analysis of even longer scans, thus extending the ca-

pabilities of the spatial scanning technique.

Said pipeline has been published in Tsiaras et al. (2016a) and my contribution

consisted of: a multiple extraction aperture method and the introduction of spec-

tral bins division with the goal of achieve similar flux per bin. During my Ph.D.

I have updated said pipeline to analyse the near-infrared transit spectrum of the

hot Jupiter HAT-P-32b (Teq = 1786 K; Hartman et al. (2011)) obtained with the

WFC3 camera on board the HST (Damiano et al., 2017). In particular, the afore-

mentioned dedicated WFC3 pipeline (Tsiaras et al., 2016a) was used to extract the

transit light-curves per wavelength bin and obtain the planetary spectrum. Addi-

tionally, we used in parallel Independent Component Analysis to correct for the

instrumental systematics, and we investigated the effect of different analysis tech-

niques on the same dataset (Damiano et al., 2017). Finally, the obtained planetary

spectrum was interpreted using the fully Bayesian spectral retrieval code, T -REx

(Sec. 2.3) (Waldmann et al., 2015b,a).

4.1 Code overview
The code was specifically designed and developed to properly analyse HST/WFC3

datasets recorded using spacial scanning-mode, from raw images to the final 1D

spectrum. The code is entirely written in python and it is freely available on

GitHub1. In Fig. 4.1 it is shown the flowchart of the HST/WFC3 pipeline. The

analysis is mainly divided in three steps: reduction of the data, analysis of light-

curves and systematics and finally, generation of the outputs.

1https://github.com/ucl-exoplanets/Iraclis
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Figure 4.1: Flow chart of the pipeline for analysing HST/WFC3 datasets. The box

colours indicate different classes of action: green boxes represent external inputs

coming from other models or different sources, e.g. users. The blue boxes contain

the modules and routines of the code.

4.2 HST/WFC3 and the spatial scanning mode
The WFC3 was not initially designed and installed to perform spatially scanned

observations. This approach introduces distortions on the signal on the frames due

to the geometry of the camera itself. In order to obtain the best result from these

observations an ad-hoc script that can correct for these distortions is needed. To

understand the type of corrections required, it is worth to describe the instrument.

The camera consists of two channels: one ultraviolet/optical channel (UVIS)

and the near infrared camera (IR). The last one, which is the one the code has been

developed for, has got a HgCdTe detector, that is kept constantly at 145 K, 15 filters

for the direct image for calibration reasons and two grisms, the G102 (0.8−1.15µm,

R=210 at 1.0µm) and the G141 (1.075−1.7µm, R=130 at 1.4µm).

The camera has been in use since 2009 and since 2012 the spatial scanning-
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mode has been available. With respect to the staring-mode the new technique allows

for a larger number of photons to be collected in a single exposure without the risk

of saturation. As a result, overheads are reduced and the achieved signal-to-noise

ratio (S/N) is increased.

As described on WFC3 Instrument Handbook2, the detector is composed by a

mosaic of 4 quadrants of 512×512 pixels for a total of 1024×1024 pixels. However,

not all the pixels are sensitive to the incoming light, indeed, the outer five rows and

columns are called reference pixels and they are used to measure the bias drift from

the zero read onwards (see Sec. 4.3.1). Indeed, an important characteristic of the

detector is that it allows measurements of the collected electrons without resetting

the charge in the pixels. These non destructive reads (NDRs) permit each WFC3/IR

exposure to be the result of many intermediate exposures (the first one is called zero

read). The final image is the result of the sum of all the intermediate images starting

from the zero read onwards. The number of intermediate images (NSAMP) can be

chosen based on the exposure time suitable for the particular target observation,

NSAMP can vary from a minimum of two to a maximum of 16 NDRs in a single

image. This characteristic is useful since it allows to split the entire observation in

sub-observations that can be analysed separately and finally summed. This is the

strategy used for the first time in the context of this pipeline to analyse the HAT-P-

32b dataset (full discussion Sec. 4.6, (Damiano et al., 2017)).

The NDRs images are recorded in the entire detector, by default, however, it is

possible to choose a sub-array of the detector to increase the number of exposures

within the available memory and reduce in this way the overheads (time lost in non-

observation processes). The possible sub-array (SUBTYPE keyword in a WFC3/IR

exposure header, see Tab. 4.1) that can be chosen are: FULLIMAGE (full detector

array 1024×1024), SQ512SUB (522×522 pixels sub-array), SQ256SUB (266×266

pixels sub-array), SQ128SUB (138×138 pixels sub-array), SQ64SUB (74×74 pix-

els sub-array). All the sub-array types have the same centre of the full detector

2http://www.stsci.edu/hst/wfc3/documents/handbooks/currentIHB/

wfc3_ihb.pdf

http://www.stsci.edu/hst/wfc3/documents/handbooks/currentIHB/wfc3_ihb.pdf
http://www.stsci.edu/hst/wfc3/documents/handbooks/currentIHB/wfc3_ihb.pdf
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array. In the exoplanet environment, however, the most common are SQ512SUB

and SQ256SUB, since the scan length in a frame varies from short (∼30 pixels) to

long (∼350 pixels, e.g. 55Cnc e dataset (Tsiaras et al., 2016b)).

Finally, a spatially scanned spectrum can be described as the superposition of

many staring-mode spectra, with each one slightly shifted along the vertical axis of

the detector (see Fig. 4.2). The most common approach to produce 1D spectra from

2D spatially scanned frames, is to sum along the detector columns (Deming et al.,

2013). However, the “building blocks” of a spatially scanned spectrum are neither

identical to each other nor parallel to the detector rows, because:

Figure 4.2: Raw image from the HAT-P-32b dataset, the scanning mode technique

disperses the signal along the vertical axes. The total scan length is approximately

40 pixels.

• the detector is tilted by 24 degree with respect to its horizontal axis, resulting

in significant dispersion variations along the vertical axis of the WFC3/IR

detector (from about 4.47–4.78 nm/pix);
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• the first-order spectrum of the G141 grism used, is inclined by 0.5 degrees

with respect to the WFC3/IR detector rows.

The combined effect is the introduction of distortions in the signal on the detec-

tor. Because of these dispersion variations, the wavelength associated to a column

is not constant along it, and in particular, the wavelenght associated to the bottom of

a specific column in the detector is longer than that associated to the top. To have an

idea about the quantity of distortions, let us consider two datasets that have differ-

ent scan length (total length of the signal along y-axis). In the case of HD 209458b

(Tsiaras et al., 2016a) (scan length of 170 pixels), for a column at 1.2 µm, the wave-

length difference between the lower and the upper edge of the spatially scanned

spectrum is 30 Å, while at 1.6 µm the difference is 70 Å. These values correspond

to 0.6 and 1.5 pixels, respectively. As a result, 1D spectra resulting from summing

along the columns of the detector vary by up to 1% between an intermediate scan

of 60 pixels and the final scan of 170 pixels. For longer scans, such as 55 Cancri e

(Tsiaras et al. (2016b), 340 pixels), the effect is stronger and the discrepancy can be

more than 2%.

An effort to correct for dispersion variations has been made by Kreidberg et al.

(2014) with a row-by-row interpolation, which rearranges the flux in each row to

create a uniformly repeated spectrum along the scanning direction. Although this

is a possible approach, it may restrict the achievable precision level, because the

dispersion direction is inclined by 0.5 degree and, therefore, the “building blocks”

of the spatially scanning spectrum are not parallel to the detector rows. In Sec. 4.4 I

will explain our approach to this problem and describe the advantages derived from

it.

4.3 Data reduction
The standard HST pipeline, CalWF33, and the spectroscopic package aXe4 can re-

duce the HST staring-mode spectroscopic images and extract their respective 1D

3http://www.stsci.edu/hst/wfc3/pipeline/wfc3_pipeline
4http://axe-info.stsci.edu/

http://www.stsci.edu/hst/wfc3/pipeline/wfc3_pipeline
http://axe-info.stsci.edu/
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spectra. By contrast, scanning-mode spectroscopic images have a much more com-

plicated structure (see Sec. 4.2). Due to this, only an intermediate product of the

CalWF3 package (IMA images) is valid when applied to scanning-mode datasets.

In addition, the calibration/extraction routines included in the aXe package cannot

be applied to spatially scanned spectra. In the literature, analyses of datasets ob-

tained in scanning-mode include custom routines to further reduce the IMA images

and extract their calibrated 1D spectra (Deming et al., 2013).

For the reasons mentioned a new reduction pipeline has been developed to

treat properly spatially scanned observations (Tsiaras et al., 2016a). The steps that

account for the image reduction are:

1. zero Read subtraction;

2. non-linearity correction;

3. dark current subtraction;

4. gain conversion;

5. sky background subtraction;

6. flat field correction;

7. bad pixels and cosmic rays correction;

4.3.1 Zero Read subtraction

The nature of the images that are sequences of non destructive images (NDRs) helps

to subtract the signal stored in the detector before the beginning of the observations.

This step is necessary since Hubble Space Telescope lacks a shutter. The first read

of the sample sequence (referred as zero read, ZR) is corrected for the called super-

zero read, ZR? that contains the bias level of the WFC3/IR detector which is a

calibration file (Hilbert (2014), u1k1727mi_lin.fits).

All the NDRs samples are then subtracted by ZR and the reference flux level

becomes the ZR itself and this is important since it will be used in the non-linearity

correction.
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Finally, from the ZR the mean of the reference pixels is calculated (NDRre f )

and it is subtracted to the subsequent NDRs to correct for the bias drift (see Sec.

4.2).

4.3.2 Non-linearity correction

On the IR detector on board HST, electrons are recorded linearly up to a certain

point. In particular, the more the recorded flux approaches to the saturation limit,

the more electrons are not recorded. Fig. 4.3 shows the described behaviour: here

the non linearity effect reaches 5% difference at ∼ 70′000 e−.

Figure 4.3: WFC3/IR non linearity effect in time. In red the expected electrons

recorded and in black the actual value recorded. Figure adopted from: http:

//www.stsci.edu/hst/wfc3/pipeline/wfc3_pipeline.

To correct this effect it is necessary to apply the following correction (Hilbert,

2008)

Fc =
(
1+ c1 + c2F + c3F2 + c4F3)F (4.1)

where F is the non-linear recorded signal, Fc is the linear corrected flux and

c1−4 are the non-linearity coefficients (Hilbert (2008) u1k1727mi_lin.fits calibration

file).

http://www.stsci.edu/hst/wfc3/pipeline/wfc3_pipeline
http://www.stsci.edu/hst/wfc3/pipeline/wfc3_pipeline
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Since the flux reference for the NDRs is the ZR, before applying this correction

it is necessary to sum the ZR again and in particular:

NDRs = Fc (NDRs+ZR)−Fc (ZR) (4.2)

4.3.3 Dark current subtraction

In absence of external illumination, the detector collects electrons. The correction

consists on subtracting a master dark that matches the same observational option

of the dataset (e.g. NSAMP and integration time). From the provided master darks

(Dulude et al., 2014) the suitable one is than picked and it is subsequently subtracted

from all the NDRs.

4.3.4 Gain conversion

This step is performed in the same way as the official pipeline CalWF3. This cor-

rection accounts for the conversion from electrons (e−) to digital number (DN). The

gain values for each of the four quadrants of the detector are included in the calibra-

tion file t2c16200i_ccd.fits (∼ 2.35e−/DN). The NDRs are then multiplied by these

values.

4.3.5 Sky background

This step is not included in the official pipeline, however, a master sky file calibra-

tion is provided (i.e. WFC3.IR.G141.sky.V1.0.fits). In Kümmel et al. (2011) it is

said that this step is necessary before the wavelength dependent flat-field correction

is applied, and also that the master-sky needs to be scaled with the sky ratio of the

dataset under investigation. The scaling factor (or sky ratio) is calculated by divid-

ing an area of the detector, that is not affected by the astrophysical signal (sky area),

by the master sky frame. The NDRs are therefore subtracted by the scaled master

sky.

4.3.6 Flat field correction

The reduction process needs two more steps to be completed (i.e. flat-field correc-

tion and spikes correction). However, since the flat-field is wavelength dependent,
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the calibration step needs to be performed to calculate the wavelength solution. The

calibration step is explained in Sec. 4.4.

Assuming that the signal has been calibrated, the wavelength dependent flat-

field, F(λ ), is described by a 3rd order polynomial (Kuntschner et al. (2011),

WFC3.IR.G141.flat.2.fits file):

F(λ ) =
i=3

∑
i=0

Fi

(
λ −λmin

λmax−λmin

)i

(4.3)

where Fi are the flat-field coefficients, λ is the wavelength, and λmax and λmin

are the maximum and minimum wavelength detectable by the grism (G141 in this

case).

4.3.7 Bad pixels and cosmic rays correction

The final step in our reduction process is the correction of bad pixels and cosmic

rays. Bad pixels have been studied during the calibration cycles and stored in the

calibration file y711520di_bpx.fits (Hilbert, 2012).

In contrast, cosmic rays are randomly positioned on the detector and have to be

identified in each image, independently. To do so, two values are taken into account

for each pixel: an x-flag (the median difference from the six horizontally neigh-

bourhood pixels) and y-flag (the median difference from the six vertically neigh-

bourhood pixels). If both x-flag and y-flag are more than 3σ from the respective

medians then the point is identified as cosmic ray. In this way the 2D structure

of the scanned spectrum is taken into account in both directions. Both bad pixels

and cosmic rays are corrected by performing a 2D polynomial interpolation on the

image and substitute the flagged pixels with the value of the interpolation.

4.4 Calibration and extraction
Before all the frames are reduced completely, the calibration step and the calculation

of the wavelength solution take place. The calibration process is divided into three

steps (Tsiaras et al., 2016a):

• checking the position of the signal in each frame and take into account any

shifts with respect each other;
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• determining the position of the star in the direct image;

• drawing the wavelength-dependent photon trajectory (w.d.p.t.) with the ge-

ometry of the signal on the detector as constraint.

4.4.1 Point source position

As reported in Kuntschner et al. (2009), to calibrate properly the signal dispersed

by the grism G141 (IR channel), the absolute position (position in the full array

detector) of the star (x?,y?) needs to be determined on the direct image. In the case

of spatially scanned spectra, the vertical position (y?) is not constant and so it cannot

be determined from the direct image. On the other hand, the horizontal position (x?)

is given by the equation:

x? = x0 +(507− (L/2))+∆o f f +∆re f (4.4)

where x0 is horizontal position of the star in the direct image calculated via 2D

Gaussian fitting, L is the size of the direct image and is related with the SUBTYPE

chosen for the observation (see Tab. 4.1), 507 - L/2 is the correction needed to

transform from the sub-array to the full detector coordinates, because, the sub-array

and the full detector have the same centre, the reference pixels are not included in

the calculation, so, the centre is 507 instead of 512. ∆o f f is the difference in cen-

troid offset in the x−axis between the filter used for the direct image and the filter

used for calibration (F140W in the case of G141 grism); the values of the centroid

offset per filter are reported in Tab. 4.2 (Sabbi et al., 2010). Finally, ∆re f is the

difference in the x-position of the chip reference pixel, xre f (the pixel that corre-

sponds to the coordinates of the target), between the WFC3 aperture used for the

direct image and the WFC3 aperture used for the dispersed image. This difference

originates from the different centring of the detector: the direct image is centred on

the star, while during the scanning observations the center is on the first order of the

dispersed spectrum. This correction also includes any shifts indicated by the ob-

server through the POSTARG1 keyword in the fits file header (converted to pixels.

i.e. POSTARG1/xscale). The POSTARG1 movement is indicated by the observers
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and it is the shift of the telescope during, or just before or after, the exposure. The

values for xre f and xscale for different WFC3 apertures can be found in the WFC3

aperture file5.

SUBTYPE L[pix] SUBTYPE L[pix] SUBTYPE L[pix]

FULLIMAG 1014 SQ512SUB 512 SQ128SUB 128

SQ256SUB 256 SQ64SUB 64

Table 4.1: Relation between the length of the direct image and the SUBTYPE pa-

rameter.

filter xo f f [pix] filter xo f f [pix] filter xo f f [pix] filter xo f f [pix]

F098W 0.150 F127M 0.131 F126N 0.264 F125W 0.046

F140W 0.083 F128N 0.026 F167N 0.196 F110W -0.037

F153M 0.146 F130N 0.033 F164N 0.169 F105W 0.015

F139M 0.110 F132N 0.039 F160W 0.136

Table 4.2: Horizontal offset for the different WFC3/IR filters.

4.4.2 Position shift

Since HST has not been designed to perform spatially scanned observation, after

every scanning it fails to reach the exact starting position. This results in shifts

across both horizontal and vertical position from a frame to another. This would not

be a problem if every frame had its own direct image paired, because in that case

it would be possible to calibrate images singularly. But since the direct image is

referred only to the first of the scanned sequence images, every subsequent frame

needs to be related to the first one. If not corrected, this could introduce systematics

that result in variations of up to 250 ppm in the final spectrum.

To calculate the horizontal shifts, we compare the structure of the first spatially

scanned spectrum with all subsequent spectra, using the normalised sum along their

5http://www.stsci.edu/hst/observatory/apertures/wfc3.html

http://www.stsci.edu/hst/observatory/apertures/wfc3.html
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columns (Fig. 4.4, left panels), similar to Kreidberg et al. (2014). The sum calcu-

lated from the first spatially scanned spectrum is interpolated and fitted to the sum

from each subsequent spatially scanned spectrum. The results of the fittings are the

horizontal shift ∆xi and the normalisation factor which account for flux variation.

Note that this step is performed before the wavelength dependent flat-field correc-

tion. The sum above is, corrected for the non-wavelength dependent flat-field to

avoid the introduction of undesired bias.

Shifts of the vertical position (∆yi) are calculated from the first non-destructive

read of each exposure. We apply the same method as for the horizontal shifts de-

scribed above, with the difference that the sum is calculated along the rows instead

of the columns (Fig. 4.4, right panels). The horizontal position of the star and the

vertical position at the beginning of the scan for each frame are then:

x?i = x?1 +∆xi (4.5)

y?si = y?s1 +∆yi (4.6)

where i varies from 1 to N which is the total number of frames in the visit.

Finally, we calculate the scan length (li) by fitting an extended Gaussian func-

tion on the sum along the columns of the last non-destructive read of each image.

4.4.3 Wavelength-dependent photon trajectories (w.d.p.t.)

The 24 degree tilt of the WFC3/IR with respect to the horizontal axis and the 0.5

degree with respect to the detector rows make the dispersed spectrum trace not

only non-parallel to the detector rows but also to be field-dependent (where on the

detector is the trace). In the aXe User Manual version 2.3 (calibration routine for

staring mode observations) is reported that once the detector is illuminated by a

source dispersed by the G141 grism, the trace of the dispersed spectrum is described

on the detector by:

y− y? = at(x− x?)+bt (4.7)
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Figure 4.4: Left-top: sum along the columns of the first (continuous) and the last

(dashed) spatially scanned spectra of the HAT-P-32b dataset. Left-bottom: differ-

ence between the two profiles before and after shifting, indicated by dashed and

continuous lines, respectively. Right: same plots for the sum along the rows of the

first non-destructive read.

where:

at︸︷︷︸
or DYDX_A _1

=

at0 +at1x?+at2y?+

at3x?2 +at4x?y?+at5y?2

bt︸︷︷︸
or DYDX_A _0

= bt0 +bt1x?+bt2y?
(4.8)

Moreover, the associated wavelength of a point on the dispersed trace is a linear

function of the distance, d, between the point and the star along the trace:

λ = aW d +bW (4.9)
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Figure 4.5: Horizontal (top) and vertical (bottom) shift relative to the first one for

each image of the HAT-P-32b dataset.

where:

aW︸︷︷︸
or DLDP_A _1

=

aW0 +aW1x?+aW2y?+

aW3x?2 +aW4x?y?+aW5y?2

bW︸︷︷︸
or DLDP_A _0

= bW0 +bW1x?+bW2y?
(4.10)

the coefficients at0−5, bt0−2, aW0−5, bW0−2 are contained in the configuration file

WFC3.IR.G141.V2.5.conf (Kuntschner et al. (2009), Tab. 4.3), and x? and y? are

the coordinates of the star in the direct image (see Sec. 4.4.1).

To help visualising the geometry that has just been discussed, Fig. 4.6 shows

the relative position of the star on the direct image and the dispersed spectral trace

in the frames of the visits. After the position of the star on the full detector has been

determined, P?(x?, y?), the photon of a particular wavelength, λ , is dispersed on the

position Pλ (xλ , yλ ). Let us draw the line perpendicular to the spectral trace passing
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n = 0 n = 1[x?] n = 2[y?] n = 3[x?2] n = 4[x?y?] n = 5[y?2]

atn 1.04275E-02 -7.96978E-06 -2.49607E-06 1.45963E-09 1.39757E-08 4.8494E-10

btn 1.96882E+00 9.09159E-05 -1.93260E-03

aWn 4.51423E+01 3.17239E-04 2.17055E-03 -7.42504E-07 3.48639E-07 3.09213E-07

bWn 8.95431E+03 9.35925E-02 0.0

Table 4.3: Calibration coefficients for the G141 grism.

for the position of the star. The crossing point is identified as P1(x1, y1).

Figure 4.6: Relative positions of the spectral trace (red line), of the star (x?, y?) in

the direct image, and a random point on the trace (xλ , yλ ). θ indicates the tilt of

0.5 degree of the grism respect to the detector’ rows. Image adopted from: Tsiaras

et al. (2016a).

The coordinates of the point P1 can be calculated using Eq. 4.7 (which becomes

Eq. 4.11) and the property of orthogonality between the spectrum trace and the

projection of the star position on the trace.

y1 = at(x1− x?)+bt + y?. (4.11)

Since the vector P?P1 =(x1−x?, y1−y?) is orthogonal to V=(1, at) (vector parallel

to the trace) we have that their scalar product is zero by definition:

P?P1 ·V := 0 = x1− x?+at(y1− y?). (4.12)



4.4. Calibration and extraction 85

Substituting Eq. 4.11 into Eq. 4.12 it is possible to calculate the x-coordinate of P1:

x1 = x?− atbt

1+a2
t

(4.13)

To generalise this expressions to any points on the trace we just need to introduce

the inclination of the trace with respect to the detector rows. This is indeed indicated

as θ in Fig. 4.6; it is defined as θ = tan−1(at) and from the geometry of the triangle

indicated by the trace, the rows and the columns of the detector, we can calculate:

cos(θ) =
xλ − x1

d
(4.14)

where d has been calculated from Eq. 4.9. By replacing x1 from Eq. 4.13 and

re-arranging the last equation for xλ we have:

xλ = x?− atbt

1+a2
t
+

λ −bW

aW
cos
(
tan1(at)

)
(4.15)

and from Eq. 4.7, yλ :

yλ = at(xλ − x?)+bt + y?. (4.16)

Using these last two equations we are able to determine the wavelength solution

for every point on a single trace. However, we are interested in calculating the

wavelength solution of the entire scanning spectra, for this reason the following

recipe is proposed (Tsiaras et al., 2016a):

1. we assume that x? is constant on a single frame, but it is different from frame

to frame (x?i from Eq. 4.5);

2. let y? vary from the start of the scan, y?si (Eq. 4.6) to the end, y?si + li, where li

is the scan length on the ith frame;

3. let λ vary on the spectral wavelength range covered by the grism (1.0−

1.7µm);
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4. we use y? and λ from the last two steps and use Eq. 4.15 and Eq. 4.16 to

calculate all the relative xλ and yλ in order to create a large grid (y?, λ , xλ ,

yλ );

5. we fit on the grid points the function of the w.d.p.t.:

y =
(

c1

c2 +λ
+ c3

)
+

(
s1

s2 +λ
+ s3

)
x (4.17)

For a particular wavelength, the trajectory is a straight line across the detector, this

indicates where the photons of a particular wavelength intersects the detector during

the scan. Fig. 4.7 shows the calculated wavelength solution (w.d.p.t) for a single

frame of the HAT-P-32b dataset (Damiano et al., 2017). It is possible to appreciate

how the photon trajectories follow accurately the shape of the signal on the detector.

Finally, since the wavelength solution has been calculated, it is possible to

complete the reduction process by performing the wavelength dependent flat-field

and the bad pixels and cosmic rays correction (Sec. 4.3.6 and 4.3.7).

4.4.4 Extraction

After the reduction and calibration process, the signal is extracted and summed,

resulting on a single value that corresponds to the flux value. With this process for

every frame, it is possible to obtain the light-curve of the star during the observation.

From WFC3/IR images two different kind of light-curves are extracted: white and

spectral ones. We will refer to the first one when talking about the entire signal

extracted from frames and we will refer to spectral one when talking about the

signal extracted in a particular wavelength interval. Choosing the right wavelength

bins is an important step since this will define the resolution of the final spectrum

but also may introduce/avoid scatter on the 1D spectrum. For instance as reported

in Sec. 4.6 (Damiano et al., 2017), I decided to chose the wavelength bins with the

constraint that every bin contains the same amount of signal (flux) and iterate the

total number of wavelength bins on a typical value (between 20 and 25) to find the

optimal set.

In the literature the extraction process is commonly performed by summing

over the column, here, the UCL pipeline extraction follows the structure of the
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Figure 4.7: Calculated wavelength solution of one frame of the HAT-P-32b dataset.

Top panel: Trajectories of the dispersed photons of different wavelengths (coloured

points) while the star moves along the scan direction (white arrow). Bottom panel:

Left and right edges of the spectrum where it is possible to appreciate how the grid

follows the signal on the detector.

signal (wavelength/scan coordinates) rather than the detector coordinates (col-

umn/row).

The signal is extracted from apertures of quadrangular shape. In the case of

spectral light-curves these apertures are calculated for each wavelength bin (λ1 - λ2)

per frame. The left and right edges of each quadrilateral are given by the w.d.p.t.

(Eq. 4.17) and the upper and lower edges are given by the spectrum trace (Eq.

4.7). A little margin (∼ 15 pixels) is given on top and bottom sides to include

the tails of the signal. However, this extraction method brings some issues. Since

we use quadrangles that are not parallel with the column/row coordinates, fractional

pixels need to be taken into account and this can introduce scattering on the final 1D
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spectrum. To avoid these issues one can fit a second-order 2D polynomial function

on the perimeter pixels and their next surroundings, such that the integral of this

function is equal to the flux level of the pixels under the curve, and then take a

fraction of this flux.

Finally, the signal can be extracted all at once by using a large extraction box

on the last NDR (e.g. Tsiaras et al. (2016a,b)) or split the signal across the scan

direction using the differential NDRs (NDR(t)−NDR(t − 1)) referring them as

‘stripes’ (Fig. 4.11) (Damiano et al., 2017). I introduced, to the pipeline, this last

method to analyse the HAT-P-32b dataset since it is a binary system and the two

stellar signals are blended on the detector. Moreover, we also found that the strategy

of using multiple aperture extraction (i.e. stripes) reduced the scatter in the final

light-curves when we analysed other HST datasets (Tsiaras et al., 2018).

4.5 Obtaining the 1D spectrum

As described in the previous section the output consists of the white light-curve and

the spectral ones. The raw white light-curve of the HAT-P-32b dataset is shown in

Fig. 4.8. The light-curves obtained with HST are not continuous; between the signal

points there are gaps because of HST orbits. A pair of single signal set and single

gap coincides with one complete orbit of HST around the Earth. Moreover, it is also

possible to observe systematics at the beginning of every observational orbit. It is,

indeed, known from previous studies that using the WFC3 camera both in staring-

mode (Berta et al., 2012; Swain et al., 2013; Wilkins et al., 2014) and in scanning-

mode (Deming et al., 2013; Kreidberg et al., 2014; Knutson et al., 2014a,b) intro-

duces two time-dependent systematics to the light-curves: one long-term through-

out the visit, with an approximately linear behaviour, and one short-term throughout

each HST orbit, with an approximately exponential behaviour. These systematics

are commonly referred as the “ramps”. Moreover, these systematics are also corre-

lated with the brightness of the observed target. The brighter the target the stronger

is the ramp (Deming et al., 2013; Tsiaras et al., 2016b,a; Damiano et al., 2017;

Tsiaras et al., 2018).
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Figure 4.8: Extracted raw white light-curve of the dataset HAT-P-32b.

4.5.1 Fitting the white light-curve

At first order the model that can fit the white light-curve is a combination of a transit

model, F(t), a function of the systematics, R(t), and a normalisation factor, nW :

M(t) = nW R(t)F(t) (4.18)

The transit model describes the ratio between the stellar flux during the out-

of-transit and during the in-transit at every time-step of a given time series based

on a set of input parameters. The input parameters are used to calculate the star-

planet projected separation and the relative flux occulted by the planet. The transit

model calculation is implemented in the Python package PyLightcurve6 (Tsiaras

et al. (2016a) and Dr. Angelos Tsiaras, Ph.D. thesis).

In synthesis, in the model, the star-planet projected distance is calculated for

every time-step of the time-series. This parameter is useful to calculate the flux

blocked by the planet in agreement with the limb darkening law used. The flux of

the stellar disc relatively to the centre of the disc – i.e. limb darkening law – in our

pipeline is modelled using a 4-coefficients law (Claret, 2000):

I(an,r) = 1−
n=4

∑
n=1

an

(
1−
(
1− r2)n/4

)
. (4.19)

The an coefficient are calculated by fitting the ATLAS model (Kurucz, 1970;

Howarth, 2011; Espinoza & Jordán, 2015) created from the input parameters (Tab.

6https://github.com/ucl-exoplanets/pylightcurve

https://github.com/ucl-exoplanets/pylightcurve
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5.1) and the sensitivity curve of the grism used (WFC3/IR-G141 in this case) in the

same wavelength limits of the extracted light-curve.

The calculated transit model, F(T0,P, i,a/R?,Rp/R?,e,ω, t) is then multiplied

by an instrumental systematics function, R(t), similarly to Kreidberg et al. (2014);

Stevenson et al. (2014); Kreidberg et al. (2015):

R(t) = (1− ra(t−T0))
(

1− rb1e−rb2(t−t0)
)

(4.20)

where T0 is the mid-transit time, t0 is the time when each orbit starts, t is the

time sequence, ra is the slope of the linear long term ramp and (rb1,rb2) are the

coefficients of the exponential short-term ramp.

On the real case, for the analysis of the light-curves, we excluded the first

orbit since it has different short and long term ramps. Removing the first orbit is a

common procedure (e.g. Deming et al. (2013); Huitson et al. (2013); Haynes et al.

(2015); Tsiaras et al. (2016a); Damiano et al. (2017)).

Fig. 4.9 (mid panel) shows the white light-curve after systematics have been

corrected. The fitting residuals (Fig. 4.9 bottom panel) are not Gaussian distributed

especially in the egress. This can be due to non-optimal parameters (e.g. i and

a/R?) that have been fixed due to lack of ingress points, or remaining systematics

not included in the R(t) function.

4.5.2 Fitting the spectral light-curves

To extract the planetary spectrum from the spectral light-curves, we follow the ap-

proach described by Kreidberg et al. (2014). According to this method every spec-

tral light-curve is divided by the white light-curve and then it is fitted with a model

that takes into account a wavelength-time dependent linear slope, a normalisation

factor, the best transit model that fit the white light-curve and a wavelength-time

dependent transit model F(λ , t):

M(λ , t) = nλ

1+ rλa1(t−T0)

FW (t)
F(λ , t) (4.21)

where nλ is the normalisation factor, rλa1 is the coefficient for the wavelength-

time linear slope, FW (t) is the best model that fit the white light-curve, t is the
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Figure 4.9: Top panel: normalised white light-curve of HAT-P-32b before fitting

for transit and systematics model. Middle panel: white light-curve divided by

the best-fit model of the systematics. Bottom panel: fitting residuals, it can be

seen that the model fails to fit the egress. The possible reasons for this behaviour

are either non-optimal orbital parameters, limb-darkening coefficients or remaining

systematics.

observational time series and F(λ , t) is a wavelength-time dependent model specific

for each spectral bin. In all F(λ , t) the only free parameters is the ratio between

the planetary and the star radius, since all the other parameters are fixed to those

calculated by the white light-curve fitting.

The advantage of using this method is that the residuals of the spectral fittings

do not show the same behaviour as the white ones since all the possible systematics

are corrected by dividing by the white light-curve.

From the fitting process described above, the ratio Rp/R? is obtained for each

spectral bin, and the final 1D spectrum can be determined (e.g. Fig. 4.14).
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4.6 HAT-P-32b dataset
In this section I report the analysis of the near-infrared transit spectrum of the hot

Jupiter HAT-P-32 b (Teq = 1786K, Hartman et al. (2011), see Tab. 4.4) obtained

with the WFC3 camera on board the HST (Damiano et al., 2017). HAT-P-32b

is one of the most inflated exoplanets discovered, being less massive than Jupiter

(Mp = 0.86 MJup) but having almost twice its radius (Rp = 1.789 RJup). The at-

mosphere of HAT-P-32b has been observed with ground-based instruments in the

optical wavelengths, revealing a featureless transmission spectrum (Gibson et al.,

2013; Zhao et al., 2014; Mallonn & Strassmeier, 2016; Nortmann et al., 2016). In

addition, Zhao et al. (2014) suggested the presence of a thermal inversion in the

thermal profile of the atmosphere of HAT-P-32b to interpret eclipse observations

suggesting the presence of exotic molecules that can cause the inversion.

Stellar parameters

Te f f (K) 6207±88

M? (M�) 1.160±0.041

R? (R�) 1.219±0.016

log(g?) (csg) 4.33±0.01

Fe/H (dex) −0.04±0.08

Planetary parameters

Teq (K) 1786±26

a ( AU ) 0.0343±0.0004

Rp (RJup) 1.789±0.025

Mp (MJup) 0.860±0.164

P ( days ) 2.150008±0.000001

T0 (BJD) 2454420.44637±0.00009

i (deg) 88.9±0.4

Table 4.4: HAT-P-32 system information (Hartman et al., 2011).

The spatially scanned spectroscopic images of HAT-P-32b were obtained with
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the G141 grism, they are available on the MAST archive7: ID program: 14260 and

PI: Deming Drake. The dataset contains five consecutive HST orbits, each expo-

sure is the result of 14 NDRs, with a size of 256×256 pixels with a total exposure

time of 88.435623s and the total scan length is approximately 40 pixels per frame.

During the light-curve analysis, the first of the five orbits was discarded (see Sec.

4.5.1). Of the remaining four HST orbits, the first and the fourth provide the out-

of-transit baseline, while the second and the third capture the transit. Moreover,

the first points of the first orbit and the third one have been recognised as outliers

and discarded from the analysis. The dataset contains, for calibration purposes, a

non-dispersed (direct) image of the target, obtained using the F139N filter. Before

extracting the light-curves (white and spectral), all frames were reduced using the

routines described in the sections above.

HAT-P-32A has an M1.5 stellar companion, HAT-P-32B (T = 3565± 82K,

Zhao et al. (2014)). The dispersed signals from HAT-P-32A and HAT-P-32B are

blended when using the scanning-mode (Fig. 4.10). However, these two stars are

separated enough (2.′′923±0.′′004, Zhao et al. (2014)) to avoid blending when the

multiple aperture extractions (i.e. stripes, see Sec. 4.4.4) are considered (Fig. 4.11).

For each stripe, we determined the photometric aperture, taking into account the

wavelength-dependent photon trajectories (see Sec. 4.4.3 and Tsiaras et al. (2016a))

and obtained a set of 12 white light-curves. The same criterion was used to extract

the spectral light-curves, obtaining a set of 12 time-series for each one of the 20

spectral bins. The wavelength range of each bin was chosen in order to have the

same flux level across all bins.

The light-curves analysis was performed following the recipe presented in Sec.

4.5.1 and Sec. 4.5.2. However, I decided to proceed using two different paths:

• (stacked) all the extracted 12 white light-curves are summed together to ob-

tain a unique reference light-curve, and the same is performed for every spec-

tral bin;

• (weighted) fitting each white and spectral light-curve alone, then taking the
7https://archive.stsci.edu/

https://archive.stsci.edu/
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Figure 4.10: Single reduced frame of the HAT-P-32b dataset before the extraction.

It is possible to see how the signal relative to each of the two stars is blended with

each other.

weighted mean for each spectral bin.

The stacked method led to a similar analysis reported in previous sections,

having a unique white light-curve to fit and the 20 spectral light-curves. On the

other hand, using the weighted method we needed to perform 12 white light-curve

fit (one for each stripe) and 12× 20 spectral light-curves fit (one for each stripe

for each bin). Note that using the weighted method we worked with more noisier

signals because it was split.

Following the stacked method, we obtained the white light-curve shown in

Fig. 4.9 (top panel). We followed the process described in Sec. 4.5.1 to find the

best model that fits the raw white light-curve and correct for the systematics. In this
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case the ‘ramps’ are not strong because the star is relatively faint (Kmag = 9.99).

The result of the fitting is shown in Fig. 4.9 (mid and bottom panel) and in Tab. 4.5.

Limb-darkening Coefficients (1.125 - 1.650 µm)

a1 0.603336

a2 −0.223032

a3 0.281379

a4 −0.13988

Fitting Results

T0 (HJD) 2457408.95783±0.00004

Rp/R? 0.1521±0.0003

Table 4.5: White light-curve fitting results.

Using the weighted method instead, 12 white light-curves were obtained and

analysed singularly. These light-curves are the result of the extraction of lower

signal and, therefore, their fit is noisier than the previous case. In Tab. 4.6 the result

of the fit performed in every stripe is reported. In the bottom section of the table

we note that the results of the two methods agree with each other. However, the

stacked method resulted one order of magnitude better than the weighted one for

the estimation of the mid transit point.

Every spectral light-curve of every stripe has been fitted and 12 spectra of the

planet have been generated (Fig. 4.12 and 4.13). The final 1D spectrum obtained

following the weighted method is calculated by taking the weighted mean spectrum

of the 12 spectra (Fig. 4.14). Both methods give the same 1D spectrum, with the

exception of a few bins where the differences are within 0.3σ . The result is shown

in Fig. 4.14: from this we can not choose one method over the other, however, from

the white light-curve fittings, we choose the stacked method for a better constraint

on the mid-transit point.
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Stripes fitting result

# of stripe T0 (HJD) Rp/R?

1 2457408.9573971 ± 0.00013061 0.15290952 ± 0.00032594

2 2457408.95755273 ± 0.0001529 0.15156066 ± 0.00036521

3 2457408.957628 ± 0.00022603 0.15214494 ± 0.00053603

4 2457408.95778216 ± 0.00018649 0.15227708 ± 0.0004362

5 2457408.95777772 ± 0.00022194 0.15232754 ± 0.00051591

6 2457408.95752518 ± 0.00017632 0.15254122 ± 0.00042601

7 2457408.95787749 ± 0.00021696 0.15196633 ± 0.00048721

8 2457408.95802174 ± 0.00015749 0.15210755 ± 0.00034092

9 2457408.95794628 ± 0.0002358 0.15168565 ± 0.00053574

10 2457408.9582092 ± 0.00015189 0.15276672 ± 0.00035866

11 2457408.95807645 ± 0.00019223 0.15239069 ± 0.00042786

12 2457408.95864508 ± 0.00018721 0.1525417 ± 0.00041915

Fitting Results

Stacked method 2457408.95783 ± 0.00004 0.1521 ±0.0003

Weighted method 2457408.9578 ± 0.0004 0.1523 ± 0.0004

Table 4.6: White light-curve fitting results for every stripe. Comparison between

staked and weighted results.
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Figure 4.11: Multiple extractions of the HAT-P-32b dataset. The 12 stripes corre-

spond to the NDRs recorded by Hubble Space Telescope. In each of the stripes the

two signals relative to the two stars are divided, so that possible contamination can

be avoided.
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Figure 4.14: Final 1D spectra resulted from calculating one spectral light-curve

per bin (stacked) and averaging the spectral (Rp/R?)λ for each bin for each stripe

(weighted). The two spectra are equivalent within 0.3σ .
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4.6.1 Using ICA to de-trend the light-curves

As described in Sec. 4.4.4 I introduced the multi aperture extraction method and

therefore we had the possibility to map the signal contained in a frame into a time-

series. In particular, we obtained 12 temporal sequenced light-curves for each of the

20 spectral bins. This gives us the opportunity to perform a different method to de-

trend the instrumental systematics from the data. Independent Component Analysis

(ICA, see chapter 3) has been used effectively to remove instrument systematics

and other astrophysical signals in exoplanetary light-curves obtained with Kepler,

HST/NICMOS (Waldmann, 2012; Waldmann et al., 2013), Spitzer/IRS (Waldmann,

2014) and Spitzer/IRAC (Morello et al., 2014, 2015; Morello, 2015; Morello et al.,

2016).

Thanks to the collaboration with Dr. Giuseppe Morello, we have been able

to apply ICA to de-trend HST/WFC3 light-curves for the first time. The process

follows these steps:

1. ICA transformation of the time-series to get the independent components;

2. identification of the transit components by inspection;

3. fitting a linear combination of non-transit components plus the calculated

transit model F(t) (see Sec. 4.5.1), to the white light-curve, using the co-

efficients of the terms of the linear combination as free parameters;

4. subtraction of the non-transit components, with coefficients determined by

the fitting, from the light-curves.

To obtain the ICA components we have adopted the MULTICOMBI algorithm

(Tichavsky et al., 2008). This is an hybrid technique that is able to separate non-

Gaussian and time-correlated sources, mixing respectively two popular algorithms:

EFICA (Hyvärinen & Oja, 2000) and WASOBI (Yeredor, 2000). Among all the

components, one contains most of the transit signal and it is excluded, the others

(non-transiting components) are then simultaneously fitted together with a transit

model to a reference light-curve. Also in this case we followed the two steps as

presented in the previous section, in particular the light-curves were:
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• stacked, i.e. we sum all the stripe light-curves to obtain a unique light-curve

per spectral bin;

• weighted, i.e. we fit every single spectral light-curve per bin and we take the

weighted result.

The transit model, F(λ , t), used is the same described in Sec. 4.5.1 using the

parameters shown in Tab. 4.4. In both cases the model used to perform the fitting

on the white light-curve is:

M(λ , t) =

(
∑

j
o jC j

)
+nλ F(λ , t) (4.22)

where o j are the coefficients of the ICA components, C j are the retrieved com-

ponents, nλ is the coefficient for the transit model and F(λ , t) is the transit model

per spectral bin. In this case the free parameters are all the coefficients for the linear

combination and the parameter Rp/R? of the transit model.

A possible evolution to this approach is also to include the residuals obtained

for the fitting on the white light-curve as an additional component (Eq. 4.23). This

process can account for possible systematics common to all wavelength bins.

M(λ , t) =

(
∑

j
o jC j

)
+nλ F(λ , t)+nW whiteres (4.23)

Following the ‘weighted’ approach all the single stripe spectral light-curves

are noisier than the stacked one mainly due to correlated noise and lower signal.

ICA, however, is effective in correcting these sources of noise. The systematics are

hard to visualise also due to their low amplitude in this dataset. Fig. 4.15 shows an

example of two raw spectral light-curves, single stripe and summed (stacked), and

the de-trended ones, with and without the white residuals component.

Finally, after processing all the fittings for the two methods proposed (stacked

and weighted) for every spectral bin using both Eq. 4.22 and 4.23, we were able

to obtain the final 1D spectrum for all the combinations (see Fig. 4.16). The final

spectra are all consistent witch each other.
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Figure 4.15: The figure shows two spectral light-curve (1.3657− 1.3901µm) re-

ferred to the two method adopted (stacked and weighted) before and after the ICA

correction. Font: priv. comm. of Dr. Giuseppe Morello

Figure 4.16: Comparison between all the spectra obtained by using all the combi-

nations of the method proposed. An horizontal shift has been introduced to make

easier the visualisation. Font: priv. comm. of Dr. Giuseppe Morello.

If we compare, the 1D final spectrum obtained using the parametric method,

to the one obtained using ICA, the only noticeable differences are the larger error

bars of the ICA method (Fig. 4.17). This is due to an additional error term that

needs to be added to take into account the uncertainty of the decomposition process

(Morello, 2015; Morello et al., 2016).

σ
2
ICA = ∑

j
o2

j isr j (4.24)
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where isr j is the so-called interference-to-signal-ratio (Eq. 3.17, Sec. 3.4.1)

(Morello, 2015; Morello et al., 2016), and o j are the coefficients of the non-transit

components determined by the fitting. The σICA term is the weighted sum of the

errors attributed to the independent components extracted by ICA. Finally, the com-

parison between the two different analysis methods is plotted in Fig. 4.17 and the

numerical values are shown in Tab. 4.7.

Figure 4.17: Stacked spectra obtained with the parametric pipeline (magenta) and

with the ICA + white residuals stacked approach (blue).

4.6.2 Atmospheric retrieval

The last step of our analysis is to interpret the 1D spectrum to understand which

molecules may cause the modulation in wavelengths. To accomplish this last step

we used the spectral retrieval T -REx code (Sec. 2.3) (Waldmann et al., 2015b,a).

As input, to the T -REx code, we assumed an atmosphere dominated by molec-

ular hydrogen and helium, with a mean molecular weight of 2.3 amu. We consid-

ered as candidate trace gases a broad range of molecules, including H2O, C2H2,

CH4, CO2, CO, HCN, NH3, VO and TiO. However, the RobERt (Robotic Exoplanet

Recognition, Waldmann (2016)) module restricted the list of detectable molecules,

based on the observed spectral pattern, to H2O, VO and TiO.

Given the relatively narrow spectral range probed, we assumed an isothermal

profile and molecular abundances constant with pressure. In addition, we set uni-

form priors to the fitted parameters, which were: the mixing ratios of the molecules

(10−12− 10−1), the effective temperature of the planet (1400–2100 K), the radius
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λ1−λ2 (µm) a1 a2 a3 a4 (Rp/R∗)2 (ppm) (Rp/R∗)2 (ppm)

UCL pipeline ICA

1.1250 1.1511 0.632741 -0.481904 0.701108 -0.306091 22940 ± 112 22961 ± 184

1.1511 1.1767 0.619205 -0.434713 0.64011 -0.282483 22862 ± 100 22890 ± 184

1.1767 1.2011 0.614294 -0.41589 0.610565 -0.272242 23091 ± 105 23057 ± 181

1.2011 1.2247 0.599151 -0.360648 0.544934 -0.247917 23083 ± 105 23163 ± 186

1.2247 1.2480 0.584001 -0.29953 0.465487 -0.216442 22893 ± 102 22926 ± 179

1.2480 1.2716 0.581928 -0.282551 0.441745 -0.210655 22878 ± 102 22863 ± 242

1.2716 1.2955 0.58946 -0.229732 0.322997 -0.169253 22951 ± 110 22966 ± 189

1.2955 1.3188 0.57237 -0.227002 0.362724 -0.181489 22864 ± 123 22911 ± 200

1.3188 1.3421 0.569522 -0.202303 0.325228 -0.166816 23176 ± 94 23188 ± 203

1.3421 1.3657 0.564634 -0.163366 0.265035 -0.14235 23335 ± 129 23381 ± 189

1.3657 1.3901 0.561817 -0.127278 0.200548 -0.113503 23255 ± 103 23285 ± 236

1.3901 1.4152 0.561832 -0.0979712 0.148201 -0.0914278 23122 ± 111 23064 ± 182

1.4152 1.4406 0.572262 -0.100901 0.133369 -0.0848254 23382 ± 119 23396 ± 195

1.4406 1.4667 0.58462 -0.111943 0.124656 -0.0799948 23202 ± 115 23129 ± 196

1.4667 1.4939 0.600205 -0.136878 0.140204 -0.0874595 23181 ± 130 23170 ± 294

1.4939 1.5219 0.609784 -0.134319 0.11158 -0.0721681 23041 ± 160 22987 ± 204

1.5219 1.5510 0.626375 -0.139701 0.0839621 -0.0555132 22890 ± 114 22959 ± 201

1.5510 1.5819 0.647904 -0.193435 0.120068 -0.0635888 23076 ± 131 22978 ± 230

1.5819 1.6145 0.663831 -0.223633 0.124246 -0.0583813 22871 ± 102 22886 ± 171

1.6145 1.6500 0.686226 -0.267069 0.137329 -0.0557593 22611 ± 111 22680 ± 198

Table 4.7: Limb darkening coefficients a1−4 and transit depth (Rp/R∗)2 for the

wavelength channels.
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of the planet (1.56-2.10 RJup), and the cloud top pressure (10−3−106Pa).

The transmission spectrum of HAT-P-32b and the best fit calculated by T -REx

are shown in Fig. 4.18. The best-fitting values and the posterior distributions are

shown in Tab. 4.8 and Fig. 4.19. With the exception of water vapour, the fitted

values for all of the other molecular mixing ratios are smaller than 10−7. This result

means that they are not detectable from this dataset. The water vapour mixing

ratio oscillates, instead, between logH2O = −3.45+1.83
−1.65 depending on the clouds’

top pressure, which could occur between 5.16 and 1.73 bar. A strong correlation

between the water vapour mixing ratio, the clouds’ top pressure, the planetary radius

at 10 bar, and temperature is noticeable in Fig. 4.19, indicating there is a degeneracy

in the solutions space.

Figure 4.18: Transmission spectrum of HAT-P-32b obtained with the parametric

pipeline (black) and best-fitting model (light-blue).

4.6.3 Discussion

As mentioned in the previous section, the error bars obtained with ICA are larger by

a factor of ∼1.6–1.8 compared to the ones obtained with the parametric fitting. The
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Table 4.8: Fitting results for HAT-P-32 b atmosphere

Atmospheric Retrieval results

logH2O −4.66+1.66
−1.93

Teff [K] 1553+174
−91

Rp [Rjup] −1.76+0.05
−0.04

Pcld,top [bar] 3.39+1.77
−1.66

larger error bars obtained with ICA are the trade-off for higher objectivity, due to the

lack of any assumption about the instrument systematics compared to the parametric

approach. The ICA error bars are worst-case estimates. It is worth noting that the

discrepancies between the spectra obtained with the different methods are smaller

than the parametric error bars, suggesting that, in this case, the ICA error bars might

be overly conservative.

Previous ground-based observations of the transit of HAT-P-32b in the optical

wavelengths (Gibson et al., 2013; Zhao et al., 2014; Mallonn & Strassmeier, 2016;

Nortmann et al., 2016) did not find evidence of spectral modulations due to atoms,

ions and molecules suggesting a cloudy atmosphere. Our cloud top pressure is

consistent with their measurements within 1σ , hence the water detection in the

infrared is not controversial.

Water vapour has been detected, to date, in the atmospheres of about 25 hot

Jupiters (Iyer et al., 2016; Tsiaras et al., 2018). Stevenson (2016) identify two

classes of hot-Jupiters, essentially mostly cloudy or with a strong water signa-

ture. The observed trend suggests that hotter (Teq > 700 K) and more inflated

(logg > 2.8) planets are more likely to have a strong water signature than cooler

and smaller ones, but the current sample is not statistically significant. In agreement

with this scenario, we find that HAT-P-32b (Teq = 1786 K; logg > 2.8) has one of

the strongest water features so far detected (∼ 500 ppm, 5.3 σ ).

The detection of the water vapour is important to confirm previous studies

and theories. This molecule is indeed predicted to be among the most abundant

(if not the most abundant) molecular species after hydrogen in the atmospheres of
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Figure 4.19: Posterior distributions to the fit for the WFC3 spectrum of the giant

planet HAT-P-32b. Even though we tested the presence of many other molecules

in this atmosphere, here we show only the posterior of H2O because it is the only

significant one. All of the other molecules do not show a statistically significant

contribution to the fit.

close-in extrasolar giant planets, i.e. hot-Jupiters (Seager & Sasselov, 2000; Brown,

2001). Moreover, the abundance of water vapour could help to characterize the

environment where the planet formed and evolved. The presence of water combined

to a detection of a carbon-based molecule (e.g. CO, CO2, CH4) can led to the

calculation of the C/O ratio (Madhusudhan, 2012). In an environment where the
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C/O value ranges from 0.5 (solar value) to 2, the H2O and CH4 abundances can

vary by several orders of magnitude. Carbon-based molecules such as HCN and

C2H2 become prominent for C/O ≥ 1, while the CO abundance remains almost

unchanged. Moreover, a C/O ≥ 1 can prevent a strong thermal inversion due to

TiO and VO in a hot-Jupiter atmospheres, since TiO and VO are naturally under-

abundant in a carbon-rich environment (Madhusudhan, 2012).

From Fig. 4.19 it is possible to note that the mixing ratio of the water vapour

is correlated with the clouds top pressure. Higher are the clouds in the atmosphere

lower is the retrieved concentration of the water. Generally the clouds’ altitude is

regulated by the atmospheric temperature (Barstow et al., 2017), and in the case of

primary transit (e.g. the dataset presented in this chapter) the temperature can not

effectively constrained.

Spectroscopic data over a broader wavelength range, especially in the IR, will

be needed to de-correlate the water vapour’s mixing ratio from clouds and identify

other possible molecular species in HAT-P-32b atmosphere. Even if in the optical

range, observations did not show significant modulation (Gibson et al., 2013; Zhao

et al., 2014; Mallonn & Strassmeier, 2016; Nortmann et al., 2016), it will be worth

to try at longer wavelength. Additionally, a powerful technique, that can help to

break degeneracies, is using high-resolution observations and this is described in

the next chapter.
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Chapter 5

Ground observations

“We must trust to nothing but facts: these are presented to us by

nature and cannot deceive. We ought, in every instance, to submit our

reasoning to the test of experiment, and never to search for truth but

by the natural road of experiment and observation.”

– Antoine Lavoisier - 1790

High-resolution spectroscopy (HRS) allows us to resolve molecular bands into

individual lines. Using radial velocity measurements and techniques such as Cross-

Correlation Function (CCF) it is possible to separate three physically different

sources: telluric absorption, stellar signal and the planetary spectrum, which are

entangled in the recorded spectrum. The aim – but also the biggest challenge – is

to recognise the planetary signal among the telluric and the stellar signals, which

can be orders of magnitude stronger. The standard method used in the literature

to analyse HRS data is to apply a number of manual corrections which involve the

correction of airmass variations, the subtraction of a modelled stellar spectrum from

the data and the use of ad-hoc masks to eliminate residual strong features (Snellen

et al., 2010; Birkby et al., 2013, 2017; Birkby, 2018; Brogi et al., 2014, 2016, 2018).

In this chapter I present and assess an alternative automatic procedure to re-

duce HRS data which requires no manual intervention that could interfere with the

objectivity and repeatability of the analysis. My analysis method is based on a use

of Principal Component Analysis (PCA) and Cross-Correlation Function (CCF).

The exoplanetary atmosphere has been simulated using T -REx (Waldmann et al.,
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2015b) and line lists from the ExoMol project (Tennyson et al., 2016).

The technique described here has been developed to initially analyse

VLT/CRIRES data, but, it may also be used on other current or future instru-

ments. These include VLT/CRIRES+ (Follert et al., 2014), TNG/GIANO-B, a high

dispersion spectrograph (Oliva et al., 2012) which covers 0.9 to 2.5 µm with a

resolution of R=50,000, SUBARU/IRCS (Kobayashi et al., 2000), which uses a

lower resolution (R=20,000) but covers a broader range (from 1 to 5 µm), SUB-

ARU/HDS an high dispersion spectrograph with a resolution of R=165,000 in a

narrow wavelength range (0.62−0.88µm) (Noguchi et al., 2002) and CARMENES

at Calar Alto Observatory (Quirrenbach et al., 2014) with a spectral resolution up

to 80,000 in the near-IR (0.9−1.7 µm).

5.1 Code overview
I have initially developed the code to analyse VLT/CRISES datasets. But it may

easily handle also different instruments with few modifications (e.g. see Sec. 5.8).

Fig. 5.1 shows the flow chart of the code. This is divided in four main phases and it

is assembled in routines and modules for easier upgrades and debugging.

The process starts with the download of raw datasets from the instrument

archive, the VLT one in this case. A parameter object is then created where all

the known parameters of the planetary system are stored. The data are then aligned

to the telluric spectrum so that all the spectra are in the telluric frame. The data are

corrected using unsupervised algorithms and correlated subsequently with a syn-

thetic exoplanet atmospheric model to obtain the final result (SNR map and Welch’s

T-test). An additional module, which can be disabled, allows to inject a synthetic

atmospheric model to the data to test the effect of subsequent corrections and in

which conditions the injected signal is retrieved.

The code is written entirely in Python2.7 except for the “reduction pipelines”

module (see. Fig. 5.1, the red box) that may be written in different languages (e.g.

JavaScript or C).
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Figure 5.1: Flow chart of the pipeline for high spectral resolution data analysis. The

box colours indicate different classes of action: green boxes represent an external

input coming from other models or different sources. The red box includes all the

different reduction pipelines supported. Finally, the blue boxes contain most of the

calculations that I developed.

5.2 Model and input data handling
The process begins by obtaining the raw images from the respective archives12. For

the technical discussion I will use the VLT/CRIRES datasets for the rest of this

chapter, in Sec. 5.8 I will show the work in progress on TNG/GIANO-B frames.

Orbital parameters and values used by the pipeline are estimated. In particular,

1VLT/CRIRES: http://archive.eso.org/eso/eso_archive_main.html
2TNG/GIANO-B: http://archives.ia2.inaf.it/tng/faces/search.xhtml?

dswid=3218

http://archive.eso.org/eso/eso_archive_main.html
http://archives.ia2.inaf.it/tng/faces/search.xhtml?dswid=3218
http://archives.ia2.inaf.it/tng/faces/search.xhtml?dswid=3218
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in the “input parameters” in Fig. 5.1 the user may provide stellar parameters (i.e.

radius and temperature) and planetary parameters such as radius, semi-major axis,

orbital period, mid-transit point, inclination and, most importantly, the systemic

velocity (i.e. the relative velocity between the Sun and the target star). If these

parameters are not provided, the Open Exoplanet Catalogue python package (Rein,

2012; Varley, 2016) is then called to complete the list. All the input parameters

are converted in the MKS system. Other parameters that should be included are:

type of observation (e.g. transit, eclipse or phase variation, for transiting planet and

not) and which molecules the pipeline should consider for cross-correlation with

the data.

The orbital phase is calculated as follows:

φ(t) =
t−T0

Porb
(5.1)

where φ is the orbital phase, t is the time of the observation, T0 is the mid transit

point and P is the orbital period. Knowing the orbital phase of each observation is

useful for computing the planetary radial velocity at a specific time

Vp(t) = Kp · sin(φ(t)) (5.2)

Kp = vorb sin(i) (5.3)

vorb =
2πa
Porb

(5.4)

where Vp(t) is the radial velocity of the planet at time t, Kp is the radial velocity

amplitude, vorb is the orbital velocity, i is the inclination and a is the semi-major

axis.

An important correction is then calculated for each observation. Since the tele-

scope is on Earth which is moving around the barycentric point of the solar system,

we choose a reference frame where the observer is at rest. The barycentric velocity
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correction, vbary, is calculated using the baryCorr function inside the PyAstronomy

python package3.

At this stage the transit time is also evaluated to determine which image of the

dataset contains the beginning of the transit (ingress) and which one contains the

end of it (egress). We start by defining a parameter that effectively affects the transit

time: the impact parameter b is defined as the sky-projected distance between the

centre of the stellar disc and the centre of the planetary disc at conjunction (middle

of transit)

b =
acos(i)

R?
(5.5)

where a is the semi-major axis, i is the orbital inclination and R? is the radius

of the star. If the orbital inclination is 90◦ (b = 0), then the planet will cross the

star at the equator and the transit time will be maximum, otherwise the higher is b

the less will be the duration of the transit. An expression for the transit duration, is

given by (Seager & Mallén-Ornelas, 2003; Kipping, 2010)

Ttransit =
P
π

arcsin

(√
1−b2

aR sin(i)

)
(5.6)

where P is the orbital period, and aR is the semi-major axis in units of stellar

radii (aR = a/R?).

To detect the weak planetary signal, the basic calibration is not accurate

enough. Generally the reduction pipeline use a molecular lamp with known wave-

length line position (e.g. ThAr and OH). However normally the lamp lines are not

enough to ensure a calibration sufficiently precise for our goal. For this reason, we

followed the procedure described in the literature (de Kok et al., 2013; Snellen et al.,

2010; Birkby et al., 2013, 2017; Brogi et al., 2013, 2014, 2016), which involves a

further calibration with telluric absorption spectrum(see Sec. 5.3) using the ESO

Sky Model Calculator tool4. SKYCALC simulates the telluric absorption spectrum

3https://github.com/sczesla/PyAstronomy
4https://www.eso.org/observing/etc/bin/gen/form?INS.MODE=

swspectr+INS.NAME=SKYCALC

https://github.com/sczesla/PyAstronomy
https://www.eso.org/observing/etc/bin/gen/form?INS.MODE=swspectr+INS.NAME=SKYCALC
https://www.eso.org/observing/etc/bin/gen/form?INS.MODE=swspectr+INS.NAME=SKYCALC
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for a specific night.

5.3 Calibration and spikes correction
During the previous steps raw images have been analysed and the 1D spectrum for

each image has been extracted (see Sec. 5.7 and 5.8). The first step is to normalise

each spectrum of each detector by dividing it by its median. This step is necessary

to avoid differences of baseline across spectra due to e.g. slit loss. In Fig. 5.2

the spectrum extracted from one of the images for the four CRIRES detectors is

shown. The signal is still dominated by telluric absorption lines In Fig. 5.3 we show

the telluric transmission spectrum generated using the SKYCALC tool, setting the

option for clear sky.

Figure 5.2: 1D extracted spectrum for the four CRIRES detectors (HD209458b

dataset).

The goal of this process is to determine the relationship pixel-wavelength, by

comparing the position of strongest lines in both the telluric transmission and the

1D extracted spectra.

Working on each detector at a time, we consider the mean spectrum. Here,

the strongest lines (all the lines reaching a minimum < 0.8) have been identified

as homogeneously distributed as possible to cover the whole x-axis range. These

same lines are also been identified within the telluric template. A Gaussian fit is

then performed for each of these lines and the centroid is taken. The extracted spec-
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Figure 5.3: Telluric transmission spectrum in the nominal wavelengths of the

CRIRES spectrograph generated by the SKYCALC tool for clear sky scenario.

trum centroids indicate the pixel number position. In the telluric template, instead,

they indicate wavelength positions of the lines. The pixel positions are then plotted

against the wavelengths (Fig. 5.4, top panel). At a first look the relationship may

appear as a linear trend, but, the residuals of a linear fit still show some correlations

(Fig. 5.4, mid panel) and therefore an higher order fit is required.

A second and third order fits reduce the standard deviation of the residuals but

they are not good enough as they well reproduce the central part of the spectrum but

fail to reproduce the wings. A fourth order fit is required for all of the four detectors.

In Fig. 5.4 (bottom panel), the residuals of a fourth order fit are shown and no

correlations appear. We can estimate the precision of a fit, in terms of velocity by

using

∆V =
std(residuals) · c

λc
(5.7)

where std(residuals) is the standard deviation of the residuals, c is the speed

of light and λc is the central wavelength of the spectrum. The error in terms of ve-

locity for all the detectors is about 1 kms−1. This is not a problem when analysing

a GIANO-B dataset, since the pixel resolution is∼ 3 kms−1. The CRIRES spectro-

graph, on the other hand, has a resolution of ∼ 1.5 kms−1 per pixel and the current

calibration method could affect the result. This method needs to be improved when
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Figure 5.4: Pixel-wavelength relationship for detector 1 of the HD209458b dataset.

Top panel shows the relationship between pixel numbers and wavelength. Mid

panel shows the residuals after a linear fit, a trend is still visible. Bottom panel

shows residuals after fourth order fit.

working with spectrographs of even higher spectral resolution such as the SUB-

ARU/HDS (R = 165,000).

All the single spectra are then interpolated via a third order spline to the de-

rived wavelength grid to have the same grid for all the spectra. This procedure has

been used previously (Snellen et al., 2010; Brogi et al., 2013, 2018), but, for future

instruments it needs to be improved to obtain a precision less than 0.5 kms−1.

I analysed each detector separately as a two-dimensional matrix, where the

x-axis contains wavelengths and the y-axis time: every row of this matrix is a spec-

trum, every column is a temporal-series at a given wavelength (see Fig. 5.5).

Finally, the pipeline removes all the cosmic rays or spikes that could occur at

the edges of the spectra due to the spline interpolation to the wavelength grid. The
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Figure 5.5: The HD209458b (full discussion see Sec. 5.7) dataset after calibration.

The y-axis maps the orbital phase. The x-axis the wavelength grid.

pipeline takes one column at a time of each 2D matrix, it calculates the median of

the column and all the values outside 3σ from the median are set to the median

value.

5.4 PCA and SYSREM
At this point, the data are treated with the algorithms developed and described in

Sec. 3.2 and 3.3. The user selects which algorithm to use from the parameter file.

Pre-processing is needed at this point (Sec. 3.2), one can select: standardis-

ation (ST) and mean features subtraction (MFS). In Fig. 5.6 is depicted the first

detector of the HD189733b dataset (see Sec. 5.7 for full discussion) after the cali-

bration process, the two pre-processing methods have been applied and the result is

shown in Fig. 5.7. The main differences are:

• The MFS matrix shows the variation of telluric lines throughout the visit

mainly due to airmass variations, while, in the ST matrix these features are

flatter and more extended.

• In the colour-map meter in Fig. 5.6, the range of values in the MFS in the first

case has been reduced, while in the ST case, the range is even bigger than the

data prior to pre-processing (range= [0−1.1]).

After trying both methods I noticed that MFS is more effective in terms of final

SNR output (Sec. 5.6.1).

The datasets are now analysed by PCA or SYSREM (see chapter 3). However,

while the decomposition using SYSREM is not affected by the orientation of the
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Figure 5.6: Detector 1 of the HD189733b dataset prior to the application of any

pre-processing algorithm.

Figure 5.7: Top Panel: detector 1 of the dataset HD189733b with the mean of each

column subtracted. Bottom Panel: same image but with the standardisation applied

as pre-process step.
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input matrix, PCA components change if the algorithm is applied to a matrix or to

its transpose. It is worth to explore what happens when the data matrix is analysed.

5.4.1 Time or wavelength domain?

On a typical high resolution spectroscopy dataset the number of spectra are less

than the wavelength bins, resulting in matrices that have way more columns than

rows. In the HD189733b dataset, for example, the data matrix per detector has the

dimensionality 45×1024. Using the algorithm described in Sec. 3.2 the dimension

of the covariance matrix and the number of principal components (eigenvectors) are

equal to the number of rows of the input matrix. Two cases are then considered:

• time domain matrix (TDM); we use the spectra as row arrays and wave-

length bins as columns. In this case the covariance matrix has the dimension-

ality 45×45 and 45 components will be obtained.

• wavelength domain matrix (WDM); we transposed the input matrix to use

rows to indicate the wavelength bins and columns for the number of spectra.

In this case the covariance matrix will have the dimensionality 1024× 1024

and 1024 components will be calculated;

On top of different computational efficiencies, these two processes return two

different spaces. In the WDM case the components contain the information of wave-

length correlations among the data. In the TDM case (using the transposed input

matrix) the components matrix contains information of the correlations along the

time direction. In the literature both procedures are used (de Kok et al., 2013;

Piskorz et al., 2016, 2017). Here I will compare both methods to show differences

and/or advantages.

We apply PCA to the matrix shown in Fig. 5.7 top panel. Both WDM and

TDM covariance matrices are shown in Fig. 5.8. By resolving the characteristic

polynomial of these matrices it is possible to calculate the eigenvectors and eigen-

values.

In Fig. 5.9 we show the first five components in order of variance of the

45× 45 covariance matrix (left) and the fist five of the 1024× 1024 covariance
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Figure 5.8: Top Panel: covariance matrix of the detector 1 in the HD189733b

dataset, where the input matrix has been transposed (TDM case): the dimension of

this matrix is the number of spectra taken during the observation (i.e. 45). Bottom

Panel: same as top but the input matrix has not been transposed (WDM case) and

the dimension is equal to the number of the wavelength bins (i.e. 1024).

matrix (right). As the data are highly affected by the telluric absorption, the first

components are indeed closely linked to this effect. The first components on the
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Figure 5.9: Left panels show the first five eigenvectors of the TDM case (45×45)

(top panel Fig. 5.8). These components depict the time correlation of the data along

the time domain. Right panels show the five eigenvectors of the WDM covariance

matrix (1024×1024) (bottom panel Fig. 5.8).

left-hand side of Fig. 5.9 contain information on the time-domain and the first one,

in particular, is linked to the variations of the airmass: these are linearly corre-

lated as we can appreciate from Fig. 5.10. Components on the right-hand side show

correlation in the wavelength domain and in particular all the components are corre-

lated with the telluric transmission spectrum. A good example is the strong feature

around 200 (Fig. 5.9 x-axis unit) (∼2290nm) that persists in all the components.
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Figure 5.10: Linear relation between the first component in the time domain and

the recorded airmass.

An useful information comes from the explained variance ratio (EVR) (see

Sec. 3.2) that highlights the information in terms of percentage carried by every

single component. In the case of the TDM (45 components) (Fig. 5.11, top panel)

the variance of the first component includes most of the information and only the

last one has zero variance. Also in the WDM case (1024 components) (Fig. 5.11,

bottom panel) the first component has the majority of the variance, but then that

drops to zero after a certain value which corresponds to the number of spectra in

the dataset. Since the dimension (rank) of the input matrix is equal to the number

of spectra, the number of uncorrelated vectors (i.e. the basis of the space) can not

be greater than the dimension of the matrix itself. This implies that in both cases,

the same number of eigenvectors is calculated, but these have different information

content.

The first five components of the WDM case show some persistent features,

reflecting the fact that the algorithm is not able to condense the information in a

few components. On the contrary, when we use the TDM decomposition, a better

correction is obtained. In Fig. 5.12 the results of the PCA algorithm after the

subtraction of the first five components are shown for both TDM (left panels) and

WDM (central panels) case (Eq. 3.8). The third column shows the difference of the

respective WDM and TDM results, highlighting the persistence of telluric signal

(the input matrix is also shown for reference).

A way to address this issue is to use a telluric mask after the calibration step to
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Figure 5.11: Top panel shows the explained variance ratio (eigenvalues) of the

decomposition of the TDM covariance matrix. The graph is related to the first

detector of the HD189733b dataset. Bottom panel is the same as top panel but in

the WDM case. In both figures the first component has most of the total variance

(<70%).

neglect most prominent telluric features.

The TDM case has been chosen as best method for the following reasons:

• the WDM component space is degenerate since there are more variables than
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Figure 5.12: Top figure: the input matrix (PCA input) for reference. Left column:

the PCA’s results in the TDM case. Central column: the same as left column but

in the WDM case. Right column: the difference between the wavelength and the

time decomposition. Telluric residuals are present in the difference, meaning that

the two methods are not equivalent.

observations;

• the application of a telluric mask is required if the WDM case is chosen.

5.4.2 Comparison of the algorithms

In Tamuz et al. (2005) it is stated that the orthogonality of the components retrieved

by SYSREM is not assured and this may introduce systematics. The planetary

signal is small compared to the overwhelming signal from star and the telluric ab-

sorption, for this reason choice of the right correction algorithm is crucial.
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Fig. 5.13 shows the results of PCA (left panels) and SYSREM (right pan-

els) after the subtraction of the first five components. At first look no significant

differences can be spotted, however, if we calculate the difference between the ma-

trices, structured signals become detectable (Fig. 5.14). The colour-map scale of

the differences indicates that these effects are 1/10 of the signal. At this stage both

algorithms are equally good.

Figure 5.13: Results obtained with the decomposition algorithms after subtracting

the first five components (from top to bottom). Left column: PCA algorithm, right

column: SYSREM.
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Figure 5.14: Differences between SYSREM and PCA residuals obtained by apply-

ing these two algorithms to the input data. Structured signals are visible and the

differences are 1/10 of the signal showed in Fig. 5.13.

After the application of PCA or SYSREM each column of the output matrix

has been divided by its standard deviation to restore the SNR of the processed data

(de Kok et al., 2013; Birkby et al., 2013; Ridden-Harper et al., 2016; Nugroho et al.,

2017).
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5.5 Cross-Correlation Function (CCF)
The cross-correlation function measures the similarity of two signals. It is also

often called sliding dot product since it returns a single value from the product of

two signals in which one slides over the other. Considering two series x and y, the

normalised cross-correlation CCF at the delay d, for discrete series, is defined as

follows (Bracewell, 1965)

CCF(d) =
∑i ((x(i)− x) · (y(i−d)− y))√

∑i (x(i)− x)2 ·
√

∑i (y(i−d)− y)2
(5.8)

where x is the mean of the array x, y is the mean of the array y and i =

0,1,2...N− 1. The idea of using such function is to find possible similarities be-

tween the data and an atmospheric model. The cross-correlation aims at matching

similarities between the two signals.

The chemical models have been simulated using T -REx (Sec. 2.3) (Wald-

mann et al., 2015a,b).

Every row of the data matrix (every single spectrum), after the application of

PCA or SYSREM, is cross-correlated with the simulated atmospheric spectrum.

This is interpolated to the same wavelength grid of the data, and it is then shifted

from −100 to 100 kms−1 with 1.0 km/s as step. The step is chosen based on the

precision obtained during the calibration step and on the velocity resolution of the

instrument (see Sec. 5.3).

The CCF transforms the matrices (one for each of the four CRIRES’ detectors)

from the wavelength domain to the velocity domain. The CCF matrices are then

added together to obtain one single matrix (we will refer to it as CCF matrix).

At this stage the planetary signal is not visible (see Fig. 5.15 top left panel).

The injection of a synthesised model is performed after the calibration and the ef-

fects of this process are not visible at that stage because the signal intensity is at

least three order of magnitude less than the telluric and star signals. When the CCF

is performed, the injected model cross-correlates with itself resulting, for example,

in the signal showed in Fig. 5.15 bottom panels. The model is injected using the or-

bital parameters of the planet. The stronger is the injected signal the higher will be
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the variance of those components that describe the signal. This means that injection

should not be more than 1x times the signal not to interfere with the decomposition.

Figure 5.15: Top left panel: the four CCF of the four CRIRES’ detectors summed

together. Bottom left panel: same as top but with the model injected. The injection

is 1× the synthesised model (Rp/R? ∼ 10−3). Top right panel: cross-correlation

after changing the reference frame from the Earth to the rest frame of the exoplanet.

In this frame the planetary cross-correlation signal is aligned to zero kms−1. Bot-

tom right panel: same as top right panel but with the injection. The injected signal

is aligned to zero kms−1 in the exoplanet’s rest frame.

Since the signal of the planet is not visible, we summed the in-transit cross-

correlations to increase the correlated signal. Before doing this, a change of refer-

ence frame is needed. All the previous steps have been performed working in the

Earth’s reference frame where the data have been aligned to the telluric spectrum.

The reference frame is changed to the exoplanet’s rest frame where the planetary

signal is at rest. To perform this step the following transformation in the velocity

space is applied:

Vp = Kp sin [2πφ(t)] + vsys + vbary(t) (5.9)
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where Vp is the velocity correction, Kp is the radial velocity of the planet (de-

fined in Eq. 5.3), φ(t) is the orbital phase (see Eq. 5.1), vsys is the relative velocity

between the Sun system and the target system and vbary(t) is the correction for

changing from the Earth reference frame to the barycentric frame of the solar sys-

tem. Fig. 5.15 top and bottom right panels show the cross-correlation map after the

reference frame is changed. Here, the injected signal is at rest. Since the planetary

signal is now aligned to its natural reference frame we summed only the in-transit

cross-correlations to increase the planetary SNR.

5.6 Output
When all the in-transit cross-correlations are summed together, the 2D cross-

correlation matrix is reduced to 1D signal (see Fig. 5.16) relative to the theoretical

orbital velocity of the planet. To explore different orbital velocities we proceeded

as follows:

1. we let Kp varying from 0 to 250 km/s with 1 km/s step;

2. for each Kp we apply the correction (Eq. 5.9) to every single CCF in the CCF

matrix;

3. we sum only the in-transit cross-correlations.

In this way we were able to explore all possible orbital velocities including

those corresponding to the host star. Following the previous steps, we obtained a

matrix with Kp on y-axis and velocity rest frame along x-axis (vrest). From this

matrix two different outputs are extracted: the SNR map and the T-test statistic.

5.6.1 SNR map

We refer to the last matrix obtained, i.e. Kp on y-axis and vrest on x-axis. We

calculated the standard deviation of this matrix excluding those points potentially

connected to the planetary signal (|vrest | < 15 kms−1) and we divided the entire

matrix for this value. In this way we derived the SNR matrix (see Fig. 5.17).

To assign an uncertainty to the Kp value we followed the same procedure as

reported in Brogi et al. (2016): i.e. we took the maximum of the matrix and, fix-
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Figure 5.16: In-transit summed cross-correlations for the input data and for different

injections. The injection perturbs the surroundings of the CCF peak,the stronger the

injection the higher is the perturbation around the peak.

ing the relative vrest , we calculated the Kp interval where the SNR drops by a unit

around the Kp peak (Fig. 5.18). The same approach has been used to determine the

uncertainty for the vrest .

The SNR map is not only useful to visually represent the result but also to see if

spurious signals or telluric residuals are present. These signals may have high SNR

value but located at Kp and/or vrest different from those expected for the planetary

signal.

Finally, Fig. 5.17 and Fig. 5.18 contain an extra information: when PCA and

SYSREM have been introduced we have not mentioned how to decide the number

of components to neglect. We performed a computational loop which comprises

PCA, CCF and SNR map calculation to explore the component space; this loop is

sketched in Fig. 5.1. If SYSREM is chosen as de-trending method, there is only

one loop subtracting one component at a time iteratively. If PCA is chosen, two

loops are calculated: one neglects higher variance components onwards and the

other subtracts lower variance components backwards.

5.6.2 Whelch’ T-test statistics

The Welch’s T-test is a method used in statistics to test the hypothesis that two pop-

ulations have equal means (Welch, 1947). Welch’s T-test, differently from Student’s

T-test, is more reliable when the two samples have unequal variances and unequal
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Figure 5.17: Top Panel: SNR map in case of planetary signal detection (the maxi-

mum SNR is in agreement with the orbital Kp and the planetary vrest) (Full discus-

sion Sec. 5.7). Bottom panel: same map but the planetary signal is not detected.

sample sizes. Moreover, the Welch’s T-test assumes that the two populations have

normal distributions. The idea to use this method is to compare the population of

points on the CCF map interested by the planetary signal with those that are not.

From the output CCF matrix (Fig. 5.19 and Sec. 5.6), we defined, as done in

the literature (Brogi et al., 2016; Nugroho et al., 2017):
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Figure 5.18: Top panel: SNR variation with respect to Kp at fixed vrest value of

the SNR map in Fig. 5.17 top panel. The red vertical lines indicate the uncertainty

interval. Bottom panel: same as top panel but referred to Fig. 5.17 bottom panel.

• in-trail, those values inside a squared box centred on the CCF’ peak with a

radius of ±15kms−1;

• out-trail, those values outside the in-trail box

We extracted two families of values from the output CCF matrix and these

are compared through Welch’s T-test (Fig. 5.20). From the figure we can appreci-

ate how the in-trail distribution is shifted with respect to the out-trail distribution,

centred on zero-mean. The Welch’s T-test (calculated using scipy.stats.ttest_ind in

python) provides a p-value (two-tailed) which is converted into σ -value (signifi-
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cance interval) through the inversion of the survival function (SF)

σvalue = SF−1(p-value / 2) (5.10)

where the SF−1 is the inverse of the survival function that is calculated from

the cumulative density function (CDF) as follows:

SF = 1 − CDF. (5.11)

Figure 5.19: Co-added in-transit cross-correlations at different Kp. The red square

determine which values are in− trail, i.e. those inside the box, and values that are

out− trail, i.e. outside the box.
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Figure 5.20: Distribution of the statistical Welch’s T-test performed on HD209458b

dataset. In-trail (orange) and out-trail (blue) distributions are drawn and in both

cases the in-trail distribution is shifted towards positive CCF values.

5.7 VLT/CRIRES datasets

The CRyogenic high-resolution InfraRed Echelle Spectrograph (CRIRES) at ESO’s

Very Large Telescope (VLT) was proposed a few years after the first radial velocity

detection (Wiedemann, 1996; Wiedemann et al., 2000; Kaeufl et al., 2004) and for

the first time a robust detection of CO in the infrared wavelength range has been ob-

tained by Snellen et al. (2010). They observed HD209458b, an hot-Jupiter orbiting

around a G0-type star (∼ 6000K), and they were able to estimate the orbital veloc-

ity of the planet, to detect carbon monoxide in the atmosphere, and finally to obtain

some insights into the dynamic of the atmosphere. The success of this work is, in

part, due to the high stability not only of the instrument but also of the telescope

that used Multi-Applications Curvature Adaptive Optics (MACAO) to optimise the

signal-to-noise ratio and the spatial resolution.

The VLT high-resolution spectrograph, CRIRES, provided a resolving power

up to 100′000 (two pixels) in the wavelength range from 1 to 5.3 µm. It was pro-

vided with a mosaic of four detectors (4096×512 pixels) in the focal plane.
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5.7.1 Data reduction

The CRIRES reduction pipeline has been embedded into my code thanks to ESO’s

EsoRex which is a command-line driven utility that can launch pipeline reduction

routines (they are referred as recipes). These are individual scripts that perform

specific actions to the input data. The recipe used to reduce the CRIRES raw data

is the crires_spec_jitter5. This recipe performs the following operations:

• dark subtraction;

• correction for detector non-linearity;

• flat-fielding;

• combination of nodding exposures;

• spectrum extraction;

• wavelength calibration.

The master reduction files (e.g. dark and flat) are provided with the raw data,

while the specific non-linearity correction files need to be downloaded from the

archive6.

The nodding is an observational strategy that allows to record subsequent im-

ages alternating two different positions on the detector, these are generally referred

as nod A and nod B (ABBA or ABAB) (see Fig. 5.21). The strategy consists on

subtracting images relative to two subsequent positions, creating AB or BA cou-

ples. This allows to correct the sky background, possible bad pixels and glowing

effects. The two signals (relative to nod A and nod B) are separately extracted or

combined together depending on the data analysis strategy (combining images re-

duces the time resolution). In the CRIRES’ datasets the two signals are merged

together (Fig. 5.21) and then optimally extracted (Horne, 1986).

5https://www.eso.org/observing/dfo/quality/CRIRES/pipeline/

recipe_science.html
6https://www.eso.org/sci/facilities/paranal/instruments/crires/

doc/VLT-MAN-ESO-14200-4032_v91.pdf

https://www.eso.org/observing/dfo/quality/CRIRES/pipeline/recipe_science.htm
https://www.eso.org/observing/dfo/quality/CRIRES/pipeline/recipe_science.htm
https://www.eso.org/sci/facilities/paranal/instruments/crires/doc/VLT-MAN-ESO-14200-4032_v91.pdf
https://www.eso.org/sci/facilities/paranal/instruments/crires/doc/VLT-MAN-ESO-14200-4032_v91.pdf
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Figure 5.21: CRIRES’ reduction process. Top left panel: raw frame in the nodding

position B. Bottom left panel: raw frame in the nodding position A. Right panel:

combination of the two nodding position.

The extracted spectra are calibrated with the arc frame provided alongside the

master reduction files aforementioned. As explained in Sec. 5.3 this calibration pro-

cess is not enough. An additional calibration with the telluric spectrum is required

for a better correction of the telluric absorption effects.

In the following two sections I will describe the application of the pipeline

previously presented on the HD209458b and HD189733b datasets.

5.7.2 HD209458b

We downloaded the HD209458b dataset which is publicly available on the ESO

archive. It is part of the 383.C-0045(A) program (PI: Snellen, I.). HD209458b

has been observed with CRIRES at the highest resolution available (R= 100,000)

through the 0′′.2 slit. The dataset covers a narrow wavelength range, i.e. 2291.79−

2349.25 nm with three gaps in between due to the physical separation of CRIRES

detectors (283 pixels). The dataset has been recorded with the nodding method

ABBA (Snellen et al., 2010), and EsoRex has been used to reduce the data. The

number of spectra extracted by the reduction process (Sec. 5.7.1) is 51.
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The data are then corrected using the Earth’s absorption spectrum (telluric

spectrum) and cosmic rays are removed (Fig. 5.22). The data are decomposed

by PCA or SYSREM. The variances of the eigendecomposition for each of the four

detectors are shown in Fig. 5.23. The first component contains most of the informa-

tion (>75%) but its value varies for different detectors suggesting that choosing the

same number of components for all the detectors may not be the optimal solution.

For the cross-correlation process, the planetary transmission spectrum was

modelled using T -REx (Waldmann et al., 2015a,b) (Sec. 2.3). The CO and H2O

line-lists were taken from ExoMol (Tennyson & Yurchenko, 2012; Tennyson et al.,

2016). We assumed an isothermal T/p profiles at T = 1400K, with pressure vary-

ing from 10−5 to 104 Pa. We did not include clouds or lines broadening due to the

rotation of the planet. We used 10−3 as Volume Mixing Ratio (VMR), this value is

compatible with chemical models’ predictions for Hot-Jupiters atmospheres (Venot

et al., 2012). The same value was also used by Snellen et al. (2010).

The cross-correlations are aligned to the planetary rest frame (Eq. 5.9) and

thanks to the duration of the transit calculated with Eq. 5.6, only those CCFs be-

tween 9 and 40 (51 in total) are summed, i.e. in-transit CCFs. We explored the

components’ space for CO and H2O and for both of them a signal has been found.

The signal obtained for CO, using PCA, peaks at SNR=5.7 (Fig. 5.25). The

signal is compatible with the planetary orbital parameters (Kp = 148+16
−15 kms−1,

vrest =−3.0+1.3
−1.1 kms−1). This result has been obtained by considering components

from the 7th to the 28th. The in-transit co-added cross-correlation is shown in Fig.

5.24 in case of injection or not. Since the injection effect, in this graph, is not

null, the PCA did not erase the planetary signal. The result is also confirmed by

the Whelch’s T-Test (Fig. 5.26). Using a box of radius 15 kms−1 (Sec. 5.6.2) the

null hypothesis is rejected with a confidence greater than 7σ , the shift of the in-

trail population is noticeable with respect to the out-trail values that are, instead,

distributed as a Gaussian centred to zero.

If we use SYSREM, the SNR peak is not strong as in the PCA case (see Fig.

5.27). The SNR peak is compatible with the orbital parameters but its value is
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Stellar parameters

Te f f (K) 6065±501

M? (M�) 1.119±0.0331

R? (R�) (1.155+0.014
−0.016)

1

log(g?) (csg) 4.361±0.0081

vsys (kms−1) −14.7652±0.00162

Planetary parameters

Teq (K) 1449±121

a ( AU ) (0.04707+0.00046
−0.00047)

1

Rp (RJup) (1.359+0.016
−0.019)

1

Mp (MJup) 0.685±0.0151

P ( days ) 3.52474859(38)3

T0 (BJDUTC) 2452826.629283(87)3

i (deg) 86.71±0.051

1Torres et al. (2008), 2Mazeh et al. (2000), 3Knutson et al. (2007a)

Table 5.1: HD209458 system information

SNR= 4.03. As described in Sec. 5.6.1 the components in SYSREM are subtracted

one at a time and the non orthogonality of the SYSREM’s components may have

erased part of the planetary signal during the process.

The signal of the water vapour is more difficult to detect since the Earth’s

atmosphere also contains water. To determine the planetary signal a good tel-

luric correction is required, to do so, several components have been subtracted

using PCA. A signal at the compatible planetary parameters is observable in the

SNR map in Fig. 5.29. The maximum peaks at SNR=3.95, Kp = 140+25
−16 kms−1

and vrest = −4.0+1.4
−1.6 kms−1 and it is obtained considering components from the

33th to the 43th. To demonstrate that the H2O planetary signal survives after 33

components have been subtracted, Fig. 5.28 shows the in-transit co-added cross-

correlation relative to the range of components aforementioned. Both the injected

and non-injected signal survive to the PCA correction (note that the injected signal
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does not include any atmospheric dynamics, so it is not blue-shifted as the plane-

tary signal). Moreover, the co-added cross-correlation value is lower with respect to

the CO case (Fig. 5.28 and 5.24) meaning that the concentration of water is lower

than CO or that PCA has erased part of the signal. Finally, the Whelch’s T-Test is

performed on the in-trail and out-trail populations (Fig. 5.30). In this case the shift

of the in-trail population is not as strong as in the CO case but the null hypothesis

is rejected with a confidence greater than 6σ .

When we used SYSREM, no signal was found for the water vapour.

Another test we performed was to cross-correlate the telluric model used in

the calibration process (Sec. 5.3) with the data, to check if any telluric signal still

persists. In Fig. 5.31 we show two SNR map of the dataset cross-correlated with

the telluric model: the top panel considers the entire component space. This result

not only highlights the correction of the telluric signal but also that the water vapour

has a different spectral signature at different temperature (300 K on the Earth and

1400 K on HD209458b).

Tab. 5.2 summarises the results obtained for the analysis of the HD209458b

dataset. The results of both molecules are in agreement. The negative vrest (i.e.

blueshift of the signal in the SNR map) is compatible with high altitude winds.

Snellen et al. (2010) reported a blueshift of ∼2 kms−1 explaining that it is compat-

ible with the presence of high altitude winds.

Results (this work) CO H2O

SNR 5.7 3.95

Kp (kms−1) 148+16
−15 140+25

−16

vrest (kms−1) −3.0+1.3
−1.1 −4.0+1.4

−1.6

W T-Test 21.62σ 6.56σ

Table 5.2: The table shows the results obtained for the HD209458b dataset.
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Figure 5.23: Detectors’ variances of the PCA decomposition relative to the

HD209458b dataset. The first component always carries more than 75% of the

information. However, the variance is different for each of the detectors.



144 Chapter 5. Ground observations

Figure 5.24: Summed in-transit cross-correlations with and without the injection

of carbon monoxide. The injection perturbs the surroundings of the CCF peak.

The co-added CCFs are relative to the planetary rest frame of HD209458b (Kp =

145.041 kms−1). This graph has been generated considering components from 7 to

28 of the PCA decomposition (the same of Fig. 5.25).

Figure 5.25: SNR map for the carbon monoxide. The maximum point is compatible

with the planetary orbital parameters.
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Figure 5.26: Distributions (i.e. in-trail and out-trail) used to compute the Whelch’s

T-Test. The null hypothesis is rejected with a confidence >7σ .

Figure 5.27: SNR map for the carbon monoxide when SYSREM is used. The

maximum point is compatible with the planetary parameters but the peak value is

lower than the one obtained using PCA.
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Figure 5.28: Cross-correlations of water vapour co-added in-transit. The injected

signal and the planetary signal are still present after using PCA. The co-added CCFs

are relative to HD209458b rest frame (Kp = 145.041 kms−1). This graph has been

generated considering PCA components from 33 to 43.

Figure 5.29: SNR map of the water vapour. The peak is compatible with the plane-

tary parameters.
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Figure 5.30: Distribution (i.e. in-trail and out-trail) used to compute the Whelch’s

T-Test. The null hypothesis is rejected with a confidence of 6.56σ .
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Figure 5.31: Top panel: SNR map of the dataset HD209458b cross-correlated with

the telluric model. Bottom panel: SNR map of the telluric model including the

same range of components of the reported water vapour detection (see Fig. 5.29).

No signal is visible at the orbital parameters of the planet.
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5.7.3 HD189733b

The HD189733b dataset is publicly available on the ESO archive. It is part of

the 289.C-5030(A) program (PI: Snellen, I.). HD189733b has been observed with

CRIRES at the highest resolution available (R= 100,000) through the 0′′.2 slit.

The datasets, cover a narrow wavelength range, i.e. 2287.54− 2345.34nm. The

dataset has been recorded with the nodding method ABBA (Brogi et al., 2016), and

EsoRex has been used to reduce the data. The final number of spectra extracted

after using the reduction process (Sec. 5.7.1) are 45. The same analysis done for

the HD209458b dataset has been performed here.

For the cross-correlation process the planetary transmission spectrum was

modelled using T -REx (Waldmann et al., 2015a,b) (Sec. 2.3). The CO and H2O

line lists were adopted from ExoMol (Tennyson & Yurchenko, 2012; Tennyson

et al., 2016). We assumed isothermal T/p profiles at T = 1000K, pressure vary-

ing from 10−5 to 104 Pa and we did not include clouds or any lines broadening

due to the rotation of the planet. We used 10−3 as Volume Mixing Ratio (VMR),

this value is compatible with chemical models’ predictions for Hot-Jupiters (Venot

et al., 2012). The same value was also used by Brogi et al. (2016) in their analysis.

All the cross-correlations are aligned to the planetary rest frame (Eq. 5.9) and

thanks to the duration of the transit calculated through Eq. 5.6, only CCFs from 7

to 45 (45 in total) are summed up.

The CO detection is highly difficult since the star, being a K-type star (T∼

4900 K), contains CO in the outer regions. In Brogi et al. (2016) a master stellar

spectrum has been simulated and subtracted to the data, but the stellar contamina-

tion continued to be persistent also in the result. In this work, PCA was not as

effective as in the HD209458b case because the star spectrum moves 1-2 pixels

on the detector preventing an optimal correction. The result (see Fig. 5.35 and

Tab. 5.4) is compatible with the one claimed by Brogi et al. (2016) (SNR=5.1,

Kp = 194+19
−41 kms−1, vrest = −1.71.1

1.2 kms−1), however the error on the Kp, being

smaller than the one reported in literature, does not include the theoretical value of

the orbital velocity of the planet calculated with Eq. 5.4. The signal determined at
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Stellar parameters

Te f f (K) 5040±501

M? (M�) 0.806±0.0481

R? (R�) 0.756±0.0181

log(g?) (cgs) 4.587±0.0151

vsys (kms−1) −2.361±0.0032

Planetary parameters

Teq (K) (1201+13
−12)

1

a ( AU ) (0.03120(27))3

Rp (RJup) (1.178+0.016
−0.023)

3

Mp (MJup) (1.144+0.057
−0.056)

1

P ( days ) 2.21857567(15)4

T0 (BJDUTC) 2454279.436714(15)4

I ( deg ) 85.710±0.0244

1Torres et al. (2008), 2Bouchy et al. (2005), 3Triaud et al. (2009)
4Agol et al. (2010)

Table 5.3: HD189733 system information.

lower Kp (∼ 85 kms−1) is a contamination signal of the star, that results from the

Rossiter-McLaughlin effect combined with the change of reference frame from the

Earth to the barycentric one (Brogi et al., 2016).

The data in-transit co-added and cross-correlated at the theoretical velocity of

the planet (Fig. 5.34) show a peak at the position of the injected signal, but that is

not strong enough to emerge from the noise.

Concerning water vapour, the same discussion done for HD209458b can be

applied here. The planetary water signal needs to be disentangled from the telluric

absorption. The result obtained is compatible with both literature and theoretical

parameters, e.g. see Fig. 5.36 where the planetary signal is compared with the

injected one. The injected signals do not account for vrest 6= 0 kms−1, we can

appreciate the data being blue-shifted. Finally the Whelch’s T-Test confirms that
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the null hypothesis can be rejected with a confidence greater than 5σ (Fig. 5.39).

As in the case of HD209458b, we have cross-correlated the data with the tel-

luric model. Fig. 5.40 shows the SNR map of the telluric model in the component

space determined for the water vapour detection (Fig. 5.37). Even in this case the

telluric signal is not present at the theoretical position of the planet suggesting the

effectiveness of the correction.

Results (this work) CO H2O

SNR 5.24 3.69

Kp (kms−1) 190+16
−16 167+32

−21

vrest (kms−1) −3.0+1.0
−1.3 −4.0+2.0

−1.8

W T-Test N/A 5.21σ

Table 5.4: The table shows the results obtained for the dataset HD189733b.
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Figure 5.33: Detectors’ variance of the PCA decomposition relative to HD189733b

dataset. The first component always carries more than 75% of the information.
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Figure 5.34: The picture shows the co-added in-transit cross-correlations for the

input data and for different levels of injections of carbon monoxide. The injected

signal and the planetary signal are present after using PCA. The co-added CCFs

shown in picture are calculated aligning the singular CCFs to the theoretical orbital

velocity of the planet HD189733b (Kp = 152.564 kms−1). This graph has been

generated using PCA components from 22th to 36th, same of Fig. 5.35

Figure 5.35: The figure shows the SNR map for the carbon monoxide for the

HD189733b dataset. The peak of the matrix is compatible with the results reported

by Brogi et al. (2016) but not with the theoretical radial velocity of HD189733b

(Kp = 152.564 kms−1).
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Figure 5.36: Cross-correlations of the planetary signal and of the injected water

vapour co-added in-transit. The co-added CCFs are calculated at the theoretical

orbital velocity of the planet HD189733b (Kp = 152.564 kms−1). The CCFs are

the result of the combination of the PCA components from 12th to 27th.

Figure 5.37: SNR map of water vapour for the HD189733b dataset. The maximum

point is compatible with Brogi et al. (2016) and with the planetary parameters.
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Figure 5.38: The figure shows the relation between SNR and Kp at fixed vrest of

the peak value of SNR map shown in Fig. 5.37. The red vertical lines indicate the

uncertainty interval.

Figure 5.39: The figure shows the two distribution (i.e. in-trail and out-trail) used

to compute the Whelch’s T-Test. The null hypothesis is rejected with a confidence

of 5.21σ .
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Figure 5.40: SNR map of the HD189733b dataset cross-correlated with the telluric

model in the same range of components of the result reported in Fig. 5.37.
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5.7.4 Discussion

As explained in the previous sections, to test the pipeline that I have developed

and described here, I have re-analysed two CRIRES’ datasets (HD209458b and

HD189733b). CO and H2O have been detected in the HD209458b dataset, and

H2O in the HD189733b dataset. The detection of CO in the HD209458b atmo-

sphere is supported by an SNR peak of 5.7 at Kp and vrest compatible with the plan-

etary orbital parameters. Contrary to CO, H2O is present in the Earth’s atmosphere

and therefore an accurate telluric correction is required. The lower SNR peak may

be due to a lower concentration of H2O with respect to CO in the atmosphere of

HD209458b, or part of the signal might have been removed by PCA. In both detec-

tions a blueshift has been observed and this could be explained with high altitude

winds. The results presented here are in agreement with the results published by

Snellen et al. (2010).

Concerning HD189733b, using an unsupervised approach, we have been able

to detect H2O. The CO signal we obtained, is compatible with the literature (Brogi

et al., 2016) but it is not in agreement with the theoretical radial velocity of the

planet, and could be due to stellar signal contamination (K-type star contains CO).

The in-transit co-added cross-correlations at the planetary velocity show an hint of

the presence of CO, but the signal is buried into the noise (Fig. 5.34). Even in this

dataset a blueshift of the signal has been observed and also in this case it can be

associated with high altitude winds.

Pipeline performance

In the literature, previous works concerning high-resolution data analysis have

been completed adopting ad-hoc corrections. In particular these corrections in-

volved masks to neglect strong telluric lines and linear or second order polynomial

fit to correct the airmass variation (Snellen et al., 2010; Brogi et al., 2012, 2013,

2014, 2016, 2018). In general this approach may led to results that are not easily

reproducible. The automatic pipeline presented here does not have prior knowl-

edge on the shape or depth of the telluric lines or on the variation of the airmass.

This makes the algorithm more general, and it could be applied to high-resolution



5.7. VLT/CRIRES datasets 159

observations taken by other instruments.

The SYSREM algorithm (Tamuz et al., 2005) has been used in the context

of high-resolution data analysis allowing for the detection of H2O (Birkby et al.,

2013) and TiO (Nugroho et al., 2017). Since in Tamuz et al. (2005) it is stated that

the orthogonality of the calculated components in not guaranteed, we compared the

performance of SYSREM and PCA. We noted that the results obtained by PCA are

better in terms of the calculated SNR (see Fig. 5.25 and 5.27). This may be due to

two factors:

1. Using PCA we can access all the components at the same time, allowing to

neglect those components with higher and lower associated variance. This

allowed us to subtract signal we were not interested in and to reduce the cor-

related noise enhancing the SNR. SYSREM allows only to neglect calculated

components iteratively from the most important onwards.

2. SYSREM does not guarantee the orthogonality of the calculated components

meaning that more than one signal can be contained in a particular component

rising the risk of small signal to be erased.

The pipeline, however, has some limitations. It can cross-correlate synthetic

models that contain one molecule at time. For the HD209458b datasets, for ex-

ample, the CO and the H2O signals have been found in different components. If

a combined model (e.g. CO + H2O) is cross-correlated with the data a different

components range is obtained. Since different molecules may be present at dif-

ferent concentration in the atmosphere, during the the decomposition analysis, the

signals of different molecules are comprised in different components. Finally, an

important point to mention is the different signal decompositions across the four

CRIRES’ detectors. The EVR is different on each detector (Fig. 5.23 and 5.33) and

this means that the signal relative to a particular molecule is found in different com-

ponents across the detectors. An optimal approach should choose different numbers

of components per detector based on their variance.

In 2014 CRIRES has been dismissed for an upgrade. A new set of gratings
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are going to be installed converting the instrument into a high-dispersion spectro-

graph with 10x the range that it had. Even if this pipeline has been designed for

analysing CRIRES datasets, its general approach can be extended to different instru-

ments. In the next section I will describe the work in progress with the instrument

TNG/GIANO-B.

5.8 TNG/Giano-B datasets
Thanks to the collaboration with the Observatory of Palermo, during my Ph.D. I

have joined the GAPS team7. The team has access to high-resolution data recorded

with the instruments GIANO-B (Oliva et al., 2012; Origlia et al., 2014) (50’000

resolution power, IR band) and HARPS-N (Cosentino et al., 2012) (115’000 res-

olution power, optical band) installed on the TNG (Telescopio Nazionale Galileo)

in La Palma. The two instruments work simultaneously to offer a coverage from

optical to IR band (0.3− 2.5 µm) and they, together, are referred to as GIARPS

(Claudi et al., 2016). I will focus only on the IR part of the instrument. GIANO-B

is a near-infrared high-resolution spectrograph and provides cross-dispersed spec-

troscopy at a resolution of ∼ 50′000 (velocity resolution per pixel ∼ 3 kms−1) in

the near-infrared 0.9− 2.45 µm spectral range in a single exposure. Unlike the

VLT/CRIRES, GIANO-B has a single detector of 2048x2048 pixels containing all

the diffraction orders dispersed by the echelle slit. The instrument has been in com-

missioning phase until last year and it is now available for regular use.

I recently started to test my pipeline on datasets recorded by GIANO-B.

5.8.1 Data reduction

The data reduction pipeline, called GOFIO, is a python package with some sub-

routines written in fortran778. It has been embedded into my pipeline, even if re-

duced frames are also available on the archive9. Similarly to VLT/CRIRES, the

7http://www.oact.inaf.it/exoit/EXO-IT/Projects/Entries/2011/12/

27_GAPS.html
8https://atreides.tng.iac.es/monica.rainer/gofio
9http://archives.ia2.inaf.it/tng/faces/search.xhtml;jsessionid=

d415ff68349076c3b060b0f802eb?dswid=-3961

http://www.oact.inaf.it/exoit/EXO-IT/Projects/Entries/2011/12/27_GAPS.html
http://www.oact.inaf.it/exoit/EXO-IT/Projects/Entries/2011/12/27_GAPS.html
https://atreides.tng.iac.es/monica.rainer/gofio
http://archives.ia2.inaf.it/tng/faces/search.xhtml;jsessionid=d415ff68349076c3b060b0f802eb?dswid=-3961
http://archives.ia2.inaf.it/tng/faces/search.xhtml;jsessionid=d415ff68349076c3b060b0f802eb?dswid=-3961
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main TNG/GIANO-B observing mode is the nodding mode. The object is observed

first in the nodding position A, then B (or B and then A) to create the sequences

ABBA or ABAB. The process starts by calculating the differences A-B or B-A to

do sky and dark subtraction (see Fig. 5.41). On these images the flat correction is

performed and subsequently the images are straightened and an optimal extraction

(Horne, 1986) is performed order by order (for order we intend a row in the trace of

the signal on the detector, see Fig. 5.41).

Figure 5.41: GIANO-B’ reduction process. Top panels: raw images observed in

nodding A (left) and B (right). Bottom panel: difference A-B: the B trace has

negative (dark) values. Figure source: GOFIO manual https://atreides.

tng.iac.es/monica.rainer/gofio.

Contrary to CRIRES’ datasets, the nodding positions, here, are extracted sep-

https://atreides.tng.iac.es/monica.rainer/gofio
https://atreides.tng.iac.es/monica.rainer/gofio
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arately to keep the original time resolution. Finally, the extracted 1D spectra are

calibrated order by order using the arc lamp file recorded at the end of the observa-

tional night.

One of the main differences between CRIRES, which is a pre-dispersed high-

resolution spectrograph, and GIANO-B (cross-dispersed spectrograph) is the simul-

taneous wavelength range coverage. In the latter all the orders are recorded at the

same time in the detector, while in CRIRES the slit is positioned on the desired

wavelength range.

5.8.2 Data analysis

To test my pipeline on a GIANO-B dataset, I started working on the WASP-33b

dataset (Smith et al., 2011) (GAPS team proprietary data), which is an hot-Jupiter

(T ∼ 3600K) orbiting around a very hot star (∼ 7500K).

After the reduction process (Fig. 5.42), all the spectra are stored in matrices

(one per each order) which are in total 50 (from order 81 to 32). As shown in

Fig. 5.42 some orders are saturated by telluric absorption and for those no results

can be calculated and they are, then, excluded from the analysis. This will reduce

the number of orders to about 25 (Fig. 5.43). After the calibration process (Sec.

5.3) we have noticed that the nodding A and the nodding B (extracted separately)

show differences in the baseline level after the normalisation. In Fig. 5.44 top

panel we can appreciate this effect. Two subsequent rows of the matrix are a AB

or BA nodding couple. Moreover, after subtracting the mean of each column (MFS

method, Sec. 5.4) (Fig. 5.44 bottom panel) it appears also a difference between the

left half of the detector and the right one. Every order is then not only split in two

different matrices containing only the nodding A or the nodding B sequences, but

also divided in two sub matrices. In this way every matrix relative to a specific order

is divided into four distinct matrices rising the total number of matrices to analyse

to more than one hundred. This has a considerable impact on the execution time of

the pipeline. Remember that CRIRES’ datasets consisted of only four matrices.

Finally, some of the matrices show a different PCA decomposition in terms of

EVR, see for example Fig. 5.45 where the first component does not carry more than
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75% like in the case of CRIRES’ datasets.

Since H2O is not expected to be present at these temperature (T ∼ 3600K)

due to thermal dissociation, we have tried to cross-correlate CO and TiO using an

isothermal T/p profile at Tp = 3600K and VMR equal to respectively 10−3 and

10−8 with pressure varying from 10−5−102 (parameters adopted from Smith et al.

(2011) and Nugroho et al. (2017)).

No detection has been determined, suggesting that a more detailed study on the

pre-process and normalisation steps is required additionally to an optimal choice of

PCA components per matrix.

Figure 5.42: GIANO-B’ extracted spectra. All the 50 orders are shown and some

of them are highly affected by the telluric absorption.

Figure 5.43: Same of Fig. 5.42 but here the saturated orders have been neglected

and the remaining orders have been normalised.
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Figure 5.44: Top panel: GIANO-B’ order 33 before the pre-processing. The dif-

ferences on the nodding baselines are visible. Bottom panel: same matrix as top

panel but the MFS method has been applied. The difference between the left and

right areas of the detector is visible.

Figure 5.45: GIANO-B’ order 33 variance of the PCA decomposition relative to the

WASP-33b dataset. The first component carries less than 50% of the information.
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Conclusion

“Just when you think you know something, you have to look at in

another way. Even though it may seem silly or wrong, you must try.”

– Robbie Williams - 1989

The characterisation of an exoplanet’s atmosphere can be achieved by using

a good variety of observational and analysis strategies. In this thesis I focused on

data analysis techniques that improve the performance of current methods, while

limiting the introduction of the human bias through ad-hoc corrections.

In chapter 3 I have discussed well known techniques (i.e. ICA, PCA and SYS-

REM) for signal decomposition, highlighting differences and similarities not re-

ported in the literature.

Part of my Ph.D. work has been focused on data analysis of space-based ob-

servations recorded by the HST/WFC3 camera (chapter 4). The UCL pipeline I

have contributed to (Tsiaras et al., 2016a) can perform better with respect to other

approaches that can be found in the literature (Deming et al., 2013; Wilkins et al.,

2014). The combined effect of the multiple aperture extraction module (able to di-

vide the signal in temporal sequences. i.e. ‘stripes’) and a binning module assuring

similar SNR across all the bins has decreased the scattering on the final 1D spectrum

(Tsiaras et al., 2018). Additionally, it has allowed the analysis of blended signals

and had permitted the use of a different approach to treat instrument systematics

trough a machine learning approach (Damiano et al., 2017). The method adopted

for the HST/WFC3 could be adapted and extended to future space observations such
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as the James Webb Space Telescope (JWST)1 and the Atmospheric Remote-sensing

Exoplanet Large-survey (ARIEL)2. These two facilities will provide thousands of

observations at low/medium-resolution over a broad spectral range.

In the second half of my Ph.D. I have developed from scratch a pipeline to

analyse high spectral resolution data (chapter 5) recorded from the ground. Here, I

demonstrated that the systematics introduced by telluric absorption can be removed

without manual intervention or introduction of ad-hoc masks as done in previous

papers(Snellen et al., 2010; Birkby et al., 2013; Brogi et al., 2016). This has been

achieved by taking full advantage of PCA technique (Damiano et. al submitted).

In particular, analysing the HD189733b dataset I have suggested that results pre-

sented in Brogi et al. (2016) may be affected by contamination of the stellar signal.

Ground based high-resolution observations are rapidly growing and new facilities

have recently started to be operative (e.g. ESPRESSO, CARMENES, HARPS-N,

GIANO-B) and in the next decade a breakthrough is expected with the E-ELT3 that

will be equipped with a 39-meter class telescope.

The spectra obtained with WFC3 and ground-based observatories were com-

pared with a chemical/atmospheric model to understand the composition and the

structure of the exoplanet’s atmosphere. In both projects we used T -REx (Wald-

mann et al., 2015b,a) (Sec. 2.3) to synthesise planetary spectra using ExoMol line

lists (Tennyson & Yurchenko, 2012). In particular the use of the ExoMol line lists

can improve the data analysis since it has been demonstrated that at higher temper-

ature (T>1000 K) they are more accurate than HITRAN which is measured at room

temperature (e.g. for methane HITRAN vs ExoMol Lavie et al. (2017)).

In chapter 2 I have introduced the concept of high- and low-resolution ob-

servations. The differences, between them, have been highlighted when the two

dedicated pipelines for data analysis have been discussed. However, ground-

based high-resolution spectroscopy over a narrow spectral interval and space-based

low/medium resolution over a broad wavelength range, are very complementary ap-

1https://www.jwst.nasa.gov
2https://ariel-spacemission.eu
3https://www.eso.org/sci/facilities/eelt/

https://www.jwst.nasa.gov
https://ariel-spacemission.eu
https://www.eso.org/sci/facilities/eelt/


167

proaches (de Kok et al., 2014; Brogi et al., 2017; Pino et al., 2018)). A long list of

space and ground-based instruments will come online in the next decade. Having

developed skills in both space and ground observations will be crucial to advance

the study of exoplanetary atmospheres.
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