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ABSTRACT

I present a new idea to map football players information by using multidimensional scaling, and

to cluster football players. The actual goal is to define a proper distance measure between players.

The data was assembled from whoscored.com. Variables are of mixed type, containing nominal,

ordinal, count and continuous information. In the data pre-processing stage, four different steps

are followed through for continuous and count variables: 1) representation (i.e., considerations

regarding how the relevant information is most appropriately represented, e.g., relative to minutes

played), 2) transformation (football knowledge as well as the skewness of the distribution of some

count variables indicates that transformation should be used to decrease the effective distance

between higher values compared to the distances between lower values), 3) standardisation (in

order to make within-variable variations comparable), and 4) variable weighting including variable

selection. In a final phase, all the different types of distance measures are combined by using the

principle of the Gower dissimilarity (Gower, 1971).

As the second part of this thesis, the aim was to choose a suitable clustering technique and

to estimate the best number of clusters for the dissimilarity measurement obtained from football

players data set. For this aim, different clustering quality indexes have been introduced, and as

first proposed by Hennig (2017), a new concept to calibrate the clustering quality indexes has

been presented. In this respect, Hennig (2017) proposed two random clustering algorithms, which

generates random clustering points from which standardised clustering quality index values can

be calculated and aggregated in an appropriate way. In this thesis, two new additional random

clustering algorithms have been proposed and the aggregation of clustering quality indexes has

been examined with different types of simulated and real data sets. At the end, this new concept

has been applied on the dissimilarity measurement of football players.
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IMPACT STATEMENT

In recent years, the industry of professional football (soccer) has grown and developed, due to

an expanding interest in statistical analysis of this sport especially with the existence of a vast

amount of footballing data. More features and more ideas have been contributed by professional

management using the most advanced tools. Discovering such footballing talents is another big

challenge for the industry, and team’ scouts and footballing agents generally track such players

by using expert’s knowledge, watching football matches, or looking at the descriptive statistics of

football players. In this research, exploring such talented players are further improved by advanced

statistical techniques with wise interpretation of the big amount of football players data. The

idea here is to combine all different football players features and present in one single setting, so

that users can have the opportunity of finding their players of interest with one click rather than

setting the features manually, but at the same time they can have the flexibility of playing with

the weights of features if they are interested in some features more than the others. This design

is only depending on statistical data sets, and my claim here is that using directly this design for

the recruitment of new footballing talents is not a sufficient way, but I simply provide a short-cut

to football scouts or managers for finding their players of interest from a statistical and scientific

point of view.

The benefits inside academia for this thesis is quite different than the footballing idea above.

The idea of aggregation of clustering validation indexes is an intelligent contribution to the statisti-

cal literature, especially for cluster analysis. With this new concept, researchers may have not only

the flexibility of the usage of various clustering validation indexes together in one setting, but also

have the chance of finding an optimum clustering algorithm and determining the best number of

cluster.
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CHAPTER 1

INTRODUCTION

1.1 Aims and Objectives

Professional football (soccer) clubs invest a lot of resources in the recruitment of new footballing

talent. I propose that traditional methods of scouting by direct observation of players can be en-

hanced further by intelligent interpretation of the vast amount of footballing data now available

on the performance of players. My research is to design a methodology to map football players’

performance data in order to explore their similarity structure. This type of information can be very

useful for football scouts and managers when assessing players, and also journalists and football

fans will be interested. For instance, football scouts and managers try to find talented players that

have certain characteristics to complement their team’s strategy, and my design could support them

in the recruitment of such players. On the other hand, some managers want to retain their teams as

stable as possible. When a player leaves from a team, the manager will probably be willing to find

another player with similar characteristics to the departed player in order to retain their system.

In general, the strategy can be used to analyse team structure. Therefore, the similarity design for

players can be very informative and practicable for football squads and managers.

The project will be guided from a statistical and scientific point of view through Statistical

Learning algorithms, in particular cluster analysis, which can be presented with a simple interpre-

tation for use in industry. In this sense, I intend to design of a dissimilarity measure, used for MDS

(Multidimensional scaling) and dissimilarity – based clustering. I pursue two stages in this regard:

1) define a proper distance measure between players based on their performance and characteristic

information, 2) cluster and visualise the data by using this distance. Because the first goal is to

define a proper distance (dissimilarity) measure between objects, I work on the variables in terms

of how they reflect players’ characteristics.
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In this thesis, the first stage, designing a proper distance measure is presented. In this regard,

data is pre-processed in such a way that player information is well characterized. Four steps are

followed through in this respect:

1) Representation: This is about how to represent the relevant information in the variables, by

defining new variables, summarising or framing information in better ways.

2) Transformation: This should be applied in order to match the distances that are interpre-

tatively meaningful with the effective differences on the transformed variables. This is an

issue involving subject-matter knowledge that cannot be decided by the data alone.

3) Standardisation: Variables should be standardised in such a way that a difference in one

variable can be traded off against the same difference in another variable when aggregating

variables for computing distances; in other words, making the variables comparable in size.

4) Variable weighting: Some variables may be more important and relevant than others.

Weighting is about appropriately matching the importance of variables.

The data are quite complex with many types of variables that need individual treatment. In

this sense, several dissimilarity measures are discussed, and new types of dissimilarities have been

designed in terms of how well they match the interpretation of dissimilarity and similarity in the ap-

plication of interest. In the final phase, all different types of dissimilarity measures are aggregated,

and presented in one single dissimilarity matrix for overviewing.

In the second stage, my focus is how to choose an appropriate clustering method and how to

determine the best number of clusters. To decide about appropriate cluster analysis methodology

and the number of clusters, researchers should consider what data analytic characteristics the clus-

ters they are aiming at are supposed to have. For this aim, different clustering validation index

values (e.g., low within-cluster distances or high between-cluster separation) can be evaluated,

which is crucially dependent on the aim of clustering. Hennig (2017) introduced several validation

criteria that refer to different desirable characteristics of a clustering and stated that the user can be

interested in several of these criteria rather than just one of them. In this respect, he proposed two

random clustering algorithms that are meant to generate clusters with standardised characteristics

so that users can aggregate them in a suitable way, specifying weights for the various criteria that

are relevant to the clustering application at hand. As a continuation of Hennig (2017)’s paper, some

new additional random clustering algorithms are introduced, and the calibration of indexes are fur-

ther scrutinized with simulation studies and analysed with some famous real data sets. In a final

phase, this new concept is performed on the dissimilarity matrix obtained from football players

data set as explained in the first part.
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Prior to reviewing literatures and analysing all these concepts, I provide some brief background

information regarding the game of football for readers who are unfamiliar with this sport. Addi-

tionally, the literatures of football statistics are briefly reviewed, especially in terms of cluster

analysis.

1.2 History of Football

“Some people think football is a matter of life and death. I assure you, it is much more

serious than that” - Bill Shankly, best known as the manager of Liverpool from 1959

to 1974.

Football is one of the biggest (perhaps the biggest) global sport all over the world. Millions

of people regularly go to football stadiums, whereas billions more watch the game on television.

The world’s most popular sport has a long and interesting history. Historical evidence and sources

suggest that football has been played in Egypt, Ancient China, Greece and Rome. Approximately

2,500 BC, Egyptians played a football-like game during feasts of fertility. Around 400 BC, a dif-

ferent form of football-like game, called ’Cuju’ (translated “kick the ball with foot”) was popularly

played in China. The game was used by military leaders as a competitive sport to keep soldiers

physically fit. In Ancient Rome, the game became so popular that it was included in the early

Olympics. In fact, it is believed that football has been originated from England in the twelfth cen-

tury. The kings of that time actually banned football, because interest for the traditional sports,

such as fencing and archery was being reduced.

The contemporary history of football was first codified in 1863 in London, England. Twelve

London clubs created more strict football rules, and then formed The Football Association, the

same FA that holds today’s popular FA Cup. The British have also been considered instrumental to

spreading the game to other European countries, such as Spain, France, Netherlands, and Sweden,

and across the world. Eventually, a governing body of football was formed by these countries, and

the FIFA was founded. In 1930, the FIFA held football’s first World Cup tournament in Uruguay

with 13 teams. From this time, the tournament has been awarded every four years except in 1942

and 1946 when it was not held because of the Second World War.

Aside from the World Cup, several international football competitions between national teams

exist, such as the Euro Championships, Copa America and the African Cup of Nations. Domesti-

cally the strongest leagues can be regarded as England (English Premier League), Spain (La Liga),

Germany (Bundesliga) and Italy (Serie A).
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Although football is particularly known as men’s sport, the most prominent team sport has been

played by women since the time of the first recorded women’s games is the late 1960’s and early

1970’s. The FIFA Women’s World Cup has been organised every four years since 1991.

In some countries, such as in the United States, Philippines, and Korea, football is referred

to as soccer. The word soccer was first invented in England to distinguish between rugby football

and association football. People referred to association football “assoccer”, while they called rugby

football “rugger” in order to avoid confusion, and later “assoccer” became “soccer”. In this project,

I use the word “football” in the European sense.

For sources, see History of Football - The Origins (http://www.fifa.com/about-fifa/who-

we-are/the-game/), History of Football (http://www.history.co.uk/study-topics/history-

of-football-tennis/history-of-football), Football (https://en.wikipedia.org/wiki/

Football), A Brief History of the Game (http://www.hornetfootball.org/documents/football-

history.htm) and Who Invented Football (http://www.football-bible.com/soccer-info/

who-invented-football.html).

1.3 The Game of Football

Football is played between two teams of eleven players each with a spherical ball, and the main

objective is to score by getting the ball into the opposing goal with any part of the body except the

arms and hands. The side that scores the most goals wins. If both teams have the same number of

goals or neither of them scored a goal, it is considered a draw. The rules of football are officially

referred to as the “Laws of the Game” (17 Laws), which are described on the FIFA website in

detail (see FIFA - Law of The Game in ’Reference’ section), but I will briefly summarise here.

Field of Play: The game is played on either natural or artificial surfaces, which must be green and

rectangular in shape. Figure 1.1 illustrates areas of football field with its dimensions and marks.

Ball: It must be spherical with a circumference of 68-70 cm and a weight of 400 to 450 grams and

made of leather (or similar) and of a certain pressure.

Number of Players: A football match is played by two teams of no more than eleven players each,

one of which is the goalkeeper. A game cannot be played if either team has less than seven players.

In official football competitions, the maximum number of substitutions is three. The number of

substitutes in pitch is seven in general, but differs depending on the competitions. The goalkeepers

are the only players allowed to handle the ball in penalty area (including goal area). Each team

will have a designated captain.
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Figure 1.1: Field of football pitch

Player’s equipment: Players must wear a jersey, short, socks, shin guards, and football boots.

Goalkeepers will additionally wear padded gloves and should wear a kit will distinguish them

from the outfield players and referees.

Head Referee: The referee should enforce the Laws of the Game during the course of a match.

Assistant Referees: The role of assistant referees is primarily to assist the head referee, and they

also should enforce the Laws of the Game during a match. There should be two assistant referees,

located at each touchline. In these days, games are being played with two more assistant referees

at each goal lines in some competitions.

Match duration: The length of a football match is 90 minutes, played in two halves consisting of

45 minutes each with a 15 minute half-time break between halves. Additional time (also known

as stoppage time or injury time) is often played at the end of each half to compensate for time lost

through substitutions, injured players requiring attention, or other stoppages.

Start and restart of play: A kick-off starts play at the beginning of the first and the second half

of the match or after a goal is scored. The team which starts the game is determined by a coin toss

at the beginning of the match. During the kick-off, only two players from the team which starts

game are allowed to be inside of the centre circle: the one kicking and the one receiving the ball.
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Ball in and out of play: The ball is out of play when it has entirely crossed a goal line or touchline

whether on the ground or in air. The ball remains in play at all other times, except play is stopped

by the referee under any legitimate circumstances.

Method of scoring: A goal is scored if the ball entirely crosses the goal line whether on the ground

or in air between the two goalposts and under the crossbar, as long as no violation of the rules has

occurred.

Offside: A player is in offside position when the pass is played through to him/her, if there are

fewer than two players (including the goalkeepers) between him/her and the goal line. A player

cannot be caught offside in their own half. A free kick is awarded to the opposition if a player is

caught offside. Figure 1.2 gives better illustration to understand the rule.

Figure 1.2: Offside

Fouls and misconducts are called if a player uses excessive force against an opponent whilst

playing the game either deliberately or undeliberately or to handle the ball (except the goalkeepers

in penalty area). When this occurs, the referee may show the yellow card for caution and the red

card for dismissal. Two yellow cards are equivalent to one red card.

Free kicks are given by the referee after a foul or a rule infringement is committed. A free kick

can either be “direct” in which a kicker may score directly, or “indirect”, in which another player

must touch the ball before a goal can be scored. The opposing team must be a minimum of 9.15

meter from the ball when the free kick is taken. A player is penalised for offside when receiving

the ball directly from a free kick.

6



Penalty kicks are given if a player from the opposing team commits a foul inside his/her own

penalty area. The kick must be direct and taken from the penalty spot. All the players (except the

kicker from the awarded team and the goalkeepers from the opposing team) must be outside of the

penalty area and penalty arc, until the penalty is taken.

A throw-in is awarded to a team if the ball has entirely crossed the touchline whether on the

ground or in air. It is given to the team opposing the side that touched the ball last. The thrower

must use both hands, have each foot either on the touchline or on the ground outside the touchline,

and deliver the ball from behind and over their head from the point where the ball left the field

of play. A goal cannot be scored directly from throw-in. A player is not penalised for an offside,

when receiving the ball directly from throw-in.

A goal kick is awarded to the defending team if the opposing team causes the ball to entirely cross

the goal line whether on the ground or in air without a goal being scored. Any player from the

defending team is allowed to take the goal kick. It must be taken anywhere on the goal area and

must exceed the penalty area. A goal can be scored directly from a goal kick against the opposing

team. A player is not penalised for offside when receiving the ball directly from a goal kick.

A corner kick is given to the attacking team if the ball has entirely crossed the goal line whether

on the ground or in air (without a goal being scored), and was last touched by a player from the

defending team. A corner kick is taken from inside the corner arc closest to the point where the

ball crosses the goal line. All defending players must be at least 9.15 meters from the corner arc

until the kick is taken. A goal can be scored directly from a corner kick, and an attacking player

who directly receives the ball from a corner kick cannot be penalised for offside.

1.4 Statistics in Football

“The ball is round, the game lasts 90 minutes, and everything else is pure theory” -

Josef Herberger, best known as the manager of West Germany from 1950 to 1964.

Statistics can be regarded as one of the most commonly applied scientific areas in sports. In

football, statistical science is particularly used in prediction of match results in early years. Publi-

cations about statistical models for football predictions started from the 1950’s. Moroney (1954)

proposed the first model regarding the analysis of football results. He showed that football games

can be fitted adequately by adopting both Poisson and Negative Binomial distribution. Reep and

Benjamin (1968) analysed the series of ball passing between players during football games by

using the negative binomial distribution. Hill (1974) indicated that football match results can be

7



predictable, and are not pure chance. Maher (1982) proposed the first model predicting outcomes

of football games between teams by using the Poisson distribution.

In more recent years, studies have typically been conducted to predict players’ abilities, to rate

players’ performances, to enhance their physical performance, etc. in many applications. Mohr

et al. (2003) assessed physical fitness, development of fatigue during games, and match perfor-

mances of high standard soccer players. The results showed that: (1) players performed high-

intensity running during a game; (2) fatigue occurred independently of competitive standard and

of team position; (3) defenders covered a shorter distance than players in other playing positions;

(4) defenders and attackers had a poorer performance than midfielders and full-backs based on the

presented recovery test; (5) player’s physical performance changed in different seasons. Impel-

lizzeri et al. (2006) compared the effect of specific (small-sided games) versus generic (running)

aerobic interval training in junior football players, and measures match performance of them. The

results of this study showed that specific and generic are equally effective modes of aerobic interval

training. Rampinini et al. (2007) examined the construct validity of selected field tests as indica-

tors of match-related physical performance in top-level professional soccer players, and showed in

their empirical study that repeated-sprint ability and incremental running tests can be interpreted

as measures of match-related physical performance.

Knorr-Held (2000) analysed time-dependency of team strengths by using recursive Bayesian

estimation to rate football teams on the basis of categorical outcomes of paired comparisons, such

as win, draw and loss. Results indicated that recent activities have more influence on estimating

current abilities than outcomes in the past. On the other hand, it is well known that team skills

change during the season, making model parameters time-dependent. Rue and Salvesen (2000)

applied a Bayesian dynamic generalized linear model to estimate the time dependency between

the teams, and to predict the next week of matches for betting purposes and retrospective analysis

of the final ranking. Di Salvo et al. (2007) observed football players’ performance characteristics

based on their positions. According to their findings, distances covered at different categories of

intensities are significantly different in the different playing positions. Although the concept here

is slightly similar to the application of players’ performance characteristics in different positions,

the methodologies that I proposed in my report are different than the approach in this paper. Karlis

and Ntzoufras (2009) designed the Time-Independent Skellam distribution model, which fits the

difference between home and away scores, as an alternative to the Possion model that fits the

distribution of scores.

McHale et al. (2012) described an index system and its construction of a football player’s

performance rating system based on the English Premier League, and clarified that the index pro-

vides a rating system of a player’s best match performance rather than exploring the best play-
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ers. McHale and Szczepański (2014) presents a mixed effects model for identifying goal scoring

ability of football players, and found that their model performed well for partitioning players’

abilities that may have influenced their goal scoring statistics in the previous season. Further-

more, some public attempts have been made to rate players, such as Castrol Performance Index

(http://www.fifa.com/castrolindex/), and EA SPORTS Player Performance Index (http:

//www.premierleague.com/en-gb/players/ea-sports-player-performance-index.html)

1.5 Cluster Analysis in Sports

Sports have embraced statistics in assisting player recruitment and playing strategies. Different

statistical methodologies have been applied to various types of sports data. Cluster analysis is one

of the most powerful methodologies that has been used for aggregating similar types of players in

several applications. Ogles and Masters (2003) suggested that by using cluster analysis (Ward’s

method) based on the increase in error sum of squares and the interpretability of the solutions,

marathon runners can be categorised in five definable groups in terms of their motives for run-

ning. Gaudreau and Blondin (2004) examined if there is any relationship between several coping

strategies used by groups of athletes. A hierarchical cluster analysis was conducted using Ward’s

method with a squared Euclidean distance measure, and the number of clusters was determined

using a dendrogram 1, the agglomeration schedule coefficients 2, and the interpretability of the

cluster solution. Wang et al. (2009) observed perceived coaching behaviour among basketball

players, and showed that three distinct groups, which were found by using an agglomerative hier-

archical clustering method, could be identified in terms of coaching behaviour. Dendrograms and

agglomeration schedules were generated to provide a basis for determining the number of clusters.

Yingying et al. (2010) applied different clustering techniques on athlete physiological data, and

analysed a group of athletes with their performance, and proposed a new hierarchical clustering

approach, which is the combination of Dynamic Time Warping 3 and hierarchical clustering, and

adopted Rand Index 4 evaluation to analyse the cluster similarity.

1 A dendrogram is a tree diagram frequently used to illustrate the arrangement of the clusters produced by hierar-
chical clustering (Everitt et al., 2011, chap. 4).

2The agglomeration schedule shows the amount of error created at each clustering stage when two different objects
- cases in the first instance and then clusters of cases - are brought together to create a new cluster (Norušis, 2012,
chap. 16).

3Dynamic Time Warping is a technique that aligns time series in such a way that the ups and downs are more
synchronised.

4The Rand Index is a measure of the similarity between two data clusterings by considering all pairs of samples
and counting pairs that are assigned in the same or different clusters in the predicted and true clusterings (Rand, 1971).
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Similarly to my idea, Lutz (2012) used several different clustering algorithms to group NBA

players based on several statistics, such as goals, assists, rebounds, blocks, etc. and analysed how

each cluster affects winning in the regular season. The goal was to determine which type of players

are most relevant to winning. However, constructing a distance matrix and data pre – processing

are inspected in greater detail in my project, and I pay much more attention to players’ similarities

rather than how players affect the match results.

More recently, Kosmidis and Karlis (2015) introduced the framework of copula-based finite

mixture models for cluster applications. In one of the applications in the paper, they used NBA

players’ data to form groups of players in terms of their performance. The aim in particular is to

analyse how the introduced model is performed.

In the literature, cluster analysis has not been explicitly applied to football player’s performance

data, specifically to form a similarity (or dissimilarity) structure of player’s performance in detail.

As specified in Section 1.1, this project will consider every aspect of football player performance

in order to obtain a proper distance matrix between players based on their performances, and group

them by using distance-based clustering algorithms.

1.6 Thesis Structure

This report is structured as follows. This chapter, Chapter 1, contains an introduction and describes

the purpose of my research project. A brief history and some fundamental and standard rules to

play football were described. In addition, some literature regarding football statistics, specifically

in terms of clustering were reviewed. In the next chapter, I introduce the football player perfor-

mance data set with descriptions of the variables that will be used in the application part of the

thesis.

In Chapter 3, I discuss the methodologies and review the literature that are relevant to data

pre-processing and the dissimilarity construction for the sake of the application part of the next

chapter, Chapter 4. The strategy of cluster analysis is introduced, then data pre-processing, which

is one of the fundamental procedures of constructing a distance matrix, is scrutinized. I refer to

some literature for different types of dissimilarity measures. Because the data set to be used for

this project contains compositional data, I deliver a theoretical background behind this topic, and

review the literature and the concept of distance measures in compositional data. Finally, I provide

some information about how to aggregate mixed-type variables, missing values and distances, and

summarise Chapter 3.

In Chapter 4, the main goal is to analyse the football data set, which was collected from
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the website, www.whoscored.com, by using the information from the third chapter. Data pre-

processing steps are used for the aim of designing a dissimilarity matrix. Afterwards, aggregating

different types of variables as well as the combination of different dissimilarity matrices are dis-

cussed and analysed. At the end of the analysis, I compare the final constructed dissimilarity

measurement with the plain standardised Euclidean distance, and show them in a mapping form.

In Chapter 5, more literature about clustering algorithms have been reviewed and two famous

dimension reduction techniques have been described in terms of visual exploration for the data set

of interest. In the final section, I consider some external validation criteria, specifically the most

commonly used one, the adjusted Rand index, to be used for further analysis. In Chapter 6 clus-

tering validation indexes for estimating the number of clusters are described and a new approach,

aggregation of clustering validation indexes, is introduced for the sake of finding an optimum

choice of clustering algorithm and the number of clusters.

Examination of clustering validation indexes for different types of data sets have been scruti-

nized in Chapter 7. First, data sets are simulated from different scenarios, where some of them are

based on statistical distributions, and some others are generated based on different shaped clus-

ters. Second, some famous data sets that have been used in real applications are analysed for the

sake of estimating the number of clusters by using the idea of calibration of clustering validation

indexes. In Chapter 8 the dissimilarity matrix obtained from football players data set has been

studied, and the final result regarding the choice of clustering algorithm and the determination of

number of cluster for this dissimilarity matrix has been discussed and finalised from a statistical

and subjective-matter point of view.

In Chapter 9, some concluding remarks are made regarding all discussions and findings of this

thesis, and some recommendations are given for future work.
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CHAPTER 2

FOOTBALL PLAYERS PERFORMANCE DATA SET

To motivate the reader, the football players performance data set, which will be used in later chap-

ters, is introduced in this short chapter.

2.1 Data Description

The data set, which contains 3152 football players characterized by 102 variables, was obtained

from the website, www.whoscored.com 1. The collection of this data set is based on the 2014-2015

football season with 8 major leagues (England, Spain, Italy, Germany, France, Russia, Netherlands,

Turkey). The data set consists of the players who have appeared in at least one game during

the season. Goalkeepers have completely different characteristics from outfield players and were

therefore excluded from the analysis. Variables are of mixed type, containing binary, count and

continuous information. The variables can be grouped as follows:

2.1.1 Profile variables

• League: This variable gives the league to which the player belongs. Leagues are ranked

according to their perceived standard of football and the ranking scores are based on the

information on the official website for European football (UEFA) will be used, see http:

//www.uefa.com/memberassociations/uefarankings/country/index.html. More in-

formation with regards to the computation of the scores can be found on the same website.

Table 2.1 shows the ranking score for each league.

1I was granted permission by the company to use the data available on their website for my research.
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Table 2.1: League ranking scores

Country League Name Ranking scores
Spain La Liga 99.427

England Premier League 80.391

Germany Bundesliga 79.415

Italy Serie A 70.510

France Ligue 1 52.416

Russia Premier League 50.498

Netherlands Eredivisie 40.979

Turkey Super Lig 32.600

• Team: Two variables will be used for the analysis: 1) Team points from the ranking table

of national league based on the 2014-2015 football season, 2) team ranking scores based on

the information on the UEFA website, see http://www.uefa.com/memberassociations/

uefarankings/club/index.html, which provides performance rankings for those teams

participating in international tournaments.

Team and league variables are represented by ranking scores, so that they could be treated as

ordinal variables, but some information may be lost by assigning an ordinal number for each

category. For example, although Spain is far ahead of England and Germany based on their

league ranking scores, see Table 2.1, Spain becomes much closer to them if league variables

is treated as ordinal. Thus, team and the league variable is treated as continuous variables.

For the analysis which is to follow, I denote x(l), x(tp) and x(tc) as the league scores, the team

points and the team coefficients variables, respectively.

• Name: Player’s name. This information will not be used in the analysis, but will be used for

visualisation in order to identify which points belong to which players.

• Age, Weight, Height: Player’s age, weight and height. All these variables are treated as

continuous variables.

2.1.2 Position variables

Two types of position variables are defined here: 1) 15 variables indicating how many times a

player played in a given position during the 2014-2015 football season (count variables), 2) 11

variables which are based on previously recorded information of a player for different positions in

the previous seasons (binary variables). Y(15) and Y(11) denote the first and second type of position

13

http://www.uefa.com/memberassociations/uefarankings/club/index.html
http://www.uefa.com/memberassociations/uefarankings/club/index.html


variables, respectively. Figure 2.1 gives an idea of the two different types of positions.

(a) Position-1 (b) Position-2

Figure 2.1: Position variables

D: Defender, M: Midfielder, A: Attacking, FW: Forward, C: Center, L: Left, R: Right

Since a player can play in several positions, multiple binary variables will be applied for Y(11)

variables. For instance, a player is in the position of AM(CLR), which means that this player has

(or had) played in the attacking midfielder (AM) position, and he can also play in either centre, left

or right (CLR) side of the field in attacking position. Thus, I will apply ‘1’ for AMC, AML, and

AMR variables, and the other variables will remain ‘0’. Consider another example that a player can

play in AM(CL) or MC or FW, so in this case I apply ‘1’ for AMC, AML, MC, FW, and the other

variables are ‘0’. Table 2.2 shows how this assignment has been made for the binary information.

2.1.3 Performance variables

These types of variables are all count variables and can be grouped into five categories in terms of

their meanings. Table 2.3 summarises all the variables, and the categories of performance variables

with their sub-categories. Some performance variables are divided into sub-variables that represent
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Table 2.2: Assignments for Y(11)

Main Positions Players Positions Assignment of variables

Defender
D, DC, DCL, DCR, DCLR DC
D, DL, DCL, DLR, DCLR DL
D, DR, DCR, DLR, DCLR DR

Defensive Midfielder DMC DMC

Midfielder
M, MC, MCL, MCR, MCLR MC
M, ML, MCL, MLR, MCLR ML
M, MR, MCR, MLR, MCLR MR

Attacking Midfielder
AMC, AMCL, AMCR, AMCLR AMC
AML, AMCL, AMLR, AMCLR AML
AMR, AMCR, AMLR, AMCLR AMR

Forward FW FW

players’ information in some distinct sub-groups, such as tackles, blocks, etc. On the other hand,

some performance variables are partitioned in different sub-parts in terms of their meanings, then

those parts are also divided into sub-variables, such as shots, goals, passes, key passes. The total

attempts from a sub-part of one action have to be the same as total attempts from another sub-part

of the same action. For example, a player has made 10 total shots of which 5 were from the penalty

area, 3 from the six yard box and 2 from the out of box, whereas 6 in open play, 1 in counter

attack, 3 in set piece and 0 in penalty taken. Note that this is not applied for the ‘Type’ category

in Pass action, because passes can also be another type different than cross, corner and free-kick.

For example, the ‘Other’ sub-variables in the ‘Type’ categories of Key pass and Assist actions are

partitioned as the unspecified parts, see Table 2.3, but this has not been specified for Pass action in

the data set.

The descriptions of the performance variables are summarised in Table 2.4. The meanings

of these variables are fundamentally important for the further analysis. For instance, four types

of ‘Other’ sub-variables are available in the data. The ‘Other’ sub-variables from body parts of

shots and goals reflect the information of any other body parts, excluding right or left foot or head,

whereas the ‘Other’ sub-variables from types of key passes and assists are defined as unclassified

sub-variables, which will be explained in detail in Section 4.1.1. Some of variables’ definitions,

which do not exist in Table 2.4, have been defined in Section 1.3.
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Table 2.3: Variables on the football player performance data

PROFILE POSITION PERFORMANCE
Time Subjective Defensive Offensive Pass

League Position-1 Apps MotM Tackles Shots Passes
Team-1 • DC Mins Ratings • Dribble past 1. Zones 1. Length
Team-2 • DL • Tackle • Out of box • AccLP
Name • DR Offsides • Six yard box • InAccLP
Age • DMC Interceptions • Penalty area • AccSP
Height • DML Fouls 2. Situations • InAccSP
Weight • DMR Fouled • Open play 2. Type

•MC Clearances • Counter • AccCr
•ML Blocks • Set piece • InAccCr
•MR • Shots blocked • Penalty taken • AccCrn
• AMC • Crosses blocked 3. Body parts • InAccCrn
• AML • Passes blocked • Right foot • AccFrk
• AMR • Left foot • InAccFrk
• FW • Head Key passes
• FWL • Other 1. Length
• FWR 4. Accuracy • Long

Position-2 • Off target • Short
• DC • On target 2. Type
• DL • Blocked • Cross
• DR Goals • Corner
• DMC 1. Zones • Thrball
•MC • Out of box • Free-kick
•ML • Six yard box • Throw-in
•MR • Penalty area • Other
• AMC 2. Situations Assists
• AML • Open play • Cross
• AMR • Counter • Corner
• FW • Set piece • Thrball

• Penalty taken • Free-kick
3. Body parts • Throw-in
• Right foot • Other
• Left foot
• Head
• Other

UnsTchs
Dispossesses
Aerials
•Won
• Lost

Dribbles
• Successful
• Unsuccessful

D: Defender, M: Midfielder, A: Attacking, FW: Forward, C: Center, L: Left, R: Right
Apps: Appearances, MotM: Man of the match, UnsTchs: Unsuccessful touches, Thrball: Through-ball
Acc: Accurate, InAcc: Inaccurate, LP: Long pass, SP: Short pass, Cr: Cross, Crn: Corner, Frk: Free-kick
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Table 2.4: Description of performance variables

Category Variable Description

Time
Appearances Number of games that a player played during the 2014-2015 football season.
Minutes Number of minutes that a player played during the 2014-2015 football season.

Subjective
Ratings The rate information of players based on a system which is calculated live during the

game based on a unique, comprehensive statistical algorithm. The algorithm has been
explained on the website, https://www.whoscored.com/Explanations.

Man of the match Number of games that a player has the highest rating in a match.

Defensive

Dribble past Being dribbled past by an opponent without winning a tackle (failure in the action of
tackling).

Tackle Dispossessing an opponent, whether the tackling player comes away with the ball or
not (success in the action of tackling).

Offside Being caught in an offside position resulting in a free kick to the opposing team.
Interception Preventing an opponent’s pass from reaching their team-mates.
Foul An illegal manoeuvre by a player that results in a free kick for the opposing team (does

not include offsides).
Fouled Being illegally impeded by an opponent, resulting in a free kick.
Clearance Action by a defending player that temporarily removes the attacking threat on their

goal or that effectively alleviates pressure on their goal.
Block Prevention by an outfield player of an opponent shot from reaching the goal, cross or

pass.

Offensive

Shot & Goal An attempt to score a goal or to score a goal from any areas of the field (see Figure 1.1),
in any situations, made with any (legal) part of the body, or either on/off target or
blocked by an opponent (the category of ‘Accuracy’ is not a sub-group of the ‘Goal’
action).

Open play An attempt to score a goal which has not stemmed directly from a dead ball situation.
Counter An attempt to score from a counter attack move.
Set piece An attempt to score that has been scored via a set piece situation (corner kick, free-

kick or throw in).
Shot on target An attempt to score which required intervention to stop it going in or resulted in a

goal/shot which would go in without being diverted.
Unsuccessful touch Bad control.
Dispossessed Being tackled by an opponent without attempting to dribble past them.
Aerial Winning or losing a header in a direct contest with an opponent.
Dribble Taking on an opponent and successfully making it past them whilst retaining the ball

or not making it past them.

Pass

Long pass An attempted/accurate pass of 25 yards or more, otherwise it is a short pass.
Cross An attempted/accurate pass from a wide position to a central attacking area.
Key pass The final pass leading to a shot at goal from a team-mate.
Through ball An attempted/accurate pass between opposition players in their defensive line to find

an onrushing teammate (running through on goal).
Assist A pass that directly leads to a chance scored (i.e., to a goal) by a team-mate.
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CHAPTER 3

DATA PRE-PROCESSING AND DISTANCE
CONSTRUCTION FOR CLUSTER ANALYSIS

In this chapter, the objective is to review the literature and resources in detail, and to demonstrate

the techniques to be used in the next chapter. Because one of the applications of this thesis (Chap-

ter 4) covers the design of a dissimilarity measure prior to clustering, I mainly concentrate on this

subject in this chapter.

3.1 Introduction

Cluster analysis is an unsupervised learning technique, which examines multivariate data by a

variety of numerical methods, that can be used to group a set of objects into partitions according to

some measure of closeness. In brief, cluster analysis is the art of finding groups in data (Kaufman

and Rousseeuw, 1990).

A vast amount of clustering methods has been developed in several different fields with very

diverse applications over the last four decades. Milligan (1996) listed seven steps to reach a proper

clustering result. By considering those steps, the strategy of cluster analysis can be summarised in

the following order:

1. Data collection for clustering

2. Choosing the measurements/variables

3. Data pre-processing, including transformation, standardisation, etc.

4. Design of a similarity or dissimilarity measure
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5. Choosing a clustering method

6. Determining the number of clusters

7. Interpretation, testing, replication, cluster validation

In general, the application of clustering has been performed by the order above. Different

methods can be used for different aims of clustering, but there is no such thing as a universally

“best clustering method” (Hennig, 2015a).

Data collection for clustering has been provided in the previous chapter and choosing the

measurements/variables will be discussed more in Chapter 4, because these topics are mainly

related to the application of interest, and such decisions will be made based on subject-matter

knowledge.

3.2 Data Pre-processing

Clustering and mapping multivariate results are strongly affected by data pre-processing decisions,

including how to choose, transform, standardise variables, and to design a dissimilarity measure.

Data should be processed in such a way that the resulting distance between observations matches

how distance is interpreted in the application of interest (Hennig and Hausdorf, 2006). Jiang et al.

(2004) expressed that data pre-processing is indispensable prior to performing any cluster analysis.

Hu (2003) pointed out that data pre-processing has a huge impact on the data mining process.

Templ et al. (2008) stated that cluster analysis results often strongly depend on the preparation

of the data. The variety of options is huge, but guidance is scant. Different ways of data pre-

processing are not objectively “right” or “wrong”; they implicitly construct different interpretations

of the data.

Data pre-processing can be categorised under the following sub-topics:

1. Variable Representation

2. Variable Transformation

3. Variable Standardisation

4. Weighting variables

5. Variable selection and dimension reduction
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In general, data pre-processing steps are performed in the order above, but this can change

based on interpretation of data. Although some steps have the same meaning or are referred to

different names in some resources, the rationales might be quite different. For example, Gan et al.

(2007) interpreted that PCA (Principal Component Analysis) and SVD (Singular Value Decompo-

sition) can be defined as data transformation techniques, and added that data standardisation can

be viewed as a special case of data transformation. Furthermore, representation can be the gener-

alisation of all these steps, or variable selection and dimension reduction can be defined as special

cases of weighting and so on. The meaning of the terms will be described in the next sections in

detail.

3.2.1 Variable representation

Variable representation can be defined as making decisions about how to reflect the relevant in-

formation in the variables, potentially excluding variables, defining new variables, summarising

or framing information in better ways. In this respect, the second step of Milligan’s list, “choos-

ing the measurements/variables” can also be interpreted as one of data representation methods.

Constructing the original data in more revealing form is typically a critical step for data scientists

(Donoho, 2015, sect. 1). For instance, in order to better represent football player’s information,

counts of actions such as shots, goals etc. can be used relative to the period of time the player

played during a football season. In addition, relevant variables can be interpreted in proportional

form, which is complementary information into their totals (Aitchison, 1986). On the other hand, a

collection of time series can be represented as time points, whereas they can also be represented in

time-frequency domain by means of a Fourier Transform 1 or Wavelet Transform 2 or some other

multi-scale forms.

In principle, the determination of representation is fundamentally related to interpreting the

relevant information in better form, but statistical consideration may play a role here (Hennig,

2015a).

3.2.2 Variable transformation

The application of variable transformation is a mathematical modification of the values of a vari-

able. The modification can be either linear or non-linear, but in general and here this technique

is expressed as non-linear transformation of variables. To transform data, a transforming function

1The Fourier transform decomposes a function of time into the frequencies
2Wavelet Transform is similar to the Fourier transform with a completely different merit function
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must be selected and used. Most commonly used transformations are power transformation (e.g.,

square root), logarithmic transformation, inverse transformation, and trigonometric transformation

such as sine wave transformations. Statistically speaking, reasons for transforming data can typi-

cally be the general assumptions of statistics, such as normality, stabilising variance, reducing the

effect of outliers, and so on.

Two main questions can be asked about data transformation: 1) Is transformation necessary

prior to any statistical analysis? 2) If so, which transformations are most suitable for such data?

In cluster analysis, there is no explicit rule to determine whether data transformation is required

or which transformation should be chosen, unless statistical assumptions are required for some

clustering techniques (e.g., model-based clustering). Gelman and Hennig (2015) emphasised that

statistical assumptions for transformation are often not relevant for cluster analysis, where such

assumptions only apply to model-based clustering, and only within the clusters, which are not

known prior to transformation. Romesburg (1984) discussed that transformation can be prefer-

able in case of existing outliers in the data because outliers are so deviant, so that their influence

are much stronger than the influence of non-outliers in terms of determining the parameters of a

standardising function and ultimately for determining the similarity among objects. Templ et al.

(2008) advised that heavily-skewed data are first transformed to a more symmetric distribution,

even though the data is not required to be normally distributed in cluster analysis. That is because

if a good cluster structure exists for a variable, distribution can be expected to have two or more

modes. A transformation to more symmetry will preserve the modes but remove large skewness.

Kaufman and Rousseeuw (1990) recommended that logarithmic transformation can be applied to

ratio scale variables in order to treat those variables as interval-scaled, but they also pointed out

that this procedure could be very sensitive if zero values exist. As an example of applications,

Witten (2011) applied a power transformation to count data for adopting a Possion dissimilarity

matrix in order to remove over-dispersion and showed that clustering based on a Possion mixture

model performs well on the transformed data.

Nevertheless, the rationale for transformation can be viewed in a different manner when de-

signing a dissimilarity measure for clustering. The idea behind this argument is “interpretative

distance” (or interpretative dissimilarity), which can be defined as

Definition 3.2.1. (Interpretative distance) is the distance between the data objects which are

designed (e.g., the transformation, etc.) in a way that the resulting differences should match the

appropriate distances between objects based on subject matter-reasons in terms of the application

of interest. (Hennig and Liao, 2013).
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The issue of interpretative distance is actually related to subject-matter knowledge that can-

not be decided by the data alone; in other words, interpretative distance should be adapted to the

meaning of variables and the specific application (Gelman and Hennig, 2015). For instance, Hen-

nig and Liao (2013) argued that the interpretative dissimilarity between different saving amounts

can be better represented by ratios rather than differences, so that the logarithmic transformation

can be applied in this regard. Therefore, when designing a distance matrix, the decision of mak-

ing transformation should be informed first and foremost by the context, namely the concept of

interpretative dissimilarity, and if necessary depends on the clustering algorithms, secondly the

consideration of outliers’ influence, skewness of variable distribution, or some other statistical

assumptions.

3.2.3 Variable standardisation

Variable standardisation is a linear transformation, which governs the relative weight of variables

against each other when aggregating them; in other words, it makes units of variables comparable.

Location or scale information may be lost after standardisation. Standardisation can also be viewed

as a special case of weighting, because mathematically both standardisation and weighting are

multiplications by a constant. Weights in standardisation are determined by statistical parameters

of variables, whereas weights can also be chosen based on subject-matter importance of variables,

which will be discussed in Section 3.2.4.

The standardisation formula is shown in Equation (3.1).

x∗ij =
xij − l(xj)
s(xj)

, i = 1, . . . , n and j = 1, . . . , p, (3.1)

where xij is the jth variable on the ith object in the data, l(xj) and s(xj) are location and scale

functions, respectively. Some of these methods have typical location estimators, such as mean or

median, but only the scale parameters are relevant because cluster analysis to be used here is in-

variant against location changes. In such cases, Equation (3.1) is characterised as x∗ij = xij/s(xj).

Various types of standardisation methods with their scale parameters, which are obtained from

different sources (e.g., Gan et al. (2007, chap. 4) and Milligan and Cooper (1988)), are listed in

Table 3.1. Note that some studies, see Milligan and Cooper (1988), considered the ‘Rank’ trans-

formation as one of the standardisation approaches, but this could be discussed as transformation

due to its non-linear impact on variables.
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Table 3.1: Some data standardisation methods

Name Scale 〈s(xj)〉

Unit-variance (Z-score) σj =
[

1
n−1

∑n
i=1 (xij − x̄j)2]1/2

Average absolute deviation AAD(xj) = 1
n

∑n
i=1 |xij −m(xj)|

Median absolute deviation MAD(xj) = m(|xij −m(xj)|)

Range Rj = max
1≤j≤n

(xij)− min
1≤j≤n

(xij)

IQR IQR(xj) = Q3 −Q1

m(·) is the median function, and Q3 and Q1 is the upper and lower quartiles, respectively

In cluster analysis, this technique is a required step in order to remove the effects of the scaling

of the variables when constructing a dissimilarity matrix, unless methodology, such as the Maha-

lanobis distance, which standardises variables internally, is used (Hennig, 2015a). The (squared)

Mahalanobis distance is shown in Equation (3.2).

dM(xi, xj)
2 = (xi − xj)TS−1(xi − xj), (3.2)

where S is a scatter matrix such as the sample covariance matrix.

Several studies have been conducted to examine the performance of different types of standard-

isation techniques. Milligan and Cooper (1988) studied eight standardisation techniques (z-score,

range, sum, maximum, and rank, etc.) for generated artificial continuous data sets by using a Monte

Carlo algorithm and concluded that range standardisation is more effective than the other ones in

terms of superior recovery of the cluster structure. Three design factors were introduced in the

study by modifying the data generation algorithm: Cluster Separation, Maximum Variances, and

Error Conditions which can be considered between-subject factors. Standardization Procedures,

Clustering Methods, and Coverage Level are within-subject factors, since these are measured re-

peatedly on each data set. The correct cluster structure was known beforehand. Gnanadesikan et al.

(1995) analysed eight simulated and real continuous data sets and found that range standardisation

was preferable to standardisation to unit variance, although both approaches were generally effec-

tive. They also specified that standardising based on estimates of within-cluster variability worked

well overall. Everitt et al. (2011) suggested that if all the variables are continuous with different

units of measurement, standardising each variable to unit variance can be a reasonable choice prior

to any analysis.
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Art et al. (1982) discussed a method in which clusters are first guessed based on smallest

dissimilarities between objects, then estimated a within-cluster covariance matrix in Mahalanobis

distance by using an iterative algorithm. Gnanadesikan et al. (1995) extended their approach, and

used the combination of between and within-cluster covariance matrix, instead of adopting only a

within-cluster covariance matrix. Alternatively, De Soete (1986) suggested to re-weight variables,

so that weighted Euclidean distances approximately optimise ultrametricity 3.

On the other hand, Hennig and Liao (2013) approached the concept slight differently in their

analysis of mixed-type variables, and argued that range standardisation is not preferable in case

of existing extreme outliers on a certain variable. That is because the distance between the non-

outlier points can be approximately 0 and only the outliers are considerably far away from the rest.

They suggested that using a robust statistic, such as the IQR standardisation can be a proper choice

in this case; however, the distance between these outliers can be much larger than the distance

between the rest of the observations on this variable, so that outliers may dominate distance on

other variables. Their conclusion was to adopt standardisation to unit variance, which is not only a

compromise between the two approaches, but is also better calibrated to mixed-type of variables.

Gan et al. (2007) also remarked that the choice of proper standardisation method depends on the

original data and the subject of the application.

3.2.4 Weighting variables

The framework here is to use weights as a linear transformation of the variables based on subject-

matter reasons. Statistical aspects can be adopted in order to find appropriate weights, but Sec-

tion 3.2.3 has already covered this as a special case of weighting strategies.

The subjective weight assignment was employed to the variables in some applications of cluster

analysis, see Sokal and Rohlf (1981), Gordon (1990), Hennig and Liao (2013). On the other hand,

Sneath et al. (1973) advised to reduce the subjective importance of judgements on the variables,

because this may reflect an existing classification task in the data, so that previously unnoticed

groups may emerge. However, Gelman and Hennig (2015) clarified that the use of the terms

objectivity and subjectivity in statistics is often counter-productive, and decisions are valuable in

statistics that can often not be made in an objective manner; therefore, researchers may have the

opportunity to recognize the information from different perspectives. Following to Gelman and

Hennig (2015)’s argument, in Section 4.1.4 the decision of weight assignment is made based on

subject-matter reasons when constructing a dissimilarity matrix in Chapter 4.

3The ultrametric property, which was first introduced by (Hartigan, 1967), (Jardine et al., 1967) and (Johnson,
1967), is that for any three objects, the two largest distances between objects are equal.
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3.2.5 Variable selection and dimension reduction

Variable selection and dimension reduction are special cases of weighting and representation,

which might be required for performing reasonable cluster analysis in terms of better predictability

and interpretability, or can be legitimate to reduce the computational cost in high dimensional data.

The difference between these two techniques can be explained as; variable selection reduces the

data space by removing unimportant variables (assigning zero weights to those variables), whereas

dimension reduction transforms (or represents) the data into lower dimensional space by using a

combination of the variables. Hennig and Meila (2015) summarised feature selection techniques

in different forms, such as applying prior to clustering, integrating with clustering, selecting a sub-

set of the available variables (e.g., variable selection), defining new variables (e.g., using linear

combinations). On the other hand, Alelyani et al. (2013) reviewed feature selection methods by

categorising them as different models, such as filter model, wrapper model and hybrid model. Ac-

cording to certain criteria, filter model methods evaluate the score of each feature, but they do not

utilise any clustering algorithm to test the quality of the features, whereas wrapper models find

a subset of features, then evaluate the clustering quality for a different subset(s), and finally con-

tinue these two steps until the desired quality is found. The Hybrid model can be considered as a

combination of the two models above.

For carrying out dimension reduction before clustering, PCA (Principal Component Analysis)

and MDS can be viewed as popular classical methods. PCA, which was invented by Karl Pearson,

see Pearson (1901), reduces dimension by preserving most of the covariance of the data, whereas

MDS reduces dimension by using distances between data points. Classical MDS (Kruskal, 1964a)

and PCA are the same when dissimilarities are given by Euclidean distance. Other traditional di-

mension reduction methods for statistical learning algorithms can be seen in the review of Fodor

(2002), and some projection pursuit-type methods aiming at finding low-dimensional representa-

tions of the data particularly suitable for clustering are shown in the articles of Hennig (2004),

Hennig (2005), Tyler et al. (2009) and Bolton and Krzanowski (2012). Alternatively, Vichi et al.

(2007) discussed factorial dimensionality reduction of variables with simultaneous K-means clus-

tering on a three-mode data set. Rocci et al. (2011) proposed a new dimension reduction method

as the combination of linear discriminant analysis and K-means clustering for two way data and

examine its performances with a simulation study. On the other hand, Hennig and Meila (2015)

clarified that although PCA and MDS are occasionally used for forming informative variables, they

are not directly related to clustering, due to their objective functions (variance, stress); therefore,

some information that is important for clustering might be lost.

Variable selection is essentially a further method of constructing weights from a data matrix.
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Fowlkes et al. (1988) proposed a forward selection method to identify the subset of the variables for

the context of complete linkage hierarchical clustering. Witten and Tibshirani (2012) proposed a

framework of sparse clustering, particularly K-means and sparse hierarchical clustering, in which

a Lasso-type penalty is used for selecting the features. Variable selection is also used in model

based clustering. Raftery and Dean (2006) recast the variable selection problem as a model se-

lection problem and used modified versions of the BIC, and then Maugis et al. (2009) proposed

a generalized version of their model. Ritter (2014) analysed a variable selection strategy behind

robust cluster analysis.

The challenge of clustering high-dimensional data is a big topic in the new century. Many

clustering methods become computationally expensive in high dimensional space, but distance-

based clustering techniques are not, unless n (number of observations) is large. That is because

the size of computed distance matrix does not rely on the dimension of the data space. However,

as the number of dimensions grows, the relative Euclidean distance between a point in a set and its

closest neighbour and between that point and its furthest neighbour changes in some non-obvious

ways. Aggarwal et al. (2001) examined the behaviour of different power (p) values, of Minkowski

distance in different high dimensional data sets, and showed that the fractional distance metric

is a Lp − norm, where p ∈ (0, 1) that provides more meaningful results than the Lp − norm,

where p > 1 both from the theoretical and empirical perspective in cluster analysis. Alternatively,

Friedman and Meulman (2004) proposed a new procedure for computing a weight for each variable

by using an iterative approach, instead of assigning a weight to each variable for the entire data

set. Their approach is to find clusters on different subsets of variables by combining conventional

distance-based clustering methods with a particular distance measure.

So far, I reviewed some publications regarding the topics of variable selection and dimen-

sion reduction from different perspectives. The idea of adopting these methods is often related to

the performance of clustering, specifically in case of the presence of homogeneous “noise” vari-

ables. However, the decision of selecting variables is fundamentally important for the meaning

of the resulting clustering in real application. Modifying or excluding variables implies changing

the meaning of clusters, see Hennig (2015b), Gelman and Hennig (2015) and Hennig and Meila

(2015). For instance; Hennig and Liao (2013) analysed a socio-economic stratification data set, in

which the variables income, savings, education and housing were essential. The variable of income

does not show any clear grouping structure; however, it should be retained, because it reflects some

meaningful information in the sense of socio-economic stratification. Hennig and Meila (2015) re-

marked that the information is shared by two variables that in terms of their meaning are essential

for the clustering aim is additional information that should not be lost. Therefore, it is advisable

not to operate any of these procedures automatically in any application, unless the clustering aim
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is not directly related to the application of interest.

3.3 Aggregation of Variables for Constructing Dissimilarity/Sim-
ilarity Measures

Clustering is often defined as grouping similar objects together. The process of constructing a

design, which determines how the objects are close to each other or how far away they are is one

of the central stages prior to performing cluster analysis. Similarity (or proximity), dissimilarity,

(or distance) can be referred to as the terms of this process. Everitt et al. (2011) specified that

a similarity coefficient indicates the strength of the relationship between two data points. Many

clustering investigations start with the distance or proximity measures between points (n× n one-

mode matrix). In mathematical form, dissimilarity measures can be defined as;

d(x, y) = d(x1, x2, . . . , xd; y1, y2, . . . , yd) (3.3)

where x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) are two d-dimensional data points. A distance

function d is a metric in a set E if and only if it satisfies the following conditions (Anderberg,

1973):

1. Reflexivity: d(x, y) = 0⇐⇒ x = y

2. Nonnegativity: d(x, y) ≥ 0 ∀ x and y in E

3. Symmetry: d(x, y) = d(y, x)

4. Triangle inequality: d(x, y) ≤ d(x, z) + d(y, z)

Here x, y and z are arbitrary data points. Dissimilarity is defined by the first three, whereas

metric is defined by all these four conditions. In some situations, the metric condition is not

preferable, and the triangle inequality is usually connected to Euclidean intuition. For example,

Hennig and Hausdorf (2006) argued in their application on presence-absence data of species on

regions. They stated that if two species A and B present on two small disjoint areas, they are very

dissimilar, but both should be treated as similar to a species C covering a larger area that includes

both A and B if clusters are to be interpreted as species grouped together. Thus, researchers need

to consider these conditions, unless the conditions are not connected with their analysis in terms

of interpretation of the application’s context.
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Kaufman and Rousseeuw (1990) explained that instead of using a dissimilarity coefficient func-

tion, a similarity coefficient function, s(x, y) can also be applied for finding groups in data. s(x, y)

is typically a complementary form of the distance function, which can be defined as follows;

d(x, y) = 1− s(x, y) (3.4)

Values in between 0 and 1 indicate various degree of resemblance, and in general it is assumed

that the following properties hold:

1. 0 ≤ s(x, y) ≤ 1

2. s(x, x) = 1

3. s(x, y) = s(y, x)

for two arbitrary data points, x and y in the set. Given a data set D = (x1, x2, . . . , xn), each object

of which is described by a d-dimensional feature vector, the dissimilarity matrix and the similarity

matrix for D are defined in Equation (3.5) and Equation (3.6)

Md(D) =


0 d12 . . . d1n

d21 0 . . . d2n

...
... . . . ...

dn1 dn2 . . . 0

 (3.5)

Ms(D) =


1 s12 . . . s1n

s21 1 . . . s2n

...
... . . . ...

sn1 sn2 . . . 1

 (3.6)

where di,j = d(xi, yj) and si,j = s(xi, yj) are dissimilarities and similarities between ith and

jth objects, respectively. More information about theoretical properties of dissimilarity/similarity

coefficients can be found in Gower (1966), Gower (1971), Gower (1982), Gower (1985) and Gower

and Legendre (1986).

The choice of dissimilarity is fundamentally important for analysis, and the decision of which

type of distance measures are more appropriate relies on a combination of experience, knowledge

and interpretation. Gower and Legendre (1986) pointed out, “a dissimilarity or similarity coeffi-

cient has to be considered in the context of the descriptive statistical study of which it is a part,
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including the nature of the data, and the intended type of analysis”. Various dissimilarities are

available for different types of variables, which fall into one of two groups: numerical or categori-

cal.

3.3.1 Dissimilarity measures for categorical variables

Categorical variables have values that describe a ‘quality’ or ‘characteristic’ of a data unit, such as

‘what type’ or ‘which category’. They fall into mutually exclusive (in one category or in another)

and exhaustive (include all possible options) categories. Therefore, categorical variables are qual-

itative variables and tend to be represented by a non-numeric value. They can be classified in two

groups: ordinal and nominal.

Binary variables

Binary variables have only two possible outcomes; in other words, if two objects x1 and x2 are

represented by p binary variables, let aij be the number of variables k = 1, . . . , p on which x1k = i,

x2k = j, i, j ∈ {0, 1}. Before selecting an appropriate proximity measure for binary variables,

researchers need to consider the character of binary information in terms of the meaning for 0. In

this sense, binary variables can be categorised in two kinds in terms of their meanings.

1) Symmetric binary variable: if both of its states are equally valuable (e.g., gender variable).

2) Asymmetric binary variable: if the outcome of the states are not equally valuable (e.g.,

positive or negative outcomes of a disease test, or presence-absence variable).

The similarity coefficients for binary variables are defined in terms of the entries in a cross-

classification set for counts of binary outcomes between two objects (See Table 3.2). Some of the

most commonly used proximity measures are listed in Table 3.3, and various similarity measures

for such data have been proposed, see Shi (1993) and Choi et al. (2010). In addition, the charac-

teristics of similarity measures for binary data and their relationship between each other have been

discussed, see Gower and Legendre (1986).

Categorical variables with more than two levels

In the previous section, I stated that binary variables can only take two values, but here I examine

categorical variables, which may take on more than two levels. (e.g., eye colour). The most
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Table 3.2: 2× 2 Contingency table for binary data

Object j

Outcome 1 0 Total

Object i

1 a11 a10 a11 + a10

0 a01 a00 a01 + a00

Total a11 + a01 a10 + a00 p = a11 + a01 + a10 + a00

Table 3.3: Similarity measures for binary data

Code Coefficients Formula (s(x, y)) Type

S1 Matching coefficient a11+a00
p

Symmetric

S2 Jaccard coefficient a11
a11+a01+a10

Asymmetric

S3 Kulczynski (1927b) a11
a01+a10

Asymmetric

S4 Rogers and Tanimoto (1960) a11+a00
a11+2(a01+a10)+a00

Symmetric

S5 Sneath et al. (1973) a11
a11+2(a01+a10)

Asymmetric

S6 Gower and Legendre (1986) a11+a00
a11+ 1

2
(a01+a10)+a00

Symmetric

S7 Gower and Legendre (1986) a11
a11+ 1

2
(a01+a10)

Asymmetric

common way to construct the similarity or dissimilarity between some objects i and j is to use the

simple matching approach, see Kaufman and Rousseeuw (1990).

s(xi, xj) =
m

p
and d(xi, xj) =

p−m
p

, (3.7)

where m is the number of matches and p is the total number of nominal variables. An alternative

method is to use many binary variables for a variable including multiple categories; in other words,

dummy variables will be generated for those categories, then simply use an appropriate similarity

measure for binary variables. However, Everitt et al. (2011) pointed out that this approach is

not satisfactory for symmetric binary variables, because large number of ’negative’ matches will

inevitably be involved.
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Ordinal variables

A discrete ordinal variable can be treated as a categorical variable, the only difference is that the

M categories are ordered in a meaningful sequence (e.g., ranking). In distance analysis, this can

be treated as continuous variables by using plain Likert codes 4, which can be achieved by scoring

the categories in ordinal manner. Researchers have used different approaches for ordinal variables;

for instance, Conover (1980) suggested straightforward scores which are obtained by ranking, or

Ostini and Nering (2006) applied a more sophisticated method based on item response theory 5.

Kaufman and Rousseeuw (1990) advised that the usual distance formulas for continuous vari-

ables (e.g., Euclidean) can be applied to ranking scores of ordinal variables, due to their interval-

scaled structure; however, they claimed that in case of different values of M categories in multiple

ordinal variables, it is useful to convert all variables to the 0− 1 range for assigning equal weight

to each variable. The formula is given by

zik =
rik − 1

Mk − 1
(3.8)

where rik is the rank of ith object and the kth variable, and Mk is the highest rank for kth variable.

In this way, all zik will lie between 0 and 1.

In some cases, variables can have a more complex structure which may need to be treated in

a customised way. For example, Hennig and Liao (2013) dealt with a problem for one variable

which contains several relevant levels, but cannot be ordered. They managed the issue in such a

way that the distances between those levels interpretatively make sense in terms of the application

of interest.

3.3.2 Dissimilarity measures for numerical variables

A numerical variable (quantitative data) can be classified as a collection of numbers, which can

be either a discrete or a continuous. In terms of distance measurement, Stevens (1946) discussed

more about the level of measurement, and claimed that all measurement in science was conducted

using four different types of scales that he called “nominal” and “ordinal” classified as qualitative,

4Likert (1932) introduced Likert scale codes as a technique for the measurement of attitudes, which emerges from
collective responses to a set of items. Respondents are asked to indicate their level of agreement with a given statement
by way of an ordinal scale (e.g., strongly disagree, disagree, neither, agree, or strongly agree), and the numerical codes
can be assigned as 1, 2, . . . , Oj , where Oj , j = 1, . . . , q are ordered finite sets.

5Item Response Theory is a body of theory describing the application of mathematical models to data from ques-
tionnaires and tests as a basis for measuring abilities, attitudes, or other variables (Embretson and Reise, 2013)
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and “interval” and “ratio” classified as quantitative. Stevens aimed at defining which arithmetic

operations could be carried out on measurements in a meaningful way. By this he meant that

“meaningful” operations only should make use of those features of a measurement which carry

information.

Definition 3.3.1. The scale type of a measurement operation is defined by the family Φ of transfor-

mations φ by which the measurements can be transformed without losing their original information

content. Statistical statements about sets of measurements {x1, . . . , xn} are meaningful if they are

invariant, i.e., for all φ ∈ Φ, S (x1, . . . , xn) holds if and only if S (φ(x1), . . . , φ(xn)) holds.

There has been a controversy in the literature about Stevens’s concept of “meaningfulness”

and his scale type classification. The most problematic aspect is that Stevens blames a lot of

applications statistical methodology as “meaningless” that have been used often and in some sit-

uations have proven useful. More discussions about the theory of measurement can be found in

Hand (1996), and in Andrew Gelman’s post (http://andrewgelman.com/2015/04/28/whats-

important-thing-statistics-thats-not-textbooks/).

The nature of numerical variables can be divided into two categories in terms of their scales

(Kaufman and Rousseeuw, 1990):

1) Interval-scale is a measurement where the difference between two values is meaningful.

For instance, the difference between a temperature of 100 ◦C degrees and 90 ◦C degrees is

the same difference as between 90 ◦C degrees and 80 ◦C degrees. Note that all meaningful

statements from ordinal scales are still meaningful and all ordinal information is still valid.

2) Ratio-scale: Ratio-scaled variables are always positive measurements, in which the propor-

tional difference between two values is meaningful; for example, the distinction between 3

and 30 has the same meaning as the distinction between 1 and 10. Note that all meaningful

statements from interval scales are still meaningful and all interval information is still valid.

The determination of which two categories above is related to the variable of interest depends

on the interpretation of the data. For example, one can discuss whether the distance between

proportional variables are better represented in ratio-scaled or interval-scaled basis (e.g., should the

distance between 0.05% and 0.10% be the same as the distance between 50.05% and 50.10%?), see

the discussion in Section 4.2.2 for the selection of these two categories in terms of the application

of interest.

In the next sections, count and continuous types of variables will be discussed, and I pay more

attention to proportional (compositional) variables later, see Section 3.4, which is relevant to the
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application part of this report. Other types of data, such as time series and repeated measurement

are not the concern of this application.

Continuous variables

If all variables are continuous, the use of dissimilarity or distance measures can be made by quanti-

fying proximities between objects. A variety of distance measures have been proposed, and several

of them are summarized in Table 3.4. The most commonly used distances are the Euclidean and

the Manhattan distances, for which L2 and L1 norms are used, respectively, in the formulas. Hen-

nig (2015a) pointed out another difference between these two distances that the Euclidean distance

is invariant to rotations of the data, but in the Manhattan distance the role of original variables

is more important than axes obtained by potential rotation. Figure 3.1 illustrates the difference

between the Euclidean (L2 norm) and the Manhattan (L1 norm) distances for two variables. The

Minkowski distance (Lq norm) is the general form of those types of distances. Note that for q ≥ 1,

the Minkowski distance is a metric as a result, whereas for q < 1 it is not a metric, because this

violates the triangle inequality (Gower and Legendre, 1986).

Figure 3.1: Euclidean (red) and Manhattan/city block distances (blue).

Mahalanobis distance typically aggregates strongly dependent variables down, so that joint

information is only used once. Hennig (2015a) pointed out that adopting the Mahalanobis distance
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is reasonable if clusters can come in all kinds of elliptical shapes; however, the weights of the

variables are determined by the covariance matrix, S, not by their meaning. Once more, researchers

may need to look at the specific application for having a clear idea about how to choose variable

weights, distance measures, variable transformation and so on.

Everitt et al. (2011) provided some clarifications and references for the other distance mea-

sures, such as the Canberra distance, which is very sensitive to small differences, and the Pearson

correlation, which can used for clustering variables rather than clustering objects.

Table 3.4: Dissimilarity measures for continuous data

Code Measures Formula (d(xi, xj))

D1 Euclidean distance (
∑p

k=1(xik − xjk)2)1/2

D2 Manhattan (City Block) distance
∑p

k=1 |xik − xjk|

D3 Minkowski distance (
∑p

k=1(xik − xjk)q)1/q

D4 Canberra distance
∑p

k=1
|xik−xjk)|

(|xik|+|xjk)|)

D5 Pearson correlation (1− ρ(xi, xj))/2

D6 (Squared) Mahalanobis distance (xi − xj)TS−1(xi − xj)

xik and xjk are, respectively, the kth variable value of the p-dimensional

observations for objects i and j, ρ(xi, xj) is the Pearson correlation coefficient,

S is a scatter matrix such as the sample covariance matrix

Count variables

Count data, which can only take non-negative integer values, can be as a special case of numerical

variables. Dissimilarity analysis for count data often emerges in applications of ecological and bi-

ological science. Distance measures for continuous variables, especially City-Block (Manhattan)

distance in Table 3.4, are also applicable for count data. On the other hand, some other dissim-

ilarities, which can be applied for count data, are available in the literature, such as Bray-Curtis

dissimilarity (Bray and Curtis, 1957). This dissimilarity coefficient (Equation (3.9)) is not a true

metric, because it does not satisfy the triangle inequality axiom, despite the fact that it has been

used or discussed in some applications, specifically in ecological studies, see Faith et al. (1987),

Clarke et al. (2006), Warton et al. (2012) and Greenacre and Primicerio (2014):
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d(xi, xj) =

∑p
k=1 |xik − xjk|∑p
k=1(xik + xjk)

(3.9)

The Poisson distribution can form the basis for some analyses of count data. Over-dispersion,

which occurs when the variance is larger than the expected value, is often encountered when fitting

very simple parametric models, such as those based on the Poisson distribution. Over-dispersion

is a very common feature in applied data analysis because in practice, populations are frequently

heterogeneous contrary to the assumptions implicit within widely used simple parametric models.

However, it does not play a role in distance-based clustering, because no such model assumptions

are essential. On the other hand, analysts could argue the impact of over-dispersion if the aim of

their applications is to apply model-based clustering for count data.

Count data has also been used for model-based clustering in different applications. Karlis and

Meligkosidou (2003) analysed model-based clustering for count data based on the multivariate

Poisson distribution. Witten (2011) proposed an approach for clustering RNA sequencing data,

which involve non-negative counts, using a new dissimilarity measure that is based upon the Pois-

son model. For the over dispersion problem, Robinson et al. (2010) and Anders and Huber (2010)

have used negative binomial model as an alternative and extension of Poisson model, but Witten

(2011) concluded that the Poisson model after the transformation performs better than the more

complicated negative binomial model with moderate over-dispersion, so that the clustering pro-

posals based on the Poisson model perform well on the transformed data. Alternatively, Cai et al.

(2004) used the chi – squared statistics as a measure of the deviation of observed tag counts from

expected counts, and employ it within a K-means clustering procedure.

3.4 Compositional Data

Pearson (1896) argued that if X , Y and Z are uncorrelated, then X/Z and Y/Z will not be un-

correlated. Spurious correlation is the term to describe the correlation between ratios of variables.

Chayes (1960) later showed that some of the correlations between components of the composi-

tions, which are the act of combining parts or elements to form a whole, must be negative because

of the unit sum constraint.

Compositional data, which describe parts of some whole, was first identified by the spurious

correlation (Bacon-Shone, 2011). They are commonly presented as vectors of proportions, per-

centages, concentrations, or frequencies. These types of data are an essential feature of many

disciplines, such as in geology, economics, medicine, ecology and psychology. The introduced

football data set in Chapter 2 involves many different sub-categories under some of the count vari-
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ables, see Table 2.3, and in Section 4.1.1 these sub-variables are represented in proportional forms

so that compositional data needs to be discussed for this sake. Therefore, the aim of this section is

to deliver a theoretical background behind this topic, and to review the literature and the concept

of distance measures in compositional data.

3.4.1 Theory of compositional data

Compositional data was more scrutinized by John Aitchison, who set up an axiomatic theory for

the analysis of compositional data (Aitchison, 1986). The definition and theoretical properties of

compositional data are summarised below.

Definition 3.4.1. (Compositions) A (row) vector, x = [x1, x2, . . . , xD], is a D−part composition

when all its components are non-negative real numbers and carry only relative information.

x1 ≥ 0, x2 ≥ 0, . . . , xD ≥ 0 and x1 + x2 + . . .+ xD = κ. (3.10)

The fixed meaning of relative information refers to that where the only information is con-

tained in the ratios between the components of the composition and the numerical value of each

component by itself is irrelevant (Pawlowsky-Glahn et al., 2015).

Definition 3.4.2. (Compositions as equivalence classes) Two vectors of D positive real compo-

nents x, y ∈ <D+ (xi, yi > 0,∀i = 1, 2, . . . , D) are compositionally equivalent if there exists a

positive constant λ ∈ <+ such that x = λy.

Definition 3.4.3. (Closure) For any vector of D strictly positive real components z = [z1, z2, . . . , zD] ∈
<D+ , and zi > 0 ∀i = 1, 2, . . . , D, the closure of z to κ > 0 is defined as

C(z) =

[
κz1∑D
i=1 zi

,
κz2∑D
i=1 zi

, . . . ,
κzD∑D
i=1 zi

]
. (3.11)

Definition 3.4.4. The d-dimensional simplex is the set defined by

Sd =

{
x = [x1, x2, . . . , xd] |xi > 0, i = 1, 2, . . . , d;

d∑
i=1

xi < κ

}
. (3.12)

Definition 3.4.5. (Sample space) The sample space of compositional data, which is the d-dimensional

simplex embedded in D-dimensional real space, is the set defined by
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SD =

{
x = [x1, x2, . . . , xD] |xi > 0, i = 1, 2, . . . , D;

D∑
i=1

xi = κ

}
. (3.13)

The composition is completely specified by the components of a d-part sub-vector such as (x1, x2, . . . , xd),

where d = D − 1 (Aitchison, 1986).

The difference between the compositional sample space and other real spaces can be seen in Fig-

ure 3.2, where d = 2 and κ = 1, and the relationship can be shown in Equation (3.14),

Figure 3.2: The relationship of S2, <2
+ and <2

Sd ⊂ <d+ ⊂ <d. (3.14)

Definition 3.4.6. (Sub–compositions) Given a composition x and a selection of indices S =

{i1, i2, . . . , is}, a sub- composition xs, with s parts, is obtained by applying the closure operation

to the sub-vector [xi1 , xi2 , . . . , xis ] of x. The set of sub–scripts S indicate which parts are selected

in the sub–compositions, not necessarily the first s ones.

3.4.2 Log-ratio transformation

A data set which contains multiple count variables is considered as “closed” when all count vari-

ables are dependent. To get rid off all spurious correlations, a proper transformation should be

considered for “opening” the data prior to performing cluster analysis, (Aitchison, 1986). Three

different types of transformation have been proposed in this respect.
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• Additive log-ratio (alr), in which one variable, xD, must be selected to open the data, and

that variable is subsequently lost for further analysis. The following form shows the alr

transformation;

alr(x) =

[
ln
x1

xD
, ln

x2

xD
, . . . , ln

xD−1

xD

]
. (3.15)

The problem with the alr is that distances between points in the transformed space are not

the same for different divisors, xD.

• Centred log-ratio (clr), which uses the geometric average of all components in each compo-

sition, so that it does not depend on the results of one single other variable. The mathematical

form is as follows;

clr(x) =

[
ln

x1

gm(x)
, ln

x2

gm(x)
, . . . , ln

xD
gm(x)

]
, gm(x) =

(
D∏
i=1

xi

)1/D

. (3.16)

The disadvantage of this transformation is that the covariance matrix of clr is singular, so

that it can be problematic in some standard statistical analysis (Aitchison, 1986, section 4.6).

• Isometric log-ratio (ilr) provides a suitable orthonormal basis in compositional space. Egozcue

et al. (2003) suggested this type of transformation for avoiding collinearity in compositional

form, whereas the clr transformation results in collinear data. Thus, the ilr avoids not only

the arbitrariness of alr, but also the singularity of the clr.

Definition 3.4.7. For any composition x ∈ SD, the ilr transformation associated to an or-

thonormal basis, ei, i = 1, 2, . . . , D − 1, of the simplex SD, is the transformation: SD →
<D−1 given by

z = ilr(x) = [〈x, e1〉a , 〈x, e2〉a , . . . , 〈x, eD−1〉a] , (3.17)

where

〈x, y〉a =
1

2D

D∑
i=1

D∑
j=1

ln
xi
xj

ln
yi
yj

(3.18)

is the Aitchison inner product, x, y ∈ SD. Alternatively, the ilr transformation can be ex-

pressed in the clr form as
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ilrV (x) = clr(x) · V = ln(x) · V, (3.19)

where V = (e1, e2, . . . , eD−1) is orthogonal such that V · VT = ID−1 (identity matrix of

D − 1 elements).

3.4.3 Dissimilarity measures for compositional data

The concept of a distance between two compositions is essential in the statistical analysis of com-

positional data, especially in applications such as cluster analysis and multidimensional scaling

(Aitchison et al., 2000), so that Aitchison (1986) introduced the Aitchison distance, which includes

a logarithmic transformation and a ratio-scaled type of difference, see Equation (3.20)

Definition 3.4.8. (Aitchison distance): The distance between x, y ∈ SD is expressed as

da(x, y) =

√√√√ 1

2D

D∑
i=1

D∑
j=1

{
ln
xi
xj
− ln

yi
yj

}2

=

√√√√ 1

D

D−1∑
i=1

D∑
j=i+1

{
ln
xi
xj
− ln

yi
yj

}2

=

√√√√ 1

D

∑
i<j

{
ln
xi
xj
− ln

yi
yj

}2

=

√√√√ D∑
i=1

{
ln(xi)− ln(yi)−

1

D

(
D∑
j=1

ln(xj)

)
− 1

D

(
D∑
k=1

ln(yk)

)}2

=

√√√√ D∑
i=1

{
ln

xi
gm(x)

− ln
yi

gm(y)

}2

,

(3.20)

where gm(·) =
(∏D

i=1 xi

)1/D

(Geometric mean of the compositions). It is obvious that the Aitchi-

son distance between compositions x and y is computed by using the clr transformation, which is

the analogue to Euclidean distance in the compositional space (Lovell et al., 2011). Since the ilr has

the feature of isometricity, the distance is invariant under permutation of the parts of a composition

(Egozcue et al., 2003). The following equation summarises all these arguments.
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da(x, y) =

√√√√ D∑
i=1

{clr(xi)− clr(yi)}2 = de(clr(x), clr(y)) ∝ de(ilr(x), ilr(y)), (3.21)

where de is the Euclidean distance between two data points. On the other hand, distances between

the alr vectors do not have such a straightforward representation, see Equation (3.21), because they

do not provide an isometry between SD and <D−1.

Aitchison (1992) then proposed that any scalar measure of difference between two composi-

tions should verify four specific requirements: scale invariance, permutation invariance, pertur-

bation invariance and sub-compositional coherence, and the Aitchison distance (Equation (3.20))

is one of few distance measures to fulfil the following axioms.

i Scale invariance: For any positive real value λ ∈ <+,

d(λx, λy) = d(x, y). (3.22)

Martı́n-Fernández et al. (1998) stated that this condition is not essential if it is implicitly

assumed that any scalar measure is always applied to compositional observations in which

their sum is equal to one.

ii Permutation invariance: A function is permutation invariant if it yields equivalent results

when the ordering of the parts in the compositions is permuted.

iii Perturbation invariance: Let x, y ∈ SD and q = (q1, q2, . . . qd), q ∈ <D+ . Then,

d(q ⊕ x, q ⊕ y) = d(x,y) for every perturbation q, (3.23)

where “⊕” stands for componentwise multiplication.

x⊕ y = C[x1y1, x2y2, . . . , xDyD] ∈ SD (3.24)

iv Sub-compositional coherence: For a sub-composition xs,ys of x,y ∈ SD, namely a subset

of the components of x, y:

d(x, y) ≥ d(xs, ys). (3.25)
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Martı́n-Fernández et al. (1998) reviewed these four properties for the dissimilarity measures in

Table 3.5, and showed that scale invariance, perturbation invariance and sub-compositional coher-

ence are not satisfied by Euclidean, Manhattan, Minkowski and some other distances. For example,

let X be the compositional data set formed by the four observations in S3:

x1 = (0.1, 0.2, 0.7), x2 = (0.2, 0.1, 0.7), x3 = (0.3, 0.4, 0.3), x4 = (0.4, 0.3, 0.3).

The distance between x1 and x2 is the same as the distance between x3 and x4 on Minkowski

distance for any power (e.g., Euclidean or Manhattan). That is because these measures of differ-

ences are translation invariant. Martı́n-Fernández et al. (1998) then claimed that the difference

between x 1 and x2 must be greater than the difference between x3 and x4 from a compositional

point of view, because such distance measures should fulfil the four requirements above. On the

other hand, Martı́n (1998) examined different dissimilarity coefficients, see Table 3.5 and Table 3.4,

for six different clustering methods applied to three compositional data sets. The results based on

cluster validity coefficients, such as Agglomerative coefficients, Divisive coefficients, Silhouette

coefficients and Dunn’s Partition coefficients (Kaufman and Rousseeuw, 1990) indicated that J-

divergence, which is one of the distances that does not satisfy three properties (scale invariance,

perturbation invariance and sub-compositional coherence), is a reasonable measure of difference

between two compositions.

Furthermore, Lovell et al. (2011) examined the relationship between the Euclidean and the

Aitchison’s distance, they then concluded that the Euclidean distance does not accurately reflect

relative changes in components, e.g., RNA sequence count data, that are conventionally dealt with

on a logarithmic scale, whereas the Aitchison’s distance with its focus on the ratio of corresponding

components, emphasises these differences in relative abundance much more effectively. However,

the interpretation of how to represent the relevant information can be different in some other ap-

plications.

3.4.4 Dealing with zeros

One of the major issues in log-ratio analysis of compositional data is zero components, as loga-

rithms of zero values are undefined, and zero values occur quite often. To circumvent this problem,

Aitchison (1986) suggested replacing each zero value with a small numerical value. However, dif-

ferences in the value selected may lead to different results in applications, such as cluster analysis.
6J-divergence, which is based on the Kullback–Leibler divergence (Kullback and Leibler, 1951), is a popular

method of measuring the similarity between two probability distributions
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Table 3.5: Some measures of differences between two compositions

Code Measures Formula (d(xi, xj))

D1 Angular distance arccos

(∑D
k=1

√
x2ik∑
x2ik

√
x2jk∑
x2jk

)

D2 Bhattacharyya (arccos) (Bhattachayya, 1943) arccos
(∑D

k=1

√
xik
√
xjk

)
D3 Bhattacharyya (log) (Bhattachayya, 1943) − ln

(∑D
k=1

√
xik
√
xjk

)
D4 J-divergence 6

[∑D
k=1 ln

(
xik
xjk

)
(xik − xjk)

] 1
2

D5 Jeffries-Matusita distance
[∑D

k=1

(√
xik −

√
xjk
)] 1

2

Distances for continuous variables, see Table 3.4, can also be applied to two compositions

Martı́n-Fernández et al. (2011) reviewed related papers on this problem from different perspectives,

and concluded that there is no general methodology for the ‘zero problem’. Their final remark was

to propose some recent techniques to deal with some kinds of zeros: rounded, count, and essential.

i Rounding zeros: This kind of zero is mostly recorded when very small observed percent-

ages are rounded to zero, so that the correct value is indeed not zero. Martı́n-Fernández et al.

(2011) suggested two types of techniques in this sense:

• Non-parametric replacement, which is simply consists of replacing each rounded zero

in the composition by an appropriate small value, δij , then modifying the non-zero

values in a multiplicative way, see more details in Martı́n-Fernández et al. (2003).

• A parametric modified EM algorithm, which is a modification of the common EM

algorithm (Palarea-Albaladejo and Martı́n-Fernández, 2008) that replaces unobserved

values by small values. The imputation of those small quantities depends conditionally

on the the information included in the observed data.

ii Count zeros: This can be defined as non-occurrence of event in component(s), which is

precisely recorded as zero. In this respect, Daunis-i Estadella et al. (2008) introduced the

Bayesian-multiplicative approach which is the combination of two methodologies, of which

the idea comes from Walley (1996) and Martı́n-Fernández et al. (2003). Martı́n-Fernández

et al. (2003) described the process as follows:
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Let ci be a counts vector withD categories in a data set C. Let Ti be the total count in ci and

θi its associated parameter vector of probabilities from a multinomial distribution. The prior

distribution for θi is the conjugate distribution of the multinomial: a Dirichlet distribution

with parameter vector αi, where αij = sipij , j = 1, . . . , D. The vector pi is the a priori

expectation for θi and the scalar si is known as the strength of that prior.

From Bayes theorem, after one sample vector of counts ci is collected, the posterior Dirichlet

distribution for θi takes a new parameter vector α∗i , where α∗ij = cij + sipij = cij + αij and

the posterior estimation for θij is

θ̂ij =
cij + sipij∑D

k=1(cik + sipik)
=
cij + αij
Ti + si

. (3.26)

Some common priors have been proposed for the corresponding posterior estimation of θ̂ij ,

see Table 3.6. A Bayesian multiplicative strategy is implemented by replacing each rounded

zero in the composition by an appropriate small value θ̂ij and then modifying the non-zero

values in a multiplicative way. The following expression is suggested by (Martı́n-Fernández

et al., 2003) to achieve this aim.

xrij =


αij

Ti+si
if xij = 0,

xij(1−
∑

k|xik=0
αik

Ti+si
) if xij > 0.

(3.27)

This approach replaces zeros with very small values, so that the results can be applicable in

distances (e.g., Aitchison distance) in which a logarithmic transformation is involved. For

instance, let c = (9, 0, 5) be a vector, and Perks prior will be selected for this example

(si = 1 and αij = 1/3), see Table 3.6, so the posterior estimate of xr can be seen as follows:

xr =

(
9

14
(1− 1/3

15
),

1/3

15
,

5

14
(1− 1/3

15
)

)
=

(
22

35
,

1

45
,
22

63

)
,

where the ratio between the first and the third components is preserved: 22
35
/22

63
= 9

5
.

iii Essential zeros: The other potential and more considerable problem is the case of the total

count being equal to zero; in other words, all components in one composition are truly

zero. Martı́n-Fernández et al. (2011) specified that there is recently no general methodology

for dealing with essential zeros, in spite of the fact that they provide some suggestions for

different types of data, see Aitchison et al. (2003), Bacon Shone (2003), Fry et al. (2005).
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Table 3.6: Proposed Dirichlet priors and corresponding posterior estimation, θ̂ij

Prior si αij θ̂ij

Haldane 0 0
cij
Ti

Perks 1 1/D
cij+(1/D)

Ti+1

Jeffreys D/2 1/2
cij+(1/2)

Ti+(D/2)

Bayes-Laplace D 1
cij+1

Ti+D

3.4.5 Final remarks on compositional data

Aitchison et al. (2000) recommended that log-ratio analysis should be applied for compositional

data, specifically in such activities as cluster analysis and MDS, but some substantial issues might

be present. Jackson (1997) examined the covariance and correlation structure of log-ratio analysis

and specified that the method has some problems: (1) Variables in compositional form show strong

negative correlations due to closure and the implicit dependency of the variables on one another,

(2) the log-ratio values are undefined in case of presence of zero values in the data. Moreover, Zier

and Rehder (1998) criticised that

The distance structure is destroyed, even the ranks of the distances are not equal in S2 and <2, so

that such activities as cluster analysis and MDS do not work properly, and the result of distances

are strange due to strong dependence on the denominator.

(See the whole discussion between ”Aitchison and others” and ”Zier and Rehder” in Aitchison

et al. (2000), Rehder and Zier (2001) and Aitchison et al. (2001)).

One of the arguments against the log-ratio transformation is that the Aitchison distance can

be problematic for small proportions. For instance, let us consider two compositions with three

components: x1 = (a, s, s) and x2 = (s, a, s), where a ≈ 1 and s ≈ 0, then the difference between

Aitchison and Manhattan distance can be shown as follows:

da(x1, x2) =

√√√√ D∑
i=1

{
ln

x1i

gm(x1)
− ln

x2i

gm(x2)

}2

∝ ln
a

s
when lim

s→0
ln
a

s
=∞,

dm(x1, x2) =
D∑
i=1

|x1i − x2i| ∝ |a− s| when lim
s→0
|a− s| = a.

(3.28)
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In fact, Aitchison et al. (2000) pointed out the problem in Expression (3.28) that if one of

the components of a composition tends toward zero, then the distance of that composition from

others will tend toward infinity, but they claimed that this feature is not inappropriate, because

in some applications, a composition with one of the parts absent may be completely different

from compositions with all components positive. However, this feature may not be satisfactory in

some other applications, since the Aitchison distance is dominated by differences between small

percentages in an inappropriate manner, so that the resulting differences between objects may not

match an appropriate “interpretative distance”, see the whole discussions in Section 4.2.2.

3.5 Aggregating Mixed-Type Variables, Missing Values and Dis-
tances

The framework here is the construction of a dissimilarity measure by aggregating variables or

variable-wise distances. Aggregating the same kind of variables has been discussed in the previous

sections, but here I discuss how to aggregate mixed types of variables. Two different forms of

aggregation are proposed here to construct a final distance measure to be used in cluster analysis:

1) Computing different distance matrices variable by variable, then aggregating those distance

matrices into a single distance matrix, 2) Computing different distance matrices, in which the

same type of variables are first aggregated together, and then combining the resulting distances

into a single distance matrix.

A standard way of the first distance design is the Gower dissimilarity (Gower, 1971):

dG(xi, xj) =

∑p
k=1wkδijkdk(xik, xjk)∑p

k=1wkδijk
, (3.29)

where wk is a variable weight and δijk = 1 except if xik or xjk are missing, in which case δijk = 0.

As a special case of Gower, the L1 distance can be adopted for each variable, and the weights are

chosen based on standardisation to [0, 1]-range. Mathematically speaking, dk and wk are given by

dk(xik, xjk) = |xik − xjk|, (3.30)

and wk = 1/Rk, and Rk is the range of the variables, see Table 3.1. This holds when variables are

interval-scaled. Equation (3.30) can be applied for ordinal variables after replacing by their ranks

(Kaufman and Rousseeuw, 1990). If variables are either binary or nominal, then wk = 1 unless

xik is missing, and dk is defined as
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dk =

1 if xik 6= xjk,

0 if xik = xjk.
(3.31)

The Gower dissimilarity is very general and can be applied to most applications of distance-

based clustering for mixed types variables. However, regarding the influence on the clustering,

Hennig and Liao (2013) argued that nominal variables should be weighted down against continuous

variables, since many clustering methods tend to identify gaps in variable clustering distributions

with cluster borders. Euclidean aggregation was used in their application, because they suggest that

the differences in some variables within the social class should not be extreme, and the weights

were chosen based on standardisation to unit variance of each variable, except categorical variables.

The definition of Euclidean aggregation is given by

dE(xi, xj) =

√√√√ p∑
k=1

wkdk(xik, xjk)2. (3.32)

In case of presence of missing values, the coefficients, δijk can also be integrated in the formula.

Hennig (2015a) discussed that missing values for nominal variables can also be treated as an own

category, and for continuous variables one could give missing values a constant distance to every

other value. Missing values are not of big concern in this report, since the data set does not

include any missing values, except the variables of “Team coefficients” (See Section 4.1.1). More

references for missing values can be found in Everitt et al. (2011).

As stated above, the second approach is to combine the distances, in which the same kind

of variables are aggregated with Gower or Euclidean dissimilarity or some other distance design

beforehand. This method can be employed if researchers are interested in utilising different types

of distance measures for different kind of variables. The general formula is given by

d(xi, xj) =
h∑
l=1

wldl(xil, xjl), (3.33)

where dl(xil, xjl) is the lth aggregated distance, and wl is the lth aggregated distance weight based

on the selected standardisation technique. This is a version of Gower aggregation, and one could

also use the Euclidean aggregation here. Then, the argument is how to choose appropriate weights

for different distance measures. Gower suggested standardisation to [0, 1]-range, whereas Hennig

and Liao (2013) applied standardisation to unit variance for wl. Here, one could argue from the

distribution shape of distances in order to find appropriate weights. For example, if the distances
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are pretty much uniformly distributed, then range standardisation can be applied to the distances

because of the non-existence of the extreme values in distance measures, whereas standardisation

to unit variance can be chosen for normal-shaped distributions of the distances, since the statistic

that characterizes the spread of normal distribution is the variance (or the standard deviation).

The idea can be discussed from another perspective. For instance, researchers construct simi-

larity coefficients for binary categorical variables. Standard deviation is not inherently meaningful

in this case, because only certain values can occur. However, if the data contains a categorical

variable of few categories and continuous variables, and the distances in categorical variable can

take only few values, then range standardisation may construct the biggest possible gap between

the different categories. When aggregating them with continuous variables, cluster analysis meth-

ods are very prone to define the clusters that coincide with certain values of categorical variables.

Therefore, it is advisable for investigators to consider all these arguments when deciding of how to

combine the distances from different types.

The weights can also be chosen in a subjective way by formalising variable importance, see

Kaufman and Rousseeuw (1990) and Hennig (2015a), but the weights for standardisation should

be taken into account before assigning appropriate subjective weights, because the distances or the

variables should be comparable. One of the aspects of choosing subjective weights is whether the

scale of weights will change the clustering structure. The idea behind this argument is equivariance
7 and invariance 8 characteristics of statistical methods. To be more precise, the question is “Are

the cluster analysis and MDS invariant against multiplying all distance matrices by a constant, c?”.

For example, when running hierarchical clustering, two conditions can be specified: 1) Number

of clusters, 2) Height of dendrogram. If we fix the height of the dendrogram that we cut, the

clustering will not be invariant against multiplying all distance matrices by a constant, because

both the height and the cutting position will change; hence the algorithm is invariant, otherwise it

is equivariant. On the other hand, when running K-means, multiplying all the data by the same

constant is not going to change the clustering result, so that K-means is invariant under scaling by

the same constant, whereas means are equivariant. By and large, researchers who are interested

in assigning some subjective weights for the variables or the distances should consider these two

contexts for the decision of how multiplying every input (e.g., data or distance matrices) by the

same constant changes the results.

7A function f is said to be equivariant under the transformation group G with domain X if for all x ∈ X and
g ∈ G, then f(g(x)) = g(f(x)).

8A function f is said to be invariant under the transformation group G with domain X if for all x ∈ X and g ∈ G,
then f(g(x)) = f(x)
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3.6 Summary

Different data pre-processing steps are discussed in terms of their influences on clustering. Then,

the theory of dissimilarity measure is introduced, and different measures of similarity or dissim-

ilarity are examined for different kinds of variables. Compositional data was reviewed, since the

data to be used in this report contains compositional information. In the final section, I discussed

how to aggregate mixed-type variables, missing values and distances.

In Section 3.1, seven steps are summarised for the strategy of cluster analysis, and the first four

steps are explained in detail here, and the remaining steps will be reviewed in Chapter 5.
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CHAPTER 4

DISTANCE CONSTRUCTION OF FOOTBALL PLAYER
PERFORMANCE DATA

I have provided some background information on football, football in statistics and sports in cluster

analysis in Chapter 1. Data description was presented in Chapter 2 in order to understand the data

properly, while Chapter 3 has covered the relevant methodologies and literature to be used in this

chapter, where all such analysis related to distance construction of football players performance

data set will be presented in detail.

4.1 Variable Pre-processing

In this section, four different steps are followed through for different types of variables 1) repre-

sentation: i.e., considerations regarding how the relevant information is most appropriately rep-

resented, 2) transformation: Football knowledge as well as the skewness of the distribution of

some count variables indicates that transformation should be considered decreasing the effective

distance between higher values compared to the distances between lower values, 3) standardisa-

tion: In order to make within-variable variations comparable between variables), and 4) variable

weighting.
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4.1.1 Representation

Profile variables

Seven profile variables are introduced in Section 2.1.1. League variable, x(l) will be represented as

it is, whereas two team variables, x(tp) and x(tc) have quite different representations. x(tp) variable is

the information of team points from the ranking table of the 2014-2015 football season. Here points

are represented in terms of per game performance of teams by standardising by the total number

of games, because there have been different number of teams from each season, hence each team

plays different number of games. For example, Atletico Madrid from La Liga collected 78 points,

which is 2.05 (= 78/38) in per game representation, while CSKA Moscow from Russian Premier

League had 60 points, which is 2.00 (= 60/30) in per game representation in the 2014-2015

football season. Therefore, per game representation is applied for x(tp) for the sake of reflecting

players’ team information in a better way.

The x(tc) variable is the information of team coefficients based on the results of clubs com-

peting in the five previous seasons of the UEFA Champions League and UEFA Europa League,

see more information in https://www.uefa.com/memberassociations/uefarankings/club/

index.html. This information can be interpreted as a combination of x(l) and x(tp) variables based

on the games which took place in the competitions between European clubs. x(tc) has some miss-

ing values since some clubs have not qualified for any competitions in Europe. For the solution, I

propose that x(l) and x(tp) variables should be up-weighted by the assigned weight of x(tc) variable

in case of existence of missing values in the x(tc) variable. For instance, Getafe from La Liga has

no information in x(tc) variable, so that no distance information exists between a player from any

teams and a player from Getafe for x(tc) variable. In this case, the relevant distance information will

be depending only on x(l) and x(tp) variables. Mathematical definition of the weight assignment

for the team and league variables will be provided in Section 4.2.3.

Another key issue is that some players have played in different teams in the 2014-2015 football

season (e.g., Player X transferred from Team A from Team B in the same season). Here my

suggestion is to average x(l), x(tp) and x(tc) variables based on weights with respect to number

of minutes that players played for the different teams. Table 4.1 is a demonstration of how this

calculation is made.

After carrying out the representation step as explained above, the summary of profile variables

can be seen in Figure 4.1. The histogram of the x(l) variable contains multiple peaks which repre-

sent league information of players from eight different leagues, and very short bars represent the

players who played in different leagues. The team variables are distributed more evenly than the

50

https://www.uefa.com/memberassociations/uefarankings/club/index.html
https://www.uefa.com/memberassociations/uefarankings/club/index.html


Table 4.1: An example of league and team scores representation for a player who played in multiple teams, where the

i subscript represents the ith player, and the j subscript represents the jth team information.

Player Juan Cuadrado
Representation

League score Team point Team coef.

League England Italy ∑
j xijmij∑
j mij

∑
j yijmij∑
j mij

∑
j zijmij∑
j mijTeam Chelsea Fiorentina

League score (xij) 80.391 70.510

71.538 1.742 58.775
Team point (yij) 2.28 1.68

Team coef. (zij) 142.078 49.102

Minutes (mij) 198 1705

league variable, because each league has different number of teams; hence, variations are expected

to be larger. As clarified above, the x(tc) variable includes some missing values, and Figure 4.1c

shows that approximately one-third of the observations are missing. To put it in another way, over

the last five years one-third of the clubs have not qualified for any European competition. For the

other profile variables (Age, Height, Weight), they will be taken as they are. The summary of these

variables is shown in Figure 4.1.

Position variables

Position variables of two kinds have been introduced in Section 2.1.2. Here all binary variables

(Y(11)) will be represented as they are, but the 15 count variables (Y(15)) will be represented quite

differently. In Section 3.4, I clarified that relevant count variables can be represented in compo-

sitional forms. The information of how many times a player played in different positions can be

interpreted as relative information, since all these counts reflect the characterisation of where play-

ers are located on the field, hence the Y(15) variables are represented in proportional forms, see the

general definition below for the calculation of Y(15), where z = Y(15).

Definition 4.1.1. Let z be a (row) vector z = [z1, z2, . . . , zD], and zi ≥ 0 ∀i = 1, 2, . . . , D.

Proportional forms of z can be then shown as

C(z) =

[
z1∑D
i=1 zi

,
z2∑D
i=1 zi

, . . . ,
zD∑D
i=1 zi

]
. (4.1)

As an example, a player appeared in 50 games during the season, and his appearances are 20 games

in centre back (DC), 20 games in left back (DL), 10 games in right back (DR), so the proportions

will be 0.4, 0.4, 0.2 for DC, DL, DR, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Summary of profile variables

One of the issues for Y(15) variables is that there is no information available in the data set for

a player who has not started in the first eleven in any game during the season. As a solution of this

problem, I propose a similar idea to that which is x(tc) variable in Section 4.1.1, namely that the

value pertaining to Y(11) will be used for Y(15) when the latter has zero counts, see Equation (4.2).

C(Y(15)) =

C(Y(15)) if
∑D

i=1;zi∈Y(15) zi = 0,

C(Y(11)) Otherwise.
(4.2)

For instance, a player has not played from the beginning of any matches during the 2014-2015

football season, but he has actually played in DC, M(CLR), FW positions based on the information

of Y(11) variables. Then, the assignment for the player in Y(15) variables will be 0.2 each for the

positions, DC, MC, ML, MR, FW, see Table 2.2. This is the issue of essential zeros which was

discussed in Section 3.4.4.

The bar plot for two types of positions are shown in Figure 4.2. The first graph reflects the
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information about the sum of the components from each variable of Y(15), where decimal numbers

are rounded down to integer numbers, whereas the second graph is based on the sum of binary

values from each variable in Y(11). Apparently, the total number in the second graph are larger than

the first one in spite of the existence of more variables, because Y(15) variables are composition

variables, so that the position-wise per player sum should be 1, while Y(11) variables are all binary,

and players can play in multiple positions, so that the summation of the rows can be either 1 or

more.

Figure 4.2: Frequencies of position variables, Y(15) and Y(11), respectively.

Performance variables

Performance variables are classified into five categories, see Section 2.1.3. Time variables (Ap-

pearances, Minutes) are used as they are, and the summary of these variables is shown in Table 4.3.

I decided not to use the Subjective variables, see Table 2.3, because Rating is designed as a com-

bination of all the performance variables in the data set, see its definition in Table 4.3, and Man of

the match is chosen based on the maximum rating score that a player had in one match. Thus, it

would not be legitimate to use them, and this is a decision about what meaning the results should

have.

The other types of performance variables, which are all counts, can be classified into two

different categories: a) counts of actions (upper level), b) the compositions of actions (lower level).
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(a) (b)

Figure 4.3: Summary of time variables

Upper level count variables

A representation issue here is that counts of actions such as shots, blocks etc., should be used

relative to the period that the player played in order to characterise players in an appropriate way.

Here the counts of actions which contain sub-variables, such as shots, passes, etc., are created

by summing up the sub-variables of the relevant actions (e.g., SHOT = ShotRF + ShotLF +

ShotHead + ShotOther).

Two representation options can be examined by standardising the upper level count variables:

a) Per 90 minutes, which is the representation of the upper level count variables standardised by

the period of time that the player played, b) per game, which is the representation of the upper

level count variables standardised by the number of games that the player played. The question is

which one better represents the player’s characteristic. For example, two players played 60 and 90

minutes in each game on average, and assume that they play the same number of games. If per

game representation is applied, then their values will be divided by the same number, but this will

be inappropriate because they played for different time periods. Hence, since a game of football

lasts for 90 minutes, I represent the counts as “per 90 minutes”:

yij =
xij

mi/90
= 90× xij

mi

, (4.3)

where xij is the jth count variable of player i, mi is the number of minutes played by player i.

Figure 4.4 shows the summary of upper level count variables represented as per 90 minutes. The
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summary of the variables shows the distributional shape of count data, such as right skewed dis-

tributions. Some of these variables (e.g., goals, assists, offsides) have lots of zero values, whereas

some others (e.g., tackles, passes, etc.) are distributed more evenly than the zero-dominated ones.

Nonetheless, another problem arises in terms of representation to 90 minutes for the players

who played in a short period of time during the season. For example, a player only played 7

minutes and scored one goal during the season. Such a player exists in the data. In accordance

with representation to 90 minutes, he scores approximately 12.5 goals in each game, which is not

a realistic representation based on our football knowledge. Thus, I only aim to analyse players

who have played a minimum 200 minutes during the season, which is chosen by my intuitive sense

in terms of reflecting a proper representation of players. In this respect, 149 players are removed

from the data set, hence 3003 players will be used for the further analysis.

Lower level count variables

Suppose that a player has 2.0 shots per 90 minutes, and the shots per zone are out of box: 0.4,

penalty area: 1.3, six yard box: 0.3. When computing the distance between this player and another

player, two different aspects of the players’ characteristics are captured in these data, namely how

often each player shoots, and how the shots distribute over the zones. If the data were used in

the raw form given above, players with a big difference in the upper level variable “shots” would

also differ strongly regarding the lower level variable “shot zone”, and the overall distance would

be dominated by the upper level variable with the information on the zonal distribution being

largely lost. In order to separate the different aspects of interest, the lower level count variables

are transformed to percentages, i.e., 0.2, 0.65 and 0.15 for out of box, penalty area, six yard box

above, whereas the upper level count is taken as per 90 minutes count as defined above.

Percentage variables can be represented as proportion of total and/or success rates. For exam-

ple, shot and goal are upper level count variables that contain common sub-categories (zone, situ-

ation, body part). Goal is essentially the successful completion of a shot, so that the sub-variables

of goal can be treated as success rate of shot in the respective category as well as composition of

total goals. Both are of interest for characterising the players in different ways, and therefore I will

use both representations in some cases. Table 4.2 shows where this was applied.

In Section 2.1.3, the discussion of the ‘Other’ sub-variables was with respect to their meaning,

and I stated that the ‘other’ categories from body parts of shots and goals are specified, whereas the

’other’ categories from key passes and assists are unspecified. In fact, the statistical summary of

these sub-variables, see Figure 4.5, specifically in terms of their frequencies, give us an idea of why

these variables should be considered in different ways. Figure 4.5a and 4.5b shows a peak around

zero percentages, because the other body parts hardly occur when shooting in football. However,
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Figure 4.4: Summary of upper level count variables represented as per 90 minutes
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(a) (b) (c) (d)

Figure 4.5: Summary of the ‘Other’ percentage variables

Figure 4.5c and 4.5d shows more or less left skewed shaped distributions, since a large number

of key passes and assists are uncategorised. The information of all the other categories exists

in the percentages of the overall of non-other categories regardless of their meaning, because of

the argument of linear dependence in compositional data. As a part of the representation step, I

consider excluding only the unspecified other categories, because they do not have any meaning

in terms of reflecting player’s characteristic. On the other hand, even if the unspecified other

categories are excluded, it is very important to use them to compute the percentages, because

otherwise the information of the actual percentages is lost. Therefore, the specified other categories

will be used both for computing the percentages and for the distances, whereas the unspecified

other categories will be used only for computing the percentages, not for computing the distances.

Table 4.2: Representation of lower level count variables

Variables Proportion of total Success rate
(Include sub-categories) (standardised by) (standardised by)
Block Total blocks 7

Tackle, Aerial, Dribble 7 Total tackles, total aerials, and total dribbles

Shot (4 sub-categories) Total shots 7

Goal (4 sub-categories) Total goals Shot count in different sub-categories, and total

shots and shots on target for overall success rate

Pass (2 sub-categories) Total passes Pass count in different sub-categories, and total

passes for overall accurate pass rate

Key pass (2 sub-categories) Total key passes 7

Assist Total assists Key pass count in different sub-categories, and

total key passes for overall success rate
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Dealing with zero values

In the previous section, my conclusion was to represent the lower level count variables in

compositional form. For log-ratio analysis of compositional data, one of the major issues is zero

components, as logarithms of zero values are undefined, see Section 3.4.4. To discuss this problem,

any distance measures associated with logarithmic transformation should be reviewed in case of

the presence of zero values, but I have not explained yet which distance measure is to be used for

compositional data. However, as a reminder, the ultimate rationale behind what it to be here is

that variables will be represented in such a way that the results should match how the variables are

interpreted in the application of interest; for this reason, zero components can also be problematic

in respect to characterising football players information. For example, consider two players who

make different total shots per 90 minutes, where the first one has 10 total shots with 0 accuracy,

while the second one has 1 total shot with 0 accuracy. If there is no change, the accuracy rate for

both players will be 0%, but if the second player had had more shot opportunities, his accuracy

rate could have been larger.

For managing the ratio preservation for non-zero values, Equation (3.27) was introduced as a

Bayesian-multiplicative approach in Section 3.4.4, and some common priors had been proposed

for corresponding posterior estimation, θ̂ij , see Table 3.6. Here, the Bayesian approach can be a

tool to represent proportional variables based on subject matter reasons in terms of the application

of interest. It is important to note that the Bayesian approach is only used for motivation of how

to adjust these values, not for the sake of logarithmic transformation. I suggest a different prior

to those in Table 3.6, because those priors for the estimation of zero components do not interpre-

tatively meet my expectations. Table 4.3 provides an example to compare those priors and my

suggested prior, which is based on the success rate of how many goals have been scored out of

total shot attempts.

As introduced in Section 3.4.4, si is the strength of the prior, which I choose as 1, and pij is

the prior expectation, which is actually more important than the strength parameter in my cases,

because it determines the expectation of the estimated proportion. One of the preferred expected

value is the mean, and the mean of the proportional variables can be used for finding a proper pij , so

that the posterior estimation, θ̂ij , which will be the representation of the proportional variables by

using my prior selection, should make more sense football-wise than adopting the other proposed

priors. For instance, the 3rd player on Table 4.3 brings very high success rate by using other

methods with different priors. This is not properly accurate, since goals rarely occurs (e.g., see the

histogram in Figure 4.4). Likewise, the success rate of the 3rd player is 0.04 by using my priors,

and the 1st and the 2nd estimated percentages are 0.0008 and 0.007, respectively, which are very

different than the 3rd one. This is essentially a reasonable prediction, because the number of shots
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are very different. Even if the other priors also provide a big difference between those players,

they do not accurately reflect the percentage information for the 3rd player. The 4th and the 5th

players are provided in order not only to see the comparison with the first three players, but also

to show that the estimation is only used for zero components, otherwise it remains as constant, see

Equation (3.27), unless one of the other components are non-zero.

Table 4.3: Comparison between the priors in Table 3.6 and my suggested priors, where cij is the jth count

variable of player i, and Ti is the total count of the jth variable, see Equation (3.26)

Players Shots Goals

Goal success rate (θ̂ij)
None Jeffreys Perks Laplace My prior selection
(si = 0, (si = D/2, (si = 1, (si = D, (si = 1,

αij = 0) αij = 1/2) αij = 1/D) αij = 1) αij =
1
n

∑n
i=1 cij/Ti)

1 100 0 0.0000 0.0050 0.0005 0.0090 0.0008

2 10 0 0.0000 0.0450 0.0450 0.0830 0.0070

3 1 0 0.0000 0.2500 0.2500 0.5000 0.0400

4 100 1 0.0100 0.0100 0.0100 0.0100 0.0100

5 10 1 0.1000 0.1000 0.1000 0.1000 0.1000

The other potential and more considerable problem is the case of total count being equal to

zero, which was introduced as essential zeros in Section 3.4.4. In this situation, there is no such

evidence of how players perform in the relevant action; hence, no such prediction can be adopted

for the relevant composition. Assigning zero values for each proportion may lead to incorrect in-

terpretation, since I do not know what performances these types of players have displayed. Thus,

when computing a distance measure, I consider only using the total count and ignoring composi-

tional information for the players who have essential zeros in the related action; in other words,

a composition in which all components are zero will be weighted as zero, and total count of the

relevant action will be up-weighted by the total weights of the relevant composition. The following

equation demonstrates the computation of distance measure for the players whose total upper level

counts are zero:

d(xi,xj) =

d(xiT , xjT )
∑D

t=1wt if
∑D

t=1 xit = 0 ∀xit,

d(xitwt, xjtwt) otherwise,
(4.4)

where xiT is the T th upper level count variable of player i, xit is the tth lower level percentage

variable of player i, and wk is the subjective weight of the kth lower level percentage variable. The

choice of subjective weights for each variable will be discussed in Section 4.1.4.
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4.1.2 Transformation

Variables are not always related to “interpretative distance” in a linear way, and a transformation

should be applied in order to match interpretative distances with the effective differences of the

transformed variables.

The upper level count variables have more or less skewed distributions, see Figure 4.4; for

example, many players, particularly defenders, shoot very rarely during a game, and a few forward

players may be responsible for the majority of shots. On the other hand, most blocks come from

a few defenders, whereas most players block rarely. This means that there may be large absolute

differences between players that shoot or block often, whereas differences at the low end will be

low; but the interpretative distance between two players with large but fairly different numbers of

blocks and shots is not that large, compared with the difference between, for example, a player

who never shoots and one who occasionally but rarely shoots.

This suggests a non-linear concave transformation such as logarithm or square root for these

variables, which effectively shrinks the difference between large values relative to the difference

between smaller values, see Figure 4.6. For instance, the difference between players who shoot 25

and 20, and the difference between players who shoot 5 and 3 per 90 minutes might be more or

less the same, after a choice of transformations is applied.

Figure 4.6: Comparison between non-linear concave transformations and no transformation
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Prior to selecting an appropriate transformation technique, I consider adding a constant value,

‘c’, since the upper level count variables contain zero values, and the logarithmic transformation

can only be applicable for non-zero positive values. For square root transformation, an additional

constant value is not essential, since
√

0 is defined. However, I consider adding a constant value in

order to examine different variations of square root transformation. The question is then which ‘c’

should be used for the selected transformation?

Hennig and Liao (2013) discussed how the resulting differences for logarithmic transformation

are affected by different constants based on the subject of social stratification. The argument of the

choice of ‘c’ depends on the relationship between income and saving amounts variables in terms

of sociological interpretation. Here, since each count variable has different statistical information,

the choice of ‘c’ should vary for different upper level count variables. For instance, Figure 4.7

shows how the locations of values vary by taking square root or logarithmic transformation with

different constants. For this example, shot variables based on per 90 minutes representation, after

adopting standardisation to unit variance, are selected. Standardisation was applied in order to

make different transformation techniques comparable. 9 popular players based on the information

of team from the year-2015 on the UEFA website (http://en.toty.uefa.com/) are selected for

this experiment. Here the aim is actually to show how the distance measures between players

are affected after taking logarithmic or square root transformation with different constant values.

It seems that the difference between larger values are more affected than the difference between

smaller values, which essentially justifies my belief. In addition, the logarithmic transformation

has stronger influence on larger values than the square root transformation.

Although Figure 4.7 gives us a reference for the choice of ‘c’, I still want to make some kind

of formal decision, which can be made by looking at the shape of the distributions. One could use

variance-stabilizing transformation, which typically transform a Poisson distributed variable (e.g.,

upper level count variable) into one with an approximately standard Gaussian distribution. One

of the famous variance-stabilizing transformations is the Anscombe transform (Anscombe, 1948)

that is usually used to pre-process the data in order to make the standard deviation approximately

constant. However, it is not clear what this has to do with football and the meaning of the data.

The data can play a role for such decisions, but there is no guarantee that any decisions based on

the data alone match with interpretative distance, unless interpretative distance is governed by the

data. Therefore, I suggest that such decisions can be made by using some external data, which can

be player’s information from the previous year. In this sense, I can check whether the variation for

one variable within the player one year to another is increasing with the result that the same player

has on this variable either over both years.
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Figure 4.7: Comparison of transformations with different constants

D.A.: David Alaba, S.R.: Sergio Ramos , G.P.:Gerard Pique, A.I.: Andres Iniesta, P.P.: Paul Pogba, J.R.: James Rodriguez, L.M.: Lionel Messi, C.R.:Cristiano Ronaldo, N.: Neymar
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The idea of the comparison between two year values is that the differences are approximated for

the variation, because the only way of estimating variation from these two values is to look at the

difference. Here, such transformation can be made in such a way that the variation does not depend

on any of these values, so that I want to keep the variation constant in every place on the scale.

Mathematically speaking, the slope of the regression, where a dependent variable (y) is defined

as the variation of two year values and an independent variable (x) is characterised by a weighted

average of two year values, is as close to zero as I can have. The theory of measurements suggests

that the the distance computation for count variables are usually treated as absolute scale, so that

the dependent variable, which represents the variation between the values in two years, can be

characterised by the absolute difference. The weights for computing the independent variable are

determined by number of minutes that a player played in two seasons, since the players information

are better reflected by representation to per 90 minutes, see Section 4.1.1.

Two sample data sets from the season 2013-2014 and 2014-2015 have been used for this anal-

ysis. Same players are considered (paired data set), so that the sample sizes are equal for the two

data sets (50 ≤ n ≤ 100). Note that I only used a sub-sample of the two data sets, because I was

confronted with some computational difficulties when collecting all the players information from

the 2013-2014 football season. Players are randomly chosen for each variable from the data set

to be used in this application, and the sample sizes differ for different count variables, since some

players’ information is not available in the 2013-2014 football season. The following expressions

are the demonstration of how the variables are assigned.

yij = |x(34)
ij − x

(45)
ij |

xij = (m
(34)
ij x

(34)
ij +m

(45)
ij x

(45)
ij )/(m

(34)
ij +m

(45)
ij )

xij ≥ 0, yij ≥ 0 ∀i’s and j’s

xj = (x1j, . . . , xnj) and yj = (y1j, . . . , ynj) (i = 1, . . . , n and j = 1, . . . , p),

(4.5)

where x(34)
ij and x(45)

ij are the jth variable on the ith object of the season 2013-2014 and 2014-2015,

respectively. m(34)
ij and m(45)

ij are the number of minutes from the jth variable on the ith object on

the season 2013-2014 and 2014-2015, respectively.

I now check how the slope of linear regression of the absolute difference (yj) regressed on the

weighted average of the two data sets (xj), where a monotonic transformation with an additional

constant, ‘c’, is applied on each variable. If one of the p-values for the slope without applying any

transformations is less than the critical value, this provides evidence that the variable should not

be transformed; otherwise, I consider transforming the variable in a monotone way, such as loga-
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rithmic or square root transformation. The selected transformation will be applied to each variable

(x(34)
ij or x(45)

ij ), because the variation should be checked after transforming variables, whereas the

weighted average of the two year values should be transformed as whole, not separately, because

this new variable is considered as independent from x
(34)
ij and x(45)

ij . The following expressions

show the calculation of the transformations.

yfij = |f(x
(34)
ij )− f(x

(45)
ij )|

xfij = f((m
(34)
ij x

(34)
ij +m

(45)
ij x

(45)
ij )/(m

(34)
ij +m

(45)
ij ))

(4.6)

f(x) =

log (x+ c) if logarithmic transformation applied,
√
x+ c if square root transformation applied.

(4.7)

The aim is to make the slopes approximately equal to zero. Finding an optimal constant value

by minimising the slope function can be the solution of this problem, but I could not find any

simple form of this approach, even if I use approximation methods, such as Taylor approximation.

In this sense, one of the root-finding techniques, The Bisection Method (interval halving method),

see Algorithm 1, will be used for finding an optimal constant value for each variable. The method

was first introduced as The Intermediate Value Theorem by Bernard Bolzano in 1817, see Edwards

(2012). The design as shown in Algorithm 1 was then introduced by Burden and Faires (1985).

This method was applied on each upper level count variable, except ‘Goal’ and ‘Assist’, be-

cause these variables are linearly related with football. The linear relationship can be explained as

follows. ‘Goal’ and ‘Assist’ variables have a direct impact on match results, so that the differences

of players on these variables should explicitly be reflected based on the idea of the interpretative

distance. To explain the idea in terms of ‘Goal’ and ‘Assist’ variables, I can interpret that foot-

ball is governed by goals, and assist is a type of pass that directly leads to a goal, therefore these

variables should not be transformed because of their direct impact on match scores. Thus, no such

transformations are applied to ‘Goal’ and ‘Assist’ variables.

The rest of the upper level count variables are transformed based on the result of The Bisec-

tion algorithm. Figure 4.8 displays 3 graphs for each variable. The graphs on top provide scatter

plots of the untransformed variables, where y-axis are yij’s and x-axis are xij’s, see Equations 4.5.

The graphs on bottom left and right indicate the best fit constant values for logarithmic and square

root transformations, after the algorithm is applied. The y-axis are the slopes for different con-

stant values, whereas x-axis are the constant values. Apparently, the roots for constant values were

mostly found for logarithmic transformations, while square root transformation failed in many
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Algorithm 1: The Bisection Algorithm

Data: Function f , endpoint values a, b, tolerance t, maximum iterations Nmax

Result: Value which differs from a root of f(x) = 0 by less than t

Condition: a < b, either f(a) < 0 and f(b) > 0 or f(a) > 0 and f(b) < 0

N ← 1

while N ≤ Nmax do
# limit iterations to prevent infinite loop

c← (a+ b)/2 # new midpoint

if f(c) = 0 or (b–a)/2 < t then
# solution found

Output(c)

Stop

N ← N + 1 #increment step counter

if sign(f(c)) = sign(f(a)) then
a← c

else
b← c # new interval

Output(“Method failed”) # max number of steps exceeded

cases. However, the root finding for ‘Pass’ and ‘Offside’ variables was not successful, but the min-

imum absolute values of slopes on these variables can be assumed as optimal constants, because

the aim is to make the slopes to be approximately equal to zero, so that the variation can also be

minimised in this respect. For the ‘Pass’ variable, the line is an increasing continuous function, see

Figure 4.8n and the slope can only be minimum when the constant is zero, but constants cannot

be zero in logarithmic transformation; hence, the smallest possible value is chosen in this respect,

which is ε = 0.0001. For the ‘Offside’ variable, Figure 4.8m shows that the estimated slope can

be found when the constant is around 0.006, because the p-value for the slope between ylogij versus

xlogij is the maximum in this case.

Table 4.4 provides the p-values for the null hypothesis: “No slope”, p1, prior to transformation

and the optimal constant values, clog and csqrt, and the p-values, p2, after an appropriate transfor-

mation with the final constant to be used, which should be greater than the critical values. Note

that the p2 values are no longer valid p-values, because they are based on optimisation results. As

stated above, if one of the p-values of the slope between yj and xj is greater than the critical value,

no such transformation is necessary. p1’s for Foul and Key Pass are greater than 0.1, whereas the p-
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value for Block is greater than 0.05, which suggest that these variables should not be transformed,

but since the p-values are very close to the critical values and the variation range of the values are

better unified after applying logarithmic transformation with the constants, cfin, in Table 4.4, my

decision is to transform these variables as well. As a result, to be consistent I choose logarithmic

transformation for all upper level count variables with the constant values, cfin, shown in Table 4.4.

Figure 4.9 provides a summary of the transformed upper level count variables.

Table 4.4: Optimal constants and the p-values of the slopes before and after transformations

Variable p1 clog csqrt cfin p2

Tackle 0.0130 1.9816 0.1601 1.9816 0.999

Offside 0.0000 7 7 0.0060 0.213

Interception 0.0000 0.3184 7 0.3184 0.998

Foul 0.1040 1.3315 0.2157 1.3315 0.999

Fouled 0.0000 0.7735 7 0.7735 0.999

Clearance 0.0000 0.5505 7 0.5505 0.998

Block 0.0910 0.7182 7 0.7182 0.993

Shot 0.0000 0.3811 7 0.3811 0.999

Unsuccessful touch 0.0150 1.1567 0.1181 1.1567 0.999

Dispossessed 0.0000 0.3101 7 0.3101 0.999

Aerial 0.0000 1.3739 7 1.3739 0.999

Dribble 0.0010 0.4557 7 0.4557 0.998

Pass 0.0000 7 7 0.0001 0.731

Key Pass 0.1280 0.8093 0.0588 0.8093 0.999

cfin’s are the final constants to be used in the logartimic transformation

p1’s are the p-values of the slope for yj and xj
p2’s are the p-values of the slope for log (yj + cfin) and log (xj + cfin)

clog’s and csqrt’s are the optimal constants for log (x) and
√
x transformations, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 4.8: Analysis for optimal constant values on log and square root transformations
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 4.9: Summary of upper level count variables after log (x+ c) is applied
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4.1.3 Standardisation

Whereas transformation deals with relative differences between players on the same variable, stan-

dardisation and weighting are about calibrating the impact of the different variables against each

other. Usually, weighting and standardisation both involve multiplying a variable with a constant,

but they have different meanings. Standardisation is about making the measurements of the differ-

ent variables comparable in size, whereas weighting is about giving the variables an impact on the

overall distance that corresponds to their subject-matter importance.

I standardise transformed and untransformed (e.g, Goal and Assist) upper level count variables

to average absolute deviation, see Table 3.1. The reason can be explained by the following ar-

gument. First, range standardisation heavily depends on most extreme values, and many of these

variables do not have a natural maximum. For example, I observe maximum value of 5 blocks,

but next year player can have 8 blocks based on per 90 minutes representation, which will change

the variable range. Therefore, I would prefer a standardisation method that essentially assesses the

overall variation (e.g., unit variance, median absolute deviation or average absolute deviation), not

just the two most extreme values.

Second, The Manhattan (L1) distance, which is governed by absolute values, will be used

for upper level count variables, see Section 4.2.1, and within the variable I standardise in such a

way that the same absolute value has always the same meaning. In particular, observations are

only outliers when the performance of players in a certain respect is indeed outlying in which

case they should still be located in such a place that the values have the direct interpretation, see

more discussion about the effect of outliers on standardisation in Hennig and Liao (2013) and in

Section 3.2.3. All these points to the fact that if I want every value to have the same impact, the

estimation of variation should be based on the absolute values of differences (L1 distance) between

the values and the location parameter (e.g., median). Next, for computing the absolute values, the

centre should be the median, which minimises the absolute deviation. Note that median and mean

are approximately the same if the distribution of a variable is approximately symmetric, which is

more or less the case for most of the transformed upper level count variables, see Table 4.9, but this

is not the case for the untransformed ones, see Table 4.4i and Table 4.4p. Thus, it is determined

that the average absolute deviation will be used for standardising upper level count variables.

For the lower level percentages, I standardise by dividing by the pooled average absolute devi-

ation from all categories belonging to the same composition of lower level variables, regardless of

their individual relative deviation. The pooled average absolute deviation is defined as the average

of the average absolute deviation
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spooled =

∑D
j=1 sj

D
, (4.8)

where sj is the average absolute deviation of jth variable. The reason for this is that a certain dif-

ference in percentages between two players has the same meaning in each category, which does not

depend on the individual deviation of the category variable. I want to have the resulting distances

between percentages to count in the same way regardless of which part of the composition they

are from. For example, consider compositional data with three components, and their deviations

are 14, 18 and 20, respectively. If I take 0.1 away from the first one and give it to the second one,

the change will be different in some of the distance measures (e.g., Aitchison distance) than if I

take 0.1 away from the first one and give it to the third one. This argument can be mathematically

proved by the following theory. Note that this is not directly in favour of the pooled variance, it is

about standardising the compositions with the same number.

Definition 4.1.2. Let xi = (xi1, xi2, . . . , xiD) be a D-part composition from the data set X , i =

1, 2, . . . , n, with the following assumptions

i
∑D

k=1 xik = 1,

ii 0 ≤ xik ≤ 1,

iii D > 2,

and let sk, k = 1, 2, . . . , D, be a standardised constant which may or may not depend on k for all

sk > 0. Then, consider the following distances

1. Standardised Euclidean distance:

dE(xi,xj) =

√√√√ D∑
k=1

{
xik
sk
− xjk

sk

}2

, (4.9)

2. Standardised Manhattan distance:

dM(xi,xj) =
D∑
k=1

∣∣∣∣xiksk − xjk
sk

∣∣∣∣ , (4.10)

3. Aitchison distance:

dA(xi,xj) =

√√√√ D∑
k=1

{
log

(
xik
g(xi)

)
− log

(
xjk
g(xj)

)}2

, (4.11)

where g(xi) =
(∏D

k=1 xik

)1/D

.
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Axiom 4.1.1. Let x1 = (x11, x12, . . . , x1D), x
(1)
1 = (x11 + ε, x12− ε

D−1
, . . . , x1D− ε

D−1
), x

(q)
1 =

(x11− ε
D−1

, . . . , x1q+ε, . . . , x1D− ε
D−1

) beD-part compositions. Assume that x1,x
(1)
1 ,x

(q)
1 ∈ X ,

0 < ε ≤ 1, and 0 ≤ x
(t)
1k ≤ 1 for all t. Then, the general distance should satisfy the following

equation;

d(x1,x
(1)
1 ) = d(x1,x

(q)
1 ), (4.12)

Theorem 4.1.1. Equation (4.12) does hold for dE and dM if sk = s, ∀k and does not hold for dA
(x(t)

1k 6= 0) in general.

Proof:

• (Standardised Euclidean distance)

dE(x1,x
(1)
1 )2 − dE(x1,x

(q)
1 )2 =

D∑
k=1

{
x1k

sk
− x

(1)
1k

sk

}2

−
D∑
k=1

{
x1k

sk
− x

(q)
1k

sk

}2

=

(
ε2

s2
1

+
ε2

(D − 1)2

D∑
k=2

1

s2
k

)
−

 ε2

s2
q

+
ε2

(D − 1)2

D∑
k=1
k 6=q

1

s2
k


= ε2

[
1

s2
1

− 1

s2
q

+
1

(D − 1)2

(
1

s2
1

− 1

s2
q

)]
= ε2

(
1

s2
1

− 1

s2
q

)(
1− 1

(D − 1)2

)
= 0 ⇐⇒ s1 = sq.

If this is satisfied ∀q, then s = sk ∀k

• (Standardised Manhattan distance)

dM(x1,x
(1)
1 )− dM(x1,x

(q)
1 ) =

D∑
k=1

∣∣∣∣∣x1k

sk
− x

(1)
1k

sk

∣∣∣∣∣−
D∑
k=1

∣∣∣∣∣x1k

sk
− x

(q)
1k

sk

∣∣∣∣∣
=

(
ε

s1

+
ε

D − 1

D∑
k=2

1

sk

)
−

 ε

sq
+

ε

D − 1

D∑
k=1
k 6=q

1

sk


= ε

[
1

s1

− 1

sq
+

1

D − 1

(
1

s1

− 1

sq

)]
= ε

(
1

s1

− 1

sq

)(
1− 1

D − 1

)
= 0 ⇐⇒ s1 = sq
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If this is satisfied ∀q, then s = sk ∀k

• (Aitchison distance) The proof will be provided by a counter example. Table 4.5 shows

that the example disproves the general axiom for Aitchison distance, which does not hold

Equation (4.12) in general.

Table 4.5: Counter examples for the Aitchison distance

Compositions, where ε = 0.15 and q = 3 Percentages
x1 (0.40, 0.30, 0.20, 0.10)

x
(1)
1 (0.55, 0.25, 0.15, 0.05)

x
(3)
1 (0.35, 0.25, 0.35, 0.05)

dA(x1,x
(1)
1 )− dA(x1,x

(3)
1 ) −0.0368

Remark. For D = 2, all reasonable standardisations are the same for both variables, since xi1 =

1− xiD.

Remark. In Correspondence Analysis (Greenacre, 2017), another central axiom is the “principle

of distributional equivalence”, which states that if two columns (resp., two rows) of a contingency

table have the same relative values, then merging them does not affect the dissimilarities between

rows (resp., columns). I am here only concerned with dissimilarities between players, not with

dissimilarities between variables. For dissimilarities between players, distributional equivalence

holds when using a standardised Manhattan distance with sk chosen independently of k pooling

average L1-variable-wise distances from the median, because when merging two variables x and

y = cx, these simply sum up.

For all other variables (e.g., Age, Mins, Weight, etc.), average absolute deviation will be used

for standardisation in order to make them comparable with upper level count and lower level com-

positions. However, variable standardisation will not be applied for position variables and league

and team variables, because their distance designs are different, which will be discussed in Sec-

tion 4.2.

As I argued in Section 4.1.1, for the unspecified ‘other’ categories the distance computation

is based on the non-other categories. For standardisation, if I include the unspecified ‘other’ cat-

egories for computing the pooled average absolute deviation, then the biggest weights from those

categories make the variation higher, and the impact of non-other categories will be lower when

computing the distance. The summary statistics of the Key pass (Other) and Assist (Other) vari-

ables in Figure 4.5 can be a guidance to identify how those biggest weights affect the computation

of the pooled average absolute deviation. Thus, the pooled deviation will be computed based on

the non-other categories.
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4.1.4 Weighting

Weighting is the concept of multiplying variables with different constants. Some variables may

be more important than other variables, and weighting can take this into account. Assigning a

different weight to each variable may lead to some variables being more dominant than the others

for distance computation, which can influence the meaning of the results. Time variables and the

upper level count variables which do not contain any sub-categories are weighted by one unit 1.

This can be interpreted as the characterization of players can be better reflected by utilizing their

information equally than assigning different weights for each upper level count variable.

One aspect of variable weighting here is that in case that there are one or more lower level

compositions of an upper level variable, the upper level variable is transformed and standardised

individually whereas the categories of the composition are standardised together. This reflects

the fact that the upper level count and the lower level distribution represent distinct aspects of a

player’s characteristics, and on this basis I assign the same weight to the upper level variable as

to the whole vector of compositional variables, except the ones which contain more than one sub-

category (e.g., Shot has four sub-categories: Zone, situation, accuracy, body parts). For example,

a weight of one for transformed block counts is matched by a weight of 1/3 for each of the sub-

variables “shots blocked”, “crosses blocked”, “passes blocked”. The weight assignment of these

kinds is summarised in Table 4.6.

Table 4.6: Weight assignment for the upper level variables, which only contains one sub-category.

Variables
Weights for Weights for Total weights
each percentage upper level count for the variable

Tackles 1/2 1 2

Blocks 1/3 1 2

Aerials 1/2 1 2

Dribbles 1/2 1 2

The percentage variables of the same composition are linearly dependent and are therefore

correlated with each other; k percentage variables do not represent k independent parts of infor-

mation. Variable selection and dimension reduction are very popular to deal with this. However,

in distance construction, the problem is appropriately dealt with using weighting. There is no ad-

vantage in using, for example, only two variables out of “out of the box”, “six yard box”, “penalty

area” and weight them by 1/2 each; using all three means that they are treated symmetrically for

1 Unit of measurement is defined as any specified amount of quantity (e.g., length, time, volume, etc.) by compar-
ison with which any other quantity of the same kind is measured or estimated.
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the construction of the distance, as is appropriate. At the same time down-weighting prevents re-

dundant information dominating the overall distance. Therefore, it is not a problem that the same

information is used twice, because the percentage variables are proportionally weighted down.

Next, weights for the variables that contain more than one sub-category, will be discussed.

In Section 4.1.1, I stated that variables that contain common sub-categories can be represented

in different forms, such as proportional and success rate. In this sense, the computation of these

percentages as well as their weight assignments can be considered together. Table 4.7, 4.8 and

4.9 provide how the weight assignment as well as the representation for Shots&Goals, Passes and

Key passes&Assists are made (Table 2.3 is the reference for the abbreviations on these tables).

The question for the weight assignment of the upper level variables that contain more than one

category is whether I should assign either the total weight of the whole vector of compositional

variables (the first selection), or one unit to each variable as for the upper level variables that do

not contain any sub-categories (the second selection). Here these arguments will be discussed with

an example. I choose 3 players with their upper level count and lower level compositions of Shot

action, see Table 4.10. The distance between the first and the second players is small if the first

selection is used, but we can see a big difference between compositions. On the other hand, if I

use the second selection, the distance between the second and the third players will be small, but

the difference between their total shots is quite large. In this respect, the combination of these

two arguments, which can be done by taking the average of the weights (e.g., the first selection,

w1 = 4 and the second selection, w2 = 1, hence the average, wa = 2.5), see Table 4.11, can be

a reasonable choice for the weight assignment of the upper level variables that contain more than

one category, because I do not want to make either upper or lower level variables dominate the

resulting differences.

As discussed in Section 4.1.1, in case that an upper level count variable is zero for a player, the

percentage variables are missing. In this situation, for overall distance computation between such

a player and another player, the composition variables can be assigned weight zero and the weight

that is normally on an upper level variable and its low level variables combined can be assigned to

the upper level variable.

All these weight assignments are determined by some kind of analytical thinking of how the

different variables are connected with my football knowledge. However, a manager or a scout from

a team can be interested in some of the variables more than the others. For example, a manager

can demand similar to a defender from his team and therefore consider the variables related to

defending (e.g., Tackles, Blocks, etc.) to be more important than the variables related to attacking

(e.g., Shots, Goals, etc.). Thus, weights can be modified by users in terms of which variables they

are interested in more. For this aim, I designed an application with R Shiny for the users who
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wish to have flexibility to play with the weights of the variables, see Figure 4.14 , 4.15 and 4.16 in

Section 4.4 for different examples.

Table 4.7: Weight assignment for lower level compositions on Shot (x1) and Goal (x2) variables. ‘Shot

pro.’ and ‘Goal pro.’ stand for the sub-categories of Shot and Goal variables in percentage representation,

‘Goal suc.’ represents the success rates in each sub-category of Goal variable, ‘Goal suc1.’ is the represen-

tation of the overall success rate for the Goal variable standardised by total shots, and ‘Goal suc2.’ is the

representation of the overall success rate for the Goal variable standardised by total shots on target.

Categories Representation Weights for lower level compositions Total weights

OOB (xi(1)) SYB (xi(2)) PA (xi(3))

Zones

Shot pro. (x1(j)/x1) 1/3 1/3 1/3 1

1/2

1/4

 =
7

4
Goal pro. (x2(j)/x2) 1/6 1/6 1/6

Goal suc. (x2(j)/x1(j)) 1/12 1/12 1/12

OP (xi(4)) C (xi(5)) SP (xi(6)) PT (xi(7))

Situations

Shot pro. (x1(j)/x1) 1/4 1/4 1/4 1/4 1

1/2

1/4

 =
7

4
Goal pro. (x2(j)/x2) 1/8 1/8 1/8 1/8

Goal suc. (x2(j)/x1(j)) 1/16 1/16 1/16 1/16

RF (xi(8)) LF (xi(9)) H (xi(10)) O (xi(11))

Body parts

Shot pro. (x1(j)/x1) 1/4 1/4 1/4 1/4 1

1/2

1/4

 =
7

4
Goal pro. (x2(j)/x2) 1/8 1/8 1/8 1/8

Goal suc. (x2(j)/x1(j)) 1/16 1/16 1/16 1/16

OnT (xi(12)) OffT (xi(13)) B (xi(14))

Accuracy

Shot pro. (x1(j)/x1) 1/3 1/3 1/3 1

3/8

3/8

 =
7

4
Goal suc1. (x2/x1) 3/8

Goal suc2. (x2/x2(12)) 3/8

TOTAL 7

OOB: Out of box, SYB: Six yard box, PA: Penalty area, OP: Open play, C: Counter, SP: Set piece, PT: Penalty taken

RF: Right foot, LF: Left foot, H: Head, O: Other, OnT: On target, OffT: Off target, B: Blocked
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Table 4.8: Weight assignment for lower level compositions on Pass (y) variables (AccP (y1) and InAccP (y2),

where y = y1 + y2). ‘Pass pro.’ stands for the sub-categories of Pass variable in percentage representation,

‘Accuracy’ represents the success rates in each sub-category of Pass variable.

Categories Representation Weights for lower level compositions Total weights

Long (y(1)) Short (y(2))

Length
Pass pro. (y(j)/y) 1/2 1/2 1

1/2

 =
3

2Accuracy (yi(j)/y(j)) 1/4 1/4

Cross (y(3)) Corner (y(4)) FK (y(5))

Type
Pass pro. (y(j)/y) 1/3 1/3 1/3 1

1/2

 =
3

2Accuracy (yi(j)/y(j)) 1/6 1/6 1/6

Overall success rate (y1/y) 1 = 1

TOTAL 4

Table 4.9: Weight assignment for lower level compositions Key pass (z1) and Assist (z2) variables. ‘KP pro.’

and ‘Ass. pro.’ stand for the sub-categories of Key pass and Assist variables in percentage representation,

‘Ass. suc.’ represents the success rates in each sub-category of Assist variable.

Cat. Representation Weights for lower level compositions Total weights

Long (z1(1)) Short (z1(2))

Length KP pro. (z1(j)/z1) 1/2 1/2 = 1

Cr (zi(3)) Co (zi(4)) FK (zi(5)) T-b (zi(6)) T-in (zi(7))

Type

KP pro. (z1(j)/z1) 1/5 1/5 1/5 1/5 1/5 1

1/2

1/4

 =
7

4
Ass. pro. (z2(j)/z2) 1/10 1/10 1/10 1/10 1/10

Ass. suc. (z2(j)/z1(j)) 1/20 1/20 1/20 1/20 1/20

Overall success rate (z2/z1) 1/4 = 1
4

TOTAL 3

Cr: Cross, Co: Corner, FK: Free-kick, T-b: Through-ball, T-in: Throw-in
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Table 4.10: An example for one of the selected upper level variables, Shot which contain more than one

category. The number of total shots represents the upper level count variables, whereas the other numbers

are the lower level percentages in the category of Shot variable

Player
Total Zones Situations Body parts Accuracy

shots OOB SYB PA OP C SP PT RF LF H O OffT OnT B

1 10 0.1 0.4 0.5 0.1 0.4 0.1 0.4 0.1 0.2 0.7 0.0 0.1 0.3 0.6

2 10 0.5 0.2 0.3 0.5 0.1 0.3 0.1 0.3 0.3 0.3 0.1 0.4 0.5 0.1

3 100 0.5 0.2 0.3 0.5 0.1 0.3 0.1 0.3 0.3 0.3 0.1 0.4 0.5 0.1

4.1.5 Summary of data pre-processing

The summary of all the data pre-processing steps is presented at the following list. The variables,

for which data pre-processing steps are used, are summarised in Table 4.11

1. Representation:

• I analyse players who have played a minimum 200 minutes during the season.

• League and team scores are assigned to each player based on per game representation.

Players who played in multiple teams have a weighted average of league and team

scores. Weights are assigned based on representation to 90 minutes. Missing values in

x(tc) are filled by using x(l) and x(tp).

• For the position variables, Y(11) is represented as binary information, whereas Y(15) is

proportionally represented.

• Representation is not changed for Age, Weight, Height, Apps and Mins variables.

• ‘Other’ categories from Key pass and Assist variables will be excluded from the anal-

ysis, except for computing the percentages for the other categories.

• Upper level variables are represented as per 90 minutes, whereas lower level variables

are represented as percentages.

• For zero percentages, a Bayesian-multiplicative approach is used as a motivation of

how to adjust these values.

• For essential zeros, a composition in which all components are zero will be weighted

as zero, and total count of the relevant action will be up-weighted by the total weights

of the relevant composition.
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2. Transformation:

• Upper level count variables are transformed by logarithmic function with appropriate

constants based on the last year information for different variables.

• Goal and Assist variables are not transformed, since they have a direct impact on match

results.

3. Standardisation:

• Upper level count variables are standardised by average absolute deviation, whereas

lower level compositions are standardised by the pooled average absolute deviation

from all categories belonging to the same composition of lower level variables.

• For the variables which contain an unspecified other category, the pooled average ab-

solute deviation will be computed based on the non-other categories.

4. Weighting:

• Time variables and the upper level variables that do not contain any sub-categories are

weighted by one.

• I assign the same weights to the upper level variables, which only contain one sub-

category, as to the whole vector of compositional variables.

• The upper level variables that contain more than one category are weighted approxi-

mately by the average of the number of categories in the relevant variable.
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Table 4.11: Summary of data pre-processing steps (UL: Upper level, LL: Lower level)

Variables
Representation Transformation Standardisation Weights

Total weights
TL LL (log (x+ c)) TL LL None TL LL None

Age - - 7 - - 3 - - 1 1

Height - - 7 - - 3 - - 1 1

Weight - - 7 - - 3 - - 1 1

Apps - - 7 - - 3 - - 1 1

Mins - - 7 - - 3 - - 1 1

Offsides 3 - 3 3 - - 1 - - 1

Interceptions 3 - 3 3 - - 1 - - 1

Fouls 3 - 3 3 - - 1 - - 1

Fouled 3 - 3 3 - - 1 - - 1

Clearances 3 - 3 3 - - 1 - - 1

Unsuc. Touches 3 - 3 3 - - 1 - - 1

Dispossesses 3 - 3 3 - - 1 - - 1

Tackles 3 3 3 3 3 - 1 1 - 2

Blocks 3 3 3 3 3 - 1 1 - 2

Aerials 3 3 3 3 3 - 1 1 - 2

Dribbles 3 3 3 3 3 - 1 1 - 2

Shots 3 3 3 3 3 - 2.5 4 - 6.5

Goals 3 3 7 3 3 - 2 3 - 5

Passes 3 3 3 3 3 - 2.5 4 - 6.5

Key passes 3 3 3 3 3 - 1.5 2 - 3.5

Assists 3 3 7 3 3 - 1 1 - 2
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4.2 Aggregation of Variables in Distance Design

There are different well-known ways of aggregating variables in order to define a distance measure.

The same principle as before, “matching interpretative distance”, applies here as well. Distance

aggregation for the upper level count variables, the lower level compositions, the position variables,

the team and league variables and the others will be discussed.

4.2.1 Upper level count variables

There are different types of variables in this data set (the position variables are treated in a non-

Euclidean way, which will be explained later), and therefore I decided against using Euclidean

aggregation, which implicitly treats the variables as if they are in a joint Euclidean space, and

which weights larger differences on individual variables up when comparing two players. Instead,

I aggregate variables by summing up the individual distances, i.e., following the principle for the

Manhattan distance, as also used by Gower (1971). This means that distances on all variables are

treated in the same way regardless of the size of the difference. Note that the Manhattan distance

will also be adopted for Age, Weight, Height, Mins, Apps variables.

4.2.2 Lower level compositions

Percentage variables in the data set are compositional data in the sense of Aitchison (1986), who set

up an axiomatic theory for the analysis of compositional data, see Section 3.4. I will argue here that

for the compositional data in this application the simple Manhattan distance is more appropriate

than what Aitchison proposed specifically for compositional data, which means that the principle

of matching interpretative distance in distance construction can be in conflict, depending on the

application, with a pure mathematical axiomatic approach.

Manhattan distance vs Aitchison distance

In order to compare the Manhattan and the Aitchison distance, I first discuss the Manhattan dis-

tance regarding the four axioms, see Section 3.4.3.

• The Manhattan distance does not fulfil scale invariance; if both compositions are multiplied

by λ, the Manhattan distance is multiplied by λ. This, however, is irrelevant here, because I

am interested in percentages only that sum up to 100.
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• The Manhattan distance is permutation invariant.

• The Manhattan distance is not perturbation invariant, but as was the case for scale invari-

ance, this is irrelevant here, because the percentages are relative counts and the operation

of multiplying different categories in the same composition with different constants is not

meaningful in this application.

• The Manhattan distance is not sub-compositional coherent, but once more this is not rele-

vant, because in this application it is not meaningful to compare the values of the composi-

tional distance with those from sub-compositions.

Aitchison’s axioms were proposed as general principles for compositional data, but in fact the

axioms were motivated by specific applications with specific characteristics, which mostly do not

apply here. Furthermore, the Aitchison distance can be problematic for small percentages, which is

mathematically shown in Expression (3.28). For football players, the Aitchison distance does not

seem suitable for matching “interpretative distance”. I also demonstrate this using three popular

players from the data set, and the “Block” action, James Rodriguez (JR), Alexis Sanchez (AS) and

Cesc Fabregas (CF).

Table 4.12: Percentage variables in block action for the three selected players

Players Shot blocked Cross blocked Pass blocked
James Rodriguez (JR) 0.03 0.03 0.94

Alexis Sanchez (AS) 0.00 (≈ 0) 0.04 0.96

Cesc Fabregas (CF) 0.09 0.05 0.86

Table 4.13: Distances of block percentages for the three selected players

Distance JR-AS JR-CF AS-CF

Manhattan 0.06 0.16 0.20

Aitchison (clr) 26.69 0.84 27.42

Aitchison (ilr) 26.69 0.84 27.42

Aitchison (alr) 32.56 1.33 33.74

Percentages and distances are presented in Table 4.12 and Table 4.13. AS has a very small

proportion (≈ 0 but nonzero) in the sub-variable of “Shot blocked”. The Aitchison distances in

any log-ratio transformations between JR and AS as well as between CF and AS are quite large,

whereas it is not very large between JR and CF. But JR and AS are quite similar players according
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to the data; both block almost exclusively passes and hardly any shots or crosses. CF blocks

substantially more shots and some more crosses than both others. Therefore, the two distances

between CF and both JR and AS should be bigger than that between JR and AS, which is what the

Manhattan distance delivers.

In addition, as explained in Theorem 4.1.1, the general principle is that differences within

different variables should be treated the same. The Manhattan distance treats absolute differences

between percentages in the same way regardless of the size of the percentages between which

these differences occur, whereas the Aitchison distances is dominated by differences between small

percentages in an inappropriate manner.

4.2.3 Team and league variables

The league (x(l)) and team variables (x(tp) and x(tc)) are introduced in Section 2.1.1 as well as their

representations in Section 4.1.1. As a reminder, the descriptions of these variables are once again

introduced as follows:

• x(l): League ranking scores based on the information on the UEFA website,

• x(tp): Team points from the ranking table of each league based on the 2014-2015 football

season,

• x(tc): Team ranking scores based on the information on the UEFA website.

It seems to be appropriate to adopt the Manhattan distance for these variables, but x(l) and x(tp)

variables are connected to each other, because league scores are governed by the success of the

teams in their league. In terms of team performances, considering x(l) and x(tp) separately makes

two similar teams far away from each other. The idea can be explained by the following example. I

consider three players from Barcelona (Spain), Malaga (Spain) and Galatasaray (Turkey). Malaga

finished the season somewhere in the middle and Barcelona finished in first place in the Spanish

League, whereas Galatasaray was in first position in the Turkish League based on the data set. The

idea is to reflect the two variables in one distance measure together. Table 4.14 is the illustration of

the three selected players, and Table 4.15 shows the comparison between the Manhattan distance

and the distance that I propose, see Equation (4.13), after applying standardization to average ab-

solute deviation for each variable in order to make them comparable. The “interpretative distance”

between Malaga and Galatasaray should be less than the Manhattan distance that I computed for

the other pairs (BAR-MAL and BAR-GS) in Table 4.15; in other words, Malaga and Galatasaray
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should be more similar to each other than their differences with Barcelona. That is because Malaga

(which has the highest league score, but moderate team points) and Galatasaray (which has high

team points, but lowest league score) should be closer to each other than Barcelona in terms of

their performances in the 2014-2015 football season. Therefore, they should be incorporated in

one distance that should match interpretative distance. The proposed distance measure is given as

follows

d1(i, j) =

∣∣∣∣xi(l) − xj(l)s(l)

+
xi(tp) − xj(tp)

s(tp)

∣∣∣∣ , (4.13)

where s(l) and s(tp) are the average absolute deviations for x(l) and x(tp), respectively. x(tc) is not

related to the argument above, since it is the combination of these two variables, see Section 2.1.1.

As I already discussed in Section 4.1.1, x(l) and x(tp) should be up-weighted in case of existence of

missing values in x(tc). Equation (4.14) shows how the idea of up-weighting deals with the missing

values:

dlt(i, j) =

d1(i, j) if x(tc)
i or x(tc)

j are missing,
2
3
d1(i, j) + 1

3
d2(i, j) otherwise,

(4.14)

where d2(i, j) = (|xi(tc) − xj(tc)|)/s(tc) and s(tc) is the average absolute deviation of xi(tc).

Table 4.14: x(l) and x(tp) variables for the three selected players

Players Leagues Teams League scores (x(l)) Team points (x(tp))

1 Spain Barcelona (BAR) 99.427 2.47

2 Spain Malaga (MAL) 99.427 1.31

3 Turkey Galatasaray (GS) 32.600 2.26

Table 4.15: Distances of x(l) and x(tp) variables for the three selected players

Distances BAR-MAL BAR-GS MAL-GS
Manhattan distance 2.68 3.62 5.33

League-Team distance 2.68 3.62 0.94
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4.2.4 Position variables

The data contains variables that reflect information on where players are located on the field.

In Section 4.1.1, I described two types of position information. The first one (C(Y(15))), which

involves 15 sub – variables, provides the information of how players are proportionally distributed

in different positions based on the number of appearances during the 2014-2015 football season,

and the second one (Y(11)), which involves 11 sub – variables, are the binary variables indicating

where players played in the past seasons, which is historical background information of a player’s

position. Now I will present how I construct an appropriate distance measure for these two types

of information.

Position variables-1

The distance measure for lower level compositions was previously discussed. Here the difference is

that C(Y(15)) variables also include information for which the locations of players are meaningful;

hence, this information should also be embedded into the distance structure. For instance, the

distance between a forward and a midfielder cannot be the same as the distance between a forward

and a defender, since forward players should be location-wise further away from defenders than

midfielders, see Figure 2.1a. Therefore, I need to design a distance measure in which geographical

information of players is involved based on a player’s position.

As a part of representing C(Y(15)) variables, I build a three dimensional coordinate system in

which a player’s location is represented with one point on the field, and then compute the distance

measures between these points. The football field can be viewed in two dimensional space, see

Figure 2.1a, but I believe a player’s location is more accurately represented in three dimensions

rather than two dimensions. For example, consider a distance measure between defensive position

in two dimensions. The distance between left and right side of the positions is two units, whereas

the distance between centre and left or right is one unit. In terms of football knowledge, left or

right side players should be more similar than centre players in the sense that they both have the

characteristic of playing as a winger, not centre, but they play in different sides (left and right),

which brings the idea that they should be less similar. On the other hand, central players can have

different characteristics from the players who play on the left or right side of the field. In terms of

retaining all the ideas above, I design an equilateral triangle in which centre, left and right sides

should be equal to each other as one unit. This will be accomplished by upgrading the coordinate

system from two dimensions to three dimensions, see Figure 4.10.

The next step is to construct an appropriate coordinate system. In the three dimensional coor-
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(a) 2 dimensions (b) 3 dimensions

Figure 4.10: Comparison between two and three dimensional fields

dinate system, the sides of positions (left, right or centre) are presented as the first two coordinates,

say x and y, whereas the positions (D, DM, M, AM, FW) are presented as the third coordinate, say

z. x and y will be defined by a weighted mean location of the sides. Formally, the computation of

the weighted mean for a coordinate is given as follows:

c(qik) =

(∑3
j=1wijkqijk∑3
j=1wijk

)
, (4.15)

where qijk is the coordinate (x, y, or z) of the jth side of positions (left, right or centre) for the

kth position (D, DM, M, AM, FW) of player i, respectively, and wijk is the weight of the jth

side of positions for the kth position of player i. x and y coordinates are fixed numbers, which are

determined as shown in Table 4.16, in order to satisfy one of the properties of an equilateral triangle

that all three sides are equal. Weights are assigned by proportions of the positions in each side.

For example, if a player who only plays in the sides of defence position, and has a composition

as 0.4 in left, 0.4 in right and 0.2 in centre, then the weighted mean of player i is computed in

Equation (4.15) with the weights (0.4, 0.4, 0.2).

Although the idea above seems to be satisfactory, another problem arises when computing a

weighted mean, which can be explained by an example. Table 4.17 presents 3 different players

with their compositions in defence position, and Figure 4.11a illustrates the first principle that was
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Table 4.16: x and y coordinates for the side of positions (left, right and centre)

Coordinates Centre Left Right
x 1/2 0 1

y
√

3/2 0 0

previously explained, and Figure 4.11b gives an idea about the second principle, which will be

described now. In contrast to the first idea, I assume that d(P1, P2) and d(P1, P3) (Numbers refer

to Table 4.17) should be the same; in other words, the weighted mean of two different sides (left

and right), which is the case for the 2nd player, should not be closer to the centre position (1st

player) than the other right-side position (3rd player). That is because based on the argument that

the distances between all three sides in one position should be equal to each other, players who

played in the same position, but different sides regardless of their composition values, should have

the same distance as one unit (which is 0.5 in this example), unless they have common sides.

Table 4.17: Percentage variables in C(Y(15)) for three players

Players Centre Left Right
P1 1 0 0

P2 0 0.5 0.5

P3 0 0 1

This can be settled by designing a three dimensional space for each position (D, DM, M, AM,

FW), and I obtain a weighted mean by using the great-circle distance 2 between two points – that

is, the shortest distance over the Earth’s surface. The great-circle distance is calculated by using

the ‘Haversine’ formula, which is defined as:

aij = sin2

(
ϕi − ϕj

2

)
+ cos (ϕi) · cos (ϕj) · sin2

(
λi − λj

2

)
,

cij = 2 · atan2(
√
aij,
√

1− aij),

dgc(i, j) = R · cij,

(4.16)

where ϕi and ϕj are the ith, jth latitudes, λi and λj are the ith, jth longitudes, and in terms of the

standard arctan function, whose range is
(
−π

2
, π

2

)
, it can be expressed as follows:

2 Cajori (1928) credits an earlier use by de Mendoza et al. (1795). The term haversine was coined in Inman (1849)
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(a) First principle (b) Second principle

Figure 4.11: Comparison of the distance measures between three players in two and three dimensional cases

for one position

atan2(y, x) =



arctan( y
x
) if x > 0,

arctan( y
x
) + π if x < 0 and y ≥ 0,

arctan( y
x
)− π if x < 0 and y < 0,

+π
2

if x = 0 and y > 0,

−π
2

if x = 0 and y < 0,

undefined if x = 0 and y = 0.

(4.17)

In our situation, R = 1, and x and y coordinates are latitudes and longitudes, respectively.

The great-circle distance is only used for computing the coordinates of the weighted mean, not for

the distance between players; in other words, the coordinates of the weighted mean are computed

based on the great circle plane, see Definition 4.2.1.

Definition 4.2.1. Let G2 be a great circle plane. A coordinate system on G2 is a bijection G2 ↔
R2. The point P (x, y) is a notation representing a point P ∈ G2 corresponding to the element

(x, y) ∈ R2.

Equation (4.18) gives how the coordinates of weighted mean are calculated for one side of

position.
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c(q∗ik) =

(∑3
j=1wijkq

∗
ijk∑3

j=1wijk

)
, (4.18)

where q∗ijk = Pk(x, y), is the coordinate (x, y, or z) of the jth side of positions (left, right or centre)

for the kth position (D, DM, M, AM, FW) of player i, respectively, and wijk is the weight of the

jth side of positions for the kth position of player i. Note that if ∗ sign is given in c(·), then the

coordinate(s) are calculated based on the great circle plane; otherwise, they are calculated based

on the Euclidean plane. Figure 4.11 better illustrates the concept above. The first picture is an

equilateral triangle, whereas the second one is the 1/8 of the sphere with the equilateral triangle

projection.

So far, I have only considered one position (e.g., defence). The question is how to compute a

distance measure if a player plays in multiple positions. Figure 4.12 shows two different cases with

the combination of five pieces of the 1/8 of spheres. The figure at the bottom, the distances between

the adjacent position (D, DM, MC, AMC, FW) in the same side (left, right or centre) are deter-

mined to be one unit, e.g., the distance between MR and AMR should be one unit. Note that the dis-

tance measures between both different positions and sides (e.g., the distance between DC and ML)

are shown in Table 4.22, which is based on the Euclidean space, where for example the distance

between DC and ML should be
√

5, since d(PDC , PML) =
√
d(PDC , PDL)2 + d(PDL, PML)2, see

Table 4.22.

Figure 4.12: Comparison of two principles (which were illustrated in Figure 4.11) for multiple positions.

The figure at the top is the illustration of how to obtain x and y coordinates (weighted mean) for each player

in each position by using the great-circle distance, and the figure at the bottom gives a different drawing, in

which curved lines are removed from the figure at the top.
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The summary of all these steps can be explained with the following steps:

• The weighted mean of each position (D, DM, M, AM, FW) is independently computed on

each 1/8 sphere by using Equation (4.16), then each 1/8 sphere will be projected on an

equilateral triangle, see Figure 4.12.

• The weighted means of the positions will be computed by using x and y coordinates from

each equilateral triangle, where the z coordinate represents each position (D, DM, M, AM,

FW), in which the difference is one unit, see Figure 4.12. Table 4.18 mathematically sum-

marises the idea above.

• Finally, the Manhattan distance will be used for computing the distance between points based

on the weighted mean of x, y, z coordinates, so that the overall distance is defined as follows:

dpos1(i1, i2) = dM(c(q∗i1), c(q
∗
i2

)) + dM(c(zi1), c(zi2)), (4.19)

where

c(q∗i1) =
5∑

k=1|wik 6=0

c(q∗i1k)wik, c(zi1) =
5∑

k=1|wik 6=0

c(zi1k)wik. (4.20)

Here, c(q∗i1) are the weighted means that are computed by using the great-circle distance, see

Equation (4.18), and c(zi1j) is the weighted mean that is computed by using Equation (4.15).

Note that if a player does not appear in one position, then the computation of a weighted

centroid for that position will not be computed in the overall distance, see Equation (4.20).

In conclusion, Table 4.19, which shows the C(Y(15)) compositions, and Table 4.20, which gives

the distances (dpos1) between the compositions for the players based on the team for the year 2015

are a demonstration of how the distance for the first types of positions are obtained. Here are

the abbreviations for the players’ names to be used in the following tables: P.P.: Paul Pogba,

G.P.: Gerard Pique, D.A.: Dani Alves, L.M.: Lionel Messi, N.: Neymar, A.I.: Andres Iniesta,

S.R.: Sergio Ramos, C.R.: Cristiano Ronaldo, J.R.: James Rodriguez, D.A.: David Alaba. The

dissimilarity matrix results in Table 4.20 indicate that two centre defenders (Gerard Pique and

Sergio Ramos) are position-wise the most similar players, whereas Dani Alves (right-defender)

and Cristiano Ronaldo (forward) are the least similar ones.
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Table 4.18: Summary of the distance measure for C(Y(15)). wijk is the weight that is determined by propor-

tions of the positions (k) in each side (j) for player i, c(q∗ik) is the weighted mean of xik and yik coordinates,

see Table 4.16, for the kth position on the ith player by using the great-circle distance to obtain a weighted

mean, and zik is the z coordinate number for the kth position on the ith player.

Position
Position-side Computation

zik
Centre Left Right wik =

∑3
j=1 wijk Weighted means

Defence wi11 wi21 wi31 wi11 + wi21 + wi31 c(q∗i1) zi1 = 0

Defensive Midfielder wi12 wi22 wi32 wi12 + wi22 + wi32 c(q∗i2) zi2 = 1

Midfielder wi13 wi23 wi33 wi13 + wi23 + wi33 c(q∗i3) zi3 = 2

Attacking Midfielder wi14 wi24 wi34 wi14 + wi24 + wi34 c(q∗i4) zi4 = 3

Forward wi15 wi25 wi35 wi15 + wi25 + wi35 c(q∗i5) zi5 = 4

Table 4.19: C(Y(15)) compositions for the players based on the team of the year 2015.

Players DC DL DR DMC DML DMR MC ML MR AMC AML AMR FW FWL FWR
P. P. 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00

G. P. 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

D. A. 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

L. M. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.46 0.00 0.51

N. 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.97 0.00

A. I. 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

S. R. 0.97 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

C. R. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.33 0.62 0.00

J. R. 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.10 0.28 0.07 0.00 0.00 0.00 0.00 0.07

D. A. 0.36 0.20 0.00 0.12 0.00 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.20: Distances (dpos1) between C(Y(15)) compositions for the selected players.

Players P.P. G.P. D.A. L.M. N. A.I. S.R. C.R. J.R. D.A.

P. P. 0.00 1.08 1.50 1.20 1.37 0.08 1.05 1.24 0.25 0.63

G. P. 1.08 0.00 0.50 2.25 2.45 1.00 0.03 2.32 1.32 0.47

D. A. 1.50 0.50 0.00 2.31 2.45 1.50 0.53 2.47 1.51 0.88

L. M. 1.20 2.25 2.31 0.00 0.37 1.25 2.21 0.24 0.97 1.81

N. 1.37 2.45 2.45 0.37 0.00 1.45 2.42 0.17 1.16 1.98

A. I. 0.08 1.00 1.50 1.25 1.45 0.00 0.97 1.32 0.32 0.71

S. R. 1.05 0.03 0.53 2.21 2.42 0.97 0.00 2.29 1.29 0.44

C. R. 1.24 2.32 2.47 0.24 0.17 1.32 2.29 0.00 1.05 1.85

J. R. 0.25 1.32 1.51 0.97 1.16 0.32 1.29 1.05 0.00 0.87

D. A. 0.63 0.47 0.88 1.81 1.98 0.71 0.44 1.85 0.87 0.00
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Position variables-2

In the previous distance structure, I design a distance measure which includes geographical infor-

mation on the players on the field. In this section, the information is binary, which means that

weighting computation is not necessary, but geographical information should again be incorpo-

rated. The proposed distance structure here is designed in another system in which binary and

geographic information are combined. The idea will not only contribute another perspective from

a positional point of view, but also represent binary information in a more effective way.

Hennig and Hausdorf (2006) proposed a new dissimilarity measure between species distribu-

tion areas, and argued in their application on presence-absence data of species in regions. They

stated that if two species A and B are present on two small disjoint areas, they are very dissimilar,

but both should be treated as similar to a species C covering a larger area that includes both A and

B if clusters are to be interpreted as species grouped together. In this article, species distribution

data is presented in a certain geographic region, and the ‘geco coefficient’ (the name comes from

“geographic distance and congruence”), which is the geographical distance between units, is also

introduced as a new dissimilarity measure.

In fact, the idea comes from the Kulczynski coefficient (Kulczynski, 1927a), see Equation (4.21).

dk(A1, A2) = 1− 1

2

(
|A1 ∩ A2|
|A1|

+
|A1 ∩ A2|
|A2|

)
, (4.21)

where Ai is the geographical region of ith object, and |Ai| denotes as the number of elements

in the geographical region of ith object. Then, Hennig and Hausdorf (2006) designed the geco

coefficient in which the Kulczynski coefficient and the geographical information are incorporated.

The general definition is given by

dG(A1, A2) =
1

2

∑a∈A1
min
b∈A2

u (dR(a, b))

|A1|
+

∑
b∈A2

min
a∈A1

u (dR(a, b))

|A2|

 , (4.22)

where u is a monotonically increasing transformation with u(0) = 0, and dR(a, b) is the distance

between the objects a and b. In Equation (4.22), when computing the overall distance, the idea is

not to incorporate the number of common absences. Here I define the coefficient in terms of Y(11),

so that species are replaced by players, and geographical locations are replaced by positions. The

concept is very similar; that is, the common absences will be ignored, because it will make such

players more similar, even though they do not appear in those positions. For instance, Table 4.21
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presents two players who do not have any historical information in the position of ‘DC’, ‘DL’,

‘DR’, ‘DM’, and ‘FW’, so that dR(a, b) for these positions will not be computed. If the players

have played in common positions, then dR(a, b) = 0, where both a and b represent presences in

the relevant position(s). For the case of one absence in the first player and one presence in the

second player for the same position, dR(a, b) will be computed by using the distance measures in

Table 4.22, e.g., ‘ML’ position in Table 4.21. The distance between each position is determined

by the similar idea that I previously described for Y(15); that is, the difference between each side in

one position (centre, left, right) as well as the difference between the adjacent positions (D, DM,

M, AM, FW) will be one unit, see Figure 4.12.

Table 4.21: An example for explaining the distance structure of X(11)
pos variables

Players
Position

DC DL DR DMC MC ML MR AMC AML AMR FW

1 0 0 0 0 0 1 1 0 1 1 0

2 0 0 0 0 1 0 0 1 1 1 0

I use a very similar distance measure to that of Equation (4.22) for computing the difference

between players in Y(11) variables, but the transformation u is not adopted in the formula, since it

is not relevant to my argument. By excluding the transformation function, the following distance

measure will be adopted for Y(11) variables.

dpos2(A1, A2) =
1

2

∑a∈A1
min
b∈A2

dR(a, b)

|A1|
+

∑
b∈A2

min
a∈A1

dR(a, b)

|A2|

 , (4.23)

In conclusion, Table 4.23, which shows the Y(11) compositions, and Table 4.24, which gives the

distances (dpos2) between the compositions for the players based on the team for the year 2015 are

demonstration of how the distance for the second types of positions are obtained. The dpos2 results

indicate that three defenders (Gerard Pique, Sergio Ramos and Dani Alves) are the similar ones,

while the dissimilarity between the forward players (Cristiano Ronaldo, Lionel Messi and Neymar)

and these three defenders give the highest values, which makes sense in terms of the differences of

these players’ positions.
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Table 4.22: Distances between each position for Y(11) variables. Here the values are obtained by using

Euclidean geometry based on Figure 4.12 at the bottom. The positions with (∗) are only for use in dpos1, see

Equation (4.19).

dR(a,b) DC DL DR DMC DML∗ DMR∗ MC ML MR AMC AML AMR FW FWL∗ FWR∗

DC 0 1 1 1
√

2
√

2 2
√

5
√

5 3
√

10
√

10 4
√

17
√

17

DL 1 0 1
√

2 1
√

2
√

5 2
√

5
√

10 3
√

10
√

17 4
√

17

DR 1 1 0
√

2
√

2 1
√

5
√

5 2
√

10
√

10 3
√

17
√

17 4

DMC 1
√

2
√

2 0 1 1 1
√

2
√

2 2
√

5
√

5 3
√

10
√

10

DML∗
√

2 1
√

2 1 0 1
√

2 1
√

2
√

5 2
√

5
√

10 3
√

10

DMR∗
√

2
√

2 1 1 1 0
√

2
√

2 1
√

5
√

5 2
√

10
√

10 3

MC 2
√

5
√

5 1
√

2
√

2 0 1 1 1
√

2
√

2 2
√

5
√

5

ML
√

5 2
√

5
√

2 1
√

2 1 0 1
√

2 1
√

2
√

5 2
√

5

MR
√

5
√

5 2
√

2
√

2 1 1 1 0
√

2
√

2 1
√

5
√

5 2

AMC 3
√

10
√

10 2
√

5
√

5 1
√

2
√

2 0 1 1 1
√

2
√

2

AML
√

10 3
√

10
√

5 2
√

5
√

2 1
√

2 1 0 1
√

2 1
√

2

AMR
√

10
√

10 3
√

5
√

5 2
√

2
√

2 1 1 1 0
√

2
√

2 1

FW 4
√

17
√

17 3
√

10
√

10 2
√

5
√

5 1
√

2
√

2 0 1 1

FWL∗
√

17 4
√

17
√

10 3
√

10
√

5 2
√

5
√

2 1
√

2 1 0 1

FWR∗
√

17
√

17 4
√

10
√

10 3
√

5
√

5 2
√

2
√

2 1 1 1 0

Table 4.23: Y(11) binary variables for the players based on the team of the year 2015.

Players DC DL DR DMC MC ML MR AMC AML AMR FW
Paul Pogba 0 0 0 1 0 1 0 0 0 0 0

Gerard Pique 1 0 0 0 0 0 0 0 0 0 0

Dani Alves 1 0 1 0 0 0 0 0 0 0 0

Lionel Messi 0 0 0 0 0 0 0 1 0 0 0

Neymar 0 0 0 0 0 0 0 1 1 1 1

Andres Iniesta 0 0 0 0 0 0 0 1 1 1 0

Sergio Ramos 1 0 1 0 0 0 0 0 0 0 0

Cristiano Ronaldo 0 0 0 0 0 0 0 0 1 1 1

James Rodriguez 0 0 0 0 0 0 0 1 1 1 0

David alaba 1 1 0 0 1 1 0 0 0 0 0
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Table 4.24: Distances (dpos2) between Y(11) binary variables for the players based on the team of the year

2015.

Players P.P. G.P. D.A. L.M. N. A.I. S.R. C.R. J.R. D.A.

Paul Pogba 0.00 1.62 1.72 2.05 1.94 1.72 1.72 2.02 1.72 0.84

Gerard Pique 1.62 0.00 0.25 3.39 3.33 3.11 0.25 3.44 3.11 0.65

Dani Alves 1.72 0.25 0.00 3.41 3.35 3.11 0.00 3.43 3.11 1.07

Lionel Messi 2.05 3.39 3.41 0.00 0.14 0.40 3.41 0.36 0.40 2.51

Neymar 1.94 3.33 3.35 0.14 0.00 0.16 3.35 0.12 0.16 2.42

Andres Iniesta 1.72 3.11 3.11 0.40 0.16 0.00 3.11 0.38 0.00 2.19

Sergio Ramos 1.72 0.25 0.00 3.41 3.35 3.11 0.00 3.43 3.11 1.07

Cristiano Ronaldo 2.02 3.44 3.43 0.36 0.12 0.38 3.43 0.00 0.38 2.51

James Rodriguez 1.72 3.11 3.11 0.40 0.16 0.00 3.11 0.38 0.00 2.19

David Alaba 0.84 0.65 1.07 2.51 2.42 2.19 1.07 2.51 2.19 0.00

4.3 Aggregation of Distances

In Section 4.2, I discussed different distance measures for the variables of different kinds. The

Manhattan distance was selected for aggregation of upper level count variables, lower level compo-

sitions, and some other variables. All these performance variables are represented in one distance

measure, which I called as Performance distance. For team and league variables, the Manhattan

distance was adopted in the sense that x(l) and x(tp) are combined prior to taking the absolute value

differences. For two position variables, I construct one new dissimilarity measure between players

positions, and the dissimilarity measure for the second positional variables is designed based on

Hennig and Hausdorf (2006)’s ‘geco coefficient’, where species are replaced by players.

In order to find a single distance matrix to be used for clustering and visualisation, all these

different types of distance matrices should be aggregated. The Gower dissimilarity, see Equa-

tion (3.30), is not applicable here, because it aggregates variable-wise distances dk (See Sec-

tion 3.5). The Euclidean aggregation, see Equation (3.32), is not adopted because the distances of

the variables considered in this research are non-Euclidean. If researchers are interested in utilising

different types of distance measures, aggregation of them can be obtained by Equation (3.33). Two

aspects should be discussed: 1) how to choose an appropriate standardisation technique to make

different distances comparable, 2) what subjective weights should be assigned to those distances

after the selected standardisation method is applied.

In Section 3.5, I discussed that the distributional shape of dissimilarities can be helpful to find

a proper standardisation approach. Two dissimilarity measures from the position variables seem to

94



be approximately uniformly distributed, see Figure 4.13b and 4.13c. Performance distance, which

is obtained by the upper level count variables, lower level compositions and some other variables,

shows a more or less symmetrical shape, see Figure 4.13a. The distance from the league and the

team variables, see Figure 4.13d, is right-skewed distributed. Based on the argument in Section 3.5,

the average absolute deviation can be chosen as the proper standardisation for combining these

dissimilarities, because first, I used the L1 distance for aggregating variable-wise distances, so that

it would be consistent to adopt the same standardisation technique for aggregating different types

of distances; second, if I want every distance values to have the same impact, the variation of

different distances should be computed by their absolute values of difference from the median, see

Section 4.1.3.

However, I also want to investigate what choice of standardisation technique for dissimilarity

aggregation is convenient by performing some kind of sensitivity analysis. The term “Sensitivity

analysis” here means to observe whether the correlation between the vector of dissimilarities for

one year and the vector of dissimilarities for the next year is high enough when applying a suitable

standardisation technique. Different standardisation techniques will be analysed for this aim. In

this sense, the standardisation technique with the highest correlation can be chosen as the proper

standardisation for aggregation of the dissimilarities.

This correlation analysis is similar in concept to the Pearson Gamma index (Hubert and Schultz,

1976), which is simply the correlation of the vector of dissimilarities with the vector of “clustering

induced dissimilarity”, see Section 6.1.3 for more information. The only difference is that we

inspect the correlation of two vectors of dissimilarities over two consecutive years. Furthermore,

Hausdorf and Hennig (2005) carried out a very similar analysis by checking the correlation of two

vectors of dissimilarities from different choices of dissimilarity matrices.

For this analysis, I collected all the available historical information of the players on different

football seasons. For practical reason, 3 the part of the data set (players who played more than

1000 minutes, because the players information with more minutes is more consistent in terms of

reflecting a proper representation of their information) was collected instead of using the whole

data set. The collection of players historical data set is based on the seasons from 2009-2010 to

2016-2017. Each seasonal year contains a different data set, and the size of each data set varies,

since some players are retired or do not play in certain seasons. Then, the correlation between the

3At the beginning of this project, the 2014-2015 football season data set is simply collected from the website, www.
whoscored.com by applying the concept of web-scraping, which is a computer software technique of automatically
extracting information from websites. The idea of sensitivity analysis is considered at the end of the project, and at that
time the website is designed to prevent web scraping, so that the collection of all the available historical information
of the players is considered extracting manually, which takes a long time.
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(a) (b)

(c) (d)

Figure 4.13: Summary of the distances
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vector of dissimilarities for two consecutive years is computed only for players who played in both

seasons.

Table 4.25 shows the summary of the correlations between the vector of dissimilarities for two

consecutive years over different standardisation techniques. I additionally check how the correla-

tion differs when transformation (log(x + c)) is applied, and the constant value, c is computed in

the same way as explained in Section 4.1.2. The same values are used for the weights of the vari-

ables, see Table 4.11. The summary results, which contain 6 different statistics for 8 data points,

indicate that range standardisation with transformation gives the best values for the aggregation

of four dissimilarities. Thus, our conclusion is to adopt this selection for the further analysis, see

Chapter 8.

Table 4.25: Summary of the correlations between the vector of dissimilarities for two consecutive years

from 2009-2010 to 2016-2017 football seasons over different standardisation techniques with or without

transformation

Standardisation Technique Transformation Min. 1st Qu. Median Mean 3rd Qu. Max.

AAD Standardisation
No 0.771 0.810 0.827 0.830 0.851 0.882

Yes 0.784 0.810 0.830 0.831 0.852 0.878

Z-score Standardisation
No 0.767 0.808 0.828 0.830 0.852 0.882

Yes 0.790 0.817 0.835 0.838 0.860 0.884

Range Standardisation
No 0.812 0.849 0.870 0.870 0.885 0.912

Yes 0.851 0.871 0.882 0.884 0.900 0.918

Once range standardisation with transformation was applied to each distance, the appropriate

weights should be assigned to each dissimilarity. The dissimilarity weight for the upper level count

variables, the lower level compositions, and some other variables are assigned as the total weights

of the variables in Table 4.11, which is 43.5, because I want to preserve the weights from those

variables. For the position variables, C(Y(15)) and Y(11) have 15 and 11 variables, respectively.

The weights for these dissimilarities can be assigned as the total number of those variables, but

at the same time I want two types of the position variables to have the same impact on the final

dissimilarity matrix, so that the decision of the weight assignment for the two position distance

measures is to assign the average of the total number of the variables for dpos1 and dpos2, which is

13. Assigning the total number (3) of the team and league variables can be adopted here as well,

but a player can have very different performance, if he transfers from a strong team to a less strong

team, or vice versa; therefore, I need to assign weight to the dissimilarity such that players are

discriminated in terms of their team and league information. I believe the weight should be higher

than 3, but it should not be much higher, because otherwise players can be dominated by these
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variables. Thus, I have decided to assign a weight that is equal to twice the total number of the

team and league variables. Again, weight assignment is made based on my football interpretation,

but this can be differentiated by users (e.g., managers or scouts, etc.) in terms of which dissimilarity

information they are interested in more.

In conclusion, the overall dissimilarity to be used for clustering and MDS is defined as follows:

dfin(x,y) =
4∑

k=1

wk ∗ dk(x,y)

sk
, (4.24)

where the definitions of the parameters are given in Table 4.26.

Table 4.26: Definition of the parameters

Performance Position-1 Position-2 Team and League

Distances d1(x,y) d2(x,y) d3(x,y) d4(x,y)

Weights w1 = 43.5 w2 = 13 w3 = 13 w4 = 6

sk Range Range Range Range

4.4 Distance query

At the end of the distance construction of football players performance data, a final dissimilarity

matrix was obtained. In further analysis, the aim is to determine how the grouping structure of

football players should be conducted. Prior to this goal, I would like to show some examples that

simply explore such players based on the similarity results obtained from the dissimilarity matrix.

This sort of implementation can be characterised as “distance queries” of a player; in other words,

the aim is to find players that have the smallest distances to a player of interest.

Figure 4.14, 4.15 and 4.16 display such examples with the distance queries of three famous

players. R Shiny (Chang et al., 2015), which is simply the user interface of the R software, is

used for the visualisation of distance queries of such a player. More information about R Shiny

application can be found in Section 6.3. These examples are based on the 2016-2017 football

season data set, containing approximately 1000 players. On the left hand side of the same figure,

the weight assignment for different variables is designed, so that users can have the flexibility to

play with variable weights of their interest, whereas on the right hand side, some characteristic

variables are shown in filtering format, so that managers or scouts may consider such players with

some kinds of range values for the variables of their interest. In addition, different standardisation
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techniques for aggregating the dissimilarity matrix are inserted on the right-bottom segment of the

figure. The box-plots in the middle show the smallest distances (first, second, third smallest and

so on) of every player, so that we can compare all the smallest distances with the distance between

the players of interest. In this respect, the similarity of players can be interpreted as very similar

if the red point is on the left side of the box, or less similar if it is on the right side of the box.

For example, the most similar player to Lionel Messi is Paolo Dybala, but their similarity is not

very strong due to the position of the red point on the box plot. The same argument can be made

for the similarity between Neymar and Memphis Depay. On the other hand, the similarity degree

between Cristiano Ronaldo and Robert Lewandowski is considerably larger than the similarity of

the other players on Figure 4.14 and 4.16. The results indicate that these three famous players

(Lionel Messi, Cristiano Ronaldo and Neymar) can be interpreted as special players because even

the most similar ones to these players are considerably far away from these three players based

on the result of the dissimilarity matrix. Distance query for players discovery can be adequate to

managers and scouts, but one could also consider clustering players to explore a list of players who

are similar to a player of interest. Therefore, cluster analysis of football players will be investigated

more in further analysis of this thesis.

One of the goals of this project is to use the distance query application to a football team

in order to explore such specific players of their interest. In this respect, I contacted one Turkish

team, Istanbul Basaksehir football club. We have been working together for the 2017-2018 football

season to discover such specific players of interest for the next football season.
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Figure 4.14: Distance query examples with the application of R Shiny - Lionel Messi
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Figure 4.15: Distance query examples with the application of R Shiny - Cristiano Ronaldo
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Figure 4.16: Distance query examples with the application of R Shiny - Neymar
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4.5 Preliminary Results

In order to show a preliminary analysis for all the players in the data set based on the constructed

distance including all variables, I show a) Kruskal’s Multidimensional scaling (MDS) (Kruskal,

1964a) of the distances constructed as explained here, and b) Kruskal’s MDS of plain standardised

Euclidean distances for all variables, but only a test subset of players are used for visualisation, and

I adopt PAM clustering (Kaufman and Rousseeuw, 1990) with number of clusters K = 6. PAM

clustering (See Section 5.2.2) and Kruskal’s MDS (See Section 5.3.2) will be scrutinised in the

next chapter. Note that this is just a preliminary analysis, and finding an optimal K and comparing

different clustering methods are discussed in the next chapters.

According to Figure 4.17b, Ricardo Rodriguez (left back) and Eden Hazard (attacking mid-

fielder) are quite different, but in the same cluster in Figure 4.17a. Since both Ricardo Rodriguez

and Luke Shaw play in the left back, they can be expected to be similar, which they are according

to the distances constructed here, but in different clusters in plain Euclidean solution.

(a) (b)

Figure 4.17: MDS and PAM clustering (K = 6) for test subset of players based on all variables.

The result implies that clustering and mapping multivariate data are strongly affected by pre-

processing decisions such as the choice of variables, transformation, standardisation, weighting

and design of dissimilarity measures. The variety of options is huge, but the fundamental concept

is to match the “interpretative dissimilarity” between objects as well as possible by the formal

dissimilarity between objects. This is an issue involving subject-matter knowledge that cannot be

decided by the data alone.
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CHAPTER 5

OVERVIEW OF CLUSTER ANALYSIS

So far, I have explained the use of a dissimilarity measure with the aim of mapping and clustering

football players’ information in order to explore their similarity structure. In this respect, first the

rules of football as well as its history were introduced, and some literature regarding football statis-

tics, specifically in terms of clustering, were reviewed. Second, methodologies and literature were

scrutinised for the sake of dissimilarity construction with data pre-processing steps, and in Chap-

ter 4 I have pre-processed the football data and presented a dissimilarity measure which reflects

players’ characteristics by using all the available information in the data set.

For the second part of the thesis, my aim is to determine how to find an appropriate grouping

structure between players and to present the structure in a appropriate mapping scheme that pro-

vides a more informative guide to the practitioner than a dissimilarity matrix of players. To achieve

this aim, Cluster analysis will be adopted for partitioning football players, and Multidimensional

scaling will be used for mapping and visualising players.

5.1 Introduction

In Section 3.1, a short overview of cluster analysis is given and the strategy of cluster analysis is

listed in seven steps. The first four of them are presented in detail in Chapter 3. As a continuation

of those steps this chapter reviews the literature and resources of cluster analysis and demonstrates

the relevant techniques which are to be used in the application part of the thesis (Chapter 7). Two

popular dimension reduction techniques (PCA and MDS) are introduced for visualising the clus-

tering points in order to distinguish their mutual relations. Finally, some external clustering vali-

dation techniques are reviewed to validate clustering results. Note that the subjects of estimating

the number of clusters and internal clustering validation indexes are included in a separate chapter
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(Chapter 6), since the majority of the work in these subjects is original to this thesis.

Prior to introducing some relevant methodologies, the formal definition of cluster analysis is

given in Definition 5.1.1. The notation in the definition will be used in further sections.

Definition 5.1.1. Given a set of objects, also called a data set, X = {x1,x2, . . . ,xn} containing n

data points, the technique of cluster analysis is to group them intoK disjoint subsets of X , denoted

by C = {C1, C2, . . . , CK}, where n1, n2, . . . , nK are the number of objects in each cluster. If a

data point xi belongs to cluster Ck. 1 ≤ k ≤ K, then the label of xi is k, and cluster labels are

denoted by L = {l1, l2, . . . , ln}; hence, 1 ≤ li ≤ K, where i = 1, . . . , n.

5.2 Clustering Methods

The choice of an appropriate technique is strongly dependent on the aim of clustering (Hennig,

2015b). The distinction between clustering methodologies can be interpreted in several different

formats, such as what type of clustering, what data format, what clustering criterion or what prob-

abilistic regime the users are interested in. The different categories in terms of clustering types are

explained in greater detail in Hennig and Meila (2015).

Interpretation of data for choosing a clustering algorithm is a fundamentally important step

in cluster analysis, and researchers should take a broad perspective when choosing a clustering

method for their analysis. The following sections are concerned with the clustering methodologies

used for this study.

5.2.1 Centroid-Based Clustering

The idea behind centroid based clustering is simply to find K centroid objects in such a way that

all other objects are gathered around those K centroids in an optimal manner. Clustering of this

type requires every object in a cluster to be close to the centroid, which tends to restrict the cluster

shapes.

K-means clustering, which was first proposed by Steinhaus (1957), is a method for multivari-

ate data in Rp (p > 1) and is based on the least squares principle. For finding K clusters in a data

set (K is the number of clusters and needs to pre-specified), K “centroid points” are positioned in

Rp, and every observation is assigned to the closest centroid point, in such a way that the sum of all

squared Euclidean distances of the observations to the centroids is minimised. In order to achieve

this, the centroid points have to be the (multivariate) means of the observations assigned to them,

i.e. the clusters of which they are the centroids, hence the name K-means.
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Four different types of K-means algorithms are available in the R software, and more informa-

tion about the those listed algorithms can be found in Hartigan and Wong (1979), Lloyd (1982),

Forgey (1965) and MacQueen et al. (1967). Lloyd (1982) presented the simplest version of these

algorithms, which is described in Algorithm 5, Appendix A. The definition of K-means square

error criterion to be used in the K-means algorithm is given below.

Definition 5.2.1. Let X = {x1,x2, . . . ,xn} contain n observations, and C = {C1, C2, . . . , CK} be

the K disjoint clusters of X with a set of cluster labels, L = {l1, l2, . . . , ln}. The K-means square

error criterion is defined by

S(C,m1, . . . ,mK) =
n∑
i=1

‖xi −mli‖
2 , (5.1)

where m1, . . . ,mK are the cluster centroids.

As specified in Algorithm 5, see Appendix A, the K-means algorithm does not explicitly use

pairwise distances between data points. It amounts to repeatedly assigning points to the closest

centroid thereby using Euclidean distance from data points to a centroid. However, the squared

error criterion can also be formulated as:

∑
xi∈Ck

‖xi −mCk
‖2 =

1

2nk

∑
xi,xj∈Ck

d(xi,xj)
2. (5.2)

where nk = |Ck| is the number of objects in Ck. Equation (5.2) illustrates that the K-means

algorithm can also be used as a distance-based clustering technique, where d(xi,xj)
2 is the squared

Euclidean distance. Although there are also many other equivalent reformulations of the K-means

criterion, which give different perspectives leading to different approaches to optimization of the

criterion, see Mirkin (2015), this research tends to focus more on the cluster validation indexes

than the clustering algorithms in detail.

K-means works well when the clusters are in compact shapes that are well separated from one

another. K-means has the disadvantage that it is not well suited for non-spherical shape clusters

because distances in all directions from the center are treated in the same way. It is also sensitive

to outliers, since the squared Euclidean distance penalises heavily large distances within clusters.

5.2.2 K-medoids clustering

Medoids are similar in concept to means or centroids, but medoids are always members of the data

set. Partitioning Around Medoids (PAM) (Kaufman and Rousseeuw, 1990) is one of the most
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well-known K-medoids clustering algorithms. PAM, which has a strong connection to K-means,

aims at finding centroid objects for each of a given fixed number of K clusters. These centroid

objects cannot be mean vectors, because the computation of mean vectors requires a Euclidean

space and this cannot be done for general dissimilarity data (Steinley, 2015). Instead, for PAM, the

centroid objects (“medoids”) are members of the data set.

Definition 5.2.2. Let X = {x1,x2, . . . ,xn} be characterised by a dissimilarity measure d : X 2 →
R+

0 , and let C = {C1, C2, . . . , CK} be the K disjoint clusters of X with a set of cluster labels,

L = {l1, l2, . . . , ln}.

The Partitioning Around Medoids (PAM) clustering of X for given fixedK is defined by choos-

ing mPK
1 , . . . ,mPK

K in such a way that they minimise

T (C,m1, . . . ,mK) =
n∑
i=1

d(xi,mli), (5.3)

where m1, . . . ,mK are the cluster medoids, and d(xi,mli) is the dissimilarity measure between

objects xi and medoids mli . Then, the PAM algorithm proceeds as shown in Algorithm 6, see

Appendix A.

PAM has the flexibility that it can use a general dissimilarity as an input. PAM has the advan-

tage of not penalising large within-cluster distances as strongly as K-means, so that it is somewhat

better at finding non-spherical clusters, as long as the deviation from a spherical shape is not too

strong. Hence, it can be interpreted as more robust than the K-means in the presence of noise and

outliers. PAM has a disadvantage that it can be computationally expensive, especially for large

data sets. Note that instead of using PAM for dealing with large data sets, another K-medoids

algorithm, CLARA (Clustering Large Applications) is suggested, which works by applying PAM

to several smaller subsets of the data set and classifying all further points to their closest centroids,

picking the best solution among these according to T . CLARA is designed only for Euclidean

data. For more information, see Kaufman and Rousseeuw (1990).

5.2.3 Hierarchical methods

The aim of hierarchical clustering is to set up a hierarchy of clusters. The mathematical definition

of a hierarchy can be given as follows:

Definition 5.2.3. A hierarchy is a sequence of partitions C =
⋃K
k=1 Ck, where Ck, i = k, . . . , K

are partitions with n1 = |C1| > . . . > nK = |CK | (|C| denoting the number of elements of C) so

107



that for Ck ∈ Ck and Ch ∈ Ch with k < h either Ck ∩ Ch = Ck or Ck ∩ Ch = ∅, so that the sets of

the lower levels are subsets of the sets of the higher levels.

Hierarchies can be visualised as trees (“dendrograms”, see Section 1.5 for the definition). For

finding a partition, users should determine either a cutting point (height of trees) or number of

clusters from dendrograms.

There are two main types of methods to set up a hierarchy: 1) agglomerative methods start

from an initial low level hierarchy in which every observations is a cluster on its own, and proceed

by merging clusters upward until everything is merged, 2) divisive methods start with the whole

data set as a single cluster and proceed downward by dividing clusters until everything is isolated.

Most attention in the clustering literature has been paid to agglomerative methods, and I will only

treat agglomerative methods here, which require solely a dissimilarity matrix. Many kinds of

agglomerative methods exist in literature, but only the most widely used ones will be introduced

in this section.

The general setup of the agglomerative hierarchical clustering algorithm can be seen in Algo-

rithm 7, see Appendix A, which is integrated with three popular methods: single linkage, complete

linkage and average linkage. In the next part of this section, these three methodologies will be

summarised in terms of their structure and usage.

Single linkage

Single linkage, also known as the nearest-neighbour technique, was first described by Florek

et al. (1951). The defining feature of the method is that the distance between groups is defined

as that of the closest pair of individuals, where only pairs consisting of one individual from each

cluster are considered (Everitt et al., 2011, chap. 4).

Single linkage focuses totally on separation (disregarding homogeneity), that is, keeping the

closest points of different clusters apart from each other (Hennig, 2015a). It tends to produce

unbalanced clusters, especially in large data sets, thus nearby items of the same cluster have small

distances, whereas objects at opposite ends of a cluster may be much farther from each other than

to elements of other clusters. On the other hand, single linkage has a potential benefit of identifying

outliers (if they exist) (Everitt et al., 2011, chap. 4).
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Complete linkage

Complete linkage, also known as the furthest-neighbour technique, is opposite to single linkage,

was first introduced by Sørensen (1948), in the sense that distance between groups is now defined

as that of the most distant pair of individuals, where only pairs consisting of one individual from

each cluster are considered. Complete linkage focuses totally on keeping the largest distance within

cluster low (disregarding separation). It tends to find compact clusters with approximately equal

diameters.

Average linkage

Average linkage, is also called Unweighted Pair Group Method with Arithmetic Mean (UP-
GMA), was first proposed by Sokal (1958), see Algorithm 7. For average linkage, the distance

between two clusters is found by computing the average dissimilarity of each item in the first

cluster to each in the second cluster. Average linkage and most other hierarchical methods com-

promise between single and complete linkage; between within-cluster homogeneity and between

cluster separation (Hennig, 2015a).

Average linkage tends to join clusters with small variances, so that it is relatively more robust

than other hierarchical algorithms (Everitt et al., 2011, chap. 4).

Ward’s method

In addition to the hierarchical clustering algorithms outlined above, Ward Jr. (1963) proposed the

use of an objective function in agglomerative hierarchical clustering, so that in each step of the

algorithm, clusters are merged in order to give the best possible value of the objective function.

Ward defined his method as a hierarchical version of K-means, however this method cannot be

used for general dissimilarity measures. More recently Murtagh and Legendre (2014) presented

an implementation of Ward’s hierarchical clustering method for general dissimilarities, see the R-

function hclust with method="ward.D2". Therefore, the distance in Equation (5.2) must be

the squared Euclidean distance to compute what is normally referred to as Ward’s method, but other

more general dissimilarity measures can be used instead of dL2 using more recent implementations

of the method.

For the sake of comparison with the standard K-means method, a disadvantage of Ward’s

method is that in many cases the value of S achieved for a given K based on Equation (5.1)

and (5.2) is worse than what can be achieved by running the K-means algorithm several times.
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In contrast, two advantages of Ward’s method are: 1) the algorithm produces a hierarchy, 2) the

algorithm works in a deterministic way and is not dependent on random initialisation.

5.2.4 Model based clustering

Model-based clustering is based on statistical models. The distributional assumptions for such

models determine the clusters. The term “model-based clustering” is often used for mixture mod-
els. More often, this approach requires data set as an input, but it has been applied to models with

assumptions on a latent data space for objects that come as similarity or network data, see Murphy

(2015) for more information.

Scott and Symons (1971) were among the first to use the model-based approach to clustering.

Since then, a considerable amount of literature has been published on model-based clustering, see

Everitt and Hand (1981), Titterington et al. (1985), McLachlan and Basford (1988), McLachlan

and Peel (2000) and Frühwirth-Schnatter (2006). The general form of a mixture model can be

defined as follows:

Given data X with independent multivariate observations x1,x2, . . . ,xn, the likelihood for a

mixture model with K clusters is

f(x;π,θ) =
K∑
k=1

πkfθk
(x), (5.4)

where {fθ,θ ∈ Θ} defines a parametric family of distributions on Rp, where p ≥ 1 (e.g. X ∼
Np(µ,Σ), where θ = {µ,Σ}), and the πk being known as mixing proportions, where πk ≥ 0,

k = 1, . . . , K, and
∑K

j=1 πj = 1. The parameters (π̂1, θ̂1), . . . , (π̂K , θ̂K) are often estimated by

Maximum Likelihood (ML), but it is often difficult to find the ML estimators of these parameters

directly; in this case, the Expectation maximization (EM) algorithm is suggested, see McLachlan

and Rahtnayake (2015) for more information. Having estimated the parameters of the assumed

mixture distribution, objects can be associated with distinct clusters on the basis of the maximum

value of the following estimated posterior probability:

P (c(i) = k|xi) =
π̂kfθ̂k

(xi)∑K
k=1 π̂kfθ̂k

(xi)
, (5.5)

where c(i) is a component membership for xi (i = 1, . . . , n), which is generated according to a

multinomial distribution with component probabilities π1, . . . , πK . Equation (5.5) defines a prob-

abilistic clustering, and a crisp partition can be obtained by maximizing P (c(i) = k|xi) for every
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i. Equation (5.4) is the general form of a mixture model and can also be adopted for different data

formats. A large and growing body of literature has investigated various data structures for inter-

val and continuous data formats from various distributions (McLachlan and Rahtnayake, 2015),

categorical and mixed-type data (Celeux and Govaert, 2015), linear models, functional data and

time series models (Alfo and Viviani, 2015; Caiado et al., 2015; Hitchcock and Greenwood, 2015).

Another way of estimating the posterior probability, P (c(i) = k|xi) is to adopt a Bayesian prior

for the estimation of the mixture parameters, (π̂1, θ̂1), . . . , (π̂K , θ̂K). The most recent study of the

Bayesian approach has focused on a Dirichlet process prior, see (Rao, 2015) for more details.

The main advantage of model-based clustering is that it is based on formal models, whereas

other clustering approaches which are not based on any statistical model are largely heuristic. Mix-

ture densities often provide a sensible statistical base for performing cluster analysis and model-

based clustering also has the flexibility that a large number of distributions can be adopted to

model the mixture components. However, one disadvantage of the approach is that large sample

sizes might be required in order to have good mixture parameter estimators (Everitt et al., 2011,

chap. 6).

The model based approach is a very broad topic in cluster analysis, and much of the recent

attention in cluster analysis has focused on this specific approach. Due to practical constraints, this

thesis will not provide a comprehensive review of the model-based clustering approach.

5.2.5 Density-based clustering

Clusters can be defined as areas of higher density than the remainder of the data set. Although

identifying clusters as high density areas seems to be very intuitive and directly connected to the

term ”clusters”, the disadvantage of density-based clustering is that high density areas may vary in

size, so that they may include very large dissimilarities and the variation between objects within

clusters can be large (Hennig, 2015a).

Some density-based methods that perform kernel density estimation require the original vari-

ables; in other words, they cannot be used with dissimilarity data. More information about cluster-

ing methods based on kernel density estimators can be found in Carreira-Perpinan (2015). On the

other hand, there are density-based methods that directly address the idea of discovering clusters

without performing density estimation, such as one of the most well-known algorithms, Density-

Based Spatial Clustering of Applications with Noise (DBSCAN), which was proposed by Ester

et al. (1996). DBSCAN is essentially a non-probabilistic clustering technique for finding clusters

with a general dissimilarity measure. DBSCAN does not require the specification of the number

of clusters in the data a priori, but clusters require a minimum number of points (MinPts) within a
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maximum distance (ε), which can usually be determined by a domain expert. The method is able

to find arbitrarily shaped clusters as well as clusters of different sizes. However, DBSCAN does

not work well for large variances within cluster densities. In addition, determining the parameters

of the DBSCAN is seldom easier than specifying the number of clusters.

Despite the fact that single linkage is defined as a hierarchical clustering method, it also has

been used to obtain high-density clusters between density valleys by adopting the nearest neigh-

bour technique (Hennig and Meila, 2015).

5.2.6 Spectral clustering

Spectral clustering, which at first deals with (dis)similarities data given in the form of an n × n

similarity matrix, employs the eigenvectors of a matrix to find K clusters by adopting traditional

clustering algorithms such as theK-means. In this paradigm, the structure is typically based on the

idea of graph clustering theory, where the points are clustered with the similarity graph by using

vertexes and edges. The definition of the spectral clustering approach can be given as follows.

Definition 5.2.4. Given a set of data points X = {x1,x2, . . . ,xn} or a matrix of (dis)similarity

D = d(xi,xj), (i = 1, . . . , n), X or D is defined in the form of the similarity graph G = (V , E),

where V = {v1, . . . , vn} is the vertex set, and E are the graph edges to be represented by the pair

of vertices, (vi, vj).

Assume that the G is an undirected and weighted graph, where each edge between two vertices

vi and vj carries a non-negative weight wij ≥ 0. The weighted adjacency (similarity) matrix of the

graph is the matrix A = (wij), i, j = 1, . . . , n. The degree of a vertex vi ∈ V is then defined as

pi =
n∑
i=1

wij. (5.6)

The degree matrix P is defined as the diagonal matrix with the degrees p1, . . . , pn on the diag-

onal. Different types of transformations are available for construction of the weighted adjacency

matrix, A. The main target of this construction is to model the local neighbourhood relationship

between data points. Three types of structures are listed below:

• The ε neighbourhood graph: The main idea here is that the weight assignment of A is

only applied for the connection of all points whose pairwise dissimilarities are smaller than

ε, while the weights for larger than ε are transformed to zero.
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• k-nearest neighbour graphs: Each vertex, vi is connected to its k-nearest neighbours where

k is an integer number which controls the local relationships of data.

• Fully connected graph: All vertices having non-zero similarities are connected to each

other in such a way that all edges are weighted by sij . This method for the construction of

A typically uses one of the popular kernel functions, deemed appropriate by the users. The

most popular choice is the Gaussian similarity kernel function, which can be adopted for

both the n× p data sets or the n× n pairwise Euclidean distance between data objects, and

is defined as:

wij = s(xi, xj) = exp

{
−‖xi − xj‖

2

2σ2

}
= exp

{
−d(xi,xj)

2

2σ2

}
, (5.7)

where σ controls the width of the neighbourhoods and plays a similar role to the parameter

ε in the case of the ε-neighbourhood graph (Von Luxburg, 2007). Some other widely used

kernel functions are available in the R function specc, see the R package kernlab.

The calculation of parameters (e.g., k, ε, σ, etc.) for the graph types listed above is a separate

issue and the results are difficult to obtain. However, there are some rules of thumb to approximate

the parameters or a heuristic way can be used to determine suitable parameters, see Von Luxburg

(2007) and Ng et al. (2002) for more information.

The main tools for carrying out spectral clustering are graph Laplacian matrices. I present three

popular Laplacian matrix forms, see Table 5.1, but several other algorithms are available in the

literature. Algorithm 8, see Appendix A in spectral clustering is designed to adopt the Laplacian

matrix with the K-means algorithm. However, spectral clustering can also be constructed in a

way such that partitions can be viewed as finding “cuts” in graphs by minimising some objective

functions, see Definition 5.2.5.

Another way of constructing partitions in spectral clustering is graph clustering from point of

view of the cut. The following definition explains how this procedure works.

Definition 5.2.5. Given a similarity graph with weighted adjacency matrix W = (wij)i,j=1,...,n,

the value of the cut between partitions can be defined as C = {C1, . . . , CK}, (Ck, C̄k) ⊆ V ,

Ck ∩ C̄k = ∅, where C̄k is the complement of Ck. For a given number K of subsets, the Cut

approach simply consists in choosing the partition C = {C1, . . . , CK} which minimizes

Cut(C) =
1

2

K∑
k=1

W (Ck, C̄k), (5.8)
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Table 5.1: The Laplacian Matrices

Name Definition

Unnormalized Laplacian L = P − A

Normalised Laplacian (Shi and Malik, 2000) L = I − P−1A (Random walk matrix)

Normalised Laplacian (Ng et al., 2002) L = I − P−1/2AP−1/2 (Symmetric matrix)

I is the identity matrix. Note that Ng et al. (2002) defined one additional step in Algorithm 8, where the rows of
U are normalised to norm 1 by using tij = uij/(

∑
k u

2
ik)

1/2.

where W (Ck, C̄k) =
∑

i∈Ck

∑
j∈C̄k

wij .

The Cut function can be solved efficiently, especially for K = 2, but is often problematic for a

large number of clusters. This problem arises because in many cases the solution of Cut separates

one individual vertex from the rest of the graph (Von Luxburg, 2007). To circumvent the issue for

a large number of clusters and to balance the size of the clusters, some other objective functions

are proposed. The most commonly used ones are as follows:

• The normalized cut, NCut (Shi and Malik, 2000):

NCut(C) =
1

2

K∑
k=1

W (Ck, C̄k)

dCk

, (5.9)

where dCk
=
∑

i∈Ck
di.

• The ratio cut, RCut (Hagen and Kahng, 1992):

RCut(C) =
1

2

K∑
k=1

W (Ck, C̄k)

|Ck|
, (5.10)

where |Ck| is the number of vertices for the kth cluster.

• The min-max cut, Min−Max− Cut (Ding et al., 2001):

Min−Max− Cut(C) =
1

2

K∑
k=1

W (Ck, C̄k)

W (Ck, Ck)
. (5.11)

The main advantage of spectral clustering is that it has the flexibility to find clusters of irregular

shapes. Ng et al. (2002) claimed that this approach effectively handles clusters whose overlap or
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connectedness varies across clusters. It is also able to cluster “points” by using a (dis)similarity

matrix, rather than directly clustering them in their native data space. Depending on the choice

of kernel function, spectral clustering gives more consideration to between-cluster separation than

within-cluster homogeneity in Euclidean space (Hennig, 2015a).

There is a considerable amount of literature regarding the concept of spectral clustering. Many

other approaches to those discussed here are available in the spectral clustering literature, see for

example Meila and Xu (2003), Azran and Ghahramani (2006) and more about spectral clustering

can be found Von Luxburg (2007), Ng et al. (2002) and Meila (2015b).

5.2.7 Further clustering approaches

A large and growing body of clustering methodologies have been published over the past half-

century, and several of the major clustering approaches are presented in the previous sections. In

this section, some further clustering methods are described in brief.

Overlapping clustering is a concept where objects can belong to more than one cluster simul-

taneously. Overlapping clustering relaxes the requirement that the objects have to be assigned to

one (and only one) cluster. Many different overlapping clustering techniques are available in the

clustering literature. One of the earliest overlapping approaches was described by Shepard and

Arabie (1979), in which additive clustering algorithm (ADCLUS) was presented. In this paper, it

is assumed that the effective similarity between two objects is a weighted sum of their common

features. Arabie and Carroll (1980) have developed a mathematical programming approach for fit-

ting the ADCLUS model. These two techniques have been generalized for a clustering solution of

individual differences (INDCLUS), see Carroll and Arabie (1983). The idea of overlapping clus-

tering is also related to graph theory and social network clustering 1 in some studies. For instance,

Shen et al. (2009) proposed an algorithm (EAGLE) to detect overlapping and hierarchical commu-

nity structure in networks. This algorithm deals with the set of maximal cliques 2 and adopts an

agglomerative framework. Several other overlapping clustering algorithms are also presented, see

for example Latouche et al. (2009), Pérez-Suárez et al. (2012) and Yang et al. (2016).

Fuzzy clustering is a different type of clustering technique where membership grades are as-

signed to each of the data point. In other words, it is opposed to standard (classic) clustering which

1Social Network Clustering is a way of clustering objects where data points are represented in a graph with social
structures through the use of networks, which can describe (a)symmetric relations between observations.

2A clique, c , in an undirected graph G = (V,E) is a subset of the vertices, c ⊆ V , such that every two distinct
vertices are adjacent. A maximal clique is a clique that cannot be extended by including an additional adjacent vertex,
that is, a clique which does not exist exclusively within the vertex set of a larger clique.

115



results in mutually exclusive clusters (Bezdek, 1981). The fuzzy C-means clustering, which is one

of the most popular and the most widely used fuzzy clustering techniques, was developed by Dunn

(1973) and improved by Bezdek (1981). The algorithm is very similar to the K-means algorithm,

the only difference is that the the objects are represented as coefficients, wik (0 ≤ wik ≤ 1), for

each cluster rather than assigning the objects to only one cluster. In particular, the fuzzy cluster-

ing approach was extended to different algorithms by changing its variants (e.g, distance variants,

prototype variants, etc.). More information can be found in D’Urso (2015).

Consensus clustering (also known as ensemble clustering) can be defined as combining multi-

ple partitioning of a set of data points into a single consolidated clustering without accessing data

features or data points. Ghosh and Acharya (2015) presented consensus clustering under three

categories: 1) probabilistic approach, which is based on statistical models, see for example Topchy

et al. (2004), Wang et al. (2011a), Wang et al. (2011b); 2) pairwise similarity approach, which is

simply the weighted average of co-association matrices, see Strehl and Ghosh (2002), Nguyen and

Caruana (2007) for different algorithms of this type, and 3) direct and other heuristic methods.

Cluster analysis has also been developed for different types of data structures. Some of them

have been mentioned in Section 5.2.4, and some others are described in different sources, such

as categorical data (Andreopoulos, 2013), symbolic data (Brito, 2015), repeated measures data

(Vichi, 2015) to name a few.

A huge amount of clustering methodologies are explained in many different sources, see for

example Aggarwal and Reddy (2013), Everitt et al. (2011), Gan et al. (2007), Kaufman and

Rousseeuw (1990). Several of them are very briefly described in this section, and some of the

main clustering methods are reviewed in the previous sections regarding methodological and algo-

rithmic themes.

5.3 Visual Exploration of Clusters

Graphical displays of multivariate data can provide insight into the structure of the data, which

in turn can be useful for finding clustering structure (Everitt et al., 2011, chap. 2). Many of the

potentially desired features of clustering such as separation between clusters, high density within

clusters, and distributional shapes can be explored graphically in a more holistic (if subjective)

way than by looking at index values (Hennig, 2015a). Standard visualisation techniques such as

scatterplots, heatplots, etc. as well as interactive and dynamic graphics can be used to find and to

validate clusters, see for example Theus and Urbanek (2008) and Cook and Swayne (2007). Fur-

thermore, dendrograms, which are probably one of the most commonly used visualisation methods
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for clustering, are usually used for ordering observations in heatplots. For use in cluster valida-

tion it is desirable to plot observations in the same cluster together, which is achieved by the use

of dendrograms for ordering the observations (Hennig, 2015a). A brief overview of visualising

clustering can be found in different sources, see Everitt et al. (2011, chap. 2), Déjean and Mothe

(2015), and Xu and Wunsch (2008, chap. 9).

On the other hand, researcher’s intuition for clusters is often moivated by visualisation using

lower dimensional projections of multivariate data for graphical representation. In Section 3.2.5,

a considerable amount of literature has been reviewed on low dimensional representation in mul-

tivariate data analysis for use in cluster analysis. In this section, two popular low dimensional

representation methods are scrutinized to demonstrate their utility in visualising cluster points;

these methods are to be used in a later chapter of this thesis.

5.3.1 Principal Component Analysis

The purpose of principal component analysis (PCA) in this study is to visualise the cluster points in

a low dimensional space and a brief explanation of how the principal components are calculated is

described here. PCA is a statistical procedure for transforming the variables in a multivariate data

set into a few orthogonal linear combinations of the original variables that are linearly uncorrelated

with each other. The new linearly uncorrelated variables (i.e. the principal components) account

for decreasing proportions of the total variance of the original variables. Stated otherwise: the first

principal component is the linear combination with the largest variance, and the second PC has the

second largest variance, and so on.

Formally, given a data set with n observations and p variables

X =


x1

x2

...

xp

 , (5.12)

the sample covariance matrix of X is defined as

var(X) = Σ =


σ2

1 σ12 . . . σ1p

σ21 σ2
2 . . . σ2p

...
... . . . ...

σp1 σp2 . . . σ2
p

 . (5.13)
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New variables (the principal components) y1,y2, . . . ,yp are then defined as follows:

y1 = u11x1 + u12x2 + · · ·+ u1pxp

y2 = u21x1 + u22x2 + · · ·+ u2pxp
...

yp = up1x1 + up2x2 + · · ·+ uppxp

, (5.14)

where each of these equations is a linear combination of xi’s which gives yj’s, i, j = 1, . . . , p,

and uj1, uj2, . . . , ujp are the coefficients of the equations. The coefficients can be found from the

spectral decomposition based on eigenvalues and eigenvectors of the covariance matrix, Σ as

Σ = UΛUT , (5.15)

where Λ = diag (λ1, . . . , λp) is the diagonal matrix of the ordered eigenvalues λ1 ≥ . . . ≥ λp, and

U = (u1, . . . ,up) is a p× p orthogonal matrix containing the eigenvectors, where uj’s are the the

columns of U. Hence, the elements for these eigenvectors will be the coefficients of the principal

components.

The variance of the jth principal component is equal to the jth eigenvalue so that

var(yj) = var(uj1x1 + uj2x2 + . . . ujpxp) = λj, (5.16)

and the principal components are uncorrelated with each other, so that the covariance between y’s

is

cov
(
yj,yj′

)
= 0 ∀ j, j ′ . (5.17)

Another important property of the eigenvalue decomposition is that the total variation can be

defined as the sum of eigenvalues of the covariance matrix Σ,

p∑
j=1

λj =

p∑
j=1

trace(Σ) =

p∑
j=1

σ2
j (5.18)

and that the fraction

t∑
j=1

λj/trace(Σ) (5.19)

118



gives the cumulative proportion of the variance explained by the first t principal components. Here

the parameter t can often be determined by user’s intuition when the percentage of the overall

variation obtained from the first t principal components is high. For example, if the first 3 principal

components explain the overall variation as %90, then the user can intuitively make the decision

that t = 3 might be the suitable choice, since the percentage for the variance of the first t principal

components is relatively large. One can also determine the parameter t by a threshold value,

say λ0 so that the decision can then be made by only keeping the eigenvectors such that their

corresponding eigenvalues are greater than λ0, see Jolliffe (1972) and Jackson (2005).

Although there are different ways to determine the parameter t, in this research it is convenient

to define t as 2 or 3. That is because here the main aim of using the principal components is to

visualise the cluster points and the visualisation in a single scatter-plot is not appropriate for more

than 3 dimensions.

As with most multivariate data analysis, it is recommended when carrying out Principal Com-

ponent Analysis to standardise the data set first. This is important because the principal compo-

nents obtained can be influenced by the different scales of the variables.

5.3.2 Multidimensional Scaling

Multidimensional scaling (MDS) is a multivariate data analysis technique to detect meaningful

underlying dimensions using n× n similarities or dissimilarities between the investigated objects

rather than using a n × p multivariate data matrix. In this research and many others, the main

purpose of MDS is to provide a visual representation of the pattern of proximities (i.e., similarities

or dissimilarities) among a set of objects for identifying “cluster” points.

MDS has various procedures designed to arrive at an optimal low-dimensional configuration

for a particular type of proximity data. In the following sections, I describe a number of MDS

methods.

Classical Scaling

Classical Multidimensional scaling was first proposed by Torgerson (1952), Torgerson (1958) and

Gower (1966). It is a dimension reduction technique using spectral decomposition to detect a

t dimensional representation (referred to as principal coordinates) that explains the dissimilarity

matrix in an optimal manner. Algorithm 9 in Appendix A describes how the classical MDS algo-

rithm works.
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Although the classical MDS algorithm assumes the dissimilarity matrix D to be Euclidean,

which makes all eigenvalues of B (See Algorithm 9 in Appendix A) non-negative, one could use

any kind of dissimilarity matrix as an input. However, negative eigenvalues may occur in case

of using different types of dissimilarities. If the eigenvalues of B are not all non-negative, then

some linear transformation on B can be considered in order to make B non-negative definite (Cox

and Cox, 2000, chap.2). This can be achieved by either ignoring the negative eigenvalues (and

associated eigenvectors) or adding a suitable constant to the dissimilarities (i.e., dij ← dij + c if

i 6= j, and unchanged otherwise). This is the additive constant issue, for more information see

Cailliez (1983).

The inter-point distances between the principal coordinates (d∗ij = ‖zi − zj‖) are identical

to the inter-point distances of D when D is Euclidean distance (d∗ij = dij); in other words, the

classical MDS is equivalent to PCA in which the principal coordinates are identical to the scores

of the first t principal components of the X. However, there are cases where D is not Euclidean, in

which case the inter-point distances between the principal coordinates do not have to be equal to

the inter-point distances of D. Nevertheless, classical MDS solution still finds optimal coordinates

for the inter-point distances of Z such that d∗ij ≈ dij ,Borg and Groenen (2005, chap.19).

Assessing dimensionality is another major aspect of classical MDS that the user needs to de-

termine. One of the usual strategies is to plot the ordered eigenvalues against the dimension and

then to choose a dimension at which the eigenvalues become stable. On the other hand, if B is

non-negative definite, then the number of positive eigenvalues can be the number of dimensions

to be used as principal coordinates. However, for practical reasons, in this research t should be

relatively small (say 2 or 3) for the sake of graphical interpretation.

Distance scaling

In distance scaling, the aim is to find an optimal configuration in a lower dimensional space such

that the the inter-point distances of Z are approximated to the inter-point distances of D as closely

as possible. In distance scaling, the relationship between f(dij) and dij is flexible so that a suitable

configuration can be shown as

dij ≈ f(dij), (5.20)

where f is some monotone function. Two types of distance scaling methods (metric and non-metric

MDS) exist in the literature. The use of “metric” and “non-metric” distance scaling depends upon

the nature of the dissimilarities. In general, if the dissimilarities are quantitative (e.g., ratio or
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interval scale), we use metric distance scaling, whereas if the dissimilarities are qualitative (e.g.,

ordinal), we use non-metric distance scaling (Izenman, 2008, chap.13).

• Metric MDS (Torgerson, 1952): The possible f is usually taken to be a parametric linear

function, such as

f(dij) = α + βdij, (5.21)

where α and β are unknown positive coefficients. Borg and Groenen (2005, chap.9) stated

that metric distance scaling is categorised under three different models:

1. Absolute MDS (α = 0, β = 1)

2. Ratio MDS (α = 0, β > 0)

3. Interval MDS (α ≥ 0, β ≥ 0)

Absolute MDS is typically the same as the classical scaling. Interval MDS, which is the

standard model of metric MDS, preserves the data linearly in the distances, while Ratio

MDS searches for a solution that preserves the proximities up to a scaling factor β. The

choice of model is often connected with the type of data set (Borg et al., 2012, chap.5).

The important question is how to find the principal coordinates in an optimal manner. A

useful loss function (Lf ) in this context is called “stress”, which is minimised over all t

dimensional configurations {zij} to find a monotone f yielding an optimal metric distance

scaling solution.

stress = Lf (dij) =

(∑
i<j (dij − f(dij))

2∑
i<j d

2
ij

)1/2

(5.22)

• Non-metric MDS (Kruskal, 1964b): In many applications of MDS, dissimilarities are con-

sidered with respect to the ranking of distances and in Non-metric MDS (also known as

ordinal MDS) a low-dimensional representation with respect to the ranking of distances is

found. The functional form in metric scaling is often defined as linear regression, whereas

non-metric distance scaling uses isotonic (monotonic) regression, which yields transformed

approximated distances also referred to as “disparities” in the MDS literature. Isotonic re-

gression fits ideal distances in such a way that relative dissimilarities between points match

the order of dissimilarities between points in an optimal way.
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The isotonic regression and Non-metric distance scaling algorithm are summarised in Sec-

tion A.6, Appendix A. The concept of isotonic regression is explained with an example

provided by Izenman (2008, chap.13).

As the main goal of MDS here is visualisation, I consider a reasonably small number of di-

mensions t, typically 2 or 3, however, the solution must to MDS must be validated. Stress S

measures the goodness of fit between configuration points and disparities. Various stress values

can be considered in different manners to assess the global fit of any non-metric distance scaling

solution. Kruskal (1964a) studied different types of real and simulated data and suggests a guide-

line to determine how well an MDS solution fits the suitable data structure, see Table 5.2. However,

Izenman (2008, chap.13) warns that Kruskal’s suggestion may not be appropriate in some situa-

tions, especially for noisy data or for data sets with large numbers of variables. Borg and Groenen

(2005, chap.11) stated that while Kruskal’s benchmarks provide a formal sense about the goodness

of fit for MDS solution, the criteria may be misleading. Following a literature review and some

simulation studies, they gave some remarks on this subject: 1) A higher number of objects usually

gives higher stress, 2) interval MDS generally leads to higher stress than ordinal MDS.

Table 5.2: Evaluation of “stress”

Stress Goodness of Fit

0.200 Poor

0.100 Fair

0.050 Good

0.025 Excellent

0.000 “Perfect”

More advanced approaches are available in the MDS literature. Constrained MDS (sometimes

referred to Confirmatory MDS), which was first proposed by Borg and Lingoes (1980), is an MDS

approach in which user-defined external information (or restriction) is incorporated directly in the

distances. As the main target of this approach is to minimise the stress value, enforcing such addi-

tional properties onto the MDS model may provide a more accurate low dimensional representation

than the standard MDS solution. However, Borg and Groenen (2005, chap.10) claimed that if the

stress of a confirmatory MDS solution is not much higher than the stress of a standard (uncon-

strained) MDS solution, the former model can be accepted as an adequate model. Other references

to constrained MDS can be found in De Leeuw and Heiser (1980), Weeks and Bentler (1982),

Winsberg and Soete (1997). On the other hand, Cox and Cox (1991) proposed another constrained

MDS approach, Spherical MDS, in which the points of a configuration from non-metric MDS can
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be forced onto an exact circle, ellipse, hyperbola or parabola for a two dimensional surface, or a

sphere or an ellipsoid for a three dimensional surface. Because the surface is spherical, the choice

of measurement needs to be connected to such space, so that the geodesic distance, which is de-

fined to be the length of the shortest geodesic along the surface can be used. See more information

on Spherical MDS in Cox and Cox (2000, chap.4).

Another prominent variant of MDS is the dimensional weighting model, often referred as IND-

SCAL (INdividual Differences SCALing) model (Carroll and Chang, 1970). The goal of this

model is also to minimise stress. Whereas the aforementioned MDS procedures analyse a single

dissimilarity matrix (dij), the INDSCAL method incorporates one additional parameter which can

be defined as different replications of dissimilarities, which can be obtained from several “individ-

uals” who have different judgements. At the end, all these different dissimilarities are combined in

such a way that the represented MDS dimensions are weighted in an optimal way, see the mathe-

matical definition of this method in Carroll and Chang (1970).

More details about these methods and many other different MDS approaches can be found in

Cox and Cox (2000), Borg and Groenen (2005) and Borg et al. (2012).

5.4 Cluster Validation

Cluster validation is about assessing the quality of a clustering on a data set of interest. In most

applications, no “true” clustering is known with which the clustering to be assessed could be com-

pared (Hennig, 2015b). Cluster validation is an essential step in the cluster analysis process, be-

cause the quality of the resulting clusters is often not obtained directly from clustering methods.

There are several different approaches to cluster validation.

The context of “cluster validation” is known as evaluating the results of a clustering algorithm,

which can be specified in either an ‘internal’ or ‘external’ scheme. Here external evaluation cri-

teria, which are different ways of validating the data set with the external information of interest,

will be analysed for the sake of comparing the clustering. In the next chapter, Chapter 6, I focus

on internal validation criteria that decide about the number of clusters by measuring the quality of

a clustering without reference to external information. For this thesis, the term “clustering valida-

tion indexes” or “clustering quality indexes” is used for internal validation criteria, while external

validation indexes for clustering (e.g., adjusted Rand index) are addressed as the term “external

clustering validation indexes”.
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The decision of how to use external information can be made in a formal or an informal way.

Informally, subject matter experts can decide to what extent a clustering makes sense in terms of

subject-matter reason, or new discoveries can be helpful as a cluster validation technique. For-

mally, some external information that is expected to be related to the clustering might be known

prior to cluster analysis (Hennig, 2015a).

A formal mathematical definition of external validation measurement can be given as follows.

Let C = {C1, . . . , CK} be the clustering computed by using the given data set X , and let C ′ ={
C
′
1, . . . , C

′

K′

}
be the partitions obtained from the external information. P (C, C ′) is defined as the

proximity function for comparing these partitions.

Table 3.2 is a contingency table which demonstrates how the pairs of points are counted. As I

described in Section 3.3.1, the distance between two partitions (or two parts of categories) can be

defined in different functional forms. Here, the idea is very similar and the parameters as defined

in the contingency table can be described as

N11: The number of point pairs in the same cluster under both C and C ′ ,

N00: The number of point pairs in different cluster under both C and C ′ ,

N10: The number of point pairs in the same cluster under C but not under C ′ ,

N01: The number of point pairs in the same cluster under C ′ but not under C.

The number of points in the intersection of cluster Ck of C and C ′
k′

of C ′ can be defined as

nkk′ = |Ck ∩ C
′

k|, and then the counts nkk′ satisfy

K∑
k=1

nkk′ = |C ′
k′
| = nk′

K
′∑

k′=1

nkk′ = |Ck| = nk (5.23)

so that
∑K

k=1 nk =
∑K

′

k′=1 nk′ = n, and the four counts always satisfy n(n− 1)/2 = N11 +N00 +

N10 +N01. These notations will be used for several classes of external validation criteria as shown

in Table 5.3.

The Rand index (R), which is one of the first external validation criteria defined in the clus-

tering literature, is simply matching similarity between C and C ′ over all pairs of points. The

interpretation of values of R depends on the numbers and sizes of clusters in the two clusterings.

Two random clusterings with large K and K ′ can be expected to have a rather high value ofR. A

problem with the Rand index is that the expected value of the Rand index of two random cluster-

ings does not take a constant value (say zero). Therefore, the adjusted version of the Rand Index
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Table 5.3: Some of the external validation criteria

Code Index Formula

(R) Rand Index (Rand, 1971) R(C, C ′) = N11+N00

n(n−1)/2

(AR) Adjusted Rand Index (Hubert and Arabie, 1985) AR(C, C ′) = R(C,C′ )−E(R)
1−E(R)

(J ) Jaccard Index (Jaccard, 1912) J (C, C ′) = N11

N11+N01+N10

(W) Wallace (1983) Index W(C, C ′) = N11∑
k nk(nk−1)/2

(F) Fowlkes and Mallows (1983) Index F(C, C ′) =
√
W(C, C ′)W(C ′ , C)

was proposed. The E(R) function from the equation of AR in Table 5.3 is the expected value of

R assuming that objects are randomly assigned to clusters in such a way that numbers and sizes of

clusters in C and C ′ are held constant. A different and more detailed formulation of AR(C, C ′) is

shown in Equation (5.24).

AR(C, C ′) =

∑K
k=1

∑K
′

k′=1

(n
kk
′

2

)
−
[∑K

k=1

(
nk

2

)] [∑K
′

k′=1

(n
k
′

2

)]
/
(
n
2

)[∑K
k=1

(
nk

2

)
+
∑K′

k′=1

(n
k
′

2

)]
/2−

[∑K
k=1

(
nk

2

)] [∑K′

k′=1

(n
k
′

2

)]
/
(
n
2

) . (5.24)

For the later chapters, I will use the AR Index, which is the most widely used external val-

idation criteria among statisticians. Milligan and Cooper (1986) analysed the external criteria in

Table 5.3 by applying the hierarchical clustering over different numbers of clusters, and the result

of their study indicated that theAR Index was found to be the best criteria based on counting pairs

across different hierarchy levels.

Meila (2015a) addressed a few required properties of external validation of clustering as listed

below:

• Any external validation criteria can be applied to any two partitions of the same data set; in

other words, the number of clusters for different partitions (K and K ′) do not have to be

equal.

• There is no assumption about how clusterings are generated.

• For the sake of interpretability, indices should be taking the values of a fixed range, and

a reasonable range is [0, 1]. Although the AR Index covers the [0, 1] range much more

uniformly than theR Index, it can take a negative value (but not so often).
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More discussions about cluster validation and some other external validation criteria are re-

viewed in Meila (2015a), Xiong and Li (2013) and Xu and Wunsch (2008, chap.10). The function

external validation in the R package “ClusterR” (Mouselimis, 2018) provides several

external validation criteria including the ones in Table 5.3.

5.5 Summary

In this chapter, various clustering algorithms with their pros and cons have been discussed. Some

of these only work with a data matrix as an input (e.g., K-means), whereas some others are charac-

terised as distance based clustering algorithms (e.g., Hierarchical clustering). For the visualisation

of cluster objects, the most widely used dimensional reduction techniques (PCA and MDS) have

been introduced. Finally, some external validation criteria have been reviewed with regards to

cluster validation, with the main focus on the adjusted Rand index, which is the suitable choice for

the analysis of data sets in the later chapters of this thesis.
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CHAPTER 6

ESTIMATING THE NUMBER OF CLUSTERS AND
AGGREGATING INTERNAL CLUSTER VALIDATION
INDEXES

In cluster analysis, two important questions are how to choose an appropriate clustering method

and how to determine the best number of clusters. To decide on the appropriate cluster analysis

methodology and the number of clusters, researchers should consider what are the desired data

analytic characteristics of the clusters. For this aim, different clustering quality index values can

be evaluated, the choice of which is crucially dependent on the aim of clustering.

A large number of clustering quality methods for finding different numbers of clusters or for

choosing other tuning parameters (e.g., DBSCAN) are available for researchers who apply cluster

analysis. Some of these are based on a single aspect of cluster quality (e.g., average within-cluster

dissimilarities), and there are many clustering validation indexes (e.g., Caliński and Harabasz

(1974) index) that are usually advertised as measures of global cluster validation in a univariate

way. Some clustering validation indexes are designed to combine different complementary aspects

of cluster quality. Several of these different types of measurements for choosing the number of

clusters will be explained more in the next sections.

The subject of clustering quality indexes is scrutinized in many different sources. For example,

Hennig (2017) introduced a number of validation criteria that refer to different desirable charac-

teristics of a clustering. Halkidi et al. (2015) gave an overview of various clustering validation

indexes. In the sections that follow, I will review several clustering quality aspects and their usages

with reference to the sources above.

The results of clustering quality indexes can be in different ranges and different directions, it

is therefore useful to define them in such a way that they point in the same direction and are in the
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same range. In this respect, if necessary, these indexes will be standardised in a way that the index

value must be in the range of [0, 1], and that larger index values are always considered better.

Note that the notations in Definition 5.1.1 will be used for the formulations in clustering quality

indexes below.

6.1 Clustering Validation Indexes

In this section, measurements for various aspects of cluster validity will be introduced.

6.1.1 Small within-cluster dissimilarities

Homogeneity within clusters is a major aspect of most cluster analysis applications. The mea-

surement of homogeneity can often be computed by using dissimilarity between objects within

clusters. Many different formulations can be explored, but here some of the important formula-

tions are reviewed.

• Average within-cluster dissimilarities is the most straightforward way to formalise all ob-

jects within a cluster. The formulation of this aspect is defined as follows:

Iave.wit(C) =
1∑K

k=1 nk(nk − 1)

K∑
k=1

∑
xi 6=xj∈Ck

d(xi, xj), (6.1)

where d(xi, xj) is the dissimilarity between ith and jth objects from data X . As implied

by the title of this section, smaller within-cluster dissimilarities indicate better clustering

quality. However, the standard definition is that the larger index values are always better and

they must be in the range of [0, 1]. In this sense, the standardised version of Iave.wit is defined

as

I∗ave.wit(C) = 1− Iave.wit(C)
dmax

∈ [0, 1], (6.2)

where dmax = maxxi,xj∈X d(xi, xj) is the maximum value in the dissimilarity matrix.

• Within-cluster sum of squares is an alternative way of measuring within-cluster dissim-

ilarities, which is originally constructed from the K-means objective function (See Equa-

tion (5.2)) in its formulation:
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Iwithin.ss(C) =
K∑
k=1

1

2nk

∑
xi 6=xj∈Ck

d(xi, xj)
2. (6.3)

The standardised version of this is formed as

I∗within.ss(C) = 1− Iwithin.ss(C)
Ioverall.ss(C)

∈ [0, 1], (6.4)

where Ioverall.ss(C) =
∑

i<j d(xi,xj)2

n
is the overall sum of squares of dissimilarities. This mea-

sure gives more emphasis to the largest within-cluster dissimilarities than average within-

cluster dissimilarities.

• Widest gap: Hennig (2017) introduced this clustering quality index as the dissimilarity of

the widest within-cluster gap. Homogeneity within clusters implies that there are no “gaps”

within a cluster, and that the cluster is well connected. A gap can be characterised as a

split of a cluster into two sub-clusters so that the minimum dissimilarity between the two

sub-clusters is large. The corresponding index measure is then provided as

Iwidest.gap(C) = max
C∈C, D,E: C=D∪E

min
xi∈D, xj∈E

d(xi, xj). (6.5)

Iwidest.gap ∈ [0, dmax] and small values are good, so it is standardised as:

I∗widest.gap(C) = 1− Iwidest.gap(C)
dmax

∈ [0, 1]. (6.6)

This section provides some of the major aspects for measuring within-cluster dissimilarities.

One could also consider different functional forms of within-cluster dissimilarities (e.g., average of

maximum within-cluster dissimilarities). On the other hand, if users are more interested in making

the index less sensitive to large within-cluster dissimilarity, then quantiles or trimmed means can

be used.

6.1.2 Between cluster separation

Between cluster separation, which measures how distinct or well-separated a cluster is from other

clusters, is another important aspect in the clustering validation literature. Various formulations

can be generated for examining the clustering quality of between-cluster separation. I review some

of the between-cluster separation as listed below:
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• Average between-cluster dissimilarities: The functional structure for between-cluster mea-

surement can be first thought of as averaging all between-cluster dissimilarities and is for-

mulated as follows:

Iave.bet(C) =
1

n(n− 1)−
∑K

k=1 nk(nk − 1)

K∑
k=1

∑
xi∈Ck,xj /∈Ck

d(xi, xj). (6.7)

The standardised version of this is defined as:

I∗ave.bet(C) =
Iave.bet(C)
dmax

∈ [0, 1]. (6.8)

• Separation index: Hennig (2017) proposed an alternative way of measuring between-cluster

separation. He argued that averaging all between-cluster dissimilarities cannot be satisfac-

tory, because between-cluster separation accounts for the smallest between-cluster dissimi-

larities, and the dissimilarities between pairs of farthest objects from different clusters should

not contribute to this. The simplest way is to consider the minimum between-cluster dissim-

ilarity, but this might be inappropriate, because in the case of there being more than two

clusters the computation only depends on the two closest clusters. Thus, he proposed an-

other index that takes into account a portion, p, of objects in each cluster that are closest to

another cluster. Here is the definition:

For every object xi ∈ Ck, i = 1, . . . , n, k ∈ 1, . . . , K let dk:i = minxj /∈Ck
d(xi, xj). Let

dk:(1) ≤ . . . ≤ dk:(nk) be the values of dk:i for xi ∈ Ck ordered from the smallest to the

largest, and let [pnk] be the largest integer ≤ pnk. Then, the separation index with the

parameter p is defined as

Isep.index(C; p) =
1∑K

k=1[pnk]

K∑
k=1

[pnk]∑
i=1

dk:(i), (6.9)

and a suitable standardised form can be defined as follows:

I∗sep.index(C) =
Isep.index(C; p)

dmax
∈ [0, 1]. (6.10)

Here the proportion p can be chosen according to the user’s interest. Hennig (2017) suggests

choosing p to be 0.1.

One could also consider using the between-cluster sum of squares of dissimilarities, but since

Ioverall.ss(C) = Ibetween.ss(C) + Iwithin.ss(C), and Ioverall.ss(C) is constant, it does not give any

additional information apart from within-cluster sum of squares.
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6.1.3 Representation of dissimilarity structure by clustering

Summarising dissimilarity structure and clustering information in a univariate form can be another

alternative way of validating cluster quality. In this respect, Hubert and Schultz (1976) introduced a

framework for data analysis indexes, which is simply the correlation of the vector of dissimilarities

d = vec([d(xi, xj)]i<j) with the vector of “clustering induced dissimilarity” c = vec([cij]i<j),

where cij = 1(li 6= lj), li, lj are the cluster labels and 1(·) denotes the indicator function. With ρ

denoting the sample Pearson correlation,

IPearson.Γ(C) = ρ(d, c). (6.11)

IPearson.Γ(C) ∈ [−1, 1] from the definition of correlation, so the standardised form of this index

is therefore defined as

I∗Pearson.Γ(C) =
IPearson.Γ(C) + 1

2
∈ [0, 1]. (6.12)

Halkidi et al. (2015) gave an overview of some alternative versions of the IPearson.Γ(C) in-

dex. For example, Baker and Hubert (1975) proposed a similar idea, where Goodman and Kruskal

(1954)’s rank correlation was used instead of the sample Pearson correlation. Although this struc-

ture is more robust against extreme observations, it is computationally very expensive compared

with the sample Pearson correlation, and some useful information might be lost due to the rank

transformation when the correlation is computed.

6.1.4 Uniformity for cluster sizes

In some clustering applications, analysts are interested in whether the clusters are roughly of the

same size. This mainly depends on organisation within clustering structure. The Entropy (Shan-

non, 1948) is one of the well-known methodologies for measuring the uniformity of cluster sizes:

Ientopy(C) = −
K∑
k=1

nk
n

log(
nk
n

). (6.13)

Large values are good. The entropy is maximised for fixed K by emax(K) = − log( 1
K

), so the

standardised form is defined as

I∗entopy(C) =
Ientopy(C)
emax(K)

. (6.14)
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6.1.5 Some popular clustering quality indexes

A considerable number of clustering quality indexes have been published in recent decades. Some

of them balance in some way within-cluster homogeneity against between-cluster separation, oth-

ers are designed in different structures by using one of the single aspects (e.g., within or between-

cluster dissimilarities), and a few others have different forms for different aims. In this section. I

will present four popular commonly used indexes.

• The Average silhouette width (ASW) (Kaufman and Rousseeuw, 1990) is based on a com-

promise between within cluster homogeneity and between cluster separation. In particular,

the dissimilarities of observations from other observations of the same cluster are compared

with dissimilarities from observations of the nearest other cluster, which emphasizes separa-

tion between a cluster and their neighbouring clusters (Hennig and Liao, 2013). Mathemati-

cally, for a partition of w into clusters C1, . . . , CK let

si(k) =
bi(k)− ai(k)

max {ai(k), bi(k)}
∈ [−1, 1] (6.15)

be the so-called ‘silhouette width’, where i = 1, . . . , n, 1 ≤ k ≤ K, and

ai(k) =
1

nk − 1

∑
xj∈Ck

d(xi,xj), (6.16)

bi(k) = min
h6=k

1

nh

∑
xj∈Ch

d(xi,xj). (6.17)

Finally, the ASW index is defined as

IASW (C) =
1

n

n∑
i=1

si(k) (6.18)

Large values are better. Since IASW (C) ∈ [−1, 1], it can be standardised as

I∗ASW (C) =
IASW (C) + 1

2
∈ [0, 1]. (6.19)

• The Caliński and Harabasz (1974) index: The proportion of squared within-cluster dis-

similarities is compared with all between-cluster dissimilarities, which emphasizes within-

cluster homogeneity more, and is through the use of squared dissimilarities more prohibitive
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against large within-cluster dissimilarities (Hennig and Liao, 2013). In mathematical form,

ICH(C) is defined as

ICH(C) =
B(K)(n−K)

W(K)(K − 1)
(6.20)

where

W(K) =
K∑
k=1

1

nk

∑
xi,xj∈Ck

d(xi,xj)
2 (6.21)

and

B(K) =
1

n

n∑
i,j=1

d(xi,xj)
2 −W(K). (6.22)

W(K) and B(K) are the criteria based on balancing the within-cluster and the between-

cluster validation, respectively.

The CH Index was originally defined with the Euclidean distance as d, which connects it to

the K-means objective function, but Milligan and Cooper (1985) examined different clus-

tering quality indexes with their simulation studies and their findings indicated that the esti-

mation of the number of clusters based on the CH Index, which can be found by maximising

ICH(C), is quite successful with various clustering methods.

• The Dunn (1974) Index simply formalises the concept of the ratio between the minimal

inter-cluster dissimilarity and the maximal intra-cluster dissimilarity. The index is given by

the following equation.

IDunn(C) =
min1≤g<h≤K d(Cg, Ch)

max1≤k≤K diam(Ck)
∈ [0, 1], (6.23)

where d(Cg, Ch) = minxi∈Cg ,xj∈Ch
d(xi,xj) is the dissimilarity function between two clus-

ters Cg and Ch, and diam(C) = maxxi,xj∈C d(xi,xj) is the diameter of a cluster, C, which

might be considered as the spread of a cluster. If the data set contains well-separated and

compact clusters at the same time, then the Dunn Index should be maximised. Otherwise,

The Dunn Index might have difficulties to detect the appropriate number of clusters, because

it only depends on the maximum and the minimum dissimilarities within clusters.

• Clustering Validation Index Based on Nearest Neighbours (CVNN) was proposed by

Liu et al. (2013), and measures the separation that is based on how many of the κ nearest
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neighbours of each observations are in the same cluster. The index is balancing separation

and compactness statistics together in one single measure. The separation statistics is

ISep(C;κ) = max
1≤k≤K

(
1

nk

∑
x∈Ck

qκ(x)

κ

)
, (6.24)

where qκ(x) is the number of observations among the κ nearest neighbours of x that are not
in the same cluster. The compactness statistics (ICom(C)) is just the average within-cluster

dissimilarity as defined in Equation (6.1). For both statistics, small values are better. With

this,

ICV NN(C, κ) =
ISep(C, κ)

maxC∈K ISep(C, κ)
+

ICom(C)
maxC∈K ICom(C)

, (6.25)

Here maxC∈K ISep(C) and maxC∈K ICom(C) are computed over several clustering methods

with different numbers of clusters K = {CKmin
, . . . , CKmax}.

One of the disadvantages of CVNN is that κ needs to be pre-specified by the user, so that one

additional parameter has to be determined. In addition, Halkidi et al. (2015) pointed out that

in the presence of outliers, CVNN penalises one-point clusters heavily, because such objects

produce maximum possible ISep(C;κ) value of 1.

The function cluster.stats in the R package “fpc” can assist users to compute most of

the cluster validation indexes defined above. CVNN is the only function missing from the fpc,

and I have manually implemented this function in R.

6.1.6 Stability

Clusterings are often interpreted as meaningful in the sense that they can be generalised as sub-

stantive patterns. This at least implicitly requires that they are stable (Hennig, 2017). Stability in

cluster analysis can be used to estimate the number of clusters by implicitly defining the true clus-

tering as the one with highest stability. This can be explored using some resampling techniques,

such as bootstrap, splitting and jittering, see more information in Leisch (2015). I will review two

popular approaches in detail, which have been defined using this principle.

Prediction strength

The prediction strength is defined according to Tibshirani and Walther (2005) as a tool to estimate

the number of clusters using the idea of cluster stability by resampling methods. In particular, the
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data set is randomly split into two halves, say X[1] and X[2], and two clusterings are obtained by

using these two halves separately with the selected clustering technique and the number of clusters

K. Then the points of X[2] are classified to the clusters of X[1], which is done by assigning every

observation in X[2] to the closest cluster centroid in X[1]. By using the idea of repeated cross-

validation, the same is done with the points of X[1] relative to the clustering on X[2]. For any

pairs of observations in the same cluster in the same half, it is then checked whether or not they

are predicted in the same clustering by the clustering on the other half. If this is the case, their

co-memberships are correctly predicted. Finally, the prediction strength is defined by averaging

the proportions of correctly predicted co-memberships for minimum clusters in each of the two

halves.

Here is the mathematical definition. Let X = {x1, . . . ,xn} be a set of objects and X =

(x1, . . . ,xn) be a data set with n observations. For a candidate number of clustersK, let n1, . . . , nK

be the number of observations in these clusters. Then prediction strength of the clustering is de-

fined by

IPS(C) =
1

q

q∑
t=1

 min
1≤k≤K

∑i′∈Ak(i) fii′ (L[t], L
∗
[t])
[(∑

i′∈Ak(i) fii′ (L[t], L
∗
[t])
)
− 1
]

nk(nk − 1)

 ∈ [0, 1],

(6.26)

where Ak(i) are the observations indexes i′ such that i 6= i
′ , q is the number of cross validation

folds and

fii′ (L[t], L
∗
[t]) = 1

(
li[t] = l∗i[t]

)
, (6.27)

where 1(·) is the indicator function, L[t] =
{
l1[t], . . . , lnt[t]

}
and L∗[t] =

{
l∗1[t], . . . , l

∗
nt[t]

}
are the

set of cluster labels obtained from two different scenarios (nt is the number of observations from

the data set with the first t number of observations). The clustering labels are derived according to

the equality, L[t] = C(X[t];K) using an appropriate clustering methodology (e.g., K-means) and

by using t fold of the data set X[t], whereas L∗[t] = C∗(X;K, t) is derived from a classification

technique connected with the clustering methodology by adopting both t part of the data set, X[t]

and the complementary part, X[−t]. Table 6.1 summarises various classification methodologies

with their formulations of C∗(X;K, t). Here the sets of two types of data are defined as

X[t] = X \ X[−t] and X[−t] =
{

x(t−1)[nq ]+1, . . . ,xt[nq ]

}
which essentially refers to q-fold cross validation. Tibshirani and Walther (2005) analysed two
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different q-cross validation scenarios over the values of bias, variance and prediction error, and

concluded that there is no advantage in using the five-fold over two-fold cross validation technique.

For simplicity, I use two-fold cross validation (q = 2) in Equation (6.26).

The prediction rule recommended in Tibshirani and Walther (2005) is to predict observations

into the cluster with the closest cluster centroid, which is appropriate for K-means. The soft-

ware implementation of prediction strength can be found in R package fpc (Hennig, 2013), which

provides alternative classification techniques (not provided in Tibshirani and Walther (2005)), as

shown in Table 6.1, for different clustering algorithms. I will also contribute one additional clas-

sification approach (furthest neighbour distance) for the complete linkage method, which is not

implemented in the fpc package.

Table 6.1: Classification of unclustered points

Classification approaches Formulations l∗i[t]

Centroid arg min
1≤k≤K

∥∥xi[t] −mck[t]

∥∥
Nearest neighbour distance arg min

1≤k≤K

(
min1≤jk≤nk

∥∥xi[−t] − xjk[t]

∥∥)
Furthest neighbour distance arg min

1≤k≤K

(
max1≤jk≤nk

∥∥xi[−t] − xjk[t]

∥∥)
Average distance arg min

1≤k≤K

(
1
nk

∑nk

jk=1

∥∥xi[−t] − xjk[t]

∥∥)
QDA or LDA arg max

1≤k≤K

{
δk(xi[−t])

}
, where δk(xi[t]) = P (Ci[t] = k |

xjk[t])

mCk[t] is the centroid of the kth cluster in the data set X[t].

xjk[t] is the jthk object of the kth cluster in the data set X[t].

Ci[t] is the ith cluster label of the data set X[t], where i = 1, . . . ,
(
n−

[
n
q

])
.

P (Ci[t] = k | xjk[t]) is the probability function, where xjk[t] ∼ N(µ,Σ)
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In Table 6.1, “centroid” assigns observations to the cluster with the closest cluster centroid,

which is associated to K-means, PAM, Ward’s method, spectral clustering 1, since all these tech-

niques are centroid based clustering algorithms. “Nearest neighbour distance”, which is asso-

ciated with single linkage clustering, classifies by the nearest neighbours. The idea of “furthest
neighbour distance” is to choose from the furthest point of each clusterand classify to the nearest

one. This clustering technique is connected with complete linkage clustering. “Average distance”

assigns to the cluster to which an observation has the minimum average dissimilarity to all points

in the cluster, which is associated to average linkage clustering, because the dissimilarity matrix is

used as an input in their algorithms and the computation of the algorithms are made by averaging

dissimilarity within clusters. QDA (Quadratic discriminant analysis) is associated with Gaussian

clusters with flexible covariance matrices, which is appropriate for model based clustering, because

P (Ci[t] = k | xj[t]) in Table 6.1 and P (Ci = k | xi) in Equation (5.4) have the same structure in

terms of estimating the probability function. LDA (Linear discriminant analysis) (Fisher, 1936)

is an alternative approach for model based clustering as computational issues in R can arise using

QDA when classes are small. The main difference between these two methodologies is that the

covariance matrices for clusters K are all assumed to be equal (Σk = Σ, ∀K) in LDA, whereas

the covariance matrices in QDA do not have to be equal. In Table 6.1, the LDA (or QDA) classi-

fication algorithm is estimated by using the probability function in Equation (5.5) modelled with

the data set X[t], and the clustering labels for the complementary part, X[−t], is predicted by using

this model.

The prediction strength measurement is applicable to both distance based and non-distance

based clustering algorithms.

Based on Tibshirani and Walther (2005)’s findings from their experiments, the prediction

strength value should be above 0.8 or 0.9 for choosing as the optimal number of clusters. In

addition, they provided one additional parameter M , which is the number of iterations in which

the data set is divided into two halves. The iterations contribute M different prediction strength

values, and the final result is simply obtained by averaging these values.

The bootstrap method for estimating the number of clusters

In the previous section, the stability measurement for estimating the number of clusters is achieved

by using the idea of cross validation, whereas here the bootstrap method 2, which is an alternative

1This type of spectral clustering procedure clusters points by adopting the K-means algorithm after Laplacian
matrix transformation is applied, see Algorithm 8 for more details.

2The idea of bootstrap, which is simply the random sampling from the data set of interest with replacement, was
first introduced by Efron (1981).
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measurement for the stability assessment, is presented as explained in Fang and Wang (2012). The

idea is simply to draw B times two bootstrap samples from the data, and the number of clusters is

chosen by optimising an instability estimation from these pairs.

The mathematical definition is as follows. Let X = {x1, . . . ,xn} be a set of objects and

X = (x1, . . . ,xn) be a data set with n observations. The boot function for estimating the number

of clusters is defined by

IBoot(C) =
1

B

B∑
b=1

 1

n2

K∑
k=1

 ∑
i′∈Ak(i)

fii′ (L[1], L[2])

2

−
∑

i′∈Ak(i)

[
fii′ (L[1], L[2])

]2 ∈ [0, 1],

(6.28)

where Ak(i) are the observations indexes i′ such that i 6= i
′ , and fii′ (L[1], L[2]) is the same as ex-

plained in Equation (6.27). Here both L[1] and L[2] are simply calculated as defined in Table 6.1.

The only difference is that X[1] and X[2] are the bootstrapped and the non-bootstrapped sample

points of the data set X , respectively. The optimal number of clusters can be estimated by choos-

ing the minimum value of IBoot(C). As mentioned at the beginning of this chapter, we want to

standardise the clustering quality indexes in such a way that large index values are always better.

Thus, the IBoot(C) function is standardised by

I∗Boot(C) = 1− IBoot(C) ∈ [0, 1]. (6.29)

All the arguments as explained in the previous section (for the usage of classification ap-

proaches over different clustering algorithms) can also be applied for IBoot(C), but there is no

requirement that the values of I∗Boot(C) should be above or below some definite numbers for esti-

mating the optimal number of clusters.

6.1.7 Further aspects and discussion

In the literature, researchers often suggest that the number of clusters should be “known” or oth-

erwise it needs to be estimated from the data. However, Hennig (2015a) claimed that because

finding the number of clusters in a certain application needs user input anyway, fixing the number

of clusters is often as legitimate a user decision as the user input needed otherwise. Many differ-

ent “objective” criteria for finding the best number of clusters exist in the literature and several of

them are described in the previous sections. Based on all these arguments, in the given applica-

tion the user needs to consider the following aspects for the decision of the number of clusters: 1)
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estimating any underlying “true” number of clusters by using some of the objective criteria 2) im-

plicitly defining what the best number of clusters is from the user’s point of view for subject-matter

reasons.

As stated in Section 3.1, there is no such thing as a universally “best clustering method”, and

different methods should be used for different aims of clustering. Researchers should also explic-

itly define their requirements and their definition of a “true cluster” based on their research aims,

because clustering becomes scientific not through uniqueness but through transparent and open

communication (Hennig, 2015b). This means that in order to decide about appropriate cluster

analysis methodology, researchers should consider what data analytic characteristics the clusters

they are aiming at are supposed to have. In this sense, (Hennig, 2015b) listed desirable char-

acteristics which can be checked using the available data. Several of these are related with the

“formal categorisation principles” listed in Van Mechelen et al. (1993, chap. 14). The desirable

characteristics are:

1. Within-cluster dissimilarities should be small.

2. Between-cluster dissimilarities should be large.

3. The dissimilarity matrix of the data should be well represented by the clustering.

4. Low number of clusters is desirable.

5. Clusters should be stable.

6. Uniformity in cluster sizes is preferred.

7. Members of a cluster should be well represented by its centroid.

8. Clusters should be fitted well by certain homogeneous probability models such as the Gaus-

sian or a uniform distribution, etc.

9. Clusters should correspond to connected areas in data space with high density.

10. The areas in data space corresponding to clusters should have certain characteristics.

11. The clusters should, if possible, be characterised by using a small number of variables

12. Clusters should correspond well to an externally given partition or values of one or more

variables that were not used for computing the clustering.

13. Variables should be approximately independent within clusters.

Although all these potential characteristics are often important for constituting a good cluster-

ing, their level of importance may change depending on the clustering aim of the applications. For

example, No.9 can be very important for image segmentation and No.8 may not be useful if users

are interested in clustering of a data set without any statistical assumptions. All these arguments

regarding the criteria that users may or may not consider give a direction to how their analysis will
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proceed, such as which clustering methods and validation indexes are more appropriate for the

clustering aim of a particular application.

Some of these characteristics are literally connected to the clustering quality indexes as I ex-

plained in the previous sections, but some others can be represented with different type of clustering

quality validation indexes. For example, Hennig (2017) proposed several different indexes relevant

to connected areas in data space with high density (No.9). These aspects simply measure density

modes within clusters and density valleys between clusters. For a density-based cluster validation,

Halkidi and Vazirgiannis (2008) introduced a cluster validity index, CDbw, which assesses the

compactness and separation of clusters defined by a clustering algorithm. CDbw handles arbitrar-

ily shaped clusters by representing each cluster with a number of points rather than by a single

representative point. On the other hand, distribution-wise clustering quality assessment based on

certain homogeneous probability models (No.8) are also discussed. For instance, Lago-Fernández

and Corbacho (2010) introduced a clustering validity index which emphasises the cluster shape

by using a high order characterization of its probability distribution, by looking at the neg-entropy

distances 3 of the within-cluster distributions to the Gaussian distribution.

There might be some contradictions between some of these characteristics in a certain applica-

tion. Connected areas with high density may have very large distances and may include undesired

shapes. Roughly the same size clusters may produce large within-cluster dissimilarities if a cluster

has a potential outlier.

A number of simulation studies have been presented for comparing different clustering quality

indexes, see for example Milligan and Cooper (1988), Dimitriadou et al. (2002) and Arbelaitz et al.

(2013). Although all these studies favour some of the clustering quality indexes (e.g., CH Index,

ASW Index, etc.), which are usually performed with Gaussian data and some popular supervised

classification data with known “truth”, favouring one particular index may misguide when seeking

the true number of clusters, because characteristics of clusters are varied in different applications.

But users still need to make a decision about finding an appropriate number of clusters, therefore

the decision should depend on the context and the clustering aim.

More indexes have been presented in different sources, see for example Halkidi et al. (2015)

and many further indexes implemented in the ”NbClust” package of R, see Charrad et al. (2014).

3Neg-entropy distance is a standard measure of the distance to normality which evaluates the difference between
the cluster’s entropy and the entropy of a normal distribution with the same covariance matrix (Lago-Fernández and
Corbacho, 2010).
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6.2 Aggregation of Clustering Quality Indexes

In the literature, a large number of methods for finding different numbers of clusters are available

for researchers. Several of these are explained in the previous section in detail. Some of them

attempt to balance a small within cluster heterogeneity and a large between-cluster heterogeneity,

such as Average Silhouette Width (ASW) and Caliński and Harabasz (1974) index (CH), whereas

some others have different goals; for example Pearson Gamma index emphasises good approxi-

mation of the dissimilarity structure by the clustering in the sense that whether observations are

in different clusters should strongly be correlated with large dissimilarity. However, researchers

may also prefer to implement several of these clustering quality indexes together in terms of their

application of interest. For instance, one may aim to obtain a single value for different number of

clusters in different clustering algorithms by aggregating several clustering quality index values.

If this type of approach existed in the literature, it would be very valuable so that researchers may

have the flexibility of which indexes they wish to use, as well as the clustering algorithm and what

number of clusters they need to choose.

Hennig (2017) introduced a concept of aggregating the clustering quality indexes in such a

way that the aggregated single criterion can be used to compare different clustering methods, dif-

ferent number of clusters and other possible parameter choices of clusterings. The following is the

description of how this concept works.

The aggregation can be made by computing a weighted mean of selected indexes I1, . . . , Is with

weights w1, . . . , ws > 0, which are denoted as the relative importance of the different clustering

quality indexes:

A(C) =
s∑

k=1

wkIk. (6.30)

The weights can only be assigned to directly reflect the relative importance of the various clustering

quality aspects if the values of the indexes are comparable in terms of their variations. As specified

in the previous section, all indexes are standardised in the same value range [0, 1]. However, this

may not be sufficient to establish comparability between indexes. For example, some of these

indexes are scattered within roughly the whole value range whereas other indexes might be in a

very small range (e.g., larger than 0.9) for all clusterings.

In order to provide a proper comparability between clustering quality indexes, researchers can

consider standardising the index values that are derived from certain clustering algorithms with

some random numbers generated from some random clustering algorithms from X . Clustering
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quality index values are then computed based on the result of the random clustering algorithms, so

that users can construct some kind of distribution of the values for different number of clusters.

Generating completely random clusterings regardless of the information from the data set X is

not suitable for this, because it can be expected that generating random clusterings without using

any clustering algorithms will give completely unrelated and much worse results than for clusters

that were generated by a clustering method. Hence, Hennig (2017) proposed two methods for

generating random clusterings. These two random clustering algorithms are called “Random K-
centroids” and “Random nearest neighbour”. Here RandomK-centroids is more connected with

two popular centroid-based clustering algorithms, K-means and PAM, which generally produce

compact clusters, whereas random nearest neighbour is related to single linkage which is more

focused on cluster separation than on within-cluster homogeneity. Therefore, these two approaches

generate clusterings that are in a certain sense opposite ways of clustering the data.

In addition to the algorithms above, I propose two additional random clustering algorithms:

“Random furthest neighbours”, which is more connected with complete linkage method, disre-

gards separation and tends to keep the largest distance within clusters small. “Random average
neighbours”, which is related to average linkage method, compromises two random clustering al-

gorithms (Random nearest and furthest neighbour clusterings) and focuses more on joining clusters

with small variances. These additional algorithms will explore various overall ranges of clustering

quality index values from different distributions as well as provide good collections of different

random clusterings.

6.2.1 Random K-centroid

The algorithm of random K-centroid is very similar to the design of the K-means and the PAM

algorithm. The random K-centroid works as follows. For a fixed number of clusters K, randomly

selectK cluster centroids from the data points, and assign every observation to the closest centroid.

6.2.2 Random K-neighbour

The algorithm of random neighbour clustering is typically similar to the structure of the hierar-

chical clustering algorithms (Single, complete and average linkage). The idea is that for a fixed

number of clusters K randomly select K cluster initialisations from the data points and add the not

yet assigned observation closest to any cluster to that cluster until all observations are clustered,

see Algorithm 3.
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Algorithm 2: The Random K-centroid Algorithm (CK−stupidcent)

input : X = {x1, . . . ,xn} (set of objects for computing D = d(xi,xj)

(i, j = 1, . . . , n), the matrix of dissimilarity to be clustered) or D (matrix of

dissimilarity to be clustered), K (number of clusters)

output: L = {l1, l2, . . . , ln} (set of cluster labels)

# initialise K random centroids, S = {s1, s2, . . . , sK} ∈ X
for k ← 1 to K do

mCk
← sk

for i← 1 to n do
# Assign every observations to the closest centroid:

li = arg min
1≤k≤K

d(xi,mCk
), i ∈ Nn

return L

6.2.3 Calibration

The random clusterings can be used in different ways to calibrate the clustering validation indexes.

For a set of any value K = {2, . . . , K} of interest, one could collect 4B + R clustering validation

values of indexes as follows

CK−collection = (CK:1, . . . , CK:4B+R) = (CK−real(S1), . . . , CK−real(SR),

CK−randomcen(S1), . . . , CK−randomcen(SB),

CK−randomsin(S1), . . . , CK−randomsin(SB),

CK−randomcom(S1), . . . , CK−randomcom(SB),

CK−randomave(S1), . . . , CK−randomave(SB)),

on generated X . Here CK−real are clusterings over K number of clusters derived from a “real”

clustering algorithm (e.g., K-means), and R is the number of clustering algorithms of interest.

Four different types of random clusterings (CK−random) over K number of clusters are collected

from the random clustering algorithms, see Algorithm 2 and 3, and B is the number of clusterings

of interest derived from a random clustering algorithm.

As mentioned previously, one could standardise the index values with a proper standardisation

method for the sake of calibration over K clustering validation indexes of interest. The major

argument here is how to standardise these index values. Two scenarios can be discussed:
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Algorithm 3: The Random K-neighbour Clustering Algorithms

input : X = {x1, . . . ,xn} (set of objects for computing D = d(xi,xj)

(i, j = 1, . . . , n), the matrix of dissimilarity to be clustered) or D (matrix

of dissimilarity to be clustered).

output: C = {C1, . . . , CK} (set of clusters)

INITIALISATION:
Select random K initialization points, S = {s1, s2, . . . , sK} ∈ X . Let

C(S) = {C1, . . . , CK} ← {{s1} , . . . , {sK}}
t← 1

D(t) ← D

repeat
STEP 1:

LetR to be the set of the remaining points asR = X \ S. Find the

smallest dissimilarity between the remaining points and the initialisation

points from D(t) as

(g, h)← arg min
xg∈R,xh∈S

d(t)(xg,xh)

STEP 2:
Adding points to clusters by: Cg, Ch: Cl ← Cg ∪ Ch.

Mark g and h as unavailable: S ← S \ {xh} andR ← R \ {xg}
STEP 3:

Mark l as available: S ← S ∪ {xl}.
xl is the new point in S, where the dissimilarity measures with the other

renaming points are computed as follows:

STEP 4:
foreach {xi} ∈ R do

Update dissimilarity matrix d(t)(xi,xl), if:

Random nearest: min
{
d(t)(xi,xg), d

(t)(xi,xh)
}

,

Random furthest: max
{
d(t)(xi,xg), d

(t)(xi,xh)
}

,

Random average: (ningd
(t)(xi,xg) + ninhd

(t)(xi,xh))/(ninl), where ni,

nl, ng and nh are the numbers of elements in clusters Ci, Cl, Cg and Ch
respectively.

t← t+ 1

untilR = ∅
return C
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• It is possible to calibrate the indexes using real and random clusterings for the same K;

• An alternative version is to calibrate the indexes again using real and random clusterings for

all values of K together.

I will give an example for better illustration of the scenarios above. Figure 6.1 shows CH Index

values with R = 8 real clusterings and 4B = 400 random clusterings for 9 different numbers of

cluster scenarios. This is just an illustration, so we can disregard the values for this example. The

calibration for the first scenario is simply to use the values of the first column for standardisation,

then calibrate with another clustering validation index of interest for the same K = 2 and do this

for the other columns (or other K’s) in the same way for calibration. The second scenario uses

whole values for standardisation instead of column by column calibration.

Figure 6.1: Illustration of how a clustering validation values of indexes are generated

I will use the second scenario, which is to calibrate the indexes using real and random cluster-

ings for all values of K together. One of the disadvantages of the first scenario can be explained

as follows. It is possible that a weight that is derived from a standardisation method by using the

index values for one specific number of clusters (say K = 2) can be much larger or much smaller

than the standardisation weights for other number of clusters (say K = 3, . . . , or, 10). In this case,

although the index values favour forK = 2 number of cluster without standardising the values, the

index values over different number of clusters can be standardised with the division of standardi-

sation weight so that one cannot identify the appropriate number of clusters. The second scenario

does not affect the different number of clusters in one specific clustering validation index, because
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all index values are used for computing a single weight for the sake of calibration. Figure 6.1 just

illustrates an example of how clustering validation values of index are distributed for different clus-

tering algorithms over different number of clusters. Several other clustering validation indexes of

interest can be designed in the same way, then are calibrated with the appropriate standardisation

methodology.

Now the question is how to choose a proper standardisation method for calibrating the index

values. Consider I∗ (Standardised version is used here since large values are good for all indexes)

as a clustering quality index, and CK−collection = {Ck:j : k ∈ K; j = 1, . . . , 4B +R}. With this,

the following standardisation methodologies can be used for calibration.

• Z-score standardisation:

IZ−score(C) =
I∗(C)−m∗(CK−collection)√

1
(4B+R)(K−1)−1

∑K
k=2

∑4B+R
j=1 (I∗(Ck:j)−m∗(CK−collection))2

, (6.31)

where

m∗(CK−collection) =
1

(4B +R)(K − 1)− 1

K∑
k=2

4B+R∑
j=1

I∗(Ck:j).

• Range standardisation:

IRange(C) =
I∗(CK−collection)−min(CK−collection)

max(CK−collection)−min(CK−collection)
. (6.32)

Hennig (2017) pointed out that using the rank standardisation in the set of clusterings can be

another alternative to calibrate indexes. Although ranking the index values is probably more robust,

some information might be lost with the rank standardisation. The argument for the choice of the

standardisation technique is not different than the argument in Section 3.2.3, because the idea of

standardisation is typically to make the values of interest comparable with each other. In Chapter 7,

I will consider these standardisation techniques with the simulation studies.

6.3 Visualisation with R Shiny Application

This section explains how all the analysis in the next chapters will be conducted in a simple

visualisation format, in which various considerations will be seen. For this task, the user in-

terface implementation of R software, R Shiny has been used. shiny is an R package that

makes it easy to build interactive web applications straight from R, see the web source https:

//shiny.rstudio.com/ for more information.
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In Appendix B, I present the R Shiny implementations as screen-shots for different data set

scenarios. All these different visualisations will be described in detail. Figure B.1 is the demonstra-

tion of how all the different simulated data set scenarios are analysed including the visualisations

for estimating the number of clusters by using the concept of the aggregation of clustering valida-

tion indexes. On the left-hand side, clustering validation indexes that are described in this chapter

are presented, and different standardisation methodologies are shown at the bottom of the left side

for the sake of aggregation of the selected indexes with the concept of random clustering calibra-

tion. On the top of the middle segment, graphical representations in two and three dimensions

are displayed with their coordinates, which are obtained from Principal Component Analysis. The

main title of these plots provides the proportion of variance explained based on the PCA solution.

At the top of the right-hand side, the average of 50 simulated data set values of aggregation indexes

is shown, while the choices of simulated data set, number of clusters and clustering algorithms are

given on the right hand side. The summary table in the middle demonstrates the simulation results

and the ARI values for different numbers of clusters and various clustering algorithms.

Figure B.2 and B.3 are very similar to the previous one, but I additionally implement the se-

lection of clustering validation index results for real and random clustering algorithms. Figure B.3

also demonstrates the option for the weights of clustering validation indexes, so that users can have

the flexibility to give different weights for the indexes. Note that the three dimensional scatter plots

on these three figures are interactive plots so that users are able to rotate or zoom in or zoom out

of the plots to better view the clustered points. Figure B.4 is the visualisation of distance query of

a player of interest. The figure is described in Section 4.5 in detail.

6.4 Summary

Numerous clustering quality indexes have been described in terms of how to estimate the number

of clusters. These indexes can be classified in such a way that calibrating the indexes with different

goals can be legitimate and the aggregation of clustering quality indexes can be done by using

the index values of random clustering algorithms. It is a new concept that researchers have the

flexibility to select various clustering quality indexes as well as to estimate the number of clusters

in an optimal way.
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CHAPTER 7

EXAMINATION OF AGGREGATING CLUSTER
VALIDATION INDEXES WITH VISUALISATION

The aim of this chapter is to investigate the new idea of aggregating clustering validation indexes

by analysing some simulation scenarios and some real data sets. Different aggregated clustering

validation index scenarios are established by using the clustering validation indexes obtained from

random clustering algorithms, and they are compared with several single validation criteria as

introduced in Chapter 6. In the next chapter, the dissimilarity matrix of the football performance

data set that has been built in Chapter 4 will be examined for the sake of clustering football players.

The clustering algorithms introduced in Section 5.2 that are to be used for the analysis of

aggregating clustering validation indexes are given in Table 7.1 along with their corresponding

R implementations. The R functions that will be used for the clustering validation indexes are

provided in Table 7.2 . Note that the R implementation of the CVNN Index and the random

clustering algorithms were manually coded by myself. The functions of prediction strength and the

bootstrap method for estimating the number of clusters were updated according to the additional

implementation, which is the further neighbour distance as mentioned in Section 6.1.6.

For the analysis of different types of data sets the concept of aggregating clustering validation

indexes is implemented with various calibration scenarios. In this respect, 8 real clustering al-

gorithms (see Table 7.1) with 4 random clusterings each containing 100 objects are adopted. An

illustration of how clustering validation index values are generated can be seen in Figure 6.1. In

the calibration stage, the clustering validation indexes for real and random clusterings are aggre-

gated with a choice of standardisation methodology (Z-score or Range) for all values ofK together

rather than for the sameK. Many different calibration considerations can be generated from differ-

ent clustering validation indexes. In the next sections, the choice of calibration for cluster analysis

of different types of data sets is dependent on the clustering validation indexes which have dif-
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Table 7.1: Clustering algorithms to be used for the data analysis

Clustering algorithms R package R function Details

Partitioning Around

Medoids (PAM)

cluster

(Maechler et al.,

2017)

pam Parameters in the R function

are all selected as default.

K-means stats (R Core

Team, 2013)

kmeans Parameters in the R function

are all selected as default.

Single linkage stats (R Core

Team, 2013)

hclust method = "single" is

selected. cutree function

is used for partitioning the

objects.

Complete linkage stats (R Core

Team, 2013)

hclust method = "complete"

is selected. cutree

function is used for

partitioning the objects.

Average linkage stats (R Core

Team, 2013)

hclust method = "average" is

selected. cutree function

is used for partitioning the

objects.

Ward’s method stats (R Core

Team, 2013)

hclust method = "ward.D2" is

selected. cutree function

is used for partitioning the

objects.

Model based clustering mclust

(Scrucca et al.,

2016)

Mclust Gaussian distribution is used

for the parameters of the

assumed mixture distribution.

Spectral clustering kernlab

(Karatzoglou

et al., 2004)

specc Clustering is performed by

embedding the data into the

subspace of the eigenvectors

of an affinity matrix, as

explained in Algorithm 8.

149



Table 7.2: Clustering validation indexes to be used for the data analysis

Clustering validation indexes R package R function

Average within cluster

dissimilarities, within cluster sum

of squares, widest gap, average

between cluster dissimilarities,

separation index, entropy, PG

Index, ASW Index, CH Index,

Dunn Index
fpc (Hennig, 2013)

cluster.stats

Prediction strength prediction.strength

The bootstrap method for

estimating the number of clusters

nselectboot

ferent characteristics. In this sense, I will consider different combinations comprising one within

cluster dissimilarity measure (e.g., average within cluster dissimilarities or widest gap, etc.), one

between cluster dissimilarity measure (e.g., average between cluster dissimilarities or separation

index), the Pearson Gamma Index (that simply measures the correlation between dissimilarities

and clusterings) and one stability methodology (e.g., prediction strength or the bootstrap method).

More details will be provided in the following sections.

7.1 Examination of Aggregating Clustering Validation Indexes
on Simulated Data Sets

The purpose of this section is to describe various simulated data sets, which are to be replicated

50 times for the sake of simulation. The aim is to compare a number of different clustering algo-

rithms and estimate the number of clusters by using various clustering validation indexes. The first

four data set scenarios are simulated as explained in Tibshirani and Walther (2005), and the other

scenarios are obtained from the clusterSim R package, see Walesiak et al. (2011).

The results of different combination scenarios of aggregated clustering validation indexes with

different standardisation techniques are compared with various clustering validation indexes (called

here “single criteria”) as described in Section 6.1.5. In Section 7.1.8, all the results for different
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simulation scenarios are shown. In addition, Principal Component Analysis is used with 2 or 3

principal components for visualisation of the cluster points. Three dimensional plots do not fit on

this two dimensional document, and there is no dynamic plot tool on the hard copy of this thesis

with which the reader can explore the three dimensional plots. Instead, three dimensional graphs

are rotated here and then presented as a two dimensional projection in such a way that readers

can visualise the plots and identify the distinction between clusters in an optimal way. Note that 8

different clustering algorithms are analysed, but the results (See Section 7.1.8) are only plotted for

the two clustering algorithms with the highest adjusted Rand index values based on the given true

number of clusters in the simulation scenarios below. Numbers in the tables in Section 7.1.8 are

counts out of 50 trials for different clustering validation indexes, and the number assigned corre-

sponds to the number of times the values of clustering validation indexes are maximised for a given

number of clusters. In addition, the average Rand index (ARI) value for each clustering validation

criterion on the tables in 7.1.8 are computed by averaging the ARI values that are selected based

on the maximum clustering validation index value over different numbers of clusters from each

simulation.

7.1.1 Three clusters in two dimensions

• Description: This simulated data set is generated based on information from three clusters

in two dimensions. The clusters are normally distributed variables with (25, 25, 50) obser-

vations, centred at (0, 0), (0, 5), and (5,−3), where each covariance matrix is the identity

matrix, Σ = I2.

• Analysis: Table 7.3 provides the average of the adjusted Rand index values from 50 sim-

ulations. The results indicate that PAM clustering and model based clustering algorithms

have the two highest adjusted Rand index values, therefore clustering validation index re-

sults for these clustering methods will be analysed in detail. Figure 7.1 shows the solutions

for K = 3 clusters where the cluster points of these two clustering algorithms are randomly

selected from 50 replications.

Next, clustering validation index results for two clustering algorithms are shown in Ta-

ble 7.10 and 7.11. For the PAM algorithm, both the single criteria and the clustering val-

idation indexes aggregated with the combination of average within and between cluster dis-

similarities for both Z-score and range standardisations did quite well in estimating the cor-

rect number of clusters, whereas the aggregated ones with the widest gap and the separation

index were not successful. The ARI values in Table 7.10 and 7.11, which are larger than

0.9 in most cases, also indicate that the majority of the clustering validation indexes perform
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(a) PAM clustering (b) Model based clustering

Figure 7.1: Three clusters in two dimensions - Two dimensional representation of a randomly selected

simulated data set out of 50 replications

well. When model-based clustering is applied, the same conclusion can be made for most of

the clustering validation indexes, but not for prediction strength and the bootstrap method,

which simply measure the stability. Therefore, the stability measurement for model based

clustering algorithm can be problematic to estimate the correct number of clusters for this

specific simulated data set scenario.

7.1.2 Four clusters in 10 dimensions

• Description: For this specific simulated scenario, four clusters are generated with 10 vari-

ables. Each cluster was randomly chosen to have 25 or 50 normally distributed observations,

with centres randomly chosen as N(0, 1.9I10). Any simulation with clusters having mini-

mum distance less than 1.0 units between them was discarded. In this scenario, the settings

are such that about one-half of the random realizations were discarded.

• Analysis: In this simulated setting, the number of variables is increased compared to the

previous simulation scenario, and the simulated scenario was designed based on four num-

bers of clusters. The adjusted Rand index values in Table 7.4 indicate that PAM and model

based clustering algorithms are the best solutions for this specific scenario. Figure 7.2 shows

two dimensional representation and two dimensional projections of three dimensions of this

data set for these two different clustering algorithms.

Table 7.12 and 7.13 present various clustering validation index results. Based on any of the

single criterion results, the majority of replications properly estimate the number of clusters

152



(a) PAM clustering - Two dimensional representation (b) Model based clustering - Two dimensional representa-
tion

(c) PAM clustering - Two dimensional projections of three
dimensions

(d) Model based clustering - Two dimensional projections
of three dimensions

Figure 7.2: Four clusters in 10 dimensions - Two dimensional representation and two dimensional projec-

tions of three dimensions (PCA) of a randomly selected simulated data set out of 50 replications

153



when the PAM algorithm is applied. For both clustering algorithms, the CVNN Index with

different κ selections predicts the correct number of clusters well, while PG Index is the least

successful comparing against the other validation criteria. For model based clustering, two

stability measurements are again not able to estimate the correct number of clusters well.

On the other hand, aggregation of clustering validation index scenarios, which are calibrated

with average within and between cluster dissimilarities, indicate that range standardisation

gives better estimation of the correct number of clusters thanZ-score standardisation for both

clustering algorithms, but PAM clustering gives even more accurate predictions than model

based clustering. The aggregated scenarios with the widest gap and the separation index

are usually not very successful in predicting the correct number of clusters, especially when

model based clustering is applied for both standardisation techniques. The same conclusions

can be made by looking at the ARI values.

7.1.3 Four clusters in two dimensions that are not well separated

• Description: This simulated scenario is more challenging than the other previous scenarios

for estimating the given true number of clusters. The four numbers of clusters are generated

in a two dimensional data set, but the clusters are not well separated at this time. Each cluster

has 25 normally distributed observations, centred at (0, 0), (0, 2.5), (2.5, 0) and (2.5, 2.5),

where each covariance matrix is the identity matrix, Σ = I2.

• Analysis: Table 7.5 shows that the adjusted Rand index values of clustering algorithms

against the true classes are greater than 0.5, which makes it difficult to predict the correct

cluster labels based on the given scenario. However, as highlighted in Table 7.5, two clus-

tering algorithms (PAM and K-means when K = 4) with the highest adjusted Rand index

values will be chosen for the analysis of clustering validation indexes. Figure 7.3 shows that

the simulated data set for both clustering algorithms are very homogeneous, so that it is not

easy to detect the correct number of clusters for this specific type of data set.

Tables 7.14 and 7.15 provide the clustering validation index results. For the PAM algorithm,

the PG Index and the CVNN index (κ = 10) are both successful in predicting the majority

of simulations. The other single criteria did not perform well. One of the interesting results

is that prediction strength favours for a small number of clusters, whereas the other stability

measurement, the bootstrap technique, estimates the largest number of clusters for this sort

of homogeneous data set. Aggregation of different validation index results did not perform

well in many instances with one exception, which is the aggregation of average within dis-

similarities, average between dissimilarities, PG Index and prediction strength by applying
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(a) PAM clustering (b) K-means clustering

Figure 7.3: Four clusters in two dimensions that are not well separated - Two dimensional representation of

a randomly selected simulated data set out of 50 replications

the range standardisation technique. For K-means algorithm, the same arguments (as made

for PAM) can be made for many instances, but there are some little differences for some

cases.

7.1.4 Two elongated clusters in three dimensions

• Description: Two elongated clusters with three dimensional data are generated for this sim-

ulated scenario. Each cluster is generated as follows: Set x1 = x2 = x3 = t with t taking on

100 equally spaced values from−.5 to .5 (t = {−0.50,−0.49, . . . , 0.49, 0.50}). Then Gaus-

sian noise with standard deviation .1 is added to each feature (εi ∼ N(0, 0.1) and xi = t+ εi

for i = 1, 2, 3). Cluster 2 is generated in the same way, except that the value 1 is then added

to each feature (εi ∼ N(0, 1) and xi = t+ εi for i = 1, 2, 3).

• Analysis: The adjusted Rand index values in Table 7.6 show that the clustering algorithms

almost perfectly predict the correct cluster labels. For analysis of clustering validation in-

dexes, I selected two hierarchical clustering algorithms (complete and average linkage) in

order to observe different clustering algorithms. Two and three dimensional scatter-plot rep-

resentations are displayed in Figure 7.4.

Table 7.16 and 7.17 compares different validation indexes, and the results indicate that sev-

eral of these criteria predict the correct number of clusters well, but the CVNN Index failed

to estimate the true number of clusters. The results obtained from the aggregation of different

clustering validation aspects almost certainly predict the correct number of clusters.
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(a) Complete linkage - Two dimensional representation (b) Average linkage - Two dimensional representation

(c) Complete linkage - Two dimensional projections of
three dimensions

(d) Average linkage - Two dimensional projections of
three dimensions

Figure 7.4: Two close and elongated clusters in three dimensions - Two dimensional representation and

two dimensional projections of three dimensions (PCA) of a randomly selected simulated data set out of 50

replications
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The next three simulated data sets have quite different cluster shapes than the previous ones.

The simulation scenarios are distributed in such a way that the clusters are irregularly shaped.

7.1.5 Two clusters in two dimensions with ring shapes

• Description: For each point, firstly a random radius r is generated from a uniform distri-

bution with a given interval, then a random angle α ∼ U [0, 2π] is generated and finally the

coordinates of points are calculated as (r ∗ cos(α), r ∗ sin(α)). The shapes.circles2

R function is used, and the parameters in this function are all selected as default, such that

number of objects in each cluster is 180, the range of r for the first (big) ring is [0.75, 0.9],

and the range of r for the second (small) ring is [0.35, 0.5].

• Analysis: Figure 7.5 gives an illustration of this specific simulation. The two clustering

algorithms are chosen based on the adjusted Rand index results in Table 7.7. The results

indicate that there are substantial differences between the clustering algorithms, with single

linkage and spectral clustering algorithms producing good results as they have the tendency

to detect ring shaped clusters well in many situations.

(a) Single linkage (b) Spectral clustering

Figure 7.5: Two clusters in two dimensions with ring shapes - Two dimensional representation of a randomly

selected simulated data set out of 50 replications

Tables 7.18 and 7.19 provide a summary of the clustering validation index results. For this

and the next scenarios, the widest gap and the separation index combination gives better

results than average within dissimilarities and average between dissimilarities. This is due to

the fact that the two former indexes focus on the extreme points of clusters, therefore ring-

shaped clusters can be identified in a better way by these clustering validation indexes. For
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both clustering methods, the results indicate that the Dunn Index and the prediction strength

predict the correct number of clusters well, while the other single criteria do not. That is

because the other single criteria are more closely associated with compact clusters. On the

other hand, the bootstrap method is quite successful for single linkage, but not for spectral

clustering. The aggregation index and the ARI results in Table 7.18 and 7.19 show that the

combination of the widest gap, the separation index and prediction strength methodologies

predict the correct number of clusters well, whereas any combinations with the Pearson

Gamma index does not in most cases.

7.1.6 Two clusters in two dimensions with two moon shapes

• Description: For each point first a random radius r is generated from a uniform distribution

with a given interval, then a random angle α ∼ U [0, 2π], and finally the coordinates of the

points are calculated as (a+ |r ∗cos(α)|, r ∗ sin(α)) for the first shape and (−|r ∗cos(α)|, r ∗
sin(α) − b) for the second shape. The shapes.two.moon R function is used, and the

parameters in this function are all selected as default, such that the number of objects in each

cluster is 180, the range of r for the first and the second shapes are the same, [0.8, 1.2], and

a = −0.4 and b = 1.

• Analysis: Figure 7.6 visualises the cluster points on two dimensional plots for two clustering

algorithms (single linkage and spectral clustering) which have the highest adjusted Rand

index values, see Table 7.8.

(a) Single linkage (b) Spectral clustering

Figure 7.6: Two clusters in two dimensions with two moon shapes - Two dimensional representation of a

randomly selected simulated data set out of 50 replications
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The results, as shown Table 7.20 and 7.21 give some idea of how various clustering valida-

tion index considerations performed. For single linkage, CH Index, ASW Index and CVNN

Index with different κ values predict the correct number of clusters well, while the prediction

by Pearson Gamma Index is not satisfactory. The Dunn Index and prediction strength give

perfect solutions for both clustering algorithms. The indexes aggregated with the widest gap

and the separation index almost surely predict the correct number of clusters well for both

clustering algorithms when any standardisation method is applied. On the other hand, the

clustering validation indexes aggregated with average within and between cluster dissimilar-

ities are unsuccessful in estimating the true number of clusters in many instances, except the

ones calibrated with the stability measurements when single linkage is used.

7.1.7 Two clusters in two dimensions with parabolic shapes

• Description: The final scenario is simulated based on parabolic shaped clusters (first is

given by y = x2, second by y = −(x − a)2 + b with distortion from (−tol,+tol)). The

shapes.worms R function is used, and parameters in this function are all selected as

default, such that the number of objects in each cluster is 180, the range on the x- axis for

the first shape is [−2, 2], and the second shape is [−0.5, 2.5], and a = 1.5 and b = 5.5 with

the tolerance parameter, tol = 1.

• Analysis: Figure 7.7 visualises these shapes when single linkage and spectral clustering

(which again have two highest adjusted Rand index values, see Table 7.9) are applied. The

clustering validation index results are shown in Tables 7.22 and 7.23. For single linkage,

most of the single criteria perform fairly well in predicting the correct number of clusters.

The aggregation of indexes is often successful in estimating the number of clusters, espe-

cially the ones aggregated with the widest gap and the separation index, but Pearson Gamma

Index is not. For spectral clustering, the performances of the Dunn Index and the prediction

strength perform well at predicting the correct number of clusters, while the other single

criteria do not give good results. Different aggregated clustering validation index results

are able to estimate the correct number of clusters well for the majority of the replications,

except the ones calibrated with average within and between cluster dissimilarities.
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(a) Single linkage (b) Spectral clustering

Figure 7.7: Two clusters in two dimensions with parabolic shapes - Two dimensional representation of a

randomly selected simulated data set out of 50 replications

7.1.8 Detailed results of simulated data sets

Adjusted Rand Index results

The following tables present the average of adjusted Rand index values from 50 simulated data

sets.“*” indicates the column corresponding to the correct number of clusters. The highlighted

values are the two highest adjusted Rand index values based on the given true number of clusters

in the simulation scenarios above.

Table 7.3: Three clusters in two dimensions.

Clustering Algorithm
Estimate of Number of Clusters, k̂

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

PAM 0.703 0.990∗ 0.726 0.619 0.533 0.463 0.406 0.366 0.332

K-means 0.726 0.884∗ 0.773 0.653 0.576 0.512 0.452 0.413 0.374

Single linkage 0.556 0.789∗ 0.873 0.893 0.905 0.892 0.891 0.874 0.857

Complete linkage 0.705 0.974∗ 0.840 0.735 0.635 0.562 0.490 0.445 0.410

Average linkage 0.739 0.984∗ 0.948 0.912 0.854 0.771 0.696 0.643 0.560

Ward’s method 0.741 0.984∗ 0.753 0.647 0.564 0.485 0.429 0.393 0.357

Model based clustering 0.744 0.992∗ 0.882 0.792 0.711 0.630 0.547 0.481 0.449

Spectral clustering 0.671 0.907∗ 0.904 0.781 0.659 0.534 0.456 0.411 0.358
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Table 7.4: Four clusters in 10 dimensions.

Clustering Algorithm
Estimate of Number of Clusters, k̂

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

PAM 0.397 0.715 0.943∗ 0.825 0.714 0.637 0.574 0.518 0.475

K-means 0.420 0.688 0.843∗ 0.829 0.767 0.683 0.621 0.586 0.569

Single linkage 0.263 0.406 0.522∗ 0.565 0.586 0.618 0.624 0.634 0.647

Complete linkage 0.389 0.686 0.938∗ 0.884 0.830 0.758 0.700 0.635 0.588

Average linkage 0.364 0.675 0.931∗ 0.925 0.924 0.913 0.898 0.878 0.860

Ward’s method 0.414 0.725 0.941∗ 0.841 0.742 0.666 0.609 0.562 0.515

Model based clustering 0.416 0.743 0.955∗ 0.861 0.770 0.706 0.654 0.605 0.561

Spectral Clustering 0.382 0.679 0.899∗ 0.872 0.787 0.702 0.609 0.562 0.509

Table 7.5: Four clusters in two dimensions that are not well separated.

Clustering Algorithm
Estimate of Number of Clusters, k̂

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

PAM 0.253 0.391 0.487∗ 0.437 0.393 0.356 0.321 0.296 0.275

K-means 0.291 0.394 0.478∗ 0.428 0.388 0.343 0.316 0.294 0.282

Single linkage 0.000 0.000 0.003∗ 0.017 0.018 0.020 0.025 0.036 0.049

Complete linkage 0.195 0.313 0.351∗ 0.347 0.344 0.327 0.308 0.296 0.277

Average linkage 0.099 0.221 0.326∗ 0.359 0.362 0.364 0.349 0.338 0.318

Ward’s method 0.234 0.358 0.412∗ 0.395 0.373 0.349 0.322 0.301 0.281

Model based clustering 0.240 0.341 0.444∗ 0.427 0.388 0.354 0.335 0.315 0.290

Spectral clustering 0.150 0.302 0.380∗ 0.398 0.354 0.338 0.310 0.294 0.273

Table 7.6: Two close and elongated clusters in three dimensions.

Clustering Algorithm
Estimate of Number of Clusters, k̂

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

PAM 0.995∗ 0.751 0.539 0.424 0.343 0.299 0.262 0.233 0.210

K-means 0.995∗ 0.750 0.597 0.472 0.430 0.353 0.291 0.274 0.229

Single linkage 1.000∗ 0.990 0.979 0.968 0.957 0.935 0.923 0.901 0.884

Complete linkage 1.000∗ 0.768 0.563 0.456 0.381 0.334 0.293 0.262 0.240

Average linkage 1.000∗ 0.778 0.598 0.508 0.436 0.396 0.358 0.334 0.310

Ward’s method 1.000∗ 0.761 0.542 0.435 0.364 0.312 0.270 0.241 0.218

Model based clustering 1.000∗ 0.771 0.539 0.434 0.366 0.320 0.286 0.262 0.243

Spectral clustering 1.000∗ 0.791 0.624 0.487 0.413 0.358 0.315 0.278 0.255

Table 7.7: Two clusters in two dimensions with untypical ring shapes.

Clustering Algorithm
Estimate of Number of Clusters, k̂

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

PAM 0.000∗ 0.001 0.002 0.022 0.059 0.096 0.132 0.156 0.164

K-means 0.001∗ 0.001 0.001 0.003 0.015 0.051 0.077 0.104 0.125

Single linkage 1.000∗ 0.824 0.733 0.690 0.663 0.642 0.624 0.612 0.597

Complete linkage 0.006∗ 0.007 0.007 0.009 0.013 0.022 0.032 0.046 0.057

Average linkage 0.008∗ 0.011 0.017 0.037 0.057 0.083 0.116 0.144 0.173

Ward’s method 0.006∗ 0.009 0.013 0.023 0.045 0.072 0.100 0.129 0.147

Model based clustering 0.001∗ 0.001 0.018 0.054 0.110 0.152 0.169 0.186 0.192

Spectral clustering 1.000∗ 0.773 0.642 0.491 0.421 0.360 0.325 0.276 0.258
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Table 7.8: Two clusters in two dimensions with two moon shapes.

Clustering Algorithm
Estimate of Number of Clusters, k̂

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

PAM 0.338∗ 0.339 0.382 0.371 0.335 0.290 0.253 0.228 0.203

K-means 0.293∗ 0.308 0.333 0.341 0.327 0.295 0.262 0.235 0.209

Single linkage 1.000∗ 0.925 0.825 0.784 0.725 0.655 0.626 0.584 0.555

Complete linkage 0.420∗ 0.351 0.298 0.279 0.302 0.282 0.266 0.237 0.212

Average linkage 0.405∗ 0.334 0.391 0.396 0.361 0.311 0.268 0.239 0.215

Ward’s method 0.394∗ 0.345 0.392 0.384 0.350 0.305 0.264 0.235 0.210

Model based clustering 0.390∗ 0.263 0.502 0.407 0.338 0.299 0.259 0.231 0.208

Spectral clustering 1.000∗ 0.811 0.600 0.494 0.396 0.366 0.315 0.284 0.239

Table 7.9: Two clusters in two dimensions with untypical parabolic shapes.

Clustering Algorithm
Estimate of Number of Clusters, k̂

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

PAM 0.509∗ 0.401 0.366 0.350 0.303 0.264 0.237 0.214 0.198

K-means 0.525∗ 0.433 0.407 0.361 0.312 0.284 0.259 0.228 0.207

Single linkage 0.980∗ 0.931 0.902 0.858 0.823 0.787 0.750 0.724 0.693

Complete linkage 0.506∗ 0.473 0.441 0.401 0.368 0.350 0.322 0.278 0.246

Average linkage 0.514∗ 0.498 0.496 0.432 0.407 0.364 0.342 0.317 0.291

Ward’s method 0.518∗ 0.443 0.405 0.367 0.348 0.327 0.280 0.246 0.225

Model based clustering 0.390∗ 0.405 0.437 0.400 0.348 0.297 0.266 0.236 0.215

Spectral clustering 1.000∗ 0.863 0.700 0.591 0.477 0.410 0.356 0.323 0.286

Clustering validation index results

The tables below demonstrate numerous single criteria and various aggregated clustering validation

index considerations for different simulation scenarios. Numbers are counts out of 50 trials for

different clustering validation indexes. “*” indicates column corresponding to correct number of

clusters. The ARI’s are the average of adjusted Rand index values that are selected by the maximum

clustering validation index value over different numbers of clusters from each simulation.
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Table 7.10: Three clusters in two dimensions - PAM Algorithm.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.9904 0 50∗ 0 0 0 0 0 0 0

ASW Index 0.9609 6 44∗ 0 0 0 0 0 0 0

Dunn Index 0.9372 11 39∗ 0 0 0 0 0 0 0

Pearson gamma (PG) 0.9904 0 50∗ 0 0 0 0 0 0 0

Prediction strength (PS) 0.9659 5 45∗ 0 0 0 0 0 0 0

N select boot (NSB) 0.9904 0 50∗ 0 0 0 0 0 0 0

CVNN (κ = 5) 0.9593 0 45∗ 4 1 0 0 0 0 0

CVNN (κ = 10) 0.9904 0 50∗ 0 0 0 0 0 0 0

CVNN (κ = 20) 0.9904 0 50∗ 0 0 0 0 0 0 0

Z-score aggregation

Ave.wit + Ave.bet 0.9904 0 50∗ 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG 0.9904 0 50∗ 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PS 0.9904 0 50∗ 0 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.9904 0 50∗ 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.9904 0 50∗ 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.9904 0 50∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind 0.9231 14 36∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.9372 11 39∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PS 0.9423 10 40∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.9423 10 40∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 0.9469 9 41∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.9469 9 41∗ 0 0 0 0 0 0 0

Range aggregation

Ave.wit + Ave.bet 0.9904 0 50∗ 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG 0.9904 0 50∗ 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PS 0.9904 0 50∗ 0 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.9904 0 50∗ 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.9904 0 50∗ 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.9904 0 50∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind 0.8923 20 30∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.9028 18 32∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PS 0.9372 11 39∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.9322 12 38∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 0.9271 13 37∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.9322 12 38∗ 0 0 0 0 0 0 0

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index
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Table 7.11: Three clusters in two dimensions - Model based clustering.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.9915 0 50∗ 0 0 0 0 0 0 0

ASW Index 0.9624 0 44∗ 0 0 0 0 0 0 0

Dunn Index 0.9227 14 32∗ 4 0 0 0 0 0 0

Pearson gamma (PG) 0.9911 0 49∗ 1 0 0 0 0 0 0

Prediction strength (PS) 0.8299 33 17∗ 0 0 0 0 0 0 0

N select boot (NSB) 0.8841 22 28∗ 0 0 0 0 0 0 0

CVNN (κ = 5) 0.9735 0 47∗ 2 1 0 0 0 0 0

CVNN (κ = 10) 0.9915 0 50∗ 0 0 0 0 0 0 0

CVNN (κ = 20) 0.9915 0 50∗ 0 0 0 0 0 0 0

Z-score aggregation

Ave.wit + Ave.bet 0.9911 0 49∗ 1 0 0 0 0 0 0

Ave.wit + Ave.bet + PG 0.9911 0 49∗ 1 0 0 0 0 0 0

Ave.wit + Ave.bet + PS 0.9864 1 48∗ 1 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.9911 0 49∗ 1 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.9911 0 49∗ 1 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.9911 0 49∗ 1 0 0 0 0 0 0

Wid.gap + Sep.Ind 0.8713 24 21∗ 3 2 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.9176 15 31∗ 3 1 0 0 0 0 0

Wid.gap + Sep.Ind + PS 0.8598 27 21∗ 2 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.8838 22 26∗ 2 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 0.8940 20 28∗ 2 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.9184 15 33∗ 2 0 0 0 0 0 0

Range aggregation

Ave.wit + Ave.bet 0.9911 0 49∗ 1 0 0 0 0 0 0

Ave.wit + Ave.bet + PG 0.9911 0 49∗ 1 0 0 0 0 0 0

Ave.wit + Ave.bet + PS 0.9911 1 48∗ 1 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.9864 0 49∗ 1 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.9911 0 49∗ 1 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.9911 0 49∗ 1 0 0 0 0 0 0

Wid.gap + Sep.Ind 0.8339 32 15∗ 3 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.8543 28 20∗ 2 0 0 0 0 0 0

Wid.gap + Sep.Ind + PS 0.8552 28 22∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.8405 31 19∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 0.8501 29 21∗ 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.8644 26 24∗ 0 0 0 0 0 0 0

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index
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Table 7.12: Four clusters in 10 dimensions - PAM Algorithm.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.8609 7 6 37∗ 0 0 0 0 0 0

ASW Index 0.8065 10 8 32∗ 0 0 0 0 0 0

Dunn Index 0.7945 11 3 33∗ 1 0 0 0 1 1

Pearson gamma (PG) 0.7957 9 11 30∗ 0 0 0 0 0 0

Prediction strength (PS) 0.8098 12 3 35∗ 0 0 0 0 0 0

N select boot (NSB) 0.8477 9 2 39∗ 0 0 0 0 0 0

CVNN (κ = 5) 0.9172 1 5 44∗ 0 0 0 0 0 0

CVNN (κ = 10) 0.9063 1 8 41∗ 0 0 0 0 0 0

CVNN (κ = 20) 0.8996 2 8 40∗ 0 0 0 0 0 0

Z-score aggregation

Ave.wit + Ave.bet 0.7484 12 12 26∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + PG 0.7723 10 12 28∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + PS 0.7837 13 6 31∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.8098 10 7 33∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.7888 12 7 31∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.7999 10 8 32∗ 0 0 0 0 0 0

Wid.gap + Sep.Ind 0.7053 18 8 23∗ 1 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.7433 16 6 28∗ 0 0 0 0 0 0

Wid.gap + Sep.Ind + PS 0.7483 17 4 29∗ 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.7658 15 3 32∗ 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 0.7870 14 3 33∗ 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.8006 12 3 35∗ 0 0 0 0 0 0

Range aggregation

Ave.wit + Ave.bet 0.8871 1 7 39∗ 2 0 0 0 0 1

Ave.wit + Ave.bet + PG 0.8525 4 8 37∗ 1 0 0 0 0 0

Ave.wit + Ave.bet + PS 0.8546 4 5 41∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.8901 1 5 43∗ 0 0 0 0 0 1

Ave.wit + Ave.bet + PG + PS 0.9097 7 5 38∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.8982 2 5 42∗ 1 0 0 0 0 0

Wid.gap + Sep.Ind 0.7053 18 8 23∗ 1 0 0 0 0 1

Wid.gap + Sep.Ind + PG 0.7259 17 7 26∗ 0 0 0 0 0 0

Wid.gap + Sep.Ind + PS 0.7640 16 3 31∗ 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.7427 18 3 29∗ 0 0 0 0 0 1

Wid.gap + Sep.Ind + PG + PS 0.7747 15 2 33∗ 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.7776 14 3 33∗ 0 0 0 0 0 0

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index

165



Table 7.13: Four clusters in 10 dimensions - Model based clustering.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.8781 6 6 38∗ 0 0 0 0 0 0

ASW Index 0.8153 9 9 32∗ 0 0 0 0 0 0

Dunn Index 0.7958 12 5 32∗ 1 0 0 0 1 1

Pearson gamma (PG) 0.7986 7 15 28∗ 0 0 0 0 0 0

Prediction strength (PS) 0.6324 28 8 14∗ 0 0 0 0 0 0

N select boot (NSB) 0.7488 13 5 9∗ 23 0 0 0 0 0

CVNN (κ = 5) 0.9357 0 5 45∗ 0 0 0 0 0 0

CVNN (κ = 10) 0.9344 1 4 45∗ 0 0 0 0 0 0

CVNN (κ = 20) 0.9188 2 7 41∗ 0 0 0 0 0 0

Z-score aggregation

Ave.wit + Ave.bet 0.7541 11 15 24∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + PG 0.7762 9 15 26∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + PS 0.6737 22 11 17∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.7924 11 8 26∗ 5 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.7417 16 9 25∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.7775 12 10 25∗ 3 0 0 0 0 0

Wid.gap + Sep.Ind 0.5838 28 12 9∗ 0 0 0 0 1 0

Wid.gap + Sep.Ind + PG 0.7193 16 12 21∗ 1 0 0 0 0 0

Wid.gap + Sep.Ind + PS 0.6017 31 5 14∗ 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.7088 18 11 20∗ 1 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 0.6925 20 11 18∗ 1 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.7555 13 13 23∗ 1 0 0 0 0 0

Range aggregation

Ave.wit + Ave.bet 0.8944 1 7 38∗ 1 0 1 0 1 1

Ave.wit + Ave.bet + PG 0.8375 4 13 32∗ 0 1 0 0 0 0

Ave.wit + Ave.bet + PS 0.7889 14 6 30∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.7836 4 5 28∗ 13 0 0 0 0 1

Ave.wit + Ave.bet + PG + PS 0.8791 14 5 31∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.8623 5 7 32∗ 6 0 0 0 0 0

Wid.gap + Sep.Ind 0.5597 30 13 7∗ 0 0 0 0 1 0

Wid.gap + Sep.Ind + PG 0.6949 17 14 18∗ 1 0 0 0 0 0

Wid.gap + Sep.Ind + PS 0.6868 21 10 19∗ 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.5787 33 5 12∗ 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 0.6895 20 10 19∗ 1 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.7269 16 12 21∗ 1 0 0 0 0 0

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index
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Table 7.14: Four clusters in two dimensions that are not well separated - PAM Algorithm.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.3821 0 1 16∗ 1 2 5 3 10 12

ASW Index 0.4177 3 15 18∗ 1 3 3 1 1 5

Dunn Index 0.3434 1 2 3∗ 3 4 9 11 6 11

Pearson gamma (PG) 0.4642 0 12 29∗ 8 1 0 0 0 0

Prediction strength (PS) 0.2792 43 5 2∗ 0 0 0 0 0 0

N select boot (NSB) 0.2774 1 0 0∗ 0 0 0 0 2 47

CVNN (κ = 5) 0.4313 2 9 18∗ 7 5 2 6 1 0

CVNN (κ = 10) 0.4542 0 10 28∗ 6 4 0 2 0 0

CVNN (κ = 20) 0.4424 2 23 22∗ 2 1 0 0 0 0

Z-score aggregation

Ave.wit + Ave.bet 0.3657 5 18 6∗ 5 1 2 0 1 12

Ave.wit + Ave.bet + PG 0.4429 2 18 21∗ 7 1 1 0 0 0

Ave.wit + Ave.bet + PS 0.3494 24 20 6∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.2989 1 0 2∗ 1 1 1 1 9 34

Ave.wit + Ave.bet + PG + PS 0.4158 7 25 16∗ 2 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.4252 1 5 20∗ 8 5 3 2 3 3

Wid.gap + Sep.Ind 0.3136 1 1 1∗ 0 4 4 4 8 27

Wid.gap + Sep.Ind + PG 0.3886 0 4 10∗ 11 4 8 3 3 7

Wid.gap + Sep.Ind + PS 0.3681 17 9 12∗ 2 2 3 1 1 3

Wid.gap + Sep.Ind + NSB 0.2903 1 0 0∗ 0 1 2 3 8 35

Wid.gap + Sep.Ind + PG + PS 0.4241 8 16 17∗ 6 2 1 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.3495 1 0 6∗ 4 3 7 5 8 16

Range aggregation

Ave.wit + Ave.bet 0.2765 0 0 0∗ 0 0 0 0 5 45

Ave.wit + Ave.bet + PG 0.3205 0 0 3∗ 3 3 7 3 10 21

Ave.wit + Ave.bet + PS 0.4546 8 11 17∗ 5 3 1 2 1 2

Ave.wit + Ave.bet + NSB 0.4126 0 0 0∗ 0 0 0 0 2 48

Ave.wit + Ave.bet + PG + PS 0.2757 3 12 27∗ 5 3 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.2806 0 0 2∗ 0 0 1 0 15 34

Wid.gap + Sep.Ind 0.2984 0 0 1∗ 0 1 3 3 12 30

Wid.gap + Sep.Ind + PG 0.3775 0 4 9∗ 9 3 7 4 4 10

Wid.gap + Sep.Ind + PS 0.4098 12 20 13∗ 4 1 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.3752 19 16 11∗ 1 1 1 0 0 1

Wid.gap + Sep.Ind + PG + PS 0.2834 0 0 0∗ 0 0 1 3 5 41

Wid.gap + Sep.Ind + PG + NSB 0.3051 1 0 2∗ 2 0 2 3 12 28

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index
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Table 7.15: Four clusters in two dimensions that are not well separated - K-means algorithm.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.3816 0 1 14∗ 4 3 6 7 9 6

ASW Index 0.4190 2 13 18∗ 3 3 4 3 1 3

Dunn Index 0.3421 1 0 4∗ 6 2 9 4 11 13

Pearson gamma (PG) 0.4383 0 12 20∗ 14 3 1 0 0 0

Prediction strength (PS) 0.2998 46 3 1∗ 0 0 0 0 0 0

N select boot (NSB) 0.2819 0 0 0∗ 0 0 0 0 1 49

CVNN (κ = 5) 0.4328 0 3 21∗ 8 8 7 3 0 0

CVNN (κ = 10) 0.4572 0 7 25∗ 8 8 2 0 0 0

CVNN (κ = 20) 0.4642 2 14 28∗ 2 3 1 0 0 0

Z-score aggregation

Ave.wit + Ave.bet 0.3985 2 6 13∗ 11 5 2 4 6 1

Ave.wit + Ave.bet + PG 0.4217 0 12 15∗ 15 4 3 1 0 0

Ave.wit + Ave.bet + PS 0.3829 20 21 9∗ 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.3466 0 0 9∗ 5 2 2 1 12 19

Ave.wit + Ave.bet + PG + PS 0.4272 7 20 20∗ 3 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.4141 0 4 14∗ 15 4 5 3 5 0

Wid.gap + Sep.Ind 0.3114 3 1 1∗ 2 0 2 6 13 22

Wid.gap + Sep.Ind + PG 0.3756 0 3 9∗ 10 3 4 7 8 6

Wid.gap + Sep.Ind + PS 0.3563 25 8 8∗ 3 0 1 1 0 4

Wid.gap + Sep.Ind + NSB 0.2952 0 0 0∗ 1 0 1 3 11 34

Wid.gap + Sep.Ind + PG + PS 0.4267 7 14 19∗ 8 2 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.3493 0 2 7∗ 5 1 2 6 9 18

Range aggregation

Ave.wit + Ave.bet 0.2891 0 0 0∗ 0 1 1 1 13 34

Ave.wit + Ave.bet + PG 0.3437 0 0 3∗ 8 5 10 6 10 8

Ave.wit + Ave.bet + PS 0.4440 4 15 23∗ 5 2 1 0 0 0

Ave.wit + Ave.bet + NSB 0.4424 0 0 0∗ 0 0 0 0 6 44

Ave.wit + Ave.bet + PG + PS 0.2841 2 16 24∗ 5 2 1 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.3055 0 0 2∗ 1 0 2 4 14 27

Wid.gap + Sep.Ind 0.2998 1 1 1∗ 1 0 0 6 13 27

Wid.gap + Sep.Ind + PG 0.3636 0 3 8∗ 8 2 3 7 8 11

Wid.gap + Sep.Ind + PS 0.4158 12 15 17∗ 4 2 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.3520 28 12 7∗ 2 0 0 0 0 1

Wid.gap + Sep.Ind + PG + PS 0.2907 0 0 0∗ 0 0 0 2 12 36

Wid.gap + Sep.Ind + PG + NSB 0.3220 0 0 5∗ 1 0 3 5 13 23

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index
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Table 7.16: Two close and elongated clusters in three dimensions - Complete linkage.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.7548 23∗ 9 8 4 6 0 0 0 0

ASW Index 1.0000 50∗ 0 0 0 0 0 0 0 0

Dunn Index 1.0000 50∗ 0 0 0 0 0 0 0 0

Pearson gamma (PG) 0.9950 49∗ 1 0 0 0 0 0 0 0

Prediction strength (PS) 0.9953 49∗ 1 0 0 0 0 0 0 0

N select boot (NSB) 0.9748 45∗ 4 1 0 0 0 0 0 0

CVNN (κ = 5) 0.5191 1∗ 8 19 11 8 3 0 0 0

CVNN (κ = 10) 0.5160 1∗ 6 24 9 7 3 0 0 0

CVNN (κ = 20) 0.5790 3∗ 10 29 3 5 0 0 0 0

Z-score aggregation

Ave.wit + Ave.bet 0.9903 48∗ 2 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG 0.9950 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PS 0.9950 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.9950 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.9950 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.9950 49∗ 1 0 0 0 0 0 0 0

Wid.gap + Sep.Ind 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Range aggregation

Ave.wit + Ave.bet 0.9903 48∗ 2 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG 0.9950 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PS 0.9950 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.9950 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.9950 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.9950 49∗ 1 0 0 0 0 0 0 0

Wid.gap + Sep.Ind 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index
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Table 7.17: Two close and elongated clusters in three dimensions - Average linkage.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.7427 22∗ 8 11 3 3 2 1 0 0

ASW Index 1.0000 50∗ 0 0 0 0 0 0 0 0

Dunn Index 1.0000 50∗ 0 0 0 0 0 0 0 0

Pearson gamma (PG) 0.9950 48∗ 2 0 0 0 0 0 0 0

Prediction strength (PS) 1.0000 50∗ 0 0 0 0 0 0 0 0

N select boot (NSB) 0.9952 49∗ 1 0 0 0 0 0 0 0

CVNN (κ = 5) 0.5214 3∗ 6 19 8 7 3 4 0 0

CVNN (κ = 10) 0.5327 3∗ 7 20 8 8 2 2 0 0

CVNN (κ = 20) 0.5754 3∗ 11 25 6 4 1 0 0 0

Z-score aggregation

Ave.wit + Ave.bet 0.9903 48∗ 2 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG 0.9952 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PS 0.9952 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.9952 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.9952 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.9952 49∗ 1 0 0 0 0 0 0 0

Wid.gap + Sep.Ind 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Range aggregation

Ave.wit + Ave.bet 0.9903 48∗ 2 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG 0.9952 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PS 0.9952 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.9952 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.9952 49∗ 1 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.9952 49∗ 1 0 0 0 0 0 0 0

Wid.gap + Sep.Ind 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index
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Table 7.18: Two clusters in two dimensions with untypical ring shapes - Single linkage.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.6458 0∗ 4 8 10 11 6 5 3 0

ASW Index 0.7106 2∗ 17 13 8 6 2 1 1 0

Dunn Index 1.0000 50∗ 0 0 0 0 0 0 0 0

Pearson gamma (PG) 0.6171 0∗ 0 0 3 7 4 11 15 0

Prediction strength (PS) 1.0000 50∗ 0 0 0 0 0 0 0 0

N select boot (NSB) 0.9006 37∗ 0 0 0 0 3 2 5 0

CVNN (κ = 5) 0.7003 2∗ 8 20 6 9 3 1 1 0

CVNN (κ = 10) 0.7359 5∗ 15 16 7 5 2 0 0 0

CVNN (κ = 20) 0.7849 11∗ 20 12 4 3 0 0 0 0

Z-score aggregation

Ave.wit + Ave.bet 0.6188 0∗ 0 0 3 7 4 13 15 8

Ave.wit + Ave.bet + PG 0.6184 0∗ 0 0 3 7 4 13 14 9

Ave.wit + Ave.bet + PS 0.9257 36∗ 9 3 2 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.6178 0∗ 0 0 0 4 11 9 13 13

Ave.wit + Ave.bet + PG + PS 0.6728 0∗ 9 7 14 10 2 7 1 0

Ave.wit + Ave.bet + PG + NSB 0.6160 0∗ 0 0 0 4 9 11 13 13

Wid.gap + Sep.Ind 0.9989 49∗ 1 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.6399 0∗ 0 0 6 11 9 7 9 8

Wid.gap + Sep.Ind + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.9829 47∗ 0 0 1 1 0 1 0 0

Wid.gap + Sep.Ind + PG + PS 0.9854 47∗ 3 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.6342 0∗ 0 1 2 6 11 10 12 8

Range aggregation

Ave.wit + Ave.bet 0.6137 0∗ 0 0 1 7 5 10 15 12

Ave.wit + Ave.bet + PG 0.6145 0∗ 0 0 2 7 4 10 16 11

Ave.wit + Ave.bet + PS 0.6565 0∗ 5 6 13 11 3 9 3 0

Ave.wit + Ave.bet + NSB 0.9257 35∗ 12 3 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.6157 0∗ 0 0 0 3 10 10 13 14

Ave.wit + Ave.bet + PG + NSB 0.6142 0∗ 0 0 0 4 10 8 13 15

Wid.gap + Sep.Ind 0.9989 49∗ 1 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.6418 0∗ 0 0 8 12 8 7 8 7

Wid.gap + Sep.Ind + PS 0.9902 48∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 1.0000 50∗ 0 0 0 1 0 1 0 0

Wid.gap + Sep.Ind + PG + PS 0.9883 48∗ 2 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.6334 0∗ 0 0 2 7 11 11 11 8

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index
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Table 7.19: Two clusters in two dimensions with untypical ring shapes - Spectral clustering.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.3241 0∗ 2 2 0 5 4 11 12 14

ASW Index 0.2695 0∗ 0 0 0 2 2 9 16 21

Dunn Index 1.0000 50∗ 0 0 0 0 0 0 0 0

Pearson gamma (PG) 0.4287 0∗ 1 6 8 6 5 8 7 9

Prediction strength (PS) 1.0000 50∗ 0 0 0 0 0 0 0 0

N select boot (NSB) 0.2570 0∗ 0 0 0 0 0 0 1 49

CVNN (κ = 5) 0.4168 0∗ 6 7 5 4 9 9 7 3

CVNN (κ = 10) 0.3884 0∗ 4 6 6 8 7 10 4 5

CVNN (κ = 20) 0.3998 0∗ 3 9 10 7 7 7 5 2

Z-score aggregation

Ave.wit + Ave.bet 0.4507 0∗ 7 6 6 7 4 4 7 9

Ave.wit + Ave.bet + PG 0.4190 0∗ 3 5 8 7 3 6 7 11

Ave.wit + Ave.bet + PS 0.5206 0∗ 14 9 7 4 3 2 6 5

Ave.wit + Ave.bet + NSB 0.2654 0∗ 0 0 0 0 1 2 15 32

Ave.wit + Ave.bet + PG + PS 0.4856 0∗ 11 6 8 7 3 2 7 6

Ave.wit + Ave.bet + PG + NSB 0.3067 0∗ 0 1 1 2 2 7 14 23

Wid.gap + Sep.Ind 0.9989 49∗ 1 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.7049 2∗ 18 20 6 3 1 0 0 0

Wid.gap + Sep.Ind + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.7520 16∗ 4 15 5 2 1 2 1 4

Wid.gap + Sep.Ind + PG + PS 0.9470 40∗ 7 3 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.5526 0∗ 6 14 9 3 4 3 5 6

Range aggregation

Ave.wit + Ave.bet 0.3169 0∗ 1 3 1 4 3 7 12 19

Ave.wit + Ave.bet + PG 0.3504 0∗ 1 4 2 6 3 7 11 16

Ave.wit + Ave.bet + PS 0.4087 0∗ 5 5 3 6 4 5 10 12

Ave.wit + Ave.bet + NSB 0.3877 0∗ 7 4 1 4 2 4 13 15

Ave.wit + Ave.bet + PG + PS 0.2605 0∗ 0 0 0 0 1 1 15 33

Ave.wit + Ave.bet + PG + NSB 0.2822 0∗ 0 1 0 0 1 7 15 26

Wid.gap + Sep.Ind 0.9989 49∗ 1 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.7184 3∗ 19 19 6 2 1 0 0 0

Wid.gap + Sep.Ind + PS 0.9422 39∗ 8 3 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 0.7432 15∗ 4 16 5 2 1 1 2 4

Wid.gap + Sep.Ind + PG + NSB 0.5709 0∗ 6 16 9 3 4 2 4 6

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index
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Table 7.20: Two clusters in two dimensions with two moon shapes - Single linkage.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.8744 37∗ 2 6 0 0 0 4 1 0

ASW Index 0.9073 40∗ 1 6 0 1 1 1 0 0

Dunn Index 1.0000 50∗ 0 0 0 0 0 0 0 0

Pearson gamma (PG) 0.6262 0∗ 3 6 6 4 12 4 10 5

Prediction strength (PS) 1.0000 50∗ 0 0 0 0 0 0 0 0

N select boot (NSB) 1.0000 50∗ 0 0 0 0 0 0 0 0

CVNN (κ = 5) 0.8860 32∗ 7 10 0 0 0 1 0 0

CVNN (κ = 10) 0.8935 32∗ 8 10 0 0 0 0 0 0

CVNN (κ = 20) 0.9058 35∗ 7 8 0 0 0 0 0 0

Z-score aggregation

Ave.wit + Ave.bet 0.6552 3∗ 7 4 5 3 9 4 11 4

Ave.wit + Ave.bet + PG 0.6343 0∗ 7 4 5 4 11 5 10 4

Ave.wit + Ave.bet + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.9405 41∗ 6 0 1 0 0 1 1 0

Ave.wit + Ave.bet + PG + PS 0.9838 46∗ 4 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.7363 16∗ 6 4 5 2 6 4 5 2

Wid.gap + Sep.Ind 0.9999 49∗ 1 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.9616 40∗ 8 1 0 0 0 1 0 0

Wid.gap + Sep.Ind + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.9999 49∗ 1 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.9998 48∗ 2 1 0 0 0 0 0 0

Range aggregation

Ave.wit + Ave.bet 0.6156 1∗ 6 4 2 2 9 5 13 8

Ave.wit + Ave.bet + PG 0.6185 0∗ 6 5 3 2 10 6 12 6

Ave.wit + Ave.bet + PS 0.9905 48∗ 2 0 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.9355 41∗ 5 1 1 0 0 1 1 0

Ave.wit + Ave.bet + PG + NSB 0.8156 28∗ 6 2 3 0 1 2 5 3

Wid.gap + Sep.Ind 0.9999 49∗ 1 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.9998 48∗ 2 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 0.9999 49∗ 1 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.9999 49∗ 1 0 0 0 0 0 0 0

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index
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Table 7.21: Two clusters in two dimensions with two moon shapes - Spectral clustering.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.2955 0∗ 0 3 3 8 5 7 11 13

ASW Index 0.3487 0∗ 0 6 10 12 6 6 7 3

Dunn Index 1.0000 50∗ 0 0 0 0 0 0 0 0

Pearson gamma (PG) 0.4518 0∗ 0 14 21 10 2 3 0 0

Prediction strength (PS) 1.0000 50∗ 0 0 0 0 0 0 0 0

N select boot (NSB) 0.2450 0∗ 0 0 0 0 0 0 6 44

CVNN (κ = 5) 0.3328 0∗ 0 3 8 12 8 6 9 4

CVNN (κ = 10) 0.3377 0∗ 0 5 9 11 7 5 8 5

CVNN (κ = 20) 0.3727 0∗ 2 6 11 12 6 5 5 3

Z-score aggregation

Ave.wit + Ave.bet 0.4046 0∗ 4 3 13 6 9 4 5 6

Ave.wit + Ave.bet + PG 0.4382 0∗ 3 7 19 9 6 5 1 0

Ave.wit + Ave.bet + PS 0.9034 41∗ 0 3 5 1 0 0 0 0

Ave.wit + Ave.bet + NSB 0.2964 0∗ 0 2 2 4 6 8 14 14

Ave.wit + Ave.bet + PG + PS 0.5290 3∗ 5 14 20 6 0 2 0 0

Ave.wit + Ave.bet + PG + NSB 0.3730 0∗ 0 2 13 13 9 7 5 1

Wid.gap + Sep.Ind 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.9838 46∗ 4 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.9838 48∗ 1 0 0 1 0 0 0 0

Range aggregation

Ave.wit + Ave.bet 0.3185 0∗ 1 2 6 6 7 6 11 11

Ave.wit + Ave.bet + PG 0.3798 0∗ 1 2 15 11 8 6 6 1

Ave.wit + Ave.bet + PS 0.4964 4∗ 4 10 16 10 3 3 0 0

Ave.wit + Ave.bet + NSB 0.7062 25∗ 0 4 11 7 1 2 0 0

Ave.wit + Ave.bet + PG + PS 0.2684 0∗ 0 0 2 1 4 7 16 20

Ave.wit + Ave.bet + PG + NSB 0.3198 0∗ 0 2 5 8 7 7 10 11

Wid.gap + Sep.Ind 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index
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Table 7.22: Two clusters in two dimensions with untypical parabolic shapes - Single linkage.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.9931 49∗ 0 0 0 0 0 1 0 0

ASW Index 0.9931 49∗ 0 0 0 0 0 1 0 0

Dunn Index 0.9947 49∗ 0 0 0 0 1 0 8 0

Pearson gamma (PG) 0.7350 0∗ 0 1 5 5 9 6 0 16

Prediction strength (PS) 0.9800 50∗ 0 0 0 0 0 0 0 2

N select boot (NSB) 0.9618 28∗ 16 2 1 1 0 0 0 0

CVNN (κ = 5) 0.9240 24∗ 15 5 5 0 0 1 0 0

CVNN (κ = 10) 0.9590 40∗ 4 3 3 0 0 0 0 0

CVNN (κ = 20) 0.9744 45∗ 3 0 1 0 0 1 0 0

Z-score aggregation

Ave.wit + Ave.bet 0.7495 1∗ 2 5 4 3 5 7 8 15

Ave.wit + Ave.bet + PG 0.7453 0∗ 1 4 3 5 7 7 8 15

Ave.wit + Ave.bet + PS 0.9989 49∗ 0 1 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.9294 23∗ 13 4 0 3 3 1 0 3

Ave.wit + Ave.bet + PG + PS 0.9976 46∗ 3 1 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.7974 10∗ 1 3 3 6 4 6 3 14

Wid.gap + Sep.Ind 0.9726 36∗ 10 3 1 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.9552 24∗ 14 9 2 1 0 0 0 0

Wid.gap + Sep.Ind + PS 0.9800 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.9684 34∗ 15 0 1 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 0.9794 48∗ 2 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.9561 29∗ 15 2 3 1 0 0 0 0

Range aggregation

Ave.wit + Ave.bet 0.7495 1∗ 2 5 4 3 5 7 8 15

Ave.wit + Ave.bet + PG 0.7428 0∗ 1 4 3 5 6 8 7 16

Ave.wit + Ave.bet + PS 0.9989 49∗ 0 1 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.9989 49∗ 0 1 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.9227 23∗ 12 4 0 3 3 2 0 3

Ave.wit + Ave.bet + PG + NSB 0.8245 14∗ 3 3 0 7 4 6 1 12

Wid.gap + Sep.Ind 0.9738 35∗ 12 2 1 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.9594 22∗ 9 11 4 2 1 1 0 0

Wid.gap + Sep.Ind + PS 0.9787 47∗ 3 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.9800 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 0.9666 33∗ 14 1 2 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.9686 27∗ 15 3 3 2 0 0 0 0

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index
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Table 7.23: Two clusters in two dimensions with untypical parabolic shapes - Spectral clustering.

Clustering Validation Index ARI
Estimate of Number of Clusters, k̂

k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6 k̂ = 7 k̂ = 8 k̂ = 9 k̂ = 10

Single Criterion

CH Index 0.3787 3∗ 0 1 4 7 7 6 11 11

ASW Index 0.5571 14∗ 0 1 8 7 3 5 8 4

Dunn Index 0.9951 49∗ 0 1 0 0 0 0 0 0

Pearson gamma (PG) 0.5785 0∗ 3 8 17 13 6 2 1 0

Prediction strength (PS) 1.0000 50∗ 0 0 0 0 0 0 0 0

N select boot (NSB) 0.3119 2∗ 0 0 0 0 0 1 7 40

CVNN (κ = 5) 0.4157 0∗ 0 8 7 7 9 9 8 2

CVNN (κ = 10) 0.3750 2∗ 0 4 3 5 11 9 8 8

CVNN (κ = 20) 0.3983 3∗ 2 6 8 4 7 7 7 8

Z-score aggregation

Ave.wit + Ave.bet 0.5329 0∗ 9 7 8 6 4 7 5 4

Ave.wit + Ave.bet + PG 0.5752 0∗ 4 8 14 12 7 4 1 0

Ave.wit + Ave.bet + PS 0.9774 46∗ 2 2 0 0 0 0 0 0

Ave.wit + Ave.bet + NSB 0.3989 0∗ 0 4 3 3 8 8 14 10

Ave.wit + Ave.bet + PG + PS 0.9178 35∗ 8 4 2 1 0 0 0 0

Ave.wit + Ave.bet + PG + NSB 0.5181 0∗ 2 6 10 11 8 6 5 2

Wid.gap + Sep.Ind 0.9995 49∗ 1 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.9843 40∗ 8 1 1 0 0 0 0 0

Wid.gap + Sep.Ind + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 0.9783 42∗ 6 0 2 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.9597 34∗ 11 3 2 0 0 0 0 0

Range aggregation

Ave.wit + Ave.bet 0.4714 0∗ 3 7 7 6 6 9 8 4

Ave.wit + Ave.bet + PG 0.5782 0∗ 4 9 14 10 7 4 2 0

Ave.wit + Ave.bet + PS 0.9267 38∗ 5 4 2 1 0 0 0 0

Ave.wit + Ave.bet + NSB 0.9774 46∗ 2 2 0 0 0 0 0 0

Ave.wit + Ave.bet + PG + PS 0.3787 0∗ 0 2 3 3 7 8 14 13

Ave.wit + Ave.bet + PG + NSB 0.4922 0∗ 1 5 10 10 8 6 6 4

Wid.gap + Sep.Ind 0.9979 47∗ 3 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG 0.9719 37∗ 9 3 1 0 0 0 0 0

Wid.gap + Sep.Ind + PS 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + NSB 1.0000 50∗ 0 0 0 0 0 0 0 0

Wid.gap + Sep.Ind + PG + PS 0.9645 36∗ 10 2 2 0 0 0 0 0

Wid.gap + Sep.Ind + PG + NSB 0.9470 32∗ 10 4 4 0 0 0 0 0

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index
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7.2 Examination of Aggregating Clustering Validation Indexes
on Real Data Sets

In the previous section, different simulation scenarios that are generated from various types of dis-

tributional settings are examined, whereas here some real data set examples that are not based

on any type of statistical distribution will be considered. In this respect, three popular data

sets obtained from the University of California Irvine Machine Learning Repository (Dheeru and

Karra Taniskidou, 2017) will be analysed for the sake of estimating the number of clusters by us-

ing different clustering validation index considerations. The data sets are visualised in two and

three dimensional graphical representation by using Principal Component Analysis. For each data

set, the adjusted Rand index values are calculated between the given classes and the clusters from

different clustering algorithms. The given number of classes for these data sets does not precisely

imply the correct number of clusters because the cluster analysis is performed without knowing

the true classes. However, these given labels will give us a guidance to externally validate the clus-

tering results. Many different clustering validation index considerations are presented on the line

charts from which users are able to determine for themselves which clustering algorithms and what

number of clusters are the most appropriate. In addition to all this, the adjusted Rand index values

between the given true class labels and three best clusterings from different clustering algorithms

based on the clustering validation index results are computed in order to compare which clustering

validation indexes most adequately estimate the given true class labels. Then, for each clustering

validation index the average of three adjusted Rand index values are calculated to show a more

balanced representation in the event one of these clusterings is much better than the other two. All

these results are presented in Section 7.2.4.

7.2.1 Iris data set

This is one of the best known data sets to be found in the cluster analysis literature. It was first

introduced in Fisher’s (1936) paper. The data set contains 4 continuous variables and 1 categorical

variable with 3 classes containing 50 members each, where each class refers to a type of iris plant.

Two and three dimensional representations of the data set with the given classes are shown in

Figure 7.8, which indicate that one class is separable from the other two; while the latter two are

not separable from each other.

Figure 7.14 displays several single criterion index results, whereas Figure 7.15 and 7.16 give

the solution of different aggregation of clustering validation indexes by applying Z-score and range
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(a) Two dimensional representation (b) Two dimensional projections of three dimensions

Figure 7.8: Two dimensional representation and two dimensional projections of three dimensions (PCA) of

IRIS data set with true class labels

standardisation. CH Index and CVNN (κ = 10) Index results indicate that Ward’s method and

model based clustering for K = 3 are the best choices. These two clustering choices have the

two highest adjusted Rand index values according to Table 7.24. ASW Index, Dunn Index and

prediction strength results favour solutions with a small number of cluster in many instances. The

other clustering validation indexes indicate that single linkage for K = 3 is the best choice.

Figure 7.9 displays some of the clustering solutions according to the cluster validation index

results. Ward’s method and model based clustering forK = 3 are very similar to true class solution

as shown in Figure 7.8, however the data set looks more like two clusters rather than a solution

with three clusters. Two solution for K = 2 is the best choice in many cases, especially based on

the aggregated clustering validation results, see Figure 7.15 and 7.16. According to Table 7.24,

most of the clustering solutions for K = 2 give the same result, where only Ward’s method is

shown. The aggregated index results favour either a two clustering solution or single linkage for

K = 3. Single linkage for K = 3 is actually very similar to the two clustering solution, but the

difference is that one outlying point is clustered as a third cluster.

For the comparison of clustering validation indexes, Table 7.27 presents different adjusted

Rand index values which are computed between the three best clustering solutions and the given

true classes. The results indicate that CH Index and CVNN Index are able to estimate the true class

labels better than the other indexes. The adjusted Rand index values for aggregated indexes most

likely give the same results because they favour the clustering solution forK = 2, and the different

clustering algorithm for K = 2 lead to the same cluster label solutions in most cases. However,

as explained previously, the data points are distributed in such a way that two clustering solution
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appears to be more appropriate based on the graphical representation of the data set.

(a) Model based clustering (K = 3) (b) Single linkage (K = 3)

(c) Ward’s method (K = 2) (d) Ward’s method (K = 3)

Figure 7.9: Two dimensional representation (PCA) of IRIS data set for different clustering scenarios

7.2.2 Wine data set

This data set is based on the results of a chemical analysis of wines grown in the same region

in Italy, but derived from three different types of wines. The wine data set was first investigated

in Forina et al. (1988). The data set contains 13 continuous variables and 1 categorical variable

with 3 classes, where the number of objects in the classes are 48, 59 and 71. Figure 7.10 presents

an overview of two and three dimensional visualisations of this data set, where the colours of the

points represent the given classes. According to the figures, the objects are very homogeneous, so

that it might be difficult to detect distinct cluster shapes by looking at the PCA plots; correspond-
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ingly, the proportion of variance explained is low at around 66%, indicating that it is challenging

to observe such clusters. For this type of homogeneous data set, one could consider the given class

labels for validating the results of the clustering algorithms. Table 7.25 provides the adjusted Rand

index results for various clustering algorithms with different number of clusters.

(a) Two dimensional representation (b) Two dimensional projections of three dimensions

Figure 7.10: Two dimensional representation and two dimensional projections of three dimensions (PCA)

of WINE data set with true class labels

Figure 7.17 shows different single criteria results. ASW Index, Dunn Index and PG Index re-

sults indicate that Ward’s method for K = 2 is the best choice of clustering algorithm scenario.

Interestingly, for this specific data set CH Index results favour the largest possible number of clus-

ters when using Ward’s method, but one could consider spectral clustering algorithm for either

K = 7 or K = 9 due to the presence of two considerable spikes. CVNN Index results also point

out that spectral clustering for either K = 4, 5 or 6 could be the best selection out of the clustering

choices. Two stability methodologies for estimating the number of clusters favour the smallest pos-

sible number of clusters for single linkage, but if single linkage is disregarded, prediction strength

results show that 3-means is another good choice, having the highest adjusted Rand index values

based on the given classes.

The different calibration scenarios are shown in Figure 7.18 and 7.19, and the scenarios aggre-

gated with the bootstrap method are quite successful at predicting the correct number of clusters

when usingK-means clustering withK = 3. The scenarios aggregated with the prediction strength

technique favour the smallest possible number of clusters, but the 3-means can be considered an-

other possible optimal solution due to the presence of a peak for K = 3. Two dimensional PCA

plots are presented in Figure 7.11 with the clusterings that give good solutions based on clustering

validation index results. 3-means appears to be a satisfactory selection, because it better partitions
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the cluster points than the other clustering solutions when considering the PCA plots. This is also

the best choice based on the adjusted Rand index values in Table 7.25.

Table 7.28 demonstrates different adjusted Rand index values when comparing various cluster-

ing validation indexes. The results indicate that most of the single criteria are not very successful

at estimating the true class labels compared to the aggregated clustering validation indexes. As

previously pointed out, the bootstrap method, average within and average between dissimilarities

combinations of aggregated indexes are better able to estimate the true class labels than the other

aggregated index combinations.

(a) K-means (K = 3) (b) Single linkage (K = 2)

(c) Spectral clustering (K = 4) (d) Ward’s method (K = 2)

Figure 7.11: Two dimensional representation (PCA) of WINE data set for different clustering scenarios
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7.2.3 Seed data set

The seed data set, which was first used in Charytanowicz et al. (2010), is based on measurements

of geometrical properties of kernels belonging to three different varieties of wheat. It contains 7

geometric features of wheat kernels (continuous variables) and 1 categorical variable with 3 classes

each containing 50 objects, where each class refers to a type of wheat. Two and three dimensional

representations of the data set are visualised in Figure 7.12 by using Principal Component Analysis.

The three different colours of points represent class labels given by three categories in the data set.

The two scatter plots indicate that the points are homogeneously distributed so that it is not easy

to distinguish such cluster patterns, however the given classes can still guide us on how to identify

such clusters. Table 7.26 is the summary of the adjusted Rand index results, which are calculated

with the given classes against cluster labels obtained from different clustering algorithms with

different numbers of clusters. The table results indicate that PAM, K-means, Ward’s method and

model-based clustering for K = 3 are the scenarios with the highest adjusted Rand index values.

(a) Two dimensional representation (b) Two dimensional projections of three dimensions

Figure 7.12: Two dimensional representation and two dimensional projections of three dimensions (PCA)

of SEED data set with true class labels

Different single criteria results are shown in Figure 7.20. The CH Index and PG Index values

suggest that PAM, K-means, Ward’s method and model based clustering for K = 3 are the best

choices, and are reasonable choices based on the adjusted Rand index values. CVNN Index values

for different κ selections give similar solutions, but favour model-based clustering for K = 3 to

the other three clustering solutions. The ASW Index results again have a tendency to predict the

number of clusters as the smallest possible one (K = 2) for different clustering algorithms. The

two stability methodologies again favour single linkage for K = 2, but the bootstrap method also
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indicates that PAM for K = 3 is another optimal solution.

Based on the line charts in Figure 7.21 and 7.22, the results for any calibration with average

within and average between dissimilarities indicate that PAM and model based clustering for K =

3 are the two optimal solutions in many instances. Because the points on the data set are more

likely to be homogeneously distributed, the aggregated indexes for the combination of the widest

gap and the separation index do not lead to the clustering solution for K = 3 in most cases, and

those aggregated indexes usually favour a single linkage solution. Figure 7.13 provides various

clustering solutions that are obtained from clustering validation index results. PAM for K = 3,

which has the highest adjusted Rand index value in Table 7.25, appears to be a reasonable solution

according to the shape of cluster points in Figure 7.13 as well as the results of aggregated clustering

validation aspects.

The adjusted Rand index values between the three best clusterings and the given true cluster la-

bels for different clustering validation indexes are shown in Table 7.29 for the sake of comparison.

The CH Index and CVNN Index estimate the true class labels better than the other single criteria.

On the other hand, any combinations of the bootstrap method, average within and average between

dissimilarities give the best ARI values based on the adjusted Rand index values between the first

best clustering selection and the given class labels.
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(a) Model based clustering (K = 3) (b) PAM (K = 3)

(c) Single linkage (K = 2) (d) Ward’s method (K = 2)

Figure 7.13: Two dimensional representation (PCA) of SEED data set for different clustering scenarios
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7.2.4 Detailed results of real data sets

Adjusted Rand Index results

The following tables provide the adjusted Rand index values of the class labels obtained from

different real data sets for various clustering algorithms with different numbers of clusters. “*”

indicates column corresponding to the given number of classes.

Table 7.24: IRIS data set

Clustering Algorithm
Estimate of Number of Clusters, k̂

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

PAM 0.568 0.641∗ 0.586 0.468 0.396 0.408 0.362 0.323 0.315

K-means 0.568 0.620∗ 0.558 0.439 0.424 0.468 0.344 0.259 0.351

Single linkage 0.568 0.558∗ 0.552 0.551 0.549 0.546 0.538 0.536 0.533

Complete linkage 0.410 0.572∗ 0.533 0.462 0.450 0.444 0.472 0.502 0.378

Average linkage 0.568 0.562∗ 0.552 0.550 0.509 0.553 0.510 0.501 0.372

Ward’s method 0.568 0.731∗ 0.660 0.595 0.435 0.448 0.425 0.402 0.342

Model based Clustering 0.568 0.903∗ 0.841 0.682 0.614 0.525 0.517 0.536 0.513

Spectral clustering 0.568 0.563∗ 0.815 0.651 0.596 0.584 0.596 0.626 0.599

Table 7.25: WINE data set

Clustering Algorithm
Estimate of Number of Clusters, k̂

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

PAM 0.357 0.741∗ 0.662 0.538 0.439 0.395 0.355 0.347 0.325

K-means 0.374 0.897∗ 0.674 0.704 0.501 0.475 0.518 0.471 0.387

Single linkage −0.005 −0.006∗ −0.008 −0.009 −0.011 −0.012 −0.079 −0.008 −0.009

Complete linkage 0.295 0.577∗ 0.642 0.677 0.663 0.687 0.687 0.642 0.553

Average linkage −0.001 −0.005∗ −0.010 0.431 0.424 0.411 0.792 0.792 0.783

Ward’s method 0.326 0.368∗ 0.281 0.215 0.229 0.213 0.216 0.185 0.171

Model based clustering 0.582 0.880∗ 0.762 0.797 0.727 0.502 0.408 0.407 0.373

Spectral clustering 0.369 0.311∗ 0.313 0.239 0.248 0.216 0.288 0.178 0.231

Table 7.26: SEED data set

Clustering Algorithm
Estimate of Number of Clusters, k̂

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

PAM 0.444 0.746∗ 0.636 0.524 0.424 0.380 0.340 0.311 0.287

K-means 0.480 0.773∗ 0.667 0.552 0.514 0.459 0.404 0.415 0.336

Single linkage 0.000 0.000∗ 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Complete linkage 0.488 0.686∗ 0.654 0.582 0.450 0.431 0.364 0.368 0.377

Average linkage 0.491 0.685∗ 0.681 0.674 0.587 0.588 0.555 0.498 0.493

Ward’s method 0.452 0.713∗ 0.727 0.637 0.577 0.520 0.440 0.411 0.326

Model based clustering 0.459 0.629∗ 0.610 0.507 0.457 0.413 0.372 0.328 0.391

Spectral clustering 0.501 0.383∗ 0.640 0.432 0.590 0.415 0.503 0.375 0.398
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Clustering validation index results

Table 7.24, 7.25 and 7.26 present the ARI values between three best clusterings from different

clustering algorithms and the given true class labels based on various clustering validation index

results. Then, the average of the ARI values from those three best clusterings is computed and

shown in the next column in order to give a more balanced view in the event that one clustering

is far better than the other two for one of the clustering validation indexes. The last three columns

present those three clustering algorithms with their number of clusters. The aim of these tables is

to show which clustering validation indexes are the most capable of estimating the given true class

labels.

The meaning of the abbreviations to be used in the figures below are given as follows: CH:

Calinski and Harabasz, ASW: Average silhouette width, PG: Pearson gamma, CVNN: Cluster-

ing validation on nearest neighbour, AW: Average within dissimilarities, AB: Average between

dissimilarities, NSB: The bootstrap method, WG: Widest gap, SI: Separation Index.
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Table 7.27: IRIS data set

Clustering Validation Index
ARI values Average Best clusterings in order

First Second Third of ARI First Second Third
Single Criterion

CH Index 0.731 0.641 0.620 0.620 Ward (K=3) PAM (K=3) K-means (K=3)
ASW Index 0.568 0.568 0.568 0.568 PAM (K=2) K-means (K=2) Single (K=2)
Dunn Index 0.568 0.568 0.568 0.568 PAM (K=2) K-means (K=2) Single (K=2)
Pearson gamma (PG) 0.558 0.563 0.568 0.563 Single (K=3) Spectral (K=3) PAM (K=2)
Prediction strength (PS) 0.568 0.568 0.568 0.568 K-means (K=2) Ward (K=2) PAM (K=2)
N select boot (NSB) 0.568 0.568 0.558 0.564 K-means (K=2) PAM (K=2) Single (K=3)
CVNN (κ = 5) 0.904 0.620 0.641 0.721 Mclust (K=3) K-means (K=3) PAM (K=3)
CVNN (κ = 10) 0.904 0.641 0.620 0.721 Mclust (K=3) PAM (K=3) K-means (K=3)
CVNN (κ = 20) 0.904 0.641 0.620 0.721 Mclust (K=3) PAM (K=3) K-means (K=3)

Z-score aggregation

Ave.wit + Ave.bet 0.568 0.568 0.568 0.568 PAM (K=2) K-means (K=2) Single (K=2)
Ave.wit + Ave.bet + PG 0.568 0.568 0.568 0.568 PAM (K=2) K-means (K=2) Single (K=2)
Ave.wit + Ave.bet + PS 0.568 0.568 0.568 0.568 K-means (K=2) Ward (K=2) PAM (K=2)
Ave.wit + Ave.bet + NSB 0.568 0.568 0.568 0.566 K-means (K=2) PAM (K=2) Average (K=2)
Ave.wit + Ave.bet + PG + PS 0.568 0.568 0.568 0.568 K-means (K=2) Ward (K=2) PAM (K=2)
Ave.wit + Ave.bet + PG + NSB 0.568 0.568 0.568 0.566 K-means (K=2) PAM (K=2) Average (K=2)

Wid.gap + Sep.Ind 0.568 0.568 0.568 0.568 PAM (K=2) K-means (K=2) Single (K=2)
Wid.gap + Sep.Ind + PG 0.568 0.568 0.568 0.568 PAM (K=2) K-means (K=2) Single (K=2)
Wid.gap + Sep.Ind + PS 0.568 0.568 0.568 0.568 K-means (K=2) Ward (K=2) PAM (K=2)
Wid.gap + Sep.Ind + NSB 0.568 0.568 0.568 0.566 K-means (K=2) PAM (K=2) Average (K=2)
Wid.gap + Sep.Ind + PG + PS 0.568 0.568 0.568 0.568 K-means (K=2) Ward (K=2) PAM (K=2)
Wid.gap + Sep.Ind + PG + NSB 0.568 0.568 0.568 0.566 K-means (K=2) PAM (K=2) Average (K=2)

Range aggregation

Ave.wit + Ave.bet 0.568 0.568 0.568 0.568 PAM (K=2) K-means (K=2) Single (K=2)
Ave.wit + Ave.bet + PG 0.568 0.568 0.568 0.568 PAM (K=2) K-means (K=2) Single (K=2)
Ave.wit + Ave.bet + PS 0.568 0.568 0.568 0.568 K-means (K=2) Ward (K=2) PAM (K=2)
Ave.wit + Ave.bet + NSB 0.568 0.568 0.568 0.566 K-means (K=2) PAM (K=2) Average (K=2)
Ave.wit + Ave.bet + PG + PS 0.568 0.568 0.568 0.568 K-means (K=2) Ward (K=2) PAM (K=2)
Ave.wit + Ave.bet + PG + NSB 0.568 0.568 0.568 0.566 K-means (K=2) PAM (K=2) Average (K=2)

Wid.gap + Sep.Ind 0.568 0.568 0.568 0.568 PAM (K=2) K-means (K=2) Single (K=2)
Wid.gap + Sep.Ind + PG 0.568 0.568 0.568 0.568 PAM (K=2) K-means (K=2) Single (K=2)
Wid.gap + Sep.Ind + PS 0.568 0.568 0.568 0.568 K-means (K=2) Ward (K=2) PAM (K=2)
Wid.gap + Sep.Ind + NSB 0.568 0.568 0.568 0.566 K-means (K=2) PAM (K=2) Average (K=2)
Wid.gap + Sep.Ind + PG + PS 0.568 0.568 0.568 0.568 K-means (K=2) Ward (K=2) PAM (K=2)
Wid.gap + Sep.Ind + PG + NSB 0.568 0.568 0.568 0.566 K-means (K=2) PAM (K=2) Average (K=2)

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index, Mclust = Model based clustering
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Table 7.28: WINE data set

Clustering Validation Index
ARI values Average Best clusterings in order

First Second Third of ARI First Second Third
Single Criterion

CH Index 0.171 0.216 0.582 0.323 Ward (K=10) Spectral (K=7) Mclust (K=2)
ASW Index 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Dunn Index 0.327 0.179 -0.005 0.167 Ward (K=2) Spectral (K=9) Single (K=2)
Pearson gamma (PG) 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Prediction strength (PS) -0.007 0.897 -0.002 0.296 Single (K=3) K-means (K=3) Average (K=2)
N select boot (NSB) -0.005 0.358 0.374 0.242 Single (K=2) PAM (K=2) K-means (K=2)
CVNN (κ = 5) 0.216 0.582 0.171 0.323 Spectral (K=7) Mclust (K=2) Ward (K=10)
CVNN (κ = 10) 0.314 0.582 0.171 0.355 Spectral (K=4) Mclust (K=2) Ward (K=10)
CVNN (κ = 20) 0.314 0.582 0.171 0.355 Spectral (K=4) Mclust (K=2) Ward (K=10)

Z-score aggregation

Ave.wit + Ave.bet 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Ave.wit + Ave.bet + PG 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Ave.wit + Ave.bet + PS 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Ave.wit + Ave.bet + NSB 0.897 0.325 0.784 0.668 K-means (K=3) PAM (K=10) Average (K=10)
Ave.wit + Ave.bet + PG + PS 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Ave.wit + Ave.bet + PG + NSB 0.327 0.369 0.897 0.531 Ward (K=2) Spectral (K=2) K-means (K=3)

Wid.gap + Sep.Ind 0.327 0.311 -0.008 0.210 Ward (K=2) Spectral (K=3) Single (K=9)
Wid.gap + Sep.Ind + PG 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Wid.gap + Sep.Ind + PS -0.008 0.327 -0.002 0.105 Single (K=4) Ward (K=2) Average (K=2)
Wid.gap + Sep.Ind + NSB -0.008 0.358 0.374 0.241 Single (K=4) PAM (K=2) K-means (K=2)
Wid.gap + Sep.Ind + PG + PS 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Wid.gap + Sep.Ind + PG + NSB 0.897 0.327 0.311 0.511 K-means (K=3) Ward (K=2) Spectral (K=3)

Range aggregation

Ave.wit + Ave.bet 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Ave.wit + Ave.bet + PG 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Ave.wit + Ave.bet + PS 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Ave.wit + Ave.bet + NSB 0.897 0.325 0.408 0.543 K-means (K=3) PAM (K=10) Mclust (K=9)
Ave.wit + Ave.bet + PG + PS 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Ave.wit + Ave.bet + PG + NSB 0.897 0.327 0.216 0.480 K-means (K=3) Ward (K=2) Spectral (K=7)

Wid.gap + Sep.Ind 0.327 -0.009 0.179 0.165 Ward (K=2) Single (K=10) Spectral (K=9)
Wid.gap + Sep.Ind + PG 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Wid.gap + Sep.Ind + PS -0.008 -0.002 0.897 0.295 Single (K=4) Average (K=2) K-means (K=3)
Wid.gap + Sep.Ind + NSB -0.008 0.358 0.374 0.241 Single (K=4) PAM (K=2) K-means (K=2)
Wid.gap + Sep.Ind + PG + PS 0.327 0.369 0.582 0.426 Ward (K=2) Spectral (K=2) Mclust (K=2)
Wid.gap + Sep.Ind + PG + NSB 0.897 0.784 0.741 0.807 K-means (K=3) Average (K=10) PAM (K=3)

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index, Mclust = Model based clustering
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Table 7.29: SEED data set

Clustering Validation Index
ARI values Average Best clusterings in order

First Second Third of ARI First Second Third
Single Criterion

CH Index 0.630 0.713 0.773 0.705 Mclust (K=3) Ward (K=3) K-means (K=3)
ASW Index 0.444 0.481 0.502 0.475 PAM (K=2) K-means (K=2) Spectral (K=2)
Dunn Index 0.440 0.433 0.773 0.548 Ward (K=8) Spectral (K=5) K-means (K=3)
Pearson gamma (PG) 0.630 0.444 0.713 0.595 Mclust (K=3) PAM (K=2) Ward (K=3)
Prediction strength (PS) 0.000 0.491 0.481 0.324 Single (K=2) Average (K=2) K-means (K=2)
N select boot (NSB) 0.000 0.747 0.773 0.506 Single (K=2) PAM (K=3) K-means (K=3)
CVNN (κ = 5) 0.630 0.686 0.773 0.696 Mclust (K=3) Complete (K=3) K-means (K=3)
CVNN (κ = 10) 0.630 0.686 0.747 0.687 Mclust (K=3) Complete (K=3) PAM (K=3)
CVNN (κ = 20) 0.630 0.773 0.747 0.716 Mclust (K=3) K-means (K=3) PAM (K=3)

Z-score aggregation

Ave.wit + Ave.bet 0.630 0.713 0.747 0.696 Mclust (K=3) Ward (K=3) PAM (K=3)
Ave.wit + Ave.bet + PG 0.630 0.713 0.747 0.696 Mclust (K=3) Ward (K=3) PAM (K=3)
Ave.wit + Ave.bet + PS 0.481 0.453 0.747 0.560 K-means (K=2) Ward (K=2) PAM (K=3)
Ave.wit + Ave.bet + NSB 0.747 0.481 0.491 0.573 PAM (K=3) K-means (K=2) Average (K=2)
Ave.wit + Ave.bet + PG + PS 0.481 0.453 0.747 0.560 K-means (K=2) Ward (K=2) PAM (K=3)
Ave.wit + Ave.bet + PG + NSB 0.747 0.481 0.491 0.573 PAM (K=3) K-means (K=2) Average (K=2)

Wid.gap + Sep.Ind 0.000 0.453 0.433 0.295 Single (K=4) Ward (K=2) Spectral (K=5)
Wid.gap + Sep.Ind + PG 0.453 0.433 0.481 0.455 Ward (K=2) Spectral (K=5) K-means (K=2)
Wid.gap + Sep.Ind + PS 0.000 0.453 0.481 0.311 Single (K=2) Ward (K=2) K-means (K=2)
Wid.gap + Sep.Ind + NSB 0.000 0.481 0.493 0.324 Single (K=4) K-means (K=2) Average (K=10)
Wid.gap + Sep.Ind + PG + PS 0.453 0.481 0.502 0.478 Ward (K=2) K-means (K=2) Spectral (K=2)
Wid.gap + Sep.Ind + PG + NSB 0.453 0.000 0.747 0.409 K-means (K=2) Single (K=4) PAM (K=3)

Range aggregation

Ave.wit + Ave.bet 0.630 0.713 0.747 0.696 Mclust (K=3) Ward (K=3) PAM (K=3)
Ave.wit + Ave.bet + PG 0.630 0.713 0.747 0.696 Mclust (K=3) Ward (K=3) PAM (K=3)
Ave.wit + Ave.bet + PS 0.481 0.453 0.747 0.560 K-means (K=2) Ward (K=2) PAM (K=3)
Ave.wit + Ave.bet + NSB 0.747 0.481 0.491 0.573 PAM (K=3) K-means (K=2) Average (K=2)
Ave.wit + Ave.bet + PG + PS 0.481 0.453 0.747 0.560 K-means (K=2) Ward (K=2) PAM (K=3)
Ave.wit + Ave.bet + PG + NSB 0.747 0.481 0.491 0.573 PAM (K=3) K-means (K=2) Average (K=2)

Wid.gap + Sep.Ind 0.000 0.453 0.433 0.295 Single (K=4) Ward (K=2) Spectral (K=5)
Wid.gap + Sep.Ind + PG 0.453 0.433 0.481 0.455 Ward (K=2) Spectral (K=5) K-means (K=2)
Wid.gap + Sep.Ind + PS 0.000 0.453 0.481 0.311 Single (K=2) Ward (K=2) K-means (K=2)
Wid.gap + Sep.Ind + NSB 0.000 0.481 0.747 0.409 Single (K=2) K-means (K=2) PAM (K=3)
Wid.gap + Sep.Ind + PG + PS 0.453 0.481 0.444 0.459 Ward (K=2) K-means (K=2) PAM (K=2)
Wid.gap + Sep.Ind + PG + NSB 0.481 0.747 0.488 0.572 K-means (K=2) PAM (K=3) Complete (K=2)

Ave.wit = Average within dissimilarities, Ave.bet = Average between dissimilarities
Wid.gap = Widest gap within dissimilarities, Sep.Ind = Separation Index, Mclust = Model based clustering
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(a) CH Index (b) ASW Index (c) PG Index

(d) Dunn Index (e) Prediction Strength (f) The boothstrap method

(g) CVNN (κ = 5) (h) CVNN (κ = 10) (i) CVNN (κ = 20)

Figure 7.14: Various single criteria for IRIS data set.

Average Complete Kmeans Mclust PAM Single Spectral Ward
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(a) AW + AB (b) AW + AB + PG (c) AW + AB + PS

(d) AW + AB + NSB (e) AW + AB + PG + PS (f) AW + AB + PG + NSB

(g) WG + SI (h) WG + SI + PG (i) WG + SI + PS

(j) WG + SI + NSB (k) WG + SI + PG + PS (l) WG + SI + PG + NSB

Figure 7.15: Different aggregated index considerations with Z-score standardisation for IRIS data set.

Average Complete Kmeans Mclust PAM Single Spectral Ward
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(a) AW + AB (b) AW + AB + PG (c) AW + AB + PS

(d) AW + AB + NSB (e) AW + AB + PG + PS (f) AW + AB + PG + NSB

(g) WG + SI (h) WG + SI + PG (i) WG + SI + PS

(j) WG + SI + NSB (k) WG + SI + PG + PS (l) WG + SI + PG + NSB

Figure 7.16: Different aggregated index considerations with Range standardisation for IRIS data set.

Average Complete Kmeans Mclust PAM Single Spectral Ward
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(a) CH Index (b) ASW Index (c) PG Index

(d) Dunn Index (e) Prediction Strength (f) The boothstrap method

(g) CVNN (κ = 5) (h) CVNN (κ = 10) (i) CVNN (κ = 20)

Figure 7.17: Various single criteria for WINE data set.

Average Complete Kmeans Mclust PAM Single Spectral Ward
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(a) AW + AB (b) AW + AB + PG (c) AW + AB + PS

(d) AW + AB + NSB (e) AW + AB + PG + PS (f) AW + AB + PG + NSB

(g) WG + SI (h) WG + SI + PG (i) WG + SI + PS

(j) WG + SI + NSB (k) WG + SI + PG + PS (l) WG + SI + PG + NSB

Figure 7.18: Different aggregated index considerations with Z-score standardisation for WINE data set.

Average Complete Kmeans Mclust PAM Single Spectral Ward
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(a) AW + AB (b) AW + AB + PG (c) AW + AB + PS

(d) AW + AB + NSB (e) AW + AB + PG + PS (f) AW + AB + PG + NSB

(g) WG + SI (h) WG + SI + PG (i) WG + SI + PS

(j) WG + SI + NSB (k) WG + SI + PG + PS (l) WG + SI + PG + NSB

Figure 7.19: Different aggregated index considerations with Range standardisation for WINE data set.

Average Complete Kmeans Mclust PAM Single Spectral Ward
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(a) CH Index (b) ASW Index (c) PG Index

(d) Dunn Index (e) Prediction Strength (f) The boothstrap method

(g) CVNN (κ = 5) (h) CVNN (κ = 10) (i) CVNN (κ = 20)

Figure 7.20: Various single criteria for SEED data set.

Average Complete Kmeans Mclust PAM Single Spectral Ward
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(a) AW + AB (b) AW + AB + PG (c) AW + AB + PS

(d) AW + AB + NSB (e) AW + AB + PG + PS (f) AW + AB + PG + NSB

(g) WG + SI (h) WG + SI + PG (i) WG + SI + PS

(j) WG + SI + NSB (k) WG + SI + PG + PS (l) WG + SI + PG + NSB

Figure 7.21: Different aggregated index considerations with Z-score standardisation for SEED data set.

Average Complete Kmeans Mclust PAM Single Spectral Ward
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(a) AW + AB (b) AW + AB + PG (c) AW + AB + PS

(d) AW + AB + NSB (e) AW + AB + PG + PS (f) AW + AB + PG + NSB

(g) WG + SI (h) WG + SI + PG (i) WG + SI + PS

(j) WG + SI + NSB (k) WG + SI + PG + PS (l) WG + SI + PG + NSB

Figure 7.22: Different aggregated index considerations with Range standardisation for SEED data set.

Average Complete Kmeans Mclust PAM Single Spectral Ward
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7.3 Final Comments

In this chapter, I run several simulation studies to investigate how successful the aggregation of

clustering validation index results are when compared with some popular clustering validation

criteria. Furthermore, some real data sets are analysed with the same purpose. The analysis in

this chapter leads to some conclusions regarding the use of clustering validation in estimating the

number of clusters. In this sense, some final comments will be given with respect to the clustering

validation criteria results.

• For clusters with approximately normally distributed points, clustering methods which are

usually based on some kind of optimization algorithms (K-means, PAM, model based clus-

tering, etc.) estimate the given cluster labels well, see the ARI results in Sections 7.1.8

and 7.2.4. Combinations of clustering validation aspects, such as the calibration of aver-

age within dissimilarities and average between dissimilarities, which often focuses on the

homogeneity, have better capability to estimate the correct number of clusters based on the

given class labels than the aspects that tend to focus more on the extreme points, such as the

combination of widest gap and separation index, see Tables 7.10, 7.11, 7.12 and 7.13.

• Single linkage and spectral clustering algorithms perform better for irregularly shaped clus-

ters than the other clustering algorithms. For this kind of cluster, clustering validation cri-

teria, which focus more on the extreme points, such as the calibration of widest gap and

separation index, or Dunn Index, accurately predict the number of clusters, see Table 7.18,

7.19, 7.20, 7.21, 7.22 and 7.23.

• In general, the stability methodologies (Prediction strength or the bootstrap method) often

fail to estimate the appropriate number of clusters when model based clustering is applied.

• For clusters that are not well separated, see for example Section 7.1.3, the stability measure-

ments are not very successful in finding the correct number of clusters compared to the other

clustering validation criteria.

• The CVNN Index often estimates the correct number of clusters well in many instances,

except for the irregularly shaped clusters.

• For these different types of simulated data sets, our findings indicate that range aggregation

of different aspects usually works better than Z-score aggregation for predicting the correct

number of clusters.
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• For real data set examples, different aggregated clustering validation index scenarios are

used.

– For the iris data set, the results for various calibration selections indicate that theK = 2

solution for different clustering algorithms gives good results in terms of estimating

the appropriate number of clusters, which can also be validated from the graphical

representation, despite the given true classes having a K = 3 solution. On the other

hand, the selections calibrated with a stability measurement indicate that single linkage

is reasonable for estimating the number of clusters in some cases. That is because single

linkage usually generates one cluster with one or two points and the remaining points

are in the other clusters, resulting in a more stable solution than for other scenarios,

since there are no substantial changes in the sampling stage between the points in the

clusters.

– For the wine and the seed data sets, the homogeneity within clusters is more distinct

than the homogeneity within clusters for the iris data set according to the PCA plots

in Figure 7.8, 7.10 and 7.12. The clustering validation index results (especially the

calibration of average within dissimilarities and average between dissimilarities) point

out that clustering algorithms, which usually have better capability to deal with homo-

geneously distributed and not well separated clusters, such as K-means, PAM, model

based clustering or Ward’s method, accurately find the true number of clusters in many

situations.

The selection of clustering validation aspects for estimating the number of clusters is not an

easy task. Many different combinations can be chosen, but the user does not know in advance

which cluster solution is the most appropriate. As mentioned at the beginning of this chapter, the

selection of calibration can be based on the different characteristics of the clustering validation in-

dexes and according to subject matter knowledge, which reduces the range of the user’s selection.

On the other hand, one could apply PCA (or MDS for dissimilarities) to the data set of interest in

order to visualise the distribution of the cluster points in a low dimensional projection. The graphi-

cal representation gives the user guidance on what clustering validation indexes may be preferable.

For example, if clusters are distributed more homogeneously, then the choice of calibration can

depend on the indexes that focus more on homogeneity, such as average within dissimilarities

and average between dissimilarities, see the data sets in Sections 7.1.1, 7.1.2, 7.1.3, or 7.2.2. In

contrast, clustering validation aspects, which focuses more on separation between clusters (e.g.,

the widest gap and the separation index), can be selected for the clusterings that project irregular

shapes on a low dimensional space, see for example the data sets in Sections 7.1.5, 7.1.6, or 7.1.7.
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Alternatively, the user can apply all different aggregated index versions for their analysis (as im-

plemented in this chapter), and optimise different aggregation results by choosing one of the best

selections out of all choices. As mentioned in the previous section, R Shiny implementations,

which are shown as screen-shots in Appendix B, can be used for this sake. However, firstly the

user has no idea what the right choices are in real situations, and secondly it is not the case that

the same combination always performs well; in other words, there is no combination that can be

recommended universally. On the other hand, the results of simulation studies and the analysis of

the real data sets give us a direction that some of the calibration scenarios perform better than all

the other observed combinations. Thus, one could say that any combinations of average within

dissimilarities, average between dissimilarities and the bootstrap method usually give a satisfac-

tory result especially for data sets in which clusters are homogeneously distributed, see Table 7.12,

Figure 7.19, 7.18,7.22, 7.21, etc. It is important to note that not every data set needs a different

aggregation, and the same combinations may be appropriate over a good range of datasets. Con-

sequently, the suggestions above give the user guidance in how to choose the most appropriate

clustering solution.

One of the fundamental contributions of this thesis is the new clustering algorithms, which are

the random furthest neighbours and the random average neighbours. As stated in Section 6.2.3,

these new algorithms explore some other regions of possible solutions that are not covered by

the random centroid and the random nearest neighbours, which leads to obtaining different scale

value of standardisation. As an illustration, Figure 7.23 displays a different combination of random

clustering algorithms. For this case, a different real data set, Movement data set (Dias et al., 2009)

is used. The data set contains 15 classes of 24 instances each, where each class references to a

hand movement type in LIBRAS 1. Here, the data set is represented with 90 features, where the

number of variables is much larger than the previous real data set examples.

The combination of average within dissimilarities, average between dissimilarities, Pearson

Gamma index and the bootstrap method, which is the suitable choice from the aggregation of

clustering validation index results, is applied for the random clustering algorithms. The results in

Figure 7.23 indicate that the solutions for the random nearest neighbour cover a wider range of

smaller values compared to the other random clustering algorithms. The values obtained from the

random average neighbour and the random furthest neighbour are larger than the other random

clustering index values, but the index values obtained from the random average neighbour is a bit

larger than the index values generated from the random furthest neighbour. All the illustrations in

Figure 7.23 point out that these random clustering algorithms give a different range of index values

1LIBRAS is the Brazilian Sign Language (Libras - from the original name in Portuguese “Lingua BRAsileira de
Sinais”).
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that make the aggregation process more suitable by contributing more consistent scale value for

standardisation. In addition, the new random clustering algorithms have the potential to deliver a

distinct space of index values that the other random clustering algorithms do not yield.

In many cases, the results indicate that the aggregation of clustering validation indexes is quite

successful in finding the correct number of clusters. For researchers, I strongly recommend this

methodology for finding the appropriate number of clusters, K.

(a) RC and RNN (b) RC and RFN (c) RC and RAN

(d) RNN and RFN (e) RNN and RAN (f) RFN and RAN

Figure 7.23: Clustering validation index results for different random clustering algorithms scenarios of
MOVEMENT data set. The index results are based on the aggregated indexes of average within and between
dissimilarities, Pearson Gamma Index and the bootstrap method

Random centroid (RC) Random nearest (RNN) Random furthest (RFN) Random average (RAN)

202



CHAPTER 8

EXAMINATION OF AGGREGATING CLUSTERING
VALIDATION INDEXES ON THE FOOTBALL PLAYERS
PERFORMANCE DATA SET

I started this thesis with the idea of designing a dissimilarity measure between football players

based on their performance information. Then, the aim was to group the players in such a way

that managers or scout teams can identify and explore players who are similar to a player of their

interest. In this respect, I work on making the decision about the number of clusters by considering

the two aspects that are explained in the first paragraph of Section 6.1.7. The introduced objective

criteria (e.g., ASW Index, CH Index, etc.) in Chapter 6 can be adapted for the aim of finding an

optimal number of clusters, but this does not mean that the optimal number of clusters is necessarily

informative and practicable for football squads and managers. For example, consider the football

player data set to be used for this project, where n ≈ 3000, from which users want to identify

specific types of players similar to another player of interest. If the number of clusters is relatively

small, say less than 10, then the size of clusters for those specific players to be obtained from the

clustering is most likely large, which may not be very useful. Managers would prefer to observe

smaller groups of relevant players, making their jobs more efficient. For computational reasons, I

analyse a subset of the data containing 1500 players (n = 1500). More consistent information is

provided by players who have played a greater number of minutes in a season, therefore the chosen

subset contains players who have played more than the median total number of minutes. Following

the argument above, I decide to set the maximum number of clusters as K = 150, since it would

be more interesting to a have relatively small size (say between 10 < nK < 20) for each cluster

from the user’s point of view.

In this section, I will discuss estimating the number of clusters in two respects together: 1) from
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a statistical point of view and 2) based on subject-matter reasons. In Section 4.3, the sensitivity

analysis results indicate that the appropriate choice for aggregating different dissimilarity measures

is range standardisation when applying the log (x+ c) transformation. Note that the discussion for

the choice of transformation with a suitable constant, c, is made in Section 4.1.2.

Here K-means and model-based clustering algorithms are not used, since the original versions

of these algorithms require a raw data set as an input, whereas a dissimilarity measure of football

players information is adopted in this application as an input. The R function of spectral clustering

(see Table 7.1) requires the matrix of data to be clustered. I implement my own function for

spectral clustering to be used for a dissimilarity measurement as an input based on Algorithm 8.

To compute the degree matrix P in the same algorithm, since the aim is to adopt the original

dissimilarity measures between players, there is no such kernel function (e.g., Gaussian Kernel)

used for this setting. The Normalised Laplacian with random walk matrix is preferred for the

choice of Laplacian Matrix, see in Table 5.1.

Figure 8.1 and 8.2 display the results of various objective criteria and the aggregated clustering

validation indexes with Z-score and range standardisations for estimating the number of clusters

on the dissimilarity matrix of football players. The plots on the left-hand side show how different

criteria for different clustering algorithms act for different number of clusters over the range of

K ∼ [2 : 150], whereas the plots on the right hand side provide a narrow range of numbers

of clusters to better view the optimum choice of a clustering algorithm. Additionally, clustering

validation index results of random clustering algorithms are presented in Figures 8.1 and 8.2.

The results in Figure 8.1 indicate that the majority of the indexes favour a small numbers of

clusters, except the Dunn Index and the bootstrap method. The single linkage result in Figure 8.1k

has a different pattern from the other clustering algorithms, and indicates that as the number of

cluster increases, single linkage becomes worse based on the result of the bootstrap method. For

the other clustering algorithms, although the index values obtained from the bootstrap method give

better results for large numbers of clusters, it is difficult to detect a peak from the index results

over the range of different numbers of clusters, because the index values become more stable as

the number of cluster increases. CVNN Index results show that Ward’s method for K = 4 is

the optimal solution when compared to numerous clustering algorithms for different numbers of

clusters, whereas the PG Index results assert that average linkage forK = 4 is the optimum choice.

The Dunn Index, which focuses on the large values as shown in Equation (6.23), predicts the best

choice as complete linkage for K = 145.

For this data set, the selection of clustering validation indexes for the sake of calibration relies

upon two aspects. In Chapter 7, different aggregation scenarios are examined with the simulated
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(a) CH Index K ∼ [2 : 150] (b) CH Index K ∼ [2 : 10]

(c) ASW Index K ∼ [2 : 150] (d) ASW Index K ∼ [2 : 25]

(e) Dunn Index K ∼ [2 : 150] (f) Dunn Index K ∼ [100 : 150]

(g) PG Index K ∼ [2 : 150] (h) PG Index K ∼ [2 : 20]

(i) CVNN (κ = 10) Index K ∼ [2 : 150] (j) CVNN (κ = 10) Index K ∼ [2 : 20]

(k) The bootstrap method K ∼ [2 : 150] (l) The bootstrap method K ∼ [2 : 25]

Figure 8.1: Various cluster validation indexes for FOOTBALL data set.

Average Complete PAM Single Spectral Ward
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and the real data sets. As previously pointed out, the results indicate that the calibration of average

within dissimilarities (AW), average between dissimilarities (AB), Pearson Gamma Index (PG),

and the bootstrap method (NSB) is reasonable in most situations. Figure 8.3 indicates that the

players information is very likely homogeneously distributed, which motivates the homogeneous

clustering validation aspects for the sake of aggregation, such as average within and between clus-

ter dissimilarities rather than adopting widest gap or separation index. Therefore, the calibration

scenario (IAW + IAB + IPG + INSB) will also be considered for the football data set from a sta-

tistical point of view. Secondly, the subjective relation between the choice of clustering validation

indexes and football knowledge should be considered. In terms of average within and average

between dissimilarities, the characteristic of keeping within-cluster distances small is more impor-

tant than the characteristic of keeping between-cluster distances large. That is because the aim is

to make the players in the same cluster as similar as possible. On the other hand, having large

between-cluster distances is not primarily important, since one of the other aims is to have a large

number of clusters. In this sense, the weights can be assigned to directly reflect the relative im-

portance of the various clustering quality aspects, so that I decide to give 0.5 weight for average

between dissimilarities and 1 weight for average within dissimilarities. Pearson Gamma Index is

also important, because the similarity between players should well reflect the underlying dissim-

ilarity structure. Investigating the stability using the bootstrap method is certainly of interest in

order to measure the stability of the clustering structure of football players information. Finally,

entropy, which simply measures the uniformity of cluster sizes, is included in different calibration

considerations, because the aim for the football performance data set is to obtain balanced cluster

sizes. For example, if football scouts wish to explore similar players to two specific players, then

very different numbers of players in the respective clusters (e.g., 10 and 100) would be impractical

from their point of view.

As explained in Section 6.2, the aggregation can be made by computing a weighted mean

of selected indexes I1, . . . , Is with weights w1, . . . , ws > 0, which are denoted as the relative

importance of the different clustering quality indexes. For the football data set, the formula for

aggregation of clustering validation indexes is given as follows.

A(C) = IAW + 0.5IAB + IPG + IEnt + INSB. (8.1)

Prior to the aggregation of all the indexes in Equation (8.1), Z-score and range standardisations are

separately applied for each clustering validation index to make them comparable in terms of their

variation.

The aggregated clustering validation index results in Figure 8.2 indicate that Ward’s method
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(a) Z − score: AW+(0.5)AB+Ent+PG+NSB K ∼ [2 : 150] (b) Z − score: AW+(0.5)AB+Ent+PG+NSB K ∼ [2 : 20]

(c) Range: AW+(0.5)AB+Ent+PG+NSB K ∼ [2 : 150] (d) Range: AW+(0.5)AB+Ent+PG+NSB K ∼ [2 : 20]

Figure 8.2: Various calibration of clustering validation index scenarios for FOOTBALL data set. Z-score and

range standardisation are used for calibration. PG: Pearson gamma, AW: Average within dissimilarities, AB: Average

between dissimilarities, NSB: The bootstrap method, Ent:Entropy.

Average Complete PAM Single Spectral Ward

Random centroid Random nearest Random furthest Random average

for K = 4 may be preferred as the best choice compared to the other clustering results. The choice

of PAM for K = 3 may be another good selection for some calibration considerations, due to the

existence of a peak point. Again, it is difficult to identify an optimum solution due to the stable

index results over the range of large numbers of clusters. Moreover, as shown in the same figures,

most of the random clustering validation index results are worse than the clustering validation

index results of real clustering algorithms. This is reasonable since random clustering algorithms

are designed based on the selection of random K centroids or K initialisation points rather than

using some type of optimising algorithm to estimate optimum choice of these K points.

One of the aims of this project is to visualise football players in a low dimensional space in

order to present their information in a mapping form that is practicable for football squads and

managers. Multidimensional scaling (MDS), as described in Section 5.3.2, is the method for visu-

alising the level of similarity of players. Non-metric MDS seems to be more useful for mapping

football player information, because the dissimilarity matrix of the football players performance

data set is not a metric, and non-metric MDS (Ordinal MDS) can be the appropriate choice for
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this specific application. Figure 8.3 displays several MDS plots with two principal coordinates

for each two dimensional plot. The stress value is nearly 10%, which implies a fair result based

on Table 5.2. MDS graphical representations with a fair stress value guide us on how to interpret

the players information for the aim of clustering. The clustering solutions in Figure 8.3 can be

disregarded at this point, because we are only considering how the football players are distributed

in a two dimensional plot.

(a) Average linkage (K = 4) (b) Ward’s method (K = 4)

(c) PAM (K = 3) (d) Ward’s method (K = 2)

Figure 8.3: Two dimensional representation (MDS) of FOOTBALL data set for different clusterings

As a result of the clustering validation index results for the the football players performance

data set, Ward’s method for K = 4 can be selected as the best one, since the calibration scenarios

and some single criteria perform best with this selection. The graphical validation in Figure 8.3 also

gives the impression that Ward’s method for K = 4 is the one that looks most appropriate compared

to the other cluster patterns in Figure 8.3. However, this clustering consideration is not an optimal
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solution from the user’s point of view, because having a large number of players in one cluster is

not desirable to football squads and managers. On the other hand, the Dunn Index result, which is

the only distinct clustering validation index for the choice of large number of clusters, can give us a

direction to choose which clustering algorithm and what number of clusters. The definition of the

Dunn Index is basically the ratio between separation and homogeneity, and the maximum of within

cluster distances should be small, see Section 6.1.5 for more information. Complete linkage for

K = 145 gives the best solution according to Figure 8.1e. Figure 8.4 provides a grouping structure

of some famous players based on the solution of complete linkage for K = 145.

(a) Complete linkage (K = 145)

Figure 8.4: Two dimensional representation (MDS) of FOOTBALL data set with some famous players.

Small gray points represent other players location on this MDS scatter plot. Although there are 145 cluster

solutions, 13 cluster solutions are shown only for the famous players. The numbers in parenthesis with

player’s name represent the cluster number of that player to avoid confusion in case of the similarity between

colors.
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8.1 External Validation

Although complete linkage forK = 145 can be chosen as the optimal clustering, this consideration

is not directly related to the similarity of football players information from the user’s point of view.

None of these criteria (except the Dunn Index) give us a strong differentiation between clusterings

for a large number of clusters, because as demonstrated previously, the optimal number of clusters

estimated by clustering validation criteria is small and may not be informative to football squads

and managers. Therefore, one could maintain a clustering algorithm for one of the selections with

a large number of clusters, say between K = 100 and K = 150, as this would give us clusters

where the players within are similar enough to each other. While this is not a statistically optimal

solution, it is a rather pragmatic approach. In this respect, I am also interested in validating the

selection of different clustering solutions by considering some external information. The decisions

will be informed by interviews with some football experts, who are especially experienced with

analysis of football player performance, and by questioning people with different opinions who are

familiar with this specific context.

I conducted a survey with seven questions based on different grouping structures of selected

famous players as shown in Figure 8.4. This survey is conducted for clustering validation on

football players performance data sets. Different clustering solutions correspond to the multiple

choices in each question, and each selection is based on a different clustering algorithm(s) over

various numbers of cluster solutions (e.g., PAM solution with K ∼ [100 : 150]). This is done

because the cluster points for these specific groups of players give the same clustering solution for

different numbers of clusters. The respondents, who are football experts (e.g., football managers,

journalists, scouts, etc.), answer each question by ranking different clustering solutions in order of

importance from 1 to the number of multiple choices of that question (e.g., 5 for the first question),

where 1 is the most appropriate, 2 is the second most appropriate, and so on. Appendices C

presents the questions with the details of how this survey is conducted. As an illustration, the

questions in Appendices C are responded by myself. I also present which clustering techniques

and what number of clusters are used for the clustering solutions in each question, but this is not

presented to the respondents.

As mentioned in Section 4.4, I have collaborated with The Istanbul Basaksehir football club

to apply the distance query algorithm to find such specific players of their interest. At the same

time, for the sake of clustering validation the survey questions were asked to 13 football experts

including the head coach, the assistant coaches, the football analysts and the scouts of this club,

and some Turkish journalists who are especially experienced with European football.
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The ranking responses of the survey questions are systematized in such a way that I assign

scores for each rank in each question, where the score assignment is made in a balanced way,

because each question has a different number of multiple choices. Table 8.1 is the reference of

how the given scores are assigned for each question with different selection of multiple choices.

Table 8.1: Score assignment for the survey questions

The selection of multiple choices 1. Rank 2. Rank 3. Rank 4. Rank 5. Rank
For 5 multiple choices 30 24 18 12 6
For 3 multiple choices 30 20 10 - -
For 2 multiple choices 30 15 - - -

The result of the survey (Table 8.2) based on the questions from each respondent indicates that

the PAM clustering algorithm for K ∼ [130 : 133, 137 : 146] has the highest total points, which

implies the choice of this clustering is the best solution according to the responses of the experts.

Table 8.2: This survey is conducted on 13 football experts including the head coach, the assistant coaches,

the football analysts and the scouts of Istanbul Basaksehir football club, and some Turkish journalists who

are especially experienced with European football. The numbers are the total scores of the seven questions

for different clustering selections from each participant.

Respondents

Selection 1
PAM

(K ∼
[100 : 113])

Selection 2
PAM

(K ∼
[114 : 118])

Selection 3
PAM

(K ∼
[119 : 129,
134 : 136,
147 : 150])

Selection 4
PAM

(K ∼
[130 : 133,
137 : 146])

Selection 5
Ward’s method

(K ∼
[100 : 147])

Selection 6
Ward’s method

(K ∼
[148 : 150])

Selection 7
Complete linkage

(K ∼
[100 : 150])

Selection 8
Average linkage

(K ∼
[100 : 150])

Head coach 138 138 162 162 148 160 109 125
Assistant coach - 1 138 138 144 144 144 166 109 137
Assistant coach - 2 125 115 127 137 109 121 136 134
Goalkeeping coach 148 118 130 160 152 176 109 125
Individual performance coach 166 136 148 178 146 152 109 119
Physical performance coach 159 149 119 129 125 137 116 168
Football Analyst 132 132 144 144 166 154 123 139
Chief Scout 176 166 166 176 134 128 117 155
Scout - 1 144 144 150 150 154 148 99 97
Scout - 2 113 143 155 125 133 145 142 168
Scout - 3 148 118 100 130 132 126 115 129
Journalist - 1 129 149 161 141 95 123 150 156
Journalist - 2 154 134 116 166 136 160 117 145

TOTAL 1870 1780 1822 1942 1774 1896 1531 1797

To evaluate whether the participants give consistent responses for the sake of validating their

expertise, I also consider a testing procedure, which will examine the variation of the total sum

of the scores. Efron and Tibshirani (1994, chap.16) described bootstrap methods that are directly

designed for hypothesis testing, and one of these bootstrap testing procedures will be adopted here.

Algorithm 4 gives the steps of how this testing procedure is established. The idea here is to in-

vestigate whether the variation of the total scores is significantly greater than the variation of the

total scores that are randomly generated from the bootstrap methodology. This would imply that
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the rater variation in the original data set is stronger than what could be explained by random vari-

ation alone. The bootstrap methodology formalises the situation in which if the total scores from

different clustering solutions are most likely the same, then experts essentially give the random

assessment. This is not a satisfying result, since no solution is favoured. On the other hand, if the

variation is considerably large enough, then the result can be distinguished from the random result,

which means that the expert responses are relatively different among each other.

Formally, we observe two independent samples: z = (z1, . . . , zs) is the vector of sums obtained

from the survey results according to the rules as explained in 8.1, and y = (y1, . . . , ys) is the

distribution of the sums from the same number of virtual respondents which is generated randomly

according to the same rule. z and y are possibly drawn from two different probability distributions

F and G,

F → z = (z1, . . . , zs)

G → y = (y1, . . . , ys) .

Having observed z and y, I wish to test the null hypothesis H0 of no difference between F and G.

H0 : F = G,

HA : F 6= G.

The test statistic is the variance of total scores as explained in Algorithm 4. Note that for the

alternative hypothesis we are specifically interested in detecting cases for which F 6= G in the

sense that there is more concentration in the scores of F ; in other words, the alternative is testing

whether the total scores of the survey result, F have a higher variance than the total scores of the

random one, G.

The test result gives us ÂSLboot = 0.048, which is less than the critical value α = 0.05

indicating that the best clustering, which is PAM clustering algorithm for K ∼ [130 : 133, 137 :

146], is significantly better than all other clustering selections.

One selection out of different numbers of clusters has to be chosen for the final solution. Since

the aim is to find a small group of players in each cluster, the largest possible number of cluster

solutions can be more useful for football managers or scouts. For this reason, PAM for K = 146

solution is chosen as the best selection based on the survey results from the football experts point of

view, see the MDS solution in Figure 8.5 for a visualisation. Note that as mentioned in Section 4.4,
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Algorithm 4: Computation of bootstrap test

input : Xorg = {xij|i = 1, . . . , p; j = 1, . . . , s}, where p = 13, s = 8, and xij
is the total sums of the ith participant and the jth clustering selection

obtained from seven questions

output: ÂSLboot (Achieved significance level obtained from the bootstrap

samples)

STEP 1: Generate B = 2000 datasets from a model in which all participants

randomly assign ranks to the original seven questions.

STEP 2: Compute the scores as explained in Table 8.1:

Xboot = {X (1), . . . ,X (B)},
X (b) = {x(b)ij|i = 1, . . . , p; j = 1, . . . , s; b = 1, . . . , B},

where p = 13, s = 8, and x(b)ij is the total sums score of the bth bootstrap, the

ith participant and the jth clustering selection obtained from seven question

STEP 3: Evaluate T (·) on each dataset, which is the variance of the total sums

from different clustering selection

T (X (b)) = V ar(

p∑
i=1

x(b)i)

= V ar(

p∑
i=1

s∑
j=1

x(b)ij)

=
1

s− 1

(
p∑
i=1

x(b)i −
1

ps

p∑
i=1

s∑
j=1

x(b)ij

)
(8.2)

Also, evaluate the observed value, Tobs = T (Xorg), which is the variance of the

total scores for the original dataset

Tobs = V ar(

p∑
i=1

xi)

=
1

s− 1

(
p∑
i=1

xi −
1

ps

p∑
i=1

s∑
j=1

xij

) (8.3)

STEP 4: Approximate ASLboot by ÂSLboot = # {T (X (b)) ≥ Tobs} /B.

return ÂSLboot
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a distance query is another alternative way of exploring such players of interest rather than using

the clustering result from the user’s point of view.

(a) PAM Algorithm (K = 146)

Figure 8.5: Two dimensional representation (MDS) of FOOTBALL data set with some famous players.

Small gray points represent other players location on this MDS scatter plot. Although there are 146 cluster

solutions, 18 cluster solutions are shown only for the famous players. The numbers in parenthesis with

player’s name represent the cluster number of that player to avoid confusion in case of the similarity between

colors.

8.2 Comparisons of different clustering solutions

All the analytic decisions for football players performance data set can be summarised as follows.

First, four different dissimilarity matrices are aggregated with range standardisation when log (x+

c) transformation is applied based on the sensitivity analysis results in Section 4.3. The four

dissimilarities, which are obtained from the variables that have different football characteristics,

are performance distance, position distance-1, position distance-2, and league and team distance.

The final clustering solution is determined as PAM for K = 146 based on all different decisions

and analysis as explained in Chapter 4 and 7. Now all these different selections from all different
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analyses will be examined for the sake of comparing with the final clustering solution in order to

check the stability of the information in the final solution. Table 8.3 presents the ARI values that

are computed between the final solution and different decisions.

The PAM solution for K = 146 is applied on the four dissimilarities separately. They are com-

pared with the aggregated dissimilarity matrix based on the clusterings of PAM for K = 146. In

general, the overall clustering is not dominated by any of the individual clusterings obtained from

four different dissimilarities, and these individual clusterings are quite different, so that they cap-

ture very different aspects of player dissimilarity. The ARI results indicate that although there is a

slight positive relationship between the final dissimilarity matrix and the other four dissimilarities,

substantial differences are detected based on small ARI values. Specifically, the ARI value be-

tween the final clustering solution and the clustering solution for league and team distance is very

low, because league and team distance only depends on league and team information of players,

and no player’s individual information exists in these variables.

The second comparison in Table 8.3 is based on the choice of standardisation methodologies

for aggregating four dissimilarities with or without performing variable transformation. The final

clustering solution, PAM for K = 146 is again applied on different standardisation decisions with

or without transformation separately. The results indicate that the Z-score with transformation has

the lowest ARI value compared to the other standardisation choices, whereas all other selections

give positive relationship with the higher ARI values than the Z-score with transformation. The

highest ARI value is the range standardisation without variable transformation, which is reason-

able because the range standardisation is also applied for the final clustering solution. On the other

hand, the ARI value, 0.5222 is not as high as the clustering solutions from different clustering

selections in the last column (3.Comparison) in Table 8.3, which indicates that variable transfor-

mation considerably affects the final clustering solution.

The third comparison relies on different clustering algorithms which are achieved by using

the dissimilarity matrix that is obtained from the aggregation of four dissimilarities with range

standardisation when log(x+ c) transformation is applied. Complete linkage for K = 145, which

is chosen based on the Dunn Index result, and two best selections from the survey results are

determined for the sake of comparison with the PAM solution for K = 146. Complete linkage

for K = 145 and Ward’s method for K = 149 give the two lowest ARI values comparing with

the other choices. The PAM solution for different numbers of clusters are highly related to the

final clustering solution, which is reasonable because same clustering algorithm is used, and the

ARI values are increasing when it gets closer to the number of clusters, K = 146. One of the

interesting results is that Ward’s method for K = 148 and K = 150 give very high ARI values

compared to the other clustering solutions, although Ward’s method is different than the PAM
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algorithm. Since both algorithms are centroid-based clustering, high ARI values between these

two clustering techniques makes sense from the clustering structural point of view.

The sensitiveness between different decisions and the final clustering solution based on PAM

for K = 146 is examined. The ARI values are presented in Table 8.3 to analyse how sensitive all

these decisions are. The interpretation of all these results are presented with the proper explana-

tions above.

Table 8.3: PAM for K = 146 is applied for different choices of decisions. For the sake of comparison with

all the decision below, the ARI values are computed between the clustering solution of PAM for K = 146

based on all different decisions and the PAM solution for K = 146 based on the final dissimilarity matrix

that is achieved by the aggregation of four different dissimilarities by range standardisation with log(x+ c)

transformation.

1.Comparison 2.Comparison 3.Comparison

Dissimilarity measures ARI
Standardisation

techniques
ARI Clustering selections ARI

Performance distance 0.1572 AAD 0.4381 Complete linkage (K = 145) 0.2240

Position distance-1 0.1380 Z-score 0.2165 PAM (K = 130) 0.8631

Position distance-2 0.1387 AAD (NT) 0.4510 PAM (K = 131) 0.8640

League and team distance 0.0098 Z-score (NT) 0.4559 PAM (K = 132) 0.8711

Range (NT) 0.5222 PAM (K = 133) 0.8793

PAM (K = 137) 0.8846

PAM (K = 138) 0.9003

PAM (K = 139) 0.9075

PAM (K = 140) 0.9024

PAM (K = 141) 0.8977

PAM (K = 142) 0.9120

PAM (K = 143) 0.9978

PAM (K = 144) 0.9988

PAM (K = 145) 0.9995

Ward’s method (K = 148) 0.9585

Ward’s method (K = 149) 0.3536

Ward’s method (K = 150) 0.9983

NT indicates ”No transformation” is applied for the upper level variables when constructing the dissimilarity matrix.
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CHAPTER 9

CONCLUDING REMARKS AND FUTURE RESEARCH
DIRECTIONS

9.1 Concluding Remarks

This dissertation describes the design and development of a dissimilarity measure for mixed type

data sets and the calibration of various clustering validation indexes for finding appropriate clus-

tering methodology and numbers of clusters. Specifically in the first stage, a football players

performance data set has been used for the aim of constructing a dissimilarity matrix in order for

scouts and managers to be able to explore players of interest. In the second stage, the goal is de-

termining how to choose a suitable cluster methodology with the appropriate number of clusters

based on the dissimilarity measurements of football players. In this sense, clustering validation

indexes have been used, and a new concept of aggregation of different indexes has been introduced

and demonstrated with several results based on different types of data sets.

The key findings of the research are given as follows:

• In Section 3.2.2, I have discussed how variable transformation should be made when de-

signing a dissimilarity measure for clustering. The choice of transformation and how this is

applied are discussed from the interpretative dissimilarity point of view regarding the appli-

cation manner of this thesis. Specifically, a guiding principle of the transformation selection

can be the stabilisation of the variables between different seasons for the same player, see

more discussion in Section 4.1.2.

• Several different standardisation techniques have been introduced in Section 3.2.3, and the

usage of these techniques are discussed in terms of how they behave on differently dis-
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tributed types of variables. In the application part of this thesis, average absolute deviation

has been selected in order to aggregate different types of variables for the sake of making

them comparable, because every value of the variables should have the same impact when

computing a dissimilarity measurement based on subject matter reasons. For compositional

data sets (percentages), the pooled average absolute deviation from all categories belonging

to the same composition has been used. The reason for this is that a certain difference in

percentages between two observations has the same meaning in all categories, which does

not depend on the individual variance of the category variable.

• In Section 3.4, Compositional data analysis has been reviewed for the sake of representation

of percentage variables in the football data set, and some conclusions are provided below:

– For dealing with zero values in percentages, the Bayesian approach, which was used for

adjusting these values, has been incorporated with my prior selection in order to repre-

sent football information in a more suitable way, see more discussion in Section 4.1.1.

– Because the general principle is that differences in different variables should be treated

in the same way, the resulting distances between percentages should be counted in

the same way regardless of which part of the compositions they are from. In this

sense, Theory 4.1.1 gives the formal argument with a mathematical proof of why either

the Euclidean or the Manhattan distances can be considered as a selection of distance

measure for percentage variables, but the Aitchison distance may not.

– As discussed in Section 3.4.5, the Aitchison distance can be problematic for very small

percentage values. Equation (3.28) demonstrates in mathematical form why the Aitchi-

son distance is not adequate for this specific application, since the Aitchison distance

is dominated by differences between small percentages in an inappropriate manner, see

the example in Section 4.2.2 for a better illustration.

• For constructing a distance measure for two types of position variables, two different method-

ologies have been developed in Section 4.2.4.

– A new type of dissimilarity measurement has been built for percentage variables (rep-

resented as Y(15)). Specifically, I designed a three dimensional coordinate system in

which a player’s location is represented with one point on the football field, and then I

computed the distance measures between these points, where the Great-circle distance

has been incorporated.

– For the other position variables (Y(11)) which were represented as binary, a similar
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distance measure to what Hennig and Hausdorf (2006) proposed was adapted for com-

puting the distances between player information.

• In Section 4.3, several considerations have been given to aggregate four different types of

dissimilarity measures in order to reach one single dissimilarity matrix for clustering players.

In this respect, the first argument was how the distributional shape of the dissimilarities

can be helpful for finding a proper standardisation approach in order to aggregate these

dissimilarities. However, in the end a sensitivity analysis has been conducted for finding a

suitable standardisation technique by observing the correlation of the vector of dissimilarities

between two consecutive years information. The result indicates that range standardisation

is the proper choice for aggregation of the dissimilarities.

• For choosing an appropriate clustering methodology and determining the best number of

clusters, various clustering quality indexes have been described in Chapter 6. The main goal

was to calibrate several clustering validation indexes with different aims. Following this,

Hennig (2017) proposed two random clustering algorithms (Random K-centroids and Ran-

dom nearest neighbour) to generate random clustering validation index values for the sake of

calibrating these indexes. I proposed two additional random clustering algorithms (Random

furthest neighbours and Random average neighbours) to contribute different distributional

shapes for calibration, see the whole discussion in Section 6.2.

• For stability measurements, Tibshirani and Walther (2005) and Fang and Wang (2012) es-

timated the number of clusters using the idea of cluster stability by resampling methods.

Both articles used the K-means algorithm for clustering, and the closest centroid approach

for classification. The R package fpc (Hennig, 2013) provides alternative classification

techniques over different clustering algorithms. In this thesis, I contribute one additional

classification approach (furthest neighbour distance) for the complete linkage method. More

discussion can be found in Section 6.1.6.

• In Chapter 7, calibrating different clustering validation indexes has been examined with

different types of simulated and real data sets, and the results indicate that the calibration

of clustering validation indexes is quite successful in the estimation of the correct number of

clusters in most circumstances.

• For the dissimilarity measure obtained from the football data set, the clustering validation

index results favour small numbers of clusters, which is not satisfactory from the user’s point

of view for subject-matter reasons. In this sense, a survey, involving different clustering so-

lutions (for large K) in each question, has been conducted among football experts to select
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an appropriate clustering methodology with the suitable number of clusters. This is a clus-

tering validation step by checking external information obtained from the survey result, see

more details in Section 8.

• In Section 4.4, a distance queries approach has been introduced for exploring a player of

interest based on a final dissimilarity matrix obtained from the distance construction of foot-

ball players performance data. R Shiny implementation has been used for the visualisation

of distance queries of players with the aim to find players that have the smallest distances to

a player of interest.

9.2 Future Research Directions

For the research conducted in the development of this thesis, a large amount of considerations and

literature regarding distance construction and cluster analysis, specifically estimating the number

of clusters using clustering validation techniques, has been reviewed. Several new contributions

have been made. It is anticipated that there is significant scope for further progress in this field. To

expedite this progress, the following recommendations with respect to future work are given:

• In Chapter 4, I discussed how to pre-process the football data set and how to build a dis-

similarity measure in terms of reflecting players’ characteristics by using all the available

information in the data set. The data information was collected for the of 2014− 2015 foot-

ball seasons, so that distance construction for the football data set has only been made for

one year of information, which simply implies that no time series component is involved.

Data information collected from sports events may not be stable and could be change year

by year. In this respect, one could be interested in investigating football data information in

different years and make some connections between these years. From the statistical point of

view, this could be done by time series analysis. Time series analysis can be useful not only

for making the connections between players in consecutive years, but also for discovering

potential talented football players by checking their trends from the first year to the last year

of available information. The first step for performing time series analysis is to collect his-

torical player information, which is very challenging due to the difficulties of data collection

from the specific websites (e.g., www.whoscored.com). Once this issue is resolved, another

challenge is how to apply time series analysis in distance construction for analysis of mixed

data types as well as time series data in cluster analysis. In the literature, time series analysis

of a dissimilarity matrix is commonly studied with the aim of clustering, and there seems to

be an increased interest in time series clustering in the recent years. Many different articles
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exist in this specific area. For having a general idea about this topic, one could consider Liao

(2005), which is a survey article summarising previous works that investigated the clustering

of time series data in various application domains. I intend to work on these sorts of studies

as a new research topic for the future, specifically from the direction of this thesis’ specific

application.

• In Section 3.2.4, the concept of weighting is described as multiplying variables with an ap-

propriate constant which is determined by user’s judgement. This kind of judgement is sub-

jective and can be made from different perspectives. As discussed previously, the statistical

approaches (e.g., PCA or some of the feature selection methodologies) for defining variable

weights may not be suitable for dissimilarity design and clustering of the football data set,

because the issue here involves subject-matter knowledge that cannot be decided from the

data alone. Therefore, I gave different arguments from a subjective point of view that lead to

assigning appropriate weights to the variables of the football data set, see Section 4.1.4. In

future work, the determination of weight assignment for these types of football variables can

be investigated from different settings, and the inclusion of external information (e.g., expert

knowledge) can be a reasonable way of assigning appropriate weights. Multi criteria deci-

sion method (MCDM) 1 is one way to determine variable weights by rating the criteria (e.g.,

variables) based on experts’ responses for how well it satisfies a particular interest or which

criteria are more important from the decision makers’ point of view. The idea is similar to

the score assignment as explained in Section 8.1. Various schools of thought have developed

for solving MCDM problems, see the book Hwang and Masud (2012) for more details.

• Football players in different leagues and teams have very different levels in terms of their per-

formance, skills, physical conditions, and other such features. For example, two players who

have very similar statistical data information from various football performance variables can

be selected for checking how similar they are, but these two players can play in two different

leagues and two different teams (say Barcelona, Spain and Galatasaray, Turkey). We expect

that the dissimilarity between these two players should be small based on the information ob-

tained from their performance and position variables, but some differences can be expected

due to the effect of team and league variables. In the data pre-processing steps in Chapter 4,

team and league variables (xl, xtp and xtc) are incorporated into the dissimilarity matrix in an

independent way; in other words, these variables are not linked with any other variables in the

football data set. One could think of integrating team and league variables into all the other

variables in such a way that the dissimilarity between football players can be interpreted in a

1Multiple criteria decision making is one of techniques in operational research that deals with finding optimal
results in complex scenarios including different indicators.
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more intelligent way. For example, the company InStat, which is a website platform storing

a huge football database and match videos, created an index used to evaluate player’s perfor-

mances in matches during the entire season. InStat Indexes are designed in such a way that

team and league information are linked with the other performance variables when calculat-

ing the player index value; in other words, as explained in the company website, it correlates

with the tournament level, but at the same time does not depend on it directly. For example,

there might be a higher index value for a player in Turkish League than a player in Spanish

League. More information about the calculation of The InStat Index can be found in the

web-link, http://instatsport.com/en/football-3/instat-index-en/. This concept

can be reviewed and developed with different thoughts and viewpoints from both a statistical

and football point of view, which is planned to be studied more in the future.

• In Section 6.1.6, two stability measurements have been introduced for estimating the number

of clusters, and the stability assessment for clusters is measured by some resampling tech-

niques. For these types of settings, various classification methodologies are proposed for the

sake of measuring stability in clusters. The choice of integration between different classifica-

tion techniques and different clustering methodologists is determined simply by considering

the connection of these techniques based on their structures (e.g., furthest neighbour distance

is related to complete linkage). The argument of why the selections are made is based on

the explanations obtained from different sources (See Tibshirani and Walther (2005), Hennig

(2013) and Fang and Wang (2012)). On the other hand, one could consider a theoretical proof

for the selection of the classification methodologies in Table 6.1. Wang (2010) provided the

proof of a consistency theorem for centroid and nearest neighbour assignments. In future

work, I plan to contribute a similar idea of consistency theorem for the other classification

methodologies, such as furthest neighbour distance and average distance.
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APPENDIX A

Algorithms

A.1 K-means algorithm

Algorithm 5: The K-means Algorithm (Lloyd, 1982)

input : X = {x1,x2, . . . ,xn} (set of objects to be clustered), K (number of

clusters), iter.max (the maximum number of iterations)

output: mC = (mC1 ,mC2 , . . . ,mCK
) (set of cluster centroids),

L = {l1, l2, . . . , ln} (set of cluster labels)

# initialise K random centroids, S = {s1, s2, . . . , sK} from X
for k ← 1 to K do

mCk
← sk

iter ← 0

while iter ≤ iter.max do
for i← 1 to n do

# Assign every observations to the closest centroid:

li = arg min
1≤k≤K

‖xi −mCk
‖, i ∈ Nn

for k ← 1 to K do
# Compute the means by minimising Equation (5.1)

mCk
= 1

nk

∑
li=k

xi

iter ← iter + 1
return mC and L
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A.2 PAM algorithm

Algorithm 6: Partitioning Around Medoids (PAM) Algorithm

input : X = {x1, . . . ,xn} (set of objects for computing D = d(xi,xj)

(i, j = 1, . . . , n), the matrix of dissimilarity to be clustered) or D

(matrix of dissimilarity to be clustered), K (number of clusters)

output: mC = (mC1 ,mC2 , . . . ,mCK
) (set of cluster medoids),

L = {l1, l2, . . . , ln} (set of cluster labels)

STEP 0: # initialise K random medoids, S = {s1, s2, . . . , sK} from X
for k ← 1 to K do

mCk
← sk

q ← 1

repeat
STEP 1:
for i← 1 to n do

# Assign every observations to the closest medoid:

li = arg min
1≤k≤K

d(xi,mCk
), i ∈ Nn

# Compute the total cost, T (0) = T (C,m1, . . . ,mK) by using

Equation (5.3),

STEP 2: (m∗1, . . . ,m
∗
K) = (mIK

1 , . . . ,mIK
K )

for i← 1 to n do
for k ← 1 to K do

xi /∈ {m∗1, . . . ,m∗K} and m∗k ∈ {m∗1, . . . ,m∗K}
# Compute Tik = T (Cik,mik

1 , . . . ,m
ik
K), where (mik

1 , . . . ,m
ik
K)

are (m∗1, . . . ,m
∗
K) but with m∗k replaced by xi, and Cik assigns

every object to the closest centroid in {m∗1, . . . ,m∗K}

STEP 3: (g, h) = arg min
(i,k)

Tik, T (q) = Tgh

(mC1 , . . . ,mCK
) = (mgh

1 , . . . ,m
gh
K )

q ← q + 1

until T (q) ≥ T (q−1)

return mC and L
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A.3 Hierarchical clustering

Algorithm 7: Agglomerative Hierarchical Clustering Algorithm

input : X = {x1, . . . ,xn} (set of objects for computing D = d(xi,xj)

(i, j = 1, . . . , n), the matrix of dissimilarity to be clustered) or

D (matrix of dissimilarity to be clustered).

output: List of which clusters are merged at each step, which depends

on the number of cluster or height of the dissimilarity for each

merge.

STEP 0: Every object is a cluster on its own:

{C1, . . . , Cn} ← {{1} , . . . , {n}}
Initialise set of clusters available for merging: S ← {1, . . . , n}

t← 1; D(t) ← D

repeat
STEP 1: Find two most similar clusters (by checking the smallest

dissimilarity from D(t)) to merge

(g, h)← arg min
g,h∈S

d(t)(xg,xh)

STEP 2: Merge clusters Cg, Ch: Cl ← Cg ∪ Ch
Mark g and h as unavailable: S ← S \ {g, h}

STEP 3:
if Cl 6= {1, . . . , n} then

Mark l as available: S ← S ∪ {l}
STEP 4:
foreach i ∈ S do

Update dissimilarity matrix d(t)(xi,xl), if:

Single linkage: min
{
d(t)(xi,xg), d

(t)(xi,xh)
}

,

Complete linkage: max
{
d(t)(xi,xg), d

(t)(xi,xh)
}

,

Average linkage:
(ningd

(t)(xi,xg) + ninhd
(t)(xi,xh))/(ninl),

where ni, nl, ng and nh are the numbers of elements in clusters

Ci, Cl, Cg and Ch respectively.

t← t+ 1

until No more clusters are available for merging
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A.4 Spectral clustering

Algorithm 8: Spectral clustering algorithm

input : X = {x1,x2, . . . ,xn} (set of objects) or D = d(xi,xj)

(matrix of (dis)similarity), K (number of clusters)

output: mC = (mC1 ,mC2 , . . . ,mCK
) (set of cluster centroids),

L = {l1, l2, . . . , ln} (set of cluster labels)

STEP 1: As described in Definition 5.2.4, define the weighted

adjacency matrix (A), using a function (e.g., Gaussian Kernel) as

explained previously, then compute the degree matrix P

STEP 2: Using the matrices A and P , construct the Laplacian matrix

(L) from one of the choices in Table 5.1

STEP 3: Compute the largest K eigenvalues λ1 ≥ . . . ≥ λK and

corresponding eigenvectors U = {u1, . . .uK} of L, where U is a

matrix, and ui’s are the columns of U.

STEP 4: Apply the K-means algorithm on U by using Algorithm 5.

return mC and L
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A.5 Classical scaling algorithm

Algorithm 9: The classical scaling algorithm

input : X = {x1, . . . ,xn} (set of objects for computing

D = (dij) = d(xi,xj) (i, j = 1, . . . , n), the dissimilarity

matrix) or D (the dissimilarity matrix).

output: Z = (z1, . . . , zt) (the principal coordinates)

STEP 1: Square the dissimilarity matrix:

A = (aij), where aij = −1
2
d2
ij

STEP 2: Form the “doubled centred” symmetric matrix:

B = HAH, where H = In − 1
n
Jn and Jn = 1n1

T
n is an

(n× n)-matrix of ones.

STEP 3: Compute eigenvalues and eigenvectors of B:

B = UΛUT , where Λ = diag (λ1, . . . , λn) is the diagonal

matrix, and U = (u1, . . . ,un) is a n× n orthogonal matrix

containing the eigenvectors.

STEP 4: Take the first t (t < n) eigenvalues of B greater than 0,

where Λ+ = diag (λ1, . . . , λt) and the remaining n− t will be

zero, and let U+ = (u1, . . . ,ut) be the corresponding first t

eigenvectors of B. Then,

B = U+Λ+UT
+ =

(
U+Λ+

1/2
)(

Λ+
1/2U+

)
= ZZT

where Z = U+Λ+
1/2 = (z1, . . . , zn)T are the principal

coordinates of the t× n matrix ZT .

return Z
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A.6 Distance scaling algorithm

Table A.1 shows the estimation of disparities (d̂∗ij) by isotonic regression for an artificial data set

X with n = 6 objects and m = 15 dissimilarities. The column of ‘pair’ provides the names of

pairwise objects and the rank information is obtained by the rank order of the 15 dissimilarities

(dij). d∗ij is the Euclidean distance between the configuration points 1 estimated by the MDS

solution. The columns I, II, III, IV, V, VI display a sequence of trial solutions for the disparities

and the cells in red indicate the active block at each trial solution. A “block” is a consecutive set

of dissimilarities that have to be set equal to each other to maintain monotonicity. We partition the

estimated dissimilarities into blocks, and at each step of the algorithm one of these blocks becomes

“active”. A trial solution consists of averaging the values within the active block.

Table A.1: Artificial example for isotonic regression

Pair dij Rank of dij d∗ij I II III IV V VI d̂∗ij

A-B 2.1 1 2.3 2.3 2.3 2.30 2.30 2.30 2.30 2.30

A-C 2.4 2 2.7 2.7 2.7 2.70 2.70 2.70 2.70 2.70

A-D 4.7 3 8.1 8.1 6.9 6.67 6.67 6.67 6.67 6.67

A-E 4.9 4 5.7 5.7 6.9 6.67 6.67 6.67 6.67 6.67

A-F 5.8 5 6.2 6.2 6.2 6.67 6.67 6.67 6.67 6.67

B-C 7.5 6 8.1 8.1 8.1 8.10 8.13 7.80 7.80 7.80

B-D 8.5 7 8.6 8.6 8.6 8.60 8.13 7.80 7.80 7.80

B-E 8.9 8 7.7 7.7 7.7 7.70 8.13 7.80 7.80 7.80

B-F 9.1 9 6.8 6.8 6.8 6.80 6.80 7.80 7.80 7.80

C-D 9.9 10 9.3 9.3 9.3 9.30 9.30 9.30 9.30 9.30

C-E 10.4 11 10.5 10.5 10.5 10.50 10.50 10.50 10.15 10.10

C-F 10.6 12 9.8 9.8 9.8 9.80 9.80 9.80 10.15 10.10

D-E 10.8 13 10.0 10.0 10 10.00 10.00 10.00 10.00 10.10

D-F 12.5 14 12.6 12.6 12.6 12.60 12.60 12.60 12.60 12.60

E-F 12.7 15 12.8 12.8 12.8 12.80 12.80 12.80 12.80 12.60

We can see that the first three d∗ij’s are increasing (2.3, 2.7, 8.1) from the second column of

Table A.1. The next distance (5.7) is smaller only than the preceding 8.1, so the active block is

(8.1, 5.7) with an average of 6.9. The next distance 6.2 is smaller than the two previous 6.9s, so

1The configuration points are the principal coordinates, which can be obtained by the classical scaling method as a
starting phase of non-metric distance scaling algorithm. Starting configurations can be determined by either randomly
or using the classical MDS as implemented in the smacof package of R (De Leeuw and Mair, 2011).
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the active block is (6.9, 6.9, 6.2), whose values are averaged to get 6.67. The two distances (8.1,

8.6) are increasing, but the next one (7.7) is smaller than the preceding two distances. The active

block is now (8.1, 8.6, 7.7) with an average value of 8.13. The next distance (6.8) is smaller than

the three 8.13s, so the active block is (8.13, 8.13, 8.13, 6.80), and their average value is 7.80. The

next two distances (9.3, 10.5) are increasing, but 9.8 is smaller than 10.5. Hence, we average the

two distances (10.5, 9.8) to get 10.15. The next distance 10.0 is smaller than the two 10.15s, so we

average the three values to get 10.1. The remaining distances satisfy the monotonicity requirement,

and the algorithm stops.

The implementation of isotonic regression is a part of the non-metric distance scaling procedure

that is presented in Algorithm 10. The stress function for non-metric MDS is a bit different than

the stress function of classical MDS, see Equation (5.22). As shown in Equation (A.1), the loss

function is only estimated for the distance between the configuration points (d∗ij) rather than using

the dissimilarities (dij).

stress = S(d∗ij) =


∑

i<j

(
d∗ij − d̂∗ij)

)2∑
i<j(d

∗
ij)

2


1/2

. (A.1)

From the last column of Table A.1, the disparities (d̂∗ij) are approximated by using a step-like

function, see the left panel of Figure A.1. As an alternative to isotonic regression, Ramsay (1988)

described a monotone spline (non-linear) transformation, which is smoother than a step function

while preserving the non-decreasing property. The basic illustration of monotone spline can be

seen on the right panel of the Figure A.1, while the conceptual idea is quite sophisticated so that

the transformation from dissimilarities into disparities cannot be characterised by one simple func-

tion. Splines are piecewise polynomial functions and the pieces are determined by two additional

parameters: interior knots and the spline degree. I will not get into the details about the mathemati-

cal explanation of monotone splines, but to those with a particular interest in splines, I recommend

two general references: De Boor et al. (1978) and (Schumaker, 2007).

In Algorithm 10, the gradient search algorithm is a first-order iterative optimization algorithm

to find a local minimum of a function, in which the configuration in a direction is determined by

the partial derivatives of S[r] with respect to z. Here z = (z11, . . . , z1t, . . . , znt) is a vector form

of Z. Hence, given the configuration z[r] at the rth iteration, an updated configuration at the next

iteration is calculated as

z[r+1] = z[r] − ar+1v, (A.2)
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Algorithm 10: Non-metric distance scaling algorithm

input : X = {x1, . . . ,xn} (set of objects for computing

D = (dij) = d(xi,xj) (i, j = 1, . . . , n), the dissimilarity

matrix) or D (the dissimilarity matrix), t (number of

dimensions), rmax (maximum number of iterations), and

ε (convergence criterion).

output: Z[r] = (z1, . . . , zt) (the configuration points), and

S[r](d∗ij) (the stress value).

STEP 1: Order the m = 1
2
n(n− 1) dissimilarities (dij) from

smallest to largest: di1j1 ≤ di2j2 ≤ . . . ≤ dimjm

STEP 2: Choose an initial configuration of points zi ∈ Rt

i = 1, . . . , n with the fixed number of t dimensions.

r ← 0 and S[r](d∗ij)← 0

while r ≤ rmax and ∆ < ε do
STEP 3: Compute the Euclidean distances

(
d∗ij
)

between the

initial configuration points (Z[r] )

d∗ij = ‖zi − zj‖ =
{

(zi − zj)
T (zi − zj)

}1/2

STEP 4: Produce fitted values (disparities) (d̂∗ij) by using an

isotonic regression algorithm

d̂∗i1j1 ≤ d̂∗i2j2 < . . . ≤ d̂∗imjm
STEP 5: Compute the stress value, see Equation (5.22) and

∆ is given by:

∆ = S[r+1](d∗ij)− S[r](d∗ij)

STEP 6: Change the configuration points zi’s by applying an

iterative gradient search algorithm (method of steepest

descent): Z[r+1] ← Z[r]

r ← r + 1

return Z[r] and S[r](dij)
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Figure A.1: Diagrams for the artificial example

where ar+1 is the step size constant that is updated at each iteration to accelerate the algorithm. v

is the (standardised) gradient function is given by:

v =
∂S

∂z
/

∣∣∣∣∂S∂z

∣∣∣∣ . (A.3)

Kruskal (1964b) provided the explicit formula of v and suggested that the initialisation constant

(a0) can be 0.2, see also Cox and Cox (2000) for more details.
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APPENDIX B

R Shiny implementations
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Figure B.1: R Shiny implementation for aggregation of clustering quality indexes on the simulated data set
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Figure B.2: R Shiny implementation for aggregation of clustering quality indexes on the real data sets
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Figure B.3: R Shiny implementation for aggregation of clustering quality indexes on the football data sets
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Figure B.4: R Shiny implementation for distance queries of football players
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APPENDIX C

Survey for clustering solutions of football players performance
data set

Table C.1: Question 1: This group of players are centre-defenders. Please rank the following in order of

importance from 1 to 5 where 1 is the most appropriate to you and 5 is the least appropriate to you.

Clustering solutions 1. Group 2. Group 3. Group 4. Group Rank
Selection 1

PAM
(K ∼ [100 : 150])

John Terry Gary Cahill Chris Smalling
John Stones
Thiago Silva

5

Selection 2
Ward’s method

(K ∼ [100 : 147])

John Terry
Gary Cahill
John Stones
Thiago Silva

Chris Smalling — — 3

Selection 3
Ward’s method

(K ∼ [148 : 150])

John Terry
Gary Cahill
Thiago Silva

Chris Smalling John Stones — 1

Selection 4
Complete linkage
(K ∼ [100 : 150])

John Terry
Gary Cahill
Thiago Silva

Chris Smalling
John Stones

— — 2

Selection 5
Average linkage

(K ∼ [100 : 150])

John Terry
Gary Cahill

Thiago Silva
Chris Smalling

John Stones

— — 4
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Table C.2: Question 2: This group of players are right or left defenders. Please rank the following in order

of importance from 1 to 2 where 1 is the most appropriate to you and 2 is the least appropriate to you.

Clustering solutions 1. Group 2. Group 3. Group Rank
Selection 1

PAM and Ward’s method
(K ∼ [100 : 150])

Cesar Azpilicueta Gael Clichy
Dani Alves

Daniel Carvajal
2

Selection 2
Complete and average linkage

(K ∼ [100 : 150])

Cesar Azpilicueta
Gael Clichy

Dani Alves
Daniel Carvajal

— 1

Table C.3: Question 3: This group of players are defensive midfileders. Please rank the following in order

of importance from 1 to 3 where 1 is the most appropriate to you and 3 is the least appropriate to you.

Clustering solutions 1. Group 2. Group 3. Group Rank
Selection 1

PAM
(K ∼ [100 : 113, 130 : 133, 137 : 146])

Nemanja Matic
Fernando

Sergio Busquets
Javier Mascherano

— 1

Selection 2
Ward’s method

(K ∼ [100 : 150])

Nemanja Matic Fernando
Sergio Busquets

Javier Mascherano
2

Selection 3
PAM

(K ∼ [114 : 129, 134 : 136, 147 : 150]),
Complete and average linkage

(K ∼ [100 : 150])

Nemanja Matic
Fernando

Sergio Busquets
Javier Mascherano

— 3

Table C.4: Question 4: This group of players are midfileders. Please rank the following in order of impor-

tance from 1 to 3 where 1 is the most appropriate to you and 3 is the least appropriate to you.

Clustering solutions 1. Group 2. Group 3. Group 4. Group Rank
Selection 1

PAM
(K ∼ [100 : 113, 130 : 133, 137 : 146])

Gabi Tiago Xabi Alonso Thiago Motta 2

Selection 2
PAM

(K ∼ [114 : 129, 134 : 136, 147 : 150])

Gabi Tiago
Xabi Alonso
Thiago Motta

— 1

Selection 3
Ward’s method, complete and average linkage

(K ∼ [100 : 150])

Gabi
Xabi Alonso
Thiago Motta

Tiago — — 3
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Table C.5: Question 5: This group of players are defensive midfileders. Please rank the following in order

of importance from 1 to 3 where 1 is the most appropriate to you and 3 is the least appropriate to you.

Clustering solutions 1. Group 2. Group 3. Group 4. Group Rank
Selection 1

PAM and average linkage
(K ∼ [100 : 150])

Paul Pogba
Arturo Vidal

Kevin De Bruyne Henrikh Mkhitaryan — 1

Selection 2
Ward’s method

(K ∼ [100 : 150])

Paul Pogba Arturo Vidal Kevin De Bruyne Henrikh Mkhitaryan 3

Selection 3
Complete linkage
(K ∼ [100 : 150])

Paul Pogba
Arturo Vidal

Kevin De Bruyne
Henrikh Mkhitaryan

— — 2

Table C.6: Question 6: This group of players are attacking midfileders. Please rank the following in order

of importance from 1 to 5 where 1 is the most appropriate to you and 5 is the least appropriate to you.

Clustering solutions 1. Group 2. Group 3. Group Rank
Selection 1

PAM
(K ∼ [100 : 118])

Lionel Messi
Neymar

Arjen Robben

Eden Hazard Cristiano Ronaldo 3

Selection 2
PAM

(K ∼ [119 : 150])

Lionel Messi
Neymar

Arjen Robben
Cristiano Ronaldo

Eden Hazard — 4

Selection 3
Ward’s method

(K ∼ [100 : 150])

Lionel Messi
Arjen Robben

Cristiano Ronaldo

Eden Hazard
Neymar

— 5

Selection 4
Complete linkage
(K ∼ [100 : 150])

Lionel Messi
Arjen Robben
Eden Hazard

Neymar

Cristiano Ronaldo — 1

Selection 5
Average linkage

(K ∼ [100 : 150])

Lionel Messi
Eden Hazard

Neymar

Cristiano Ronaldo Arjen Robben 2
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Table C.7: Question 7: This group of players are forwards. Please rank the following in order of importance

from 1 to 5 where 1 is the most appropriate to you and 5 is the least appropriate to you.

Clustering solutions 1. Group 2. Group 3. Group 4. Group Rank
Selection 1

PAM
(K ∼ [100 : 118])

Cristiano Ronaldo
Karim Benzema

Robert Lewandowski Zlatan Ibrahimovic — 5

Selection 2
PAM

(K ∼ [119 : 150])

Cristiano Ronaldo
Robert Lewandowski
Zlatan Ibrahimovic

Karim Benzema — 2

Selection 3
Ward’s method

(K ∼ [100 : 150])

Cristiano Ronaldo
Robert Lewandowski
Zlatan Ibrahimovic

Karim Benzema

— — 1

Selection 4
Complete linkage
(K ∼ [100 : 150])

Cristiano Ronaldo
Karim Benzema

Robert Lewandowski
Zlatan Ibrahimovic

— — 4

Selection 5
Average linkage

(K ∼ [100 : 150])

Cristiano Ronaldo Karim Benzema Robert Lewandowski Zlatan Ibrahimovic 3
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McHale, I. G. and Szczepański, Ł. A mixed effects model for identifying goal scoring ability of

footballers. Journal of the Royal Statistical Society: Series A (Statistics in Society), 177(2):

397–417, 2014.

253



McHale, I. G., Scarf, P. A., and Folker, D. E. On the development of a soccer player performance

rating system for the english premier league. Interfaces, 42(4):339–351, 2012.

McLachlan, G. and Basford, K. Mixture Models: Inference and Applications to Clustering. Marcel

Dekker, New York, 1988.

McLachlan, G. and Peel, D. Finite Mixture Models. Wiley, 2000.

McLachlan, G. J. and Rahtnayake, S. I. Mixture models for standard p dimensional euclidean data.

In Hennig, C., Meila, M., Murtagh, F., and Rocci, R., editors, Handbook of Cluster Analysis,

pages 145–172. CRC Press, 2015.

Meila, M. Criteria for comparing clusterings. In Hennig, C., Meila, M., Murtagh, F., and Rocci,

R., editors, Handbook of Cluster Analysis, pages 619–636. CRC Press, 2015a.

Meila, M. Spectral clustering. In Hennig, C., Meila, M., Murtagh, F., and Rocci, R., editors,

Handbook of Cluster Analysis, pages 125–144. CRC Press, 2015b.

Meila, M. and Xu, L. Multiway cuts and spectral clustering. 2003.

Milligan, G. W. Clustering validation: Results and implications for applied analyses. World

Scientific, Singapore, 1996.

Milligan, G. W. and Cooper, M. C. An examination of procedures for determining the number of

clusters in a data set. Psychometrika, 50(2):159–179, 1985.

Milligan, G. W. and Cooper, M. C. A study of the comparability of external criteria for hierarchical

cluster analysis. Multivariate Behavioral Research, 21(4):441–458, 1986.

Milligan, G. W. and Cooper, M. C. A study of standardization of variables in cluster analysis.

Journal of classification, 5(2):181–204, 1988.

Mirkin, B. Quadratic error and k-means. In Hennig, C., Meila, M., Murtagh, F., and Rocci, R.,

editors, Handbook of Cluster Analysis, pages 33–54. CRC Press, 2015.

Mohr, M., Krustrup, P., and Bangsbo, J. Match performance of high-standard soccer players with

special reference to development of fatigue. Journal of sports sciences, 21(7):519–528, 2003.

Moroney, M. Facts from figures. Pelican Books, (A236), 1954.

Mouselimis, L. Clusterr: Gaussian mixture models, k-means, mini-batch-kmeans and k-medoids

clustering. Journal of Statistical Software, 2018. URL https://cran.r-project.org/web/

packages/ClusterR/index.html.

254

https://cran.r-project.org/web/packages/ClusterR/index.html
https://cran.r-project.org/web/packages/ClusterR/index.html


Murphy, T. B. Model-based clustering for network data. In Hennig, C., Meila, M., Murtagh, F.,

and Rocci, R., editors, Handbook of Cluster Analysis, pages 337–357. CRC Press, 2015.

Murtagh, F. and Legendre, P. Ward’s hierarchical agglomerative clustering method: Which al-

gorithms implement ward’s criterion? Journal of Classification, 31(3):274–295, 2014. ISSN

1432-1343. doi: 10.1007/s00357-014-9161-z. URL http://dx.doi.org/10.1007/s00357-

014-9161-z.

Ng, A. Y., Jordan, M. I., and Weiss, Y. On spectral clustering: Analysis and an algorithm. In

Advances in neural information processing systems, pages 849–856, 2002.

Nguyen, N. and Caruana, R. Consensus clusterings. In Data Mining, 2007. ICDM 2007. Seventh

IEEE International Conference on, pages 607–612. IEEE, 2007.
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