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Abstract  

Representatives of academia, patient organisations, industry and the United States Food and Drug 

Administration attended a workshop on dystrophin quantification methodology. The aims of the 

workshop were to provide an overview of methods used to quantify dystrophin levels in human skeletal 

muscle and their applicability to clinical trial samples, outline the gaps with regards to validating the 

methods for robust clinical applications prior to regulatory agency review, and to align future efforts 

towards further optimizing these methods. The workshop facilitated a constructive but also critical 

discussion on the potential and limitations of techniques currently used in the field of translational 

research (western blot and immunofluorescence analysis) and emerging techniques (mass spectrometry 

and capillary western immunoassay). Notably, all participants reported variation in dystrophin levels 

between muscle biopsies from different healthy individuals and agreed on the need for a common 

reference sample.  
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Introduction 

Thirty one representatives of academia, patient organisations, industry and the United States Food and 

Drug Administration from 6 countries (USA, UK, the Netherlands, Spain, France and Switzerland) 

attended the TREAT-NMD and World Duchenne Organisation workshop on dystrophin quantification 

methodology organized by Annemieke Aartsma-Rus (Leiden University Medical Center, the Netherlands 

and John Walton Muscular Dystrophy Research Center, Newcastle University, UK), Virginia Arechavala-

Gomeza (Biocruces Health Research Institute, Spain) and Francesco Muntoni (University College London, 

UK), and sponsored by Duchenne Parent Project (the Netherlands). The meeting was held in London on 

the 14th March 2018.  

Dystrophin quantification in context 

Francesco Muntoni outlined the aims of the meeting and the current relevance of dystrophin 

quantification: multiple therapeutic approaches aim at dystrophin restoration for Duchenne muscular 

dystrophy (DMD), some of which have already been tested in trials, while many more trials are ongoing 

or being planned. Since the early days of these trials a decade ago, when it was realised that there was 

the need to measure with precision low levels of dystrophin following experimental therapies using 

antisense oligonucleotides (AON) and small molecules to induce read-through of nonsense mutations,  

the field has become increasingly aware of strengths and limitations of the methods used to measure 

dystrophin levels (1, 2).  

The need for robust quantitation and regulatory compliance, with dystrophin measures as a primary 

outcome measure for clinical trials, has changed the way in which biochemical outcome measures are 

being assessed and considered (3): as an example, it was commonly believed that dystrophin was nearly 

absent from muscles from DMD patients, aside from rare revertant fibers (dystrophin positive fibres 

seen in many DMD patients) (4). It is now clear that most patients also produce trace amounts of 
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dystrophin in non-revertant fibers (4, 5). Therefore, pre-treatment biopsies are needed to accurately 

quantify dystrophin produced by a given treatment.  It has also been demonstrated that while individual 

patients may have variable levels of low / trace amounts of dystrophin, there are clear trends with some 

genotypes that are associated with overall higher levels of dystrophin expression than others. For 

example, patients harbouring deletions flanking exon 44 produce higher amounts of dystrophin and also 

have a slower disease progression compared to other genotypes (6, 7). Furthermore, different 

dystrophin restoration approaches aim to produce different kinds of proteins: while exon skipping and 

stop codon read through strategies would result in internally deleted but nearly full-length proteins, 

AAV mediated gene therapy trials aim at the expression of smaller engineered micro-dystrophins (8). 

The production of the latter is much easier to differentiate from baseline low levels of dystrophin in 

DMD patients, but the clinical relevance of de novo levels are also less clear, as these are not naturally 

occurring deleted proteins.  

Current and future trials can benefit from what has been learned in the past, as well as from work that 

was inspired by the regulators requesting that dystrophin be quantified more objectively (1). A 

collaborative effort (9) in which western blot and immunofluorescence methods (10-12) were compared 

between different groups with expertise in dystrophin quantification, revealed that only after a careful 

standardisation of the protocols was completed were the outputs comparable (9). In some laboratories, 

the reproducibility and sensitivity of western blot appeared less satisfactory than digital 

immunohistochemical capture, especially when measuring the low levels of dystrophin that are seen in 

children treated with first generation drugs. However, for the immunohistochemical capture technique, 

the concern from regulatory authorities with regards to data reproducibility relates to potential bias in 

the selection of regions of interest in the biopsy, or on the subjective assignment of fibres as “positive” 

or “negative” based on visual examination alone, and challenges in normalizing to 100% dystrophin 

levels seen in normal control biopsies. Consequently, they recommend objective and automated 



5 
 

capturing of images so that consistent analysis can be performed by independent laboratories 

(https://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/peripherala

ndcentralnervoussystemdrugsadvisorycommittee/ucm497063.pdf ) (13). 

Regulators are increasingly requesting an ‘orthogonal approach’ – meaning simultaneous use of multiple 

methods in the same clinical trial biopsies, including western blotting, immunofluorescence, RT-PCR or 

others: western blotting can provide information on the size and relative amount of the protein 

extracted from the sample, while immunofluorescence reveals how dystrophin is distributed across the 

tissue sample and where it is located within the fibres.  

Finally, since quantification is generally relative (percentage of normal), we need to define “normal”. It is 

now known that dystrophin levels vary not only between different muscles of the same normal control, 

but also between different control individuals (10, 12, 14, 15). To allow comparison between different 

trials, there should ideally be agreement on a common standard (12). This is not straightforward, as it 

has not yet been possible to produce recombinant dystrophin protein that could be used as a protein 

standard (16). 

Dystrophin protein 

Annemieke Aartsma-Rus summarized our current knowledge on dystrophin protein. A frequent question 

is: how much dystrophin do we need?  There is no simple answer to this question, because the level 

needed depends on other factors, such as the structure and functionality of the new protein, the 

amount that is produced, and the disease stage (that itself depends on age and genetic background of 

the patient) at which dystrophin is restored. The immunological and inflammatory processes associated 

with DMD and replacement therapy, as well as metabolic abnormalities responsible for the muscle 

pathology in DMD and ongoing regeneration, may well impact on the success of dystrophin-replacement 

strategies (17). 

https://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/peripheralandcentralnervoussystemdrugsadvisorycommittee/ucm497063.pdf
https://www.fda.gov/downloads/advisorycommittees/committeesmeetingmaterials/drugs/peripheralandcentralnervoussystemdrugsadvisorycommittee/ucm497063.pdf
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Which dystrophin 

The kind of dystrophin protein produced varies according to the therapeutic approach. Normal muscle 

dystrophin is a 427 kDa protein that has 3 actin binding domains (encoded by exons 2-10 and 31-45), 24 

spectrin-like repeats (encoded by exons 11-63), a cysteine rich domain involved in binding to beta-

dystroglycan (encoded by exon 64-70) and a C-terminal domain (18). Stop codon read-through drugs 

used in patients with nonsense mutations could produce a full-length dystrophin with potentially one 

altered amino acid. Given the length of the protein, and the general tolerance for missense mutations in 

most regions except those directly involved with actin or dystroglycan binding (18), these dystrophins 

are theoretically anticipated to be more functional, although additional studies may be required to 

confirm functional activity in muscle fibers in DMD patient samples. Exon skipping in eligible patients 

with out-of-frame deletions will produce different dystrophins based on the size and location of the 

mutation to be targeted. Different “quasi-dystrophins” are likely to have different functionality, which 

could be partially anticipated based on the phenotype observed in Becker patients with the equivalent 

genomic deletions (19). However, not all dystrophins formed after exon skipping have an equivalent in 

Becker patients and it is known that mutations in several regions of dystrophin lead to more severe 

Becker phenotypes (e.g. mutations in the N-terminal end, which encodes the first two actin-binding 

domains), while others tend to be associated with much milder progression (e.g. mutations in the first 

part of the central repeat domain encoded by exons 11-30 (20)).  

The spectrin-like repeats are generally observed as redundant parts of the protein. However, one should 

bear in mind that each individual repeat acts as a unit, and is connected to the next repeat in a head to 

tail manner. Exons generally do not encode full repeats, and after exon skipping this normal connection 

of one repeat to the next is often lost. In fact, there is a growing literature suggesting that the alignment 

of spectrin-like repeats in dystrophin after exon skipping influences functionality, probably more so in 
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heart than in skeletal muscles (21). For instance, in a dystrophin lacking the domains encoded by exons 

45-55 (spectrin repeats 18-21 and parts of repeats 17 and 22), spectrin repeats 17 and 22 are joined 

almost seamlessly, while in a dystrophin lacking the domains encoded by exons 45-47, this is not the 

case (22). It is anticipated that binding of the dystrophin-associated proteins is not affected by the way 

the repeats are connected in an internally deleted dystrophin, since this is mediated by the domain 

encoded by exons 64-70. However, since histological analysis is done on skeletal muscle rather than 

heart, it cannot be excluded that the binding to dystrophin associated proteins may be affected in 

cardiac tissues (23). 

Micro-dystrophins delivered by AAV are highly engineered proteins that contain only the most critical 

domains of the protein, i.e. the first 2 actin-binding domains, 4 spectrin-like repeats and the cysteine 

rich domain or other similar combinations (24, 25). Attempts have been made to obtain an optimal 

phasing organisation of the spectrin repeats. However, these dystrophins are a lot shorter than even the 

shortest Becker dystrophins that have been found to date. It has been confirmed that these dystrophins 

are functional in animal models (8) but not yet in humans. Also, it is not known which levels will be 

needed to achieve functional effects in humans (26). 

How much dystrophin 

Early studies of dystrophin protein correlations between western blot and clinical symptoms suggested 

that <3% normal levels typically showed a clinical picture of DMD, whereas >15% were more consistent 

with Becker muscular dystrophy (BMD) (27, 28).  Intermediate levels (3-15%) were often seen with an 

intermediate phenotype (e.g. between DMD and BMD) and it was assumed that dystrophin restoring 

therapies should aspire to induce 20% to 30% of normal dystrophin levels (29, 30). More recently, 

Becker patients who produce lower than these originally suggested dystrophin levels (~10%) have been 

reported, and DMD patients with deletions flanking exon 44, who experience a slower disease 
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progression, also show low dystrophin levels , some below the level of detection by western blot (12, 15, 

31). In mice lacking both dystrophin and utrophin, very low levels of dystrophin were sufficient to 

significantly improve survival: at 5 months all mice lacking dystrophin had perished while, 70% of mice 

with less than 5% of dystrophin were still alive (32). While it is not yet clear how this correlates to the 

human situation, it clearly shows that low amounts of dystrophin can have an impact on disease 

progression in mice. Dystrophin levels can also be modulated by inflammation and dystrophin-targeting 

microRNAs and long non-coding RNAs, adding more complexity to dystrophin protein and phenotype 

correlations (33).  

The amount of dystrophin required to improve different aspects of muscle function is an important 

question that has been addressed in preclinical models. Exon skipping studies in mdx mice have shown 

that 5-15% of dystrophin is sufficient to protect muscle fibers against a force drop after tetanic 

contraction; however more than 40% dystrophin is needed to also improve muscle force (34). Similarly, 

in another study using a mdx mouse with low variable dystrophin levels, low amounts of dystrophin 

were able to improve muscle function but, to restore the neuromuscular junction defects, levels of 50% 

were needed (35). It is important to keep in mind the findings discussed earlier regarding dystrophin 

quantification variability when considering dystrophin levels reported in these studies. 

In addition to the net levels of dystrophin produced, the distribution of dystrophin in muscle fibers is 

another factor that requires consideration. Analysis of biopsies collected in clinical trials of two different 

exon skipping antisense oligonucleotides (2’-O-methyl phosphorothioate (2OMePS) and morpholino 

phosphorodiamidate morpholino oligomer (PMO)) revealed differences in distribution possibly 

secondary  to pharmacokinetic differences between  the two  chemistries: 2OMePS treatment resulted 

in widespread expression of dystrophin at very low levels (36), while PMO treatment resulted in higher 

dystrophin levels in only a smaller proportion of muscle fibres, in a patchy distribution (37, 38). It is not 
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yet known whether having either some dystrophin in all fibers, or higher dystrophin levels in some 

fibers, may provide a different therapeutic impact in the human. However, this quandary does 

emphasize the need for both western blot and immunofluorescence analysis; indeed a 2% dystrophin 

level detected by western blotting could reflect very different scenarios, for example, that all muscle 

fibers were producing 2% of dystrophin, or that 50% of muscle fibers were producing 4% of dystrophin 

or that 2% of fibers were producing 100% of dystrophin. It is likely that these different expression 

patterns will have different implications for function of the entire muscle. 

Time of intervention 

Most estimates of the amount of dystrophin needed for functional improvement are based on either 

BMD or X-linked dilated cardiomyopathy patients (30), DMD patients producing very low dystrophin 

amounts (6), or transgenic mouse models (32). However, in all of these, dystrophin has been produced 

from before birth, it is usually evenly distributed in muscle fibres, while when treating DMD patients, 

intervention takes place later. Restoring dystrophin later in life is not expected to bring back muscle 

tissue or function that has already been lost, and indeed the progressive muscle weakness that DMD 

patients experience is due to the substitution of muscle with fibroadipose tissue. As previously 

highlighted, the inflammatory environment of the DMD muscle fiber may also play a role in the impact 

of differential dystrophin restoration (33). As such, it is clear that treating earlier may lead to larger 

therapeutic effects, because the amount of remaining target tissue (muscle) would be larger and less 

function would have been lost. This was suggested in the double dystrophin/ utrophin knockout mice 

(39). Using a single treatment with a very high dose of an exon skipping antisense oligonucleotide, 

dystrophin levels were restored to almost 100% (i.e. almost 100% of muscle fibers produced close to 

100% of dystrophin each). In young animals, this prevented pathology and increased survival to wild 

type levels. However, when treatment took place in older mice, 100% dystrophin restoration was 
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insufficient to improve muscle function, prevent kyphosis or, when given near the end of the lifespan, to 

improve survival. On the other hand, in a different set of experiments, when the same mice were 

treated from 1 week of age with oligonucleotides (200 mg/kg/week of 2OMePS), this resulted in very 

low levels of dystrophin restoration, which significantly improved survival (Aartsma-Rus et al., 

manuscript in preparation). Furthermore, it is known from a small study in Becker patients with the 

same deletion, that muscle strength and fatty infiltration as measured by MRI significantly correlated 

with patient age (7). 

Patient perspective on muscle biopsies 

Dystrophin analysis is performed on muscle biopsies. This is an invasive procedure in which care should 

be used to minimise pain and that is not without risk, since it is generally performed under general 

anaesthesia. Sejal Thakrar (Smile with Shiv, DMD patient organization, UK) presented a recent survey 

that was performed by the World Duchenne Organisation in collaboration with academic centres. The 

survey was answered by 78 parents and patients from 8 countries who had been involved in clinical 

trials that involved taking muscle biopsies generally from the tibialis anterior and biceps (Thakrar et al, 

manuscript in preparation). Parents report that informed consent documents do not always properly 

reflect the risks and processes of undergoing a muscle biopsy. Parents reported anaesthesia as the 

biggest perceived risk and while complications such as rhabdomyolysis are rare, the majority of patients 

(83%) suffered from pain after the biopsy that had a short-term impact on daily activities. In addition, 

most patients had a larger scar than they expected, or that was described in the information provided.  

Parents find muscle biopsies acceptable in clinical trials, but in placebo-controlled trials many parents 

think the risk of having to undergo a muscle biopsy, while perhaps not receiving any drug, is very high. 

Parents also feel that remaining biopsy tissue should be shared with others for research purposes once 

the analyses related to the trial has been performed and that informed consent forms should include 
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this option. Recommendations from the patient community are that consent forms should inform 

patients accurately about not only the risks, but also the pain and the way this will be managed, the 

expected size of the scar and that surgery should ensure that the scar size is minimized and that parents 

and caregivers are informed of the results of the trials. 

Regulatory perspective on dystrophin quantification 

Ashutosh Rao (Food and Drug Administration (FDA), US) presented on analytical challenges and 

opportunities with dystrophin quantification methodology. Assay validation to confirm the suitability of 

the method and ensure reproducibility beyond exploratory findings can be challenging, but it is essential 

that this process is done prior to sample collection and analysis (40). The validation process is used to 

demonstrate that the analytical procedure employed for a specific test is suitable for the intended 

purpose, with regards to reproducibility, specificity, sensitivity, variability (intra-operator and inter-

operator within the same lab, and also between different labs), accuracy, precision and range (especially 

at low levels) as acknowledged by consortia of experts such as the College of American Pathologists and 

detailed in publicly issued FDA guidance (41). For quantitative measurements, the validated ranges, 

including upper and lower limits of detection (LOD) and limits of quantitation (LOQ) can be important 

determinants of the limits of reliably reportable dystrophin levels with a particular method with its 

specific reagents (e.g. antibodies) and detection systems (e.g. chemiluminescence). With input from 

stakeholders, FDA’s Center for Drug Evaluation and Research (CDER) has issued a guidance document on 

developing drugs for DMD (https://www.fda.gov/ucm/groups/fdagov-public/@fdagov-drugs-

gen/documents/document/ucm450229.pdf). Dr Rao stressed that the FDA is aware that dystrophin 

quantification is challenging and is open to working with drug developers towards robust and objective 

methods for use in clinical studies. FDA encourages drug developers to engage with the agency early and 

often to allow a scientifically robust drug development pathway.  

https://www.fda.gov/ucm/groups/fdagov-public/@fdagov-drugs-gen/documents/document/ucm450229.pdf
https://www.fda.gov/ucm/groups/fdagov-public/@fdagov-drugs-gen/documents/document/ucm450229.pdf
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With regards to dystrophin quantification by western blotting, there are some specific challenges, 

starting with the variability between tissue lysis conditions, different electrophoresis and detection 

systems and the use of different dystrophin antibodies that preclude direct comparison between blots 

stained with different antibodies (42, 43). The large size and variants of dystrophin protein itself can also 

be challenging and often the methods were originally developed for the full-length dystrophin. Reliable 

quantification is generally conducted within the linear range of the reference sample concentration 

series, when the baseline sample, treated sample and standard are on the same blot and when there is 

no oversaturation (i.e. the intensities are within the linear dynamic range of detection). Comparison 

between studies is also complicated by the occurrence of double bands for the full-length protein, 

multiple bands for truncated versions (44, 45) and in some instances smears of closely-sized bands (42, 

43). Some other areas that offer opportunity for improvement are the variation observed in baseline 

dystrophin levels within and between samples (11, 28), the need for a robust and reproducible 

dystrophin reference standard and having a good system to ensure sample integrity and blinding for 

multisite studies. 

Immunofluorescence is a good method to confirm correct protein localization and allows automated 

and objective imaging with clinical trial samples. However, immunofluorescence is not a quantitative 

technique for protein levels, especially for a complex protein such as dystrophin (9). Dystrophin also 

presents unique challenges for immunofluorescence analysis due to the presence of high dystrophin 

levels in revertant fibres in DMD samples and the different levels of affinity and specificity of different 

anti-dystrophin antibodies (4, 10). Consensus is needed on how to objectively distinguish between 

dystrophin from revertant fibers and treatment-induced dystrophin. There is also a need to examine 

how the immunofluorescence results correlate with more quantitative methods such as western blot 

and establishing automated analyses with independent verification (40, 46). Reliance on a single analyst 
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and a single laboratory can result in problems of reproducibility when exploratory studies are expanded 

to support drug development. 

There is room also for development of alternative methods to quantify dystrophin levels, especially at 

low levels. Mass spectrometry as an analytical tool for quantifying dystrophin levels has been published 

previously as a possible method, but thus far the accuracy and precision for levels of dystrophin below 

5% have not been reported (47). 

 

 

Immunofluorescence methods 

Virginia Arechavala-Gomeza introduced an immunofluorescence method used for dystrophin 

quantification. Muscle transverse sections are stained with antibodies against dystrophin, which are 

then visualized by a fluorescently labelled secondary antibody. This approach can determine the number 

of dystrophin producing fibers as well as the amount dystrophin each fiber produces, although 

quantification is relative. Comparing samples from before and after treatment should reveal whether 

there is an increase in dystrophin production elicited by the treatment.  

Several dystrophin quantification methods have been developed in parallel by different groups, with 

different degrees of operator dependency (10-12, 48). A comparison of the methods in DMD and Becker 

samples that were blindly provided to the different groups, established reasonable good comparability 

of the different methods once protocols were optimised (9). However, further optimization is needed 

for the very low ranges, i.e. the levels of dystrophin expected to be produced in a clinical trial. 

Francesco Muntoni presented how the method developed by Dr Arechavala-Gomeza (10) has been 

adapted in an effort to make it operator independent, using Definiens software (48). Analysis revealed 
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that expression of laminin and spectrin was increased in DMD and Becker patients compared to 

controls. So while these proteins can be used as a ‘mask’ to identify the region of interest (i.e. where 

dystrophin is expressed) in an automated fashion, they should not be used for normalization as this may 

underestimate dystrophin expression. Using this automated method in the analysis of control samples it 

was observed that dystrophin levels varied in the same individual  between samples from the same 

muscle and also from samples from different muscles (10). More normative data are needed for both 

patients and controls.  

Rahul Phadke (University College London, UK) presented on a newly developed multiplex immune assay 

for multiparametric digital analysis. This method allows staining for multiple proteins using pre-

adsorbed Alexa fluor conjugated secondaries and Thermo Fisher’s Spectraviewer. This system allows 

also digital analysis in an unbiased and automated fashion for up to three different proteins, while 

staining of four or five proteins is being explored. Initial work indicates that Alexa 647 is  brighter, more 

stable and less prone to bleaching.  

Eric Hoffman ((Binghamton University-SUNY, and AGADA BioSciences) outlined processing of biopsies 

for a clinical trial of exon skipping, pointing out that duplicate biopsies and proper storage are crucial. 

AGADA BioSciences has produced a video on how they performed biopsy processing in the context of 

exon skipping clinical trials (https://www.youtube.com/watch?v=wyRoXgLDaF0). Also important are 

acceptance/rejection criteria: haematoxylin and eosin staining to confirm muscle quality and fiber 

orientation. Dystrophin immunostaining is done by double staining with dystrophin/laminin-α2 and 

dystrophin/alpha-sarcoglycan. Automated scans of complete slides are collected, and image analysis 

done on the stored images by two evaluators. Healthy muscle, non-treated DMD and Becker muscles 

are processed and analysed in parallel. The whole transverse section is analysed and the percentage of 

dystrophin-positive muscle fibers is calculated as well as the absolute intensity normalized to laminin- 

https://www.youtube.com/watch?v=wyRoXgLDaF0
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α2 expression. A Becker sample expressing around 20% of dystrophin is used to establish the gain 

settings during the acquisition of the DMD samples.  

Pallavi Lonkar (Wave Life Sciences) reiterated that, when analysing dystrophin restoration, the 

localization, percentage of positive fibers, the relative intensity of dystrophin and the distribution of 

dystrophin are important. She agreed that the entire cross section should be used for automated 

quantification and that post treatment samples should be compared to pre-treatment samples to assess 

whether there was a shift in dystrophin positive fibers and the relative amount of dystrophin produced. 

During the discussion, it was highlighted that there is at the moment no single protocol used by all, 

which makes comparison between laboratories challenging. However, it is a good development that the 

field is moving towards an automated, operator independent method that analyses the whole cross 

section rather than selected fields.  

When using dystrophin restoration as a surrogate endpoint, the presence of revertant fibers poses a 

technical challenge. The mechanisms through which these arise are not clear. It has been proposed that 

they are due to secondary, frame-restoring mutations in satellite cells or from epigenetic modifications 

in satellite cells that result in efficient frame-restoring exon skipping. Consequently, when satellite cells 

fuse with damaged fibers, or form new muscle fibers, these will become dystrophin positive (5). The vast 

majority of patients have revertant fibers, generally at less than 3% (4). In a small study it was shown 

that the number of revertant fibers within a patient over time is relatively stable (4). Trace dystrophin 

also appears to be stable over a period of 48 weeks in patients recruited in the placebo arm of a clinical 

trial (phase III, (49)).   

There was discussion of using a reference protein for normalization. Given that the expression of many 

muscle membrane proteins are affected by the dystrophic pathology, normalizing dystrophin expression 

to a related reference protein may lead to over or underestimation. Care should therefore be taken in 
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ensuring that any reference protein has similar levels in control and dystrophic muscle. Dystrophin levels 

are sometimes given as relative amounts without normalization to a reference protein but this has its 

own challenges because the levels reported can be variable based on the specific method used , and in 

addition there is evidence for variability of the levels of production of these marker proteins between 

normal and dystrophic muscle (48). 

Western blotting analysis 

Annemieke Aartsma-Rus introduced western blotting as a technique where protein lysates are 

separated by size on acrylamide gels and then blotted on a membrane. After blocking, dystrophin is 

detected by dystrophin specific antibodies and visualized by secondary antibodies labelled with either 

electrochemoluminescencent (ECL) or infrared conjugates (Odyssey system from Li-Cor).  

Because dystrophin is a large structural protein that can be difficult to fully solubilize, some labs use a 

combination of high detergent buffers (e.g. 10% SDS) and mechanical force (e.g. MagnaLyzer bead 

system). Because dystrophin protein is very sensitive to degradation, freeze-thaw cycles should be 

avoided and test and control samples should be aliquoted. Concentration series of the healthy control 

muscle extracts should cover the expected range of protein before and after treatment. In preclinical 

studies, the concentration series are often made in lysates from dystrophin negative mdx mouse muscle, 

to allow loading of equal total protein amounts. However, the availability of the human equivalent of a 

protein lysate from DMD patients with undetectable dystrophin levels is limited and as such, this 

approach is not easily used by all in a clinical trial setting.  

Since dystrophin levels can vary between different muscles, it is recommended to use the same muscle 

types for samples and the concentration series. Furthermore, some have found as much as a six-fold 

difference between lowest and highest levels measured in healthy muscle (10, 12, 15). One can make a 

reference sample by mixing lysates from several individuals to reduce variation, or one can select a 
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sample that expresses a predefined, average amount of dystrophin and maintain a stock of these 

samples for the duration of studies. 

Glenn Morris (Wolfson Centre for Inherited Neuromuscular Disease, UK) presented on the 154 

dystrophin antibodies produced by his group since the early 90s (50) that have been deposited at the 

Developmental Studies Hybridoma Bank (Iowa University). Some antibodies detect fewer dystrophin 

degradation products than others (51), in particular carboxyl terminal antibodies. This has an impact on 

western blotting quantification when the amount of degradation varies between biopsies and 

quantification of the 427 kDa band alone would underestimate the amount of dystrophin present (if the 

biopsy sample shows dystrophin degradation). For mass spectrometry and immunofluorescence 

analysis, proteolysis may have a smaller impact on the interpretation, but antibodies containing a 

proteolytic cleavage site (in particular MANHINGE antibodies) should be avoided. Ideally one should of 

course avoid degradation, by flash freezing the biopsy sample immediately after surgery, and using well-

characterized solubilization methods. 

Kristy Brown (Solid Biosciences) emphasized the importance of optimizing all western blot steps and 

noted that selection of the primary antibody will greatly affect the optimization process. Under 

controlled conditions, western blotting is analytically robust. Analysis of micro-dystrophin protein by 

western blot has different analytical challenges than full-length dystrophin. She reiterated the variation 

observed in dystrophin protein levels in healthy muscle, where 30 normal human quadriceps samples 

expressed levels ranging from 60-130% of the average and suggested the possibility of using animal or 

control cultured cell lysates.  

Eric Hoffman presented the western blotting methods used for an exon skipping clinical trial by AGADA 

BioSciences. Protein is isolated from cryo-sections in frozen Eppendorf tubes in a high SDS lysis buffer 

(10%SDS) at room temperature and then used immediately (no freeze/thaw cycles of solubilized 
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samples. Two normalizations were used: alpha-actinin immunoblot, and Coomassie Blue staining of the 

post-transfer gel. A standard curve was run on each blot, and was created using mixture of Normal (5 

mixed samples all showing ~100% dystrophin), and a DMD patient (0% dystrophin) (5 point curve with 0, 

1, 3, 10 and 25% of dystrophin). Each biopsy was analysed using three separate immunoblots (triplicate). 

Acceptance/rejection criteria were presented. Using this protocol, that uses ECL signal and a BioRad 

Chemidoc for data capture, the CV values are better than were reported in the past for low dystrophin 

levels. 

Diane Frank (Sarepta Therapeutics Inc.) presented on the western blot protocol that is now run to assess 

samples from trials sponsored by Sarepta. Western blots are run under good laboratory practice (GLP) in 

a GCLP compliant laboratory and acceptance and quality control criteria are applied to each gel. Diane 

Frank reported how they deal with the variation in dystrophin levels in normal individuals by pooling 

samples from 11 non-BMD/DMD, histologically normal individuals. The dystrophin level of the pooled 

lysates approximated the level of the normal control previously used in clinical trial sample analyses. The 

pooled lysates have been aliquoted and are thawed no more than twice. A five point standard curve is 

used (0.25%, 0.5%, 1%, 2% and 4% of normal) and is diluted in DMD tissue to achieve equal protein load 

in each lane. ECL and films are used for detection. In a phase I/II study of SRP-4053 (golodirsen) in DMD 

patients (NCT02310906) 2 pre-treatment and 2 post-treatment lysates were analysed for each patient. 

The lower threshold of quantification for the method is 0.25%. Fifty gels were run successfully and all 

samples generated data, with a standard deviation of 13-49%.  On average, there were 1.019% higher 

dystrophin levels in the post- compared to pre-treatment samples.  

Pallavi Lonkar presented Wave Life Science’s efforts to set up the western blot analysis. Because the 

reference curve is generally diluted in DMD muscle homogenate, setting up and running assays requires 

a lot of DMD tissue, and they have calculated that the analysis of a clinical trial would require 2 g of 
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DMD muscle or 200 muscle sections. In the absence of matched DMD tissue, alternate strategies were 

proposed to generate a standard curve by using either pooled DMD tissue lysate or mdx mouse pooled 

tissue lysate as a diluent. Performance of the assay was evaluated by accuracy of QC samples when 

calculated using the pooled DMD standard curve. Preliminary data suggested that pooled DMD 

homogenate or mdx pooled tissue lysate can be used as a suitable alternative diluent when preparing 

dystrophin standard curves for western blot. Pallavi Lonkar reported using α-tubulin as a reference 

protein rather than α-actinin.  

During this session, the significant differences in protocols used became evident, with some laboratories 

using ECL and films, ECL and digitization, infrared labels and the Odyssey system from Li-Cor.  

 

Emerging techniques 

Eric Hoffman (AGADA BioPharma,USA) presented a mass spectrometry method that is in development, 

which can detect 1% dystrophin. This is an improvement over the previous version which had a lower 

limit of detection of 5%. Challenges are that peptide references are diluted in DMD muscle lysates, and 

this requires very large amounts of DMD muscle, and that the method requires expensive equipment for 

detection.  

Hendrik Neubert (Pfizer) presented an immuno-affinity liquid chromatography (LC)-MS/MS detection 

system for dystrophin and micro-dystrophin quantification. The method is still in development and is 

designed to combine high measurement specificity with high sensitivity through enrichment with anti-

peptide antibodies. Proteins are extracted from muscle samples with high (5%) SDS buffer followed by 

precipitation with an organic solvent, then proteins are re-solubilized and digested with trypsin. A 

multiplex peptide immuno-affinity extraction is performed, using antibodies against selected dystrophin 
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peptides prior to nanoflow/spray LC-MS akin to previously published methods for other protein analytes 

(52). Both fresh frozen samples and OCT embedded samples can be used. The protocol takes 1.5 days 

for sample preparation and 15 minute LC-MS run time per sample. Heavy isotope labelled micro-

dystrophin or dystrophin peptides are used for response normalization. At the moment 4 peptides from 

different regions of the dystrophin protein have been prioritized, but additional peptides can be added if 

needed. The method currently uses an 11 point standard curve of recombinant micro-dystrophin, the 

lower limit of qualification is less than 1% of normal dystrophin, while the upper limit is 500%. The 

coefficient of variation (CV) is typically below 25%, even for the lower ranges of dystrophin levels. The 

method can measure dystrophin from various species (mouse, human) and detect dystrophin from 

revertant fibers in DMD patients at low levels (preliminary data were 1.6-5.9%). As before, dystrophin 

levels of healthy individuals varied.  

Nicole Datson (BioMarin) presented a capillary western immunoassay (Wes) adapted to dystrophin (15). 

This method uses protein lysate samples in a plate, a capillary electrophoresis system and incubation 

with preloaded antibodies. The advantages are that the system is automated, that analysis is quick (3 

hours), no gel running and blotting  are required and only very low amounts of sample and antibody are 

used (100 fold less sample and 500 times less antibody than for a western bot). Four different antibodies 

which recognise different dystrophin epitopes were tested (NCL-dys1, Manx59b, Ab154168 and 

Mandys106) and all recognized the same peak at 300 kDa in a healthy control sample, which deviates 

from the predicted 427 kDa for the full-length (muscle) dystrophin isoform. Combined with the 

observation that this 300kDa peak had a smaller molecular weight in Becker samples and was absent in 

DMD samples, they concluded that this represents dystrophin and noted that the apparent molecular 

weight of large proteins above 280 kDa is often underestimated using Wes. This was corroborated by 

others who had used the system (Diane Frank and Silvia Torelli). Dystrophin quantification by Wes was 

highly sensitive and quantitative over a large dynamic range. Using 0.125 microgram of total protein, 
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levels from 0.5% (lower limit of quantification) to 100%, as well as minor increases in dystrophin levels 

(0.125%), were detectable. If needed, one can load 1.25 microgram protein. The reproducibility of 

dystrophin quantification by Wes is in line with the FDA/EMA regulations for quantitative biochemical 

analysis with a CV between replicate measurements generally below 20%, even in the lower range of 

dystrophin levels and between different operators. For normalization, alpha-actinin is used. However, 

since this protein is expressed at higher levels than dystrophin, samples need to be diluted and 

multiplexing is not possible.  

As with other techniques, the dystrophin levels detected by Wes in skeletal muscle of 31 healthy 

controls varied by 3 to 5 fold, and the sample selected as a reference sample was one that had an 

average expression of the control samples.  

Lower levels of dystrophin were found in samples from Becker patients (10-90%) and DMD patients (0.2-

7%), the DMD patients with higher dystrophin levels having exon 44 skippable mutations.  

Silvia Torelli (UCL) compared the Wes system to western blotting, using both ECL and infrared dyes as 

detection mechanisms. As controls, she used control muscle tissue spiked with 7 DMD samples. As 

reference proteins, she used either meta-vinculin (a muscle specific isoform of vinculin that is 

recognised by the vinculin antibody) or α-actinin. Using Wes, she was able to detect dystrophin in 

0.0125 and 0.125 microgram of total protein and they report the same drawback described by Nicole 

Datson of not being able to use a loading control on the same capillary.  In western blots, she favours 

wet transfer over the trans-blot system which gave inconsistent data, probably because this method is 

less sensitive. For signal capture, the Odyssey system was preferred to avoid saturation and benefit from 

Odyssey’s operator-independent western analysis method. While the Mandys-106 antibody did not 

work on western blots, commercially available MABT827 works both on Wes and western blotting.  
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General discussion and alignment of future efforts 

Patient representatives wondered whether historical controls could be used rather than pre-treatment 

samples. Given the variation observed between patients, this would only be possible when patients had 

frozen tissue available from a biopsy in the past for diagnostic purposes, which is now becoming a less 

common clinical practice. Furthermore, the fact that processing and storage influence the quality of the 

sample to a large extent, may render the use of historic controls challenging. Patient representatives 

further questioned whether biopsies are required in each dystrophin restoring trial. Once proof-of-

mechanism is confirmed in an early phase trial using biopsies, they consider later phase trials as studies 

that should be focused on showing functional efficacy, although as some companies are focusing on 

early stage trials to opt for accelerated approval this may not be possible. The potential for needle 

biopsies was also mentioned. 

It is clear that the amount of dystrophin protein expressed varies between healthy individuals. 

Therefore it is essential that there is agreement on what is considered ‘normal’ or used to set ‘100%’ in 

relative measurements. Ideally a primary reference standard should be shared between the groups, 

allowing them to select a normal that expresses dystrophin at the same levels, or to all use the same 

reference. Then, different techniques (western blot, Wes and mass-spectrometry) should be compared 

using the reference sample to study variation in expression levels detected by the various techniques.  

Another question was whether a reference protein needs to be included. For most protocols, the 

reference is used to confirm equal loading of pre- and post-treatment samples. However, when the 

muscle quality of pre- and post-treatment samples varies, one may also want to correct for muscle 

content. The proteins used most frequently appear to be α-actinin and meta-vinculin. The consensus 

appeared to be that using a reference protein is recommended as part of quality control, but that using 

it to correct is likely to introduce noise so should be used with caution.  
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Concluding remarks 

In recent years, much progress has been achieved in the quantification of dystrophin. Our knowledge of 

the role of the protein has increased and techniques to reproducibly quantify small increases in 

dystrophin protein are now available (10, 12, 15, 48, 53). One drug has received accelerated approval in 

the US based on  the surrogate endpoint of dystrophin increase (54) and there are currently 

confirmatory studies and other trials ongoing and planned aimed at dystrophin restoration, where the 

analysis is expected to be  more robust due to the progress made. There are certain other insights that 

may facilitate future drug development. Aspects that require further work and joint effort include the 

following: First, now that we are aware that dystrophin levels vary between individuals, agreement is 

needed on a common reference sample, ideally kept in a biobank, such as the EUROBIOBANK. Second, 

academic groups and companies developing new dystrophin quantification techniques and/or working 

on dystrophin restoring therapies should initiate an early dialogue with the regulatory agencies. Finally, 

biopsies are invasive and should only be performed when this is crucial for a study, to confirm proof of 

mechanism for the test compound. 

Acknowledgements 

This meeting was endorsed by TREAT-NMD and the World Duchenne Organisation and sponsored by 

Duchenne Parent Project, the Netherlands. 

Disclosures 

The views expressed in this article are those of the authors and do not necessarily reflect the official 

policy or position of the United States Food and Drug Administration and the Department of Health and 

Human Services, nor does mention of trade names, commercial products, or organizations imply 

endorsement by the United States Government. 



24 
 

AAR discloses being employed by LUMC which has patents on exon skipping technology. As co-inventor 

of some of these patents AAR is entitled to a share of royalties. AAR further discloses being ad hoc 

consultant for PTC Therapeutics, BioMarin Pharmaceuticals Inc., WaVe, Sarepta Therapeutics, Global 

Guidepoint and GLG consultancy, Summit PLC, Grunenthal and BioClinica, being a member of the 

Duchenne Network Steering Committee (BioMarin) and of the scientific advisory boards of ProQR, MirXX 

Therapeutics and Philae Pharmaceuticals. Remuneration for these activities is paid to LUMC. LUMC also 

received speaker honoraria from PTC Therapeutics and BioMarin Pharmaceuticals. 

H.N., J.O. and M.B. are employees of, and hold stock or stock options in Pfizer. 

G.E. Morris reports no conflicts of interests. 

P.L. is an employee of Wave Life Sciences. 

EPH is co-founder and Vice President of AGADA BioSciences, co-founder and CEO of ReveraGen 

BioPharma, and co-founder and Board member of TRiNDS LLC.  He owns stock and receives 

enumeration from each entity. 

JD and ND are employees of, and hold stock or stock options in BioMarin Pharmaceutical Inc. As co-

inventor of patents on exon skipping technology JD is entitled to a share of royalties. 

FM is a principal investigator of clinical trials sponsored at UCL / Great Ormond Street Hospital by 

Sarepta Therapeutics, Inc; Pfizer; Roche; Summit; Esperare; Biogen; Italfarmaco; Audentes; Santhera; 

Avexis; Wave and the recipient of a research grant from Sarepta Therapeutics, Inc. FM participates as 

consultant in ad-hoc Scientific Advisory Board meetings for Sarepta Therapeutics, Inc; Roche; Summit; 

Biogen; Avexis; Wave and member of the Rare Disease Scientific advisory board for Pfizer.  JEM is a co-

applicant on FM’s grant from Sarepta Therapeutics, Inc. 

VAG reports no conflicts of interests.  



25 
 

 

Workshop participants 

Alex Johnson (Duchenne UK, UK); Annemieke Aartsma-Rus (Leiden University Medical Center, Leiden, 

the Netherlands, John Walton Muscular Dystrophy Research Center, Newcastle University, UK); 

Ashutosh Rao (Food and Drug Administration, USA; Caroline Sewry (Wolfson Centre for Inherited 

Neuromuscular Disease, UK); Diane Frank  (Sarepta Therapeutics, Inc, USA); Dominic Scaglioni (Institute 

of Child Health, University College London, London, UK); Eric Hoffman (AGADA BioPharma,USA); 

Francesco Catapano (Institute of Child Health, University College London, London, UK); Francesco 

Muntoni (Institute of Child Health, University College London, London, UK); Glenn Morris (Wolfson 

Centre for Inherited Neuromuscular Disease, UK); Ksenija Gorni (Roche, Switzerland); Hendrik Neubert 

(Pfizer, USA); Irina Antonijevic (Wave Life Sciences, USA); Jane Owens (Pfizer, USA); Jennifer Morgan 

(UCL Great Ormond Street Institute of Child Health, London, UK); Judith van Deutekom (BioMarin, the 

Netherlands) Kristy Brown (Solid BioSciences, USA), Marisol Montolio (Duchenne Parent Project Spain, 

Spain) Mat Pletcher (Roche, Switzerland); Michael Binks (Pfizer, USA); Nicole Datson (BioMarin, the 

Netherlands); Nicole Hellbach (Roche, Switzerland); Pallavi Lonkar (Wave Life Sciences, USA); Peter 

Williamson (Wave Life Sciences, UK); Rahul Phadke (National Hospital for Neurology and Neurosurgery, 

UCL Institute of Neurology, University College London, London, UK); Sejal Thakrar (Smile with Shiv, UK); 

Silvia Torelli (Institute of Child Health, University College London, London, UK); Valeria Ricotti (Solid 

BioSciences, UK); Virginia Arechavala-Gomeza  (Biocruces Health Research Institute  Spain); William 

Lostal (Genethon, France); Wolfgang Renner, (Advent life sciences, UK). 

 

  



26 
 

REFERENCES 

1. Muntoni F, Meeting Steering C, Network T-N. The development of antisense oligonucleotide 
therapies for Duchenne muscular dystrophy: report on a TREAT-NMD workshop hosted by the European 
Medicines Agency (EMA), on September 25th 2009. Neuromuscul Disord. 2010;20(5):355-62. 
2. Aartsma-Rus A, Arechavala-Gomeza V. Why dystrophin quantification is key in the eteplirsen 
saga. Nat Rev Neurol. 2018;14(8):454-6. 
3. Straub V, Balabanov P, Bushby K, Ensini M, Goemans N, De Luca A, et al. Stakeholder 
cooperation to overcome challenges in orphan medicine development: the example of Duchenne 
muscular dystrophy. Lancet Neurol. 2016;15(8):882-90. 
4. Arechavala-Gomeza V, Kinali M, Feng L, Guglieri M, Edge G, Main M, et al. Revertant fibres and 
dystrophin traces in Duchenne muscular dystrophy: implication for clinical trials. Neuromuscul Disord. 
2010;20(5):295-301. 
5. Lu QL, Morris GE, Wilton SD, Ly T, Artem'yeva OV, Strong P, et al. Massive idiosyncratic exon 
skipping corrects the nonsense mutation in dystrophic mouse muscle and produces functional revertant 
fibers by clonal expansion. J Cell Biol. 2000;148(5):985-96. 
6. Anthony K, Arechavala-Gomeza V, Ricotti V, Torelli S, Feng L, Janghra N, et al. Biochemical 
characterization of patients with in-frame or out-of-frame DMD deletions pertinent to exon 44 or 45 
skipping. JAMA neurology. 2014;71(1):32-40. 
7. van den Bergen JC, Wokke BH, Janson AA, van Duinen SG, Hulsker MA, Ginjaar HB, et al. 
Dystrophin levels and clinical severity in Becker muscular dystrophy patients. J Neurol Neurosurg 
Psychiatry. 2014;85(7):747-53. 
8. Le Guiner C, Servais L, Montus M, Larcher T, Fraysse B, Moullec S, et al. Long-term 
microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat 
Commun. 2017;8:16105. 
9. Anthony K, Arechavala-Gomeza V, Taylor LE, Vulin A, Kaminoh Y, Torelli S, et al. Dystrophin 
quantification: Biological and translational research implications. Neurology. 2014;83(22):2062-9. 
10. Arechavala-Gomeza V, Kinali M, Feng L, Brown SC, Sewry C, Morgan JE, et al. 
Immunohistological intensity measurements as a tool to assess sarcolemma-associated protein 
expression. Neuropathol Appl Neurobiol. 2010;36(4):265-74. 
11. Taylor LE, Kaminoh YJ, Rodesch CK, Flanigan KM. Quantification of dystrophin 
immunofluorescence in dystrophinopathy muscle specimens. Neuropathol Appl Neurobiol. 
2012;38(6):591-601. 
12. Beekman C, Sipkens JA, Testerink J, Giannakopoulos S, Kreuger D, van Deutekom JC, et al. A 
sensitive, reproducible and objective immunofluorescence analysis method of dystrophin in individual 
fibers in samples from patients with duchenne muscular dystrophy. PLoS One. 2014;9(9):e107494. 
13. FDA Briefing Document Peripheral and Central Nervous System Drugs Advisory Committee 
Meeting, 25 April 2016 Eteplirsen. US Food and Drug Administration; 2016. 
14. Pane M, Mazzone ES, Sivo S, Sormani MP, Messina S, D'Amico A, et al. Long term natural history 
data in ambulant boys with Duchenne muscular dystrophy: 36-month changes. PLoS One. 
2014;9(10):e108205. 
15. Beekman C, Janson AA, Baghat A, van Deutekom JC, Datson NA. Use of capillary Western 
immunoassay (Wes) for quantification of dystrophin levels in skeletal muscle of healthy controls and 
individuals with Becker and Duchenne muscular dystrophy. PLoS One. 2018;13(4):e0195850. 
16. Ervasti JM. Dystrophin, its interactions with other proteins, and implications for muscular 
dystrophy. Biochim Biophys Acta. 2007;1772(2):108-17. 



27 
 

17. Rosenberg AS, Puig M, Nagaraju K, Hoffman EP, Villalta SA, Rao VA, et al. Immune-mediated 
pathology in Duchenne muscular dystrophy. Sci Transl Med. 2015;7(299):299rv4. 
18. Koenig M, Monaco AP, Kunkel LM. The complete sequence of dystrophin predicts a rod-shaped 
cytoskeletal protein. Cell. 1988;53(2):219-28. 
19. Anthony K, Cirak S, Torelli S, Tasca G, Feng L, Arechavala-Gomeza V, et al. Dystrophin 
quantification and clinical correlations in Becker muscular dystrophy: implications for clinical trials. 
Brain. 2011;134(Pt 12):3547-59. 
20. Aartsma-Rus A, Van Deutekom JC, Fokkema IF, Van Ommen GJ, Den Dunnen JT. Entries in the 
Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and 
paradoxical cases that confirm the reading-frame rule. Muscle Nerve. 2006;34(2):135-44. 
21. Nicolas A, Lucchetti-Miganeh C, Yaou RB, Kaplan JC, Chelly J, Leturcq F, et al. Assessment of the 
structural and functional impact of in-frame mutations of the DMD gene, using the tools included in the 
eDystrophin online database. Orphanet journal of rare diseases. 2012;7(1):45. 
22. Delalande O, Molza AE, Dos Santos Morais R, Cheron A, Pollet E, Raguenes-Nicol C, et al. 
Dystrophin's central domain forms a complex filament that becomes disorganized by in-frame deletions. 
J Biol Chem. 2018;293(18):6637-46. 
23. Johnson EK, Zhang L, Adams ME, Phillips A, Freitas MA, Froehner SC, et al. Proteomic analysis 
reveals new cardiac-specific dystrophin-associated proteins. PLoS One. 2012;7(8):e43515. 
24. Duan D. Systemic AAV Micro-dystrophin Gene Therapy for Duchenne Muscular Dystrophy. Mol 
Ther. 2018;26(10):2337-56. 
25. Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW, Phelps SF, et al. Modular flexibility 
of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nat Med. 2002;8(3):253-
61. 
26. Duan D. Micro-Dystrophin Gene Therapy Goes Systemic in Duchenne Muscular Dystrophy 
Patients. Hum Gene Ther. 2018;29(7):733-6. 
27. Beggs AH, Hoffman EP, Snyder JR, Arahata K, Specht L, Shapiro F, et al. Exploring the molecular 
basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein 
studies. Am J Hum Genet. 1991;49(1):54-67. 
28. Hoffman EP, Kunkel LM, Angelini C, Clarke A, Johnson M, Harris JB. Improved diagnosis of Becker 
muscular dystrophy by dystrophin testing. Neurology. 1989;39(8):1011-7. 
29. Hoffman EP, Fischbeck KH, Brown RH, Johnson M, Medori R, Loike JD, et al. Characterization of 
dystrophin in muscle-biopsy specimens from patients with Duchenne's or Becker's muscular dystrophy. 
N Engl J Med. 1988;318(21):1363-8. 
30. Neri M, Torelli S, Brown S, Ugo I, Sabatelli P, Merlini L, et al. Dystrophin levels as low as 30% are 
sufficient to avoid muscular dystrophy in the human. Neuromuscul Disord. 2007;17(11-12):913-8. 
31. van den Bergen JC, Schade van Westrum SM, Dekker L, van der Kooi AJ, de Visser M, Wokke BH, 
et al. Clinical characterisation of Becker muscular dystrophy patients predicts favourable outcome in 
exon-skipping therapy. J Neurol Neurosurg Psychiatry. 2014;85(1):92-8. 
32. van Putten M, Hulsker M, Young C, Nadarajah VD, Heemskerk H, van der Weerd L, et al. Low 
dystrophin levels increase survival and improve muscle pathology and function in dystrophin/utrophin 
double-knockout mice. FASEB J. 2013;27(6):2484-95. 
33. Fiorillo AA, Heier CR, Novak JS, Tully CB, Brown KJ, Uaesoontrachoon K, et al. TNF-alpha-Induced 
microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy. Cell reports. 
2015;12(10):1678-90. 
34. Godfrey C, Muses S, McClorey G, Wells KE, Coursindel T, Terry RL, et al. How much dystrophin is 
enough: the physiological consequences of different levels of dystrophin in the mdx mouse. Hum Mol 
Genet. 2015;24(15):4225-37. 



28 
 

35. van der Pijl EM, van Putten M, Niks EH, Verschuuren J, Aartsma-Rus A, Plomp JJ. Low dystrophin 
levels are insufficient to normalize the neuromuscular synaptic abnormalities of mdx mice. Neuromuscul 
Disord. 2018;28(5):427-42. 
36. Voit T, Topaloglu H, Straub V, Muntoni F, Deconinck N, Campion G, et al. Safety and efficacy of 
drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, 
randomised, placebo-controlled phase 2 study. Lancet Neurol. 2014;13(10):987-96. 
37. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K, et al. Exon skipping and 
dystrophin restoration in patients with Duchenne muscular dystrophy after systemic 
phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. 
Lancet. 2011;378(9791):595-605. 
38. Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L, Lowes LP, et al. Eteplirsen for the 
treatment of Duchenne muscular dystrophy. Ann Neurol. 2013;74(5):637-47. 
39. Wu B, Cloer C, Lu P, Milazi S, Shaban M, Shah SN, et al. Exon skipping restores dystrophin 
expression, but fails to prevent disease progression in later stage dystrophic dko mice. Gene Ther. 
2014;21(9):785-93. 
40. Fitzgibbons PL, Bradley LA, Fatheree LA, Alsabeh R, Fulton RS, Goldsmith JD, et al. Principles of 
analytic validation of immunohistochemical assays: Guideline from the College of American Pathologists 
Pathology and Laboratory Quality Center. Arch Pathol Lab Med. 2014;138(11):1432-43. 
41. U.S. Department of Health and Human Services FaDA, (CDER) CfDEaR, (CVM) CfVM. FDA 
Guidance for Industry on Bioanalytical Method Validation 2018. 
42. Saper CB. A guide to the perplexed on the specificity of antibodies. J Histochem Cytochem. 
2009;57(1):1-5. 
43. Saper CB. An open letter to our readers on the use of antibodies. J Comp Neurol. 
2005;493(4):477-8. 
44. Poppe M, Cree L, Bourke J, Eagle M, Anderson LV, Birchall D, et al. The phenotype of limb-girdle 
muscular dystrophy type 2I. Neurology. 2003;60(8):1246-51. 
45. Mercier S, Toutain A, Toussaint A, Raynaud M, de Barace C, Marcorelles P, et al. Genetic and 
clinical specificity of 26 symptomatic carriers for dystrophinopathies at pediatric age. Eur J Hum Genet. 
2013;21(8):855-63. 
46. Hewitt SM, Baskin DG, Frevert CW, Stahl WL, Rosa-Molinar E. Controls for 
immunohistochemistry: the Histochemical Society's standards of practice for validation of 
immunohistochemical assays. J Histochem Cytochem. 2014;62(10):693-7. 
47. Hathout Y, Brody E, Clemens PR, Cripe L, DeLisle RK, Furlong P, et al. Large-scale serum protein 
biomarker discovery in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2015;112(23):7153-8. 
48. Sardone V, Ellis M, Torelli S, Feng L, Chambers D, Eastwood D, et al. A novel high-throughput 
immunofluorescence analysis method for quantifying dystrophin intensity in entire transverse sections 
of Duchenne muscular dystrophy muscle biopsy samples. PLoS One. 2018;13(3):e0194540. 
49. Goemans N, Mercuri E, Belousova E, Komaki H, Dubrovsky A, McDonald CM, et al. A randomized 
placebo-controlled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular 
dystrophy. Neuromuscul Disord. 2018;28(1):4-15. 
50. Nguyen thi M, Cartwright AJ, Morris GE, Love DR, Bloomfield JF, Davies KE. Monoclonal 
antibodies against defined regions of the muscular dystrophy protein, dystrophin. FEBS Lett. 
1990;262(2):237-40. 
51. Hori S, Ohtani S, Man NT, Morris GE. The N-Terminal Half of Dystrophin Is Protected from 
Proteolysis in Situ. Biochemical and Biophysical Research Communications. 1995;209(3):1062-7. 
52. Fan YY, Neubert H. Quantitative Analysis of Human Neonatal Fc Receptor (FcRn) Tissue 
Expression in Transgenic Mice by Online Peptide Immuno-Affinity LC-HRMS. Anal Chem. 
2016;88(8):4239-47. 



29 
 

53. Ruiz-Del-Yerro E, Garcia-Jimenez I, Mamchaoui K, Arechavala-Gomeza V. Myoblots: dystrophin 
quantification by in-cell western assay for a streamlined development of Duchenne muscular dystrophy 
(DMD) treatments. Neuropathol Appl Neurobiol. 2018;44:463-73. 
54. US Food and Drug Administration (FDA). FDA grants accelerated approval to first drug for 
Duchenne muscular dystrophy 2016 [updated 19/09/2016. Available from: 
http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm521263.htm. 

 

http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm521263.htm

