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Abstract

Melanoma is a type of cancer that develops from the pigment-containing cells

known as melanocytes. Usually occurring on the skin, early detection and di-

agnosis is strongly related to survival rates. Melanoma recognition is a chal-

lenging task that nowadays is performed by well trained dermatologists who

may produce varying diagnosis due to the task complexity. This motivates the

development of automated diagnosis tools, in spite of the inherent difficulties

(intra-class variation, visual similarity between melanoma and non-melanoma

lesions, among others). In the present work, we propose a system combining

image analysis and machine learning to detect melanoma presence and sever-

ity. The severity is assessed in terms of melanoma thickness, which is measured

by the Breslow index. Previous works mainly focus on the binary problem of

detecting the presence of the melanoma. However, the system proposed in this

paper goes a step further by also considering the stage of the lesion in the classi-

fication task. To do so, we extract 100 features that consider the shape, colour,

pigment network and texture of the benign and malignant lesions. The problem

is tackled as a five-class classification problem, where the first class represents
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benign lesions, and the remaining four classes represent the different stages of

the melanoma (via the Breslow index). Based on the problem definition, we

identify the learning setting as a partial order problem, in which the patterns

belonging to the different melanoma stages present an order relationship, but

where there is no order arrangement with respect to the benign lesions. Under

this assumption about the class topology, we design several proposals to exploit

this structure and improve data preprocessing. In this sense, we experimen-

tally demonstrate that those proposals exploiting the partial order assumption

achieve better performance than 12 baseline nominal and ordinal classifiers (in-

cluding a deep learning model) which do not consider this partial order. To deal

with class imbalance, we additionally propose specific over-sampling techniques

that consider the structure of the problem for the creation of synthetic patterns.

The experimental study is carried out with clinician-curated images from the

Interactive Atlas of Dermoscopy, which eases reproducibility of experiments.

Concerning the results obtained, in spite of having augmented the complexity

of the classification problem with more classes, the performance of our proposals

in the binary problem is similar to the one reported in the literature.

Keywords: melanoma, computer vision, machine learning, ordinal

classification, partial order, skin cancer

1. Introduction

Melanoma is a type of cancer that arises from the pigment-containing cells

known as melanocytes. The most common type, the cutaneous melanoma, oc-

curs on the skin. In Europe, approximately 100, 000 cases are yearly diagnosed,

with a death ratio around 13% [1]. Patient prognosis depends directly on tumour5

thickness, where mortality can be reduced to a great extent by early detection

and diagnosis [2].

To improve survival rates, melanoma must be detected before the tumour

has penetrated the epidermis (i.e. before the thickness is higher than 0.76 mm).

In the case of early detection, the five-year survival rate is about 99%, otherwise10
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dropping to 15% for patients with advanced disease [3]. The current detection

process consist on a visual inspection by trained professionals using a dermato-

scope, and the prognosis is evaluated measuring the depth of the melanoma by

means of a biopsy. Dermatologists perform this manual visual inspection from

dermoscopy images, but this process is time-consuming and error-prone, and15

it can lead to widely varying diagnosis. This motivates automated diagnosed

methods [4, 5]. Recent works propose new tools to aid or to improve this process

[3], mainly based on dermoscopic image analysis. Although there are different

lines of undergoing research (e.g. those based on skin temperature variations in

the lesion), image analysis methods present the advantage of being cheaper and20

relatively easy to combine with existing detection procedures.

In the last years, computerised dermoscopy image analysis systems have been

proposed to assist pigmented lesions diagnosis [6]. The majority of these works

focus on the distinction of melanomas from benign lesions [7, 8, 9]. However,

a finer grain classification is required for appropriate prognosis. The scarcity25

of studies on this topic and its inherent difficulty makes it a promising line

for research. The first work in that line is the characterisation of two types

of melanoma based on their thickness [10]. This study uses 49 features re-

lated to colour, geometry and texture, extracted from a private database of

141 images obtained with a company proprietary hardware system. Moreover,30

a recent study [11] focuses on the classification of three degrees of thickness

for melanomas, but it excludes their distinction from benign lesions, which is

crucial for constructing a complete detection tool.

In this paper, we propose to simultaneously address the problem of melanoma

detection and thickness estimation within a five-class classification problem. To35

do so, we combine image analysis and machine learning procedures. Now, we

summarise the feature extraction process and describe the dataset character-

istics which motivate the development of specific machine learning methods.

Particularly, the challenging issues found in this problem are: 1) the structure

and topology of the classes and 2) the imbalanced nature of the classes that can40

bias classification performance in favour of majority classes.
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Concerning the image analysis, we propose a set of 100 input features to

describe images. The extracted features correspond to visual characteristics

based on dermatologists clinical findings (see Section 4). Melanoma cases are

distinguished from non-melanoma ones using the ABCD method, based on four45

clinical characteristics that describe a malignant melanoma: asymmetry (A),

border irregularity (B), colour variegation (C) and differential structures (D).

The rest of the features selected are related to melanoma thickness estimation,

and analogously they are based on clinical criteria with respect to visual char-

acteristics present in dermoscopic images [12, 11].50

In situ I II III IV

Epidermis

Dermis

Fat layer

2-4
mm Thickness

(latent variable)

Image (observable variable)

Figure 1: Graphical representation of the different stages of melanoma, where both the ob-

servable data (dermoscopic image) and the unobservable or latent variable (thickness of the

tumour) can be analysed. Image credit: Cancer Research UK / Wikimedia Commons.

When attempting to estimate the severity of a melanoma, it can be seen that

the classes are imbued with order information. The Breslow index is modelled

as an unobservable latent variable that represents the thickness of the tumour

using the dermoscopic image (independent variable). Such latent variable can

only be directly observed when performing a biopsy, in which case the actual55

tumour thickness can be measured and used to validate the prediction. Since

the different Breslow index levels correspond to thresholds of the thickness, the

corresponding class labels show an order relationship, in such a way that stage

II melanomas are thicker than stage I ones, stage III implies a thicker lesion

than stage II, and so on. Figure 1 shows the different stages of a melanoma and60
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analyses the observed and latent variable concepts in the frame of this problem.

Please note that in this work we group stages III and IV due to the fact that

they have similar clinical properties. This type of problems are known as ordinal

classification problems, also referred to as ordinal regression [13]. They differ

from nominal (standard) classification problems in the fact that there is an65

order arrangement between the categories, and they are different from regression

because the distance between the values of the dependent variable (the class)

is generally unknown. The most common situation in ordinal regression is that

the categories come from the discretisation of a latent variable [13], which is

exactly the case of the different stages of melanoma. Ordinal methods exploit70

the ordered nature of the classes to improve learners at the same time that

penalise the magnitude of the classification errors (for example, in our case,

misclassifying a stage 0 melanoma with a stage I should not be considered

the same than confusing it with a stage III melanoma). Ordinal classification

has been successfully applied to different areas such as Alzheimer’ progression75

estimation [14] or sovereign ratings [15], among others. Section 2 provides some

basic background on ordinal classification.

However, although this order is clear for the different stages of the melanoma

(since they reflect different levels of thickness), it can not be assumed for the

benign lesion class. In this sense, the problem can be considered as a partially80

ordered classification task, for which we propose several machine learning strate-

gies to exploit this characteristic. Figure 2 illustrates the concept of partial order

in a two-dimensional dataset, where it can be seen that C1 does not follow an

order with respect to the rest of classes, while the rest are ordered in the input

space (C2 is closer to C3 than to C4, and so on). Note that this structure can85

be found in very different classification problems, e.g. in medicine (non-disease

vs. disease grades). In this case, it can be seen that an unique linear projec-

tion (which takes the order of the classes into account) is not feasible, while

two projections (one for tackling the binary problem and other for the ordinal

one) could separate the data satisfactorily. Ordinal problems with specific data90

structures (e.g. partial order problems or circular ordinal regression [16, 17]) or
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other more complex label structures (such as multiple output ordinal regression,

graded multilabel classification [18] or label ranking [19]) are recently receiving

attention from the machine learning community.

Figure 2: Example of a partially ordered dataset.

On the other hand, the dataset used in the present work is also charac-95

terised by a skewed class distribution (see imbalance ratio at Table 1). In this

sense, we present two approaches based on label decompositions to deal with

the partial order of the labels and the imbalance nature of the data. The pro-

posed methods comprise: 1) a hierarchical model composed of a binary model to

distinguish non-melanoma from melanomas and an ordinal model to refine the100

classification of the stage of the melanoma; 2) a cascade binary utility ordinal

model [20], which has been shown to obtain good results for problems with these

characteristics (partially ordered and imbalanced); 3) additionally, we consider

data over-sampling techniques to alleviate the imbalance nature of the dataset,

specifically the ordinal over-sampling techniques presented in [21].105

The findings of the present work are the following:

• First, we propose a set of 100 features to describe dermatoscopic images.

Even with baseline methods, the extracted features are proved to be suit-

able for simultaneously detecting melanomas and predicting the lesion

stage.110
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• Second, we propose to tackle the classification problem in a partial or-

der framework to obtain models that better fit to the data characteristics,

i.e. its topology and the imbalanced class distribution. We experimentally

demonstrate that both classification and over-sampling methods that con-

sider the partial order nature of the problem present very promising and115

competitive performance (considering four classification metrics) with re-

spect to nominal and full ordinal methods.

• Third, the proposed features, together with the use of the proposed partial

order methods, allow linear probabilistic classifiers to achieve the best

performance with respect to a variety of non-linear models. This is, the120

best model can be examined to evaluate the relevance of each feature and

therefore contribute to clinical knowledge.

This paper is a significant extension of a previous work conference [22],

which presented an initial proposal to the partial order approach for melanoma

detection and stage classification. The present work includes the following new125

contributions: 14 new image features are added, the problem of partial or-

der is studied more deeply (both proposing new models and methods from the

classification and over-sampling points of view), experimental comparisons are

strengthen with more methods and configurations, the performance is improved

simultaneously considering several classification metrics, we evaluate the impact130

of feature selection in the models performance, and, finally, the best performing

method is analysed to establish the relevance of the different features, which re-

veals that the new selected features contribute significantly to the classification

performance.

The rest of the paper is organised as follows. Section 2 provides some back-135

ground on ordinal classification and motivates the development of partial ordi-

nal methods. Section 3 presents the clinical problem and some characteristics

of the dataset. Section 4 introduces the set of features selected to describe the

images. Section 5 presents some previous notions and describes the proposed

decomposition methods as well as the over-sampling methods. Section 6 shows140
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the experiments performed and analyses the results. Finally, Section 7 outlines

some conclusions and future work.

2. Ordinal classification and partial order problems

This section briefly presents the ordinal classification framework and the

family of classifiers that can be used in this context. The limitations of ordinal145

classification for partial order problems are also analysed. In addition, the basic

notation used in the paper is introduced. For further information about ordinal

classification, we refer the reader to [13], where a taxonomy of the different

proposals is presented.

Ordinal classification is a type of classification problem in which there is150

an order relationship between the categories to predict, Cq, q ∈ {1, . . . , Q}.

Contrary to standard regression, we can not assume a distance between these

categories. Consider a training sample T = {xi, yi}Ni=1 ⊆ X × Y generated

i.i.d. from a (unknown) joint distribution P (x, y), where X ⊆ RD and Y =

{C1, C2, . . . , CQ}. Let N be the number of patterns in the training sample, Nq155

the number of samples for the q-th class and Xq the set of patterns belonging

to class Cq. In the ordinal regression setup, the labelling space is ordered due

to the data ranking structure (C1 ≺ C2 ≺ · · · ≺ CQ, where ≺ denotes this order

information).

According to Hühn and Hüllermeier [23], this order in the label space is160

also present in the input space X , an assumption that can be used to improve

the classifier. As mentioned in the introduction, the performance metric has

to be sensitive to the label order and penalise the magnitude of the errors.

Different metrics have been proposed as alternative measures to the well-known

accuracy. For a review of those metrics we refer to the study in [24]. We describe165

the metrics used to evaluate melanoma classification in Section 6.2.

Different ordinal classification methods have been recently proposed. Most

of them belong to the category of threshold models. These methods assume that

ordinal categories come from the discretisation of a continuous latent variable,

8



Z ⊆ R, and try to model this discretised variable. In this sense, these methods170

seek a projection in which the samples are ordered according to their class rank

and a set of thresholds that divides the projection into consecutive intervals

representing ordinal categories. We review now some of the proposed approaches

in the literature.

The first threshold model proposal was the Proportional Odds Model (POM),175

which extends logistic regression to the ordinal case [25]. Support vector ma-

chines (SVM) have also been adapted to the threshold model structure. In [26],

two new support vector approaches are proposed for ordinal regression. In this

case, multiple thresholds are optimised in order to define parallel discriminant

hyperplanes for the ordinal classes. In [27], the classification problem is trans-180

formed into a regression problem by directly performing a projection from the

input space to a one-dimensional space, where the values of the projections are

estimated based on the pairwise class distances.

Other alternatives decompose the ordinal problem into a set of binary clas-

sification problems. For instance, some previous works [28, 29] transform the185

problem into a set of nested binary classification problems to train several binary

models, where the final prediction is obtained by a combination of the binary

predictions. A further step in this direction is the extended binary classification

framework, which transforms ordinal regression into a binary classification with

additional features, in the context of SVMs [30].190

In this paper, however, we approach a problem of partial ordering classifi-

cation. In this type of problems, we have a set of classes that follow a given

order (e.g. C2 ≺ C3 ≺ · · · ≺ CQ) and a class or set of classes (e.g. C1) for which

this order can not be assumed (see Figure 2). Figure 3 presents the results

of training a standard threshold model (POM), considering the data of Figure195

2. A standard ordinal classifier assumes an order relation for all classes, and,

as can been in Figure 2, this produces poor results. On the other hand, Fig-

ure 4 presents an example of the hierarchical model proposed in Section 5.1,

which presents a better performance. This example motivates the development

of specific models to address the cases that show this class topology.200
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Estimated 
latent variable

Thresholds

Figure 3: Example of an ordinal threshold model which has been trained considering the data

in Figure 2. It can be seen that because of the structure of the data the ordinal model is not

able of obtaining a suitable solution.

Concerning performance evaluation, we believe that, in this case, the same

ordinal misclassification errors should hold, since it should be more penalised to

misclassify a benign lesion with a stage III melanoma than with a stage I or ’in

situ’ melanoma. However, there may be specific problems in which other costs

may be needed.205

3. Data and Breslow Index description

As stated, tumour depth is inversely correlated with survival rate. The

reason is that thick tumours access lymph capillaries, which is the most common

way for cancer to spread. If the melanoma is confined to the epidermis, it is

referred to as ’in situ’ melanoma, and it is removable by surgery. However, as210

the cancerous cells propagate to the deepest layer of the skin (the dermis), the

melanoma is known as invasive, and the survival rate decreases with the depth

of the invasion.

The Breslow index [31] is a method for prognosis of patient survival that

measures melanoma depth by a pathological examination after an incisional or215

excisional biopsy of the lesion [12]. It consists on a vertical measurement in
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Thresholds
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Binary 
decision 
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Binary model Ordinal model

Figure 4: Example of a partial order hierarchical model fitted to the partial order problem

in Figure 2. The method divides the problem in two subproblems: fitting a binary model to

separate the non-ordered class and an ordinal model to order the rest of classes. This figure

illustrates the idea of the hierarchical model presented in Section 5.1.

millimetres from the top of the granular layer of the epidermis to its deepest

part within the dermis. Moreover, it is the main parameter used to establish the

width of the surgical margin excision [32, 33], as well as to decide whether to

perform sentinel lymph node biopsy (SNB) [32, 34] (SNB is a surgical procedure220

to determine if cancer has spread to the lymphatic system). Therefore, mea-

suring melanoma thickness before surgical excision is crucial in order to assess

the risk of progression, and consequently to ensure adequate excision margins

avoiding a more complicated operation and SNB.

In this paper, we use 562 images from the Interactive Atlas of Dermoscopy225

[35], a multimedia project for medical education with pigmented skin lesions

images in which all lesions were biopsied and diagnosed histopathologically. As

introduced, the images have been classified in five classes: non-melanoma (i.e.

benign lesions) and four stages of melanoma depth. The characteristics of these

classes can be seen in Table 1, where the imbalanced ratio per class (IR) is also230
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included. The multiclass IR is computed using the formulation in [21]:

IR =
1

Q

Q∑
q=1

IRq, (1)

where IRq is the imbalance ratio associated to Cq:

IRq =

∑
j 6=q Nj

Q ·Nq
. (2)

Classes with an IR higher than 1 are highlighted in bold face, as these are

the ones over-sampled in the experiments. All the images have a resolution of235

768 × 512 pixels and have been segmented using the automatic segmentation

algorithm proposed in [36], in which an edge based level-set technique is applied

together with a perceptually adapted colour gradient [37]. Figure 5 presents

two examples of segmented melanomas.

Table 1: Characteristics of the classes in the problem (benign lesions against different stages

of melanoma): name of the class, depth of the melanoma lesion, ranking for the class (q),

number of patterns per class (Nq) and multiclass imbalance ratio (IR).

Class Depth Cq Nq IR

Non-melanoma - 1 313 0.159

Stage 0 in situ 2 64 1.556

Stage I <0.76 mm 3 102 0.902

Stage II 0.76 mm - 1.50 mm 4 54 1.881

Stage III >1.50 mm 5 29 3.676

Total number of patterns: 562

4. Feature extraction240

The feature extraction process proposed in this paper aims to mimic derma-

tologist assessment, using characteristics defined in the clinical ABCD rule (to

distinguish between benign lesions and melanomas) and features inspired by the
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(a) Melanoma <0.76 mm. (b) Melanoma ≥0.76 mm.

Figure 5: Examples of segmented melanomas

findings derived from clinical studies regarding the correlation between certain

properties seen in dermoscopic images and melanoma thickness. A total of 100245

descriptors (x1-x100) based on shape, colour and texture have been extracted.

Regarding the ABCD method, asymmetry and border irregularity are charac-

terised by shape features, colour variegation by a feature set that contains the

number of colours present in a lesion and differential structures by texture fea-

tures, especially, by those based on a Markov random field model, that allows250

to identify different dermoscopic structures, as proposed in [36]).

Some of the extracted features are based on several previous works that the

reader can check for more details [11, 38, 22]. Moreover, in the current study,

we include 14 additional shape and colour features.

4.1. Shape features255

As previously stated, shape features have been extracted to satisfy the asym-

metry (A) and irregularity border (B) criteria. We use the circularity index

(computed as 4π multiplied by lesion area, divided by its squared perimeter)

(x1) [6], the perimeter normalised by the equivalent perimeter (perimeter of a

circle with the same area as the lesion) (x2), the variance of the distance of260

the border lesion points from the centroid location (x3) [39], the eccentricity (a
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measure of elongation) (x4) [8] and length of major and minor axis of the lesion

normalised with respect to the equivalent diameter (diameter of a circle with

the same area as the lesion) (x5, x6), and difference between these two values

(x7).265

In order to evaluate the lesion asymmetry, first, the major axis orientation

of the lesion has been computed, and secondly, it has been rotated clockwise

the same number of degrees to align the principal axes with the image (x and

y) axes. Then, the lesion has been folded around the x-axis, and the percentage

of overlapping area with respect to the total area has been computed to obtain270

the horizontal asymmetry (x8). The same procedure has been performed for

the y-axis to obtain vertical asymmetry (x9). If the process is repeated taking

into account the percentage of overlapping pixels assigned to the same colour

(see Section 4.2 for the colour assignation), we can compute the colour vertical

asymmetry (x10) and the colour horizontal asymmetry (x11).275

4.2. Colour features

Colour features are one of the most determinant features for estimating

melanoma depth. Different dermoscopic structures, which have been found

discriminative for melanoma thickness, are associated with different colours.

We have extracted features related to the six colours present in the pigmented280

lesions: black, dark brown, light brown, blue-grey, red and white [40]. The

presence of these colours depend on the depth of the melanoma: black melanin

appears when it is located in the stratum corneum and upper epidermis; brown

is associated with a deeper location in the epidermis; grey and blue are related

to its presence in the dermis; red is associated with dilation of blood vessels;285

and white with scaring and/or regression. To describe these colours, we seg-

ment each lesion into their constituting colours by a similar approach to that

proposed by Seidenari et al. [41]. We have developed a colour palette formed

by 144 patches that present unequivocally one of the six possible colours. This

palette is used to extract the colour regions of the lesions from the patches290

according to a nearest neighbour approach. Each pixel of the image has been
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assigned to the colour patch that minimises its Euclidean distance in the CIE

L∗a∗b∗ colour space. From this colour identification, we have extracted six de-

scriptors (x12-x17) that represent the percentage of the lesion area classified as

these colours, one (x18) that represents the number of colours that each lesion295

presents (colour criterion of ABCD), and 36 additional statistical descriptors of

the colours (mean, standard deviation, kurtosis, skewness, entropy, and average

of local standard deviation of each colour, x19-x54).

4.3. Pigment network features

(a) Original image. (b) Pigment network detection.

Figure 6: Illustration of pigment network detection.

Pigment network is a dermoscopic structure, referred by many authors as300

one of the most discriminative features for melanoma thickness [32, 42, 43],

being inversely correlated with melanoma depth [35]. A pigment network is a

regular grid of brownish lines over a diffuse light-brown background [35]. We

have identified this structure searching for the network ’holes’ by applying a

filtering and thresholding step using the Otsu’s method [44]. Finally, we have305

considered the two conditions relative to area size and colour proposed in the

work of Sadeghi et al. [45] to remove those wrongly detected areas. The features

extracted from this detection are network density ratio (x55), number of nodes

(x56) and number of links or edges (x57). Figure 6 shows an example of pigment
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network detection.310

4.4. Texture features

Other dermoscopic structures have been found to be correlated with the

depth of melanoma such as vascular patterns [42, 32], blue-grey veil [42, 32],

white scar-like areas [43] and dots or globules. These are usually associated with

texture features. For instance, vascular patterns are associated to the presence315

of a vascular vessel with a line shape, and gray-blue areas and white scar-like

areas are found as homogeneous areas [43]. To capture properties of different

structures, we have extracted three sets of texture features from three different

approaches: 19 features from the gray level co-occurrence matrix (GLCM) [46]

(x58-x76), 18 features based on a Markov random field (MRF) model [36] (x77-320

x94) and 6 features from local binary pattern (LBP) histograms (x95-x100).

5. Decomposition approaches for partial order classification problems

This section presents the preliminary concepts and classification strategies

proposed in this paper to deal with partially ordered classification problems,

which, in addition, present class imbalance. More specifically, two different325

decomposition methods are derived for this type of learning problems.

Decomposition methods have been one of the first proposals both for mul-

ticlass classification and for ordinal classification, because of their simplicity

and their good performance (given that they are, essentially, ensemble meth-

ods). Concerning multiclass classification, most common approaches are the330

one-against-one and the one-against-all proposals. With regard to ordinal clas-

sification, there exist different strategies based on decomposition methods in the

literature: ordered partitions [28] (where the classes are joined taking the order

of the classes into account), ordinal one-against-all partitions [47] (where each

class is separated from the previous and following classes), one-against-next [13]335

(or one-against-previous, where each class is separated from the previous or the

following class or classes) or the cascade utility model [20] (where each class is

separated from the remaining ones, taking the scale of order into account).
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The partial order problem is similar to the standard ordinal classification

one, where there exist different misclassification costs and where the order of340

the classes has to be taken into account for constructing a fair and robust

classifier. However, the order of the classes is not total but partial, in the sense

that not all the classes in the problem are ordered. This is a common setting

in biomedicine applications, such as the one presented in this work. Despite

the number of applications, up to our best knowledge, this setting has not been345

specifically tackled before in the ordinal classification literature. In this sense,

this paper aims to establish the difference in performance between standard

ordinal classification strategies and partially ordered ones in a problem that

we hypothesise is partially ordered. Given also the imbalanced nature of the

dataset, we consider two different classification approaches for partial order350

problems (a hierarchical decomposition and a cascade binary utility model) and

a reformulation of an over-sampling technique where the order of the classes can

also be included partially or completely, used as a preprocessing step.

For melanoma severity classification, we hypothesise that this order structure

only applies to four of the five classes of the problem, in such a way that C2 ≺355

· · · ≺ C5 follow a natural order between them but do not present an ordering

with respect to C1 (see Table 1).

5.1. Hierarchical decomposition

As stated before, it can not be assumed that the benign lesion class presents

an order relationship with the rest of the classes, although the same misclassifi-360

cation costs than in ordinal regression should hold for this case. Moreover, given

that the features extracted to distinguish between benign and malignant lesions

and the depth of melanoma are different, the relevance of the features could also

be different for each model. These reasons, together with the imbalance nature

of the problem, motivate the use of hierarchical classification models. To do so,365

we propose to first learn a binary model to distinguish between benign lesions

and melanoma. Secondly, we train an ordinal classification model to determine

the stage of the melanoma. Figure 7 presents the hierarchical model composed
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of a binary and an ordinal classifier. Note also that the imbalanced nature of

the data is alleviated by this approach since the minority classes are specifically370

separated from the majority one.

In this work, we have implemented two hierarchical models. The first is based

on Logistic Regression (LR) for the binary model and on the Proportional Odds

Model for the ordinal one [25] (POM adapts the standard LR to the ordinal

case). The second is a kernel version where Support Vector Machines are used375

for the binary model and the reformulation of SVM for ordinal regression with

implicit constraints (SVORIM) [26] is used as the ordinal one.

For binary classification, LR and SVM solve the following unconstrained

optimisation problem with different loss functions ξ(w; xi, yi) [48]:

min
w

1

2
||w||2 + C

N∑
i=1

ξ(w; xi, yi), (3)

where C > 0 is a cost parameter. The common loss function for SVM, that380

is referred to as L1-SVM, is max(1 − yi,wTxi, 0). In the case of LR the loss

function log(1+e−yiw
Txi) is derived from a probabilistic model. In our case, we

use L2 regularised logistic regression. Though the standard LR does not include

the C penalty parameter, implementations such as LIBLINEAR [48] include this

cost. From an experimental point of view, in this problem, the results improved385

when this parameter was optimised. Finally, the well known LR probabilistic

prediction model for the binary case gives the pattern probability of belonging

to the positive class:

P (y|xi,w) =
1

1 + e−(wTxi)
. (4)

The previous model assigns a class to a pattern using the following function:

ŷ = r(x) =

 +1, if P (y|xi,w) ≥ 0.5,

−1, if P (y|xi,w) < 0.5,
(5)

where +1 denotes the positive class (melanoma presence) and −1 the negative390

class (melanoma absence).

In the case of ordinal classification, the Proportional Odds Model (POM)

[25] extends binary logistic regression to ordinal regression. It belongs to a
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family of methods known as threshold models [13]. These models assume that

an unobserved continuous variable underlies the ordinal response variable, so395

that they estimate:

• A function g(x) that project the data into real-valued outcomes.

• A set of thresholds b = (b1, b2, . . . , bQ−1) to represent intervals in the

range of g(x), which must satisfy the constraints b1 ≤ b2 ≤ . . . ≤ bQ−1.

In this way, patterns x are projected to the latent space Z and then classified400

depending on the set of thresholds.

The POM is a member of a wider family of models referred to as Cumulative

Link Models (CLMs) [49]. CLMs predict probabilities of group of contiguous

categories considering the ordinal scale so that cumulative probabilities P (y �

Cj |x) are estimated, which can be directly related to standard probabilities:405

P (y � Cq|x) = P (y = C1|x) + . . .+ P (y = Cq|x),

P (y = Cq|x) = P (y � Cq|x)− P (y � Cq−1|x),

with q ∈ {1, . . . , Q} and considering that P (y � CQ|x) = 1. Stochastic ordering

of space X is satisfied by the following general model form [50]:

g−1 (P (y � Cq|x)) = bq −wTx, 1 ≤ q ≤ Q, (6)

where g−1 : [0, 1]→ (−∞,+∞) is a monotonic function, typically referred to as

the inverse link function, and bq is the threshold defined for each class Cq. As

mentioned, this structure is associated to latent variable and threshold models,410

where wTx is a linear transformation.

Finally, the decision function to assign a pattern to a class is:

ẑ = h(x) =



2, if g(x) ≤ b1,

3, if b1 < g(x) ≤ b2,
...

Q, if g(x) > bQ−1,

(7)
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Figure 7: Hierarchical classifier prediction process.

where g : X → R is the function that projects data space onto the one-

dimensional latent space Z. Note that in the context of this partial order model

the lowest class number for the ordinal model is two.415

The hierarchical model based on LR and POM is formalised as:

ŷ = f(x) =

 1, if r(x) = −1,

h(x), if r(x) = +1,
(8)

where r(x) is the LR decision function defined at Eq. (5) and h(x) is the POM

classification rule defined at Eq. (7).

The training process consists of two steps: 1) solving the optimisation prob-

lem of Eq. (3) with patterns labelled as −1 (non-melanoma, C1) and +1 (rest420

of the classes); 2) training the POM model of Eq. (6) with patterns belonging

to classes in set {C2, C3, C4, C5}.

In the case of SVMs, a similar idea is applied, but we consider the standard

binary C-SVC to build the binary classifier [51] and SVORIM for the ordinal

one [26].425
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5.2. Cascade utility model

This section presents a modification of the binary decomposition method

known as the cascade linear utility model [52]. This procedure considers Q− 1

binary models, where each model Di is comprised of a projection wi and a

threshold bi. Model q separates class Cq from classes Cq+1 ∨ . . .∨ CQ and only a430

portion of the classes are considered for the computation of each model. Figure

8 graphically describes this decomposition. This methodology is also naturally

well-suited for the problem considered, because it alleviates the imbalanced

class distribution, and because it considers the partial order of the classes, not

assuming any order constraint for C1 (C1 is only considered by the first model,435

which discriminates C1 from the rest of classes). This approach is also known

as one-against-followers [13].

Figure 8: Binary decompositions performed for a five-class problem, where wi represents the

i-th projection and bi the bias associated to that projection. White-shadowed shapes represent

the negative class, black-shadowed ones the positive one and grey ones the classes ignored in

each model. This is an ordinal decomposition since adjacent classes are grouped together

(with the exception of the first class, which, by the problem definition, presents a different

relationship with the rest of classes).

The training set for model or decision maker Dq = {wq, bq} is specified by

{X(i|i=q),X(j|j>q)} (see Figure 8). Therefore, a coding matrix M(Q−1×Q) =

[Miq], i = 1, . . . , Q− 1, q = 1, . . . , Q associated to the Q− 1 binary decomposi-
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tions of the cascade utility model can be defined as follows:

M =


−1 +1 +1 +1 +1

0 −1 +1 +1 +1

0 0 −1 +1 +1

0 0 0 −1 +1

 ,

where the label −1 corresponds to negative class patterns, the label +1 to

patterns belonging to the positive class, and finally, the patterns associated

with label 0 are excluded from the training process of that binary classifier.

In this way, the approach considered is the same than in [20], but using a

one-against-followers approach. A matrix of predictions can be obtained by

means of a single multi-class model (e.g. using artificial neural networks) or

by multiple models (training a binary classifier for each subproblem, as in this

paper) [13]. Once the models have been trained, a set of Q− 1 decision values

f(x) = f1(x), . . . , fQ−1(x) are obtained for pattern x. For the prediction phase,

two different approaches can be considered (both tested in the experiments

of this paper): a hierarchical approach or an approach based on the Error-

Correcting Output Codes framework (ECOC). The hierarchical approach is the

most commonly used with the cascade binary utility model. In this case, w1 is

used in the first place, and all the patterns that are not predicted as positive

(i.e. C1) but rather as negative (i.e. belonging to the set {C2, C3, C4, C5}) are

used for w2, and so on. In this sense, this approach emphasises more the first

computed models, so that when these models fail, the final predictions are wrong

without considering the rest of models. Concerning the ECOC framework [20],

the principal idea is to associate each class Cq ∈ Y with a column of the binary

coding matrix M (previously introduced). Prediction is then accomplished by

choosing the column of M closest to the set of decision values f(x). When the

code contains a 0, this leads to an indifferent condition in the prediction phase.

According to this, the final decision function is the following one:

C(x) = Cq,where q = arg minq=1...Qd(Mq, f(x))

where Mq is the q-th row of matrix M, and d is the loss function considered.
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The main issue within this paradigm is the choice of a loss function (which

should correspond with the loss function used for deriving the binary classi-

fier). For example, for the case of the 1-norm SVM paradigm (one of the base

methodologies used in this paper), the hinge-loss function could be chosen:

loss(yi, f(xi)) = max(0, 1− yi(w · Φ(xi) + b)).

In this way, the final decision function is C(x) = Cq, where for SVM:

q = arg minq=1...Q

Q−1∑
i=1

max (0, (1−Miq · fi(x))) (9)

and for LR:

q = arg minq=1...Q

Q−1∑
i=1

log(1 + e−Miq·fi(x)). (10)

One of the main advantages of this methodology over a purely hierarchical440

approach is that all real values are used for prediction instead of binary predicted

class values. Consequently, the model is provided with additional information

which may be useful for improving its performance. Note that the decision

values f(x) represent the distance to the threshold, which is a measure usually

considered for estimating class probabilities.445

5.3. Preprocessing data by ordinal pattern over-sampling

Imbalanced data arise naturally in ordinal classification problems. The rea-

son is that there are classes that naturally present lower a priori probability

(typically, extreme classes) [21], as occurs in the problem considered in this

paper: there are significantly more patterns associated to benign lesions with450

respect to melanomas (specially when considering thicker ones, see Table 1). Be-

cause of this reason, we consider the application of a recently proposed method

for class balancing in ordinal classification problems [21]. In contrast to other

over-sampling techniques, this technique creates synthetic patterns considering

the data distribution of minority classes and the data ordering. The main as-455

sumption of this method is that the ordering of the classes should be considered

when resampling patterns for an ordinal classification problem, and that this
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order is generally represented by a latent manifold. To exploit this manifold,

the structure of the data is captured constructing a pattern graph, and the

paths that preserve the ordinal constraints of the data are considered for over-460

sampling and therefore exploited. Moreover, new patterns are created in the

borderline between adjacent classes, in order to smooth the ordinal nature of

the dataset and prevent that minority classes are obviated in the classifier.

In this paper, we consider one of the proposals of [21], named as ordinal

graph-based over-sampling via shortest paths using a probability function for465

the intra-class edges (OGO-SP). The classes over-sampled are the ones which

present an imbalance ratio (see Equation (1)) higher than a considered threshold

(in our case, 1), and the number of synthetic new patterns is that needed to

obtain an imbalance ratio lower than this threshold.

For more information about this procedure refer to [21]. As said before, our470

experiments consider both the total order and partial order approaches (only a

subset of the classes C2, C3, C4, and C5 follow this order). Since the over-sampling

strategy exploits the order of the classes to resample data, this is an important

consideration. The number of patterns needed to balance the distribution is,

however, computed using all the data, so that both datasets present the same475

number of patterns. The classes over-sampled are the following: C2, C4, C5 (the

number of patterns per class is included in Table 1), given that the imbalance

ratio of C1 and C3 are lower than 1.

6. Experiments

This section covers the methods, performance metrics and experimental de-480

sign used, together with an analysis of the results and models obtained. Source

code of proposed methods is available in the website associated to the paper1.

Experiments for all the methods but TensorFlow are performed using ORCA

framework2.

1http://www.uco.es/grupos/ayrna/partial-order-melanoma
2https://github.com/ayrna/orca
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6.1. Comparison methods485

Different classifiers (nominal, ordinal and partial order proposals) are com-

pared in this paper. The methods included are single model methods as well

as binary approaches to multi-class/ordinal classification. More specifically, the

methods tested are the following:

• Kernel Discriminant Learning for Ordinal Regression (KDLOR) [13], which490

extends the Kernel Discriminant Analysis (KDA) to ordinal classification

using a rank constraint.

• Multinomial Logistic Regression (MLR), which applies the one-against-all

scheme.

• The Proportional Odds Model (POM), which adapts standard logistic495

regression to the ordinal case. MLR and POM are implemented with the

mnrfit function in Matlab.

• Regularised Multinomial Logistic Regression (RMLR), where the classifi-

cation model is composed of several binary models using the one-against-

all scheme (implemented in LIBLINEAR [48]).500

• RED-SVM [13], which applies the reduction from cost-sensitive ordinal

ranking to weighted binary classification framework to SVM.

• Support Vector Classifier using the one-against-one (SVM-1v1) and one-

against-all (SVM-1vA) approaches [53].

• The reformulation of SVM for ordinal classification with implicit con-505

straints (SVORIM) [26].

• Weighted Support Vector Machine with Ordered Partitions (WSVMOP),

which considers a binary decomposition method using weight-based SVMs

[29].

• Extreme Learning Machines for nominal (ELMNO) and ordinal classifica-510

tion (ELMOR) [54], which are randomised algorithms for training neural

networks.
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• The hierarchical models described in Section 5.1 based on logistic regres-

sion (H-LR) and support vector machines (H-SVM).

• The ordinal Cascade binary utility model proposed in Section 5.2, where515

two different prediction approaches are used: the hierarchical approach

(OC-H) and the ECOC framework (OC-E) [20]. We test these models

using SVMs (OC-E-SVM and OC-H-SVM) and RMLR (OC-E-LR and

OC-H-LR).

These methods make use of the vector of features extracted from each picture520

(see Section 4). On the other hand, deep learning based methods automatically

extract features in image processing as part of the model optimisation process

[55]. Specifically in the field of image processing, deep convolutional neural net-

works (CNN) have obtained significant performance improvement over previous

approaches [56]. CNNs are artificial neural networks composed of several layers525

that automatically extract features from images from lower to higher abstrac-

tion levels by performing non-linear transformations in each layer. The first

layers of the CNN perform an autoenconding of raw images, whereas the last

layers use the previous data transformations to perform high level classification

of images, i.e. image labelling.530

Deep learning models need large amounts of data and computational re-

sources to build the above-mentioned complex models. However, many pre-

trained models can be re-trained to adapt them to a new classification task.

This is formally known as transfer learning [57], and it is specifically suitable

for two non-excluding situations: first, complex deep neural network models are535

computationally costly to tune, and transfer learning computational cost is sig-

nificantly lower; and second, transfer learning obtains competitive results when

the new task amount of data is not enough to train the model from scratch.

Recently, Esteva et al. [58] applied the GoogleNet Inception v3 CNN archi-

tecture [59, 60] to the classification of several skin diseases. In that work, the540

authors used transfer learning to re-train a model that was pre-trained on ap-

proximately 1.28 million images and 1,000 object categories from 2014 ImageNet
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Large Scale Visual Recognition Challenge [61]. The re-trained model results

were aligned with dermatologist performance. In [58], malignant melanomas

are distinguished from benign nevi (non-melanoma), but the thickness of the545

melanoma is not included in the classification levels.

In order to compare our approach to a CNN based approach, we have re-

trained GoogleNet Inception v3 CNN in a similar way as in [58]. We have

removed the final classification layer and re-trained it with the raw images of

our dataset. Results are included in Table 2 but not in the rest of the ex-550

periments, because over-sampling and feature selection methods work with the

feature vectors but not with raw images.

6.2. Evaluation metrics and experimental design

To take into account different aspects of classification performance evalua-

tion, we have selected different metrics focused on the global performance, the555

balance of performance for the different classes and the ordinal magnitude of

the errors:

• Accuracy (Acc) is the percentage of correctly classified patterns:

Acc = · 1

N

N∑
i=1

Jŷi = yiK,

where J·K is the indicator function (being 1 if the condition is true, and 0

otherwise), and ŷi is the predicted target for xi.

• The geometric mean of the sensitivities (GM) is typically used in imbal-

anced problems:

GM = Q

√√√√ Q∏
q=1

Sq,

where Sq is the sensitivity (accuracy ratio) of the classifier for class q. If560

GM = 0, the classifier is totally misclassifying at least one class.

• The Mean Absolute Error (MAE) is the average deviation in absolute

value of the predicted class from the true class. It is the most commonly
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used ordinal classification metric. For imbalanced datasets, this measure

is modified to consider the relative frequency of the classes, resulting in

the Average MAE (AMAE) and Maximum MAE (MMAE) [24]:

AMAE =
1

Q

Q∑
q=1

MAEq =
1

Q

Q∑
q=1

1

Nq

Nq∑
i=1

e(xi), (11)

MMAE =
1

Q

Q
max
q=1

MAEq, (12)

where e(xi) = |O(yi) − O(ŷi)| is the distance between the true and the

predicted ranks, and O(Cq) = q is the position of the q-th label. AMAE

values range from 0 to 4, and so do MMAE values.

The first class (C1) is also considered for the ordinal errors, given that the565

partial order assumption is considered in the input space, but the misclassifica-

tion costs of C1 with respect to C2 to C5 can be assumed to be the same that

the ones applied in the case of ordinal classification.

The experiments have been performed with the original dataset, and two

datasets with synthetic patterns generated as described in Section 5.3. The570

experimental design consist on a stratified 10-fold partition procedure, and the

metrics are calculated using the sum of all generalisation confusion matrices

from the 10 folds. To adjust the kernel width and cost parameters for the

SVM-based methods (REDSVM, SVM-1v1, SVM-1vA, SVORIM, WSVMOP,

H-SVM, OC-E-SVM and OC-H-SVM), a nested cross-validation is applied to575

the training data, with a grid search with parameter values within the range

{10−3, 10−2, . . . , 103}. In the case of SVM based hierarchical model (H-SVM),

we have two parameters (C and γ, width of the kernel) corresponding to C-SVC

and SVORIM. Since adjusting these parameters would lead to a four dimensions

grid search, we use the same parameters C and γ for the binary and the or-580

dinal model. The kernel width of KDLOR is optimised using the same range

than SVM-based methods with regularisation parameter values in the range

u ∈ {10−2, 10−3, 10−4, 10−5}. The cost parameter of RMLR, H-LR, OC-E-LR

and OC-H-LR is adjusted using the same values of the SVM-based methods.

For ELMNO and ELMOR the number of sigmoid hidden neurons is optimised585
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from the set {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The criteria for selecting

the parameters is AMAE, which had a positive impact on the performance of

the metrics related to imbalance. The POM does not have hyper-parameters

to optimise. CNN Inception v3 was re-trained with the default parameters, as

indicated in the project website3.590

6.3. Experimental results

The results of the experiments performed can be seen in Tables 2, 3 and 4,

where the best performing method is highlighted in bold face and the second

one in italics. Acc and GM are to be maximised, whereas AMAE and MMAE

have to be minimised. From those tables, several conclusions can be drawn.595

Table 2 shows the results for the original dataset (without over-sampling).

Firstly, it can be inferred that the problem can be addressed as standard or-

dinal regression, as the performance of state-of-the-art methods is relatively

satisfactory (specially that of SVM-based methods). Comparing the nominal

SVM with other ordinal methods (e.g. SVORIM and REDSVM), it can be seen600

that the ordinal approaches obtain better performance in the ordinal metrics,

thus validating the need of considering this problem as an ordinal one. This is

also applicable to ELM (comparing ELMNO and ELMOR). The Acc metric can

be thus misleading, in such a way that the best accuracy method (SVM-1v1)

obtains the fifth worst AMAE results and the third worst MMAE values. In605

this way, high Acc values hide significant errors for some of the classes (specially,

for minority classes) and do not take the order information into account.

Considering our proposals for partial order problems, very interesting results

can be found. Firstly, H-LR obtains the same performance for Acc than SVM-

1v1 (i.e. the highest result) but also finds a suitable balance between the rest of610

metrics. This shows that, although a nominal approach could lead to acceptable

results, these can be optimised by the use of a specific ordinal approach (in this

case, for partial order). This also shows that the combined use of two linear

3https://www.tensorflow.org/tutorials/image_retraining
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Table 2: Experimental results obtained for the different methods considered in the original

dataset.

Method Acc GM AMAE MMAE

Nominal methods

MLR 0.632 0.393 0.857 1.172

RMLR 0.632 0.375 0.852 1.167

ELMNO 0.610 0.212 1.194 1.897

SVC1V1 0.665 0.402 0.910 1.448

SVC1VA 0.649 0.377 0.920 1.352

Inception-v3 0.635 0.000 1.292 2.714

Ordinal methods

POM 0.616 0.320 0.852 1.241

ELMOR 0.555 0.202 1.068 1.862

SVORIM 0.633 0.401 0.816 1.207

REDSVM 0.635 0.359 0.827 1.138

WSVMOP 0.653 0.333 0.922 1.414

KDLOR 0.546 0.357 0.883 1.345

Proposed methods - Partial order

H-LR 0.665 0.416 0.770 1.093

H-SVM 0.642 0.355 0.812 1.138

OC-E-LR 0.582 0.384 0.839 1.125

OC-E-SVM 0.575 0.407 0.764 0.922

OC-H-LR 0.639 0.406 0.773 1.000

OC-H-SVM 0.660 0.394 0.822 1.138

methods (in H-LR) can help to improve the classification of a kernel one (e.g.

in SVM-1v1), which could come from the high number of input features, which615

simplifies the class discrimination.

Secondly, from the cascade binary utility model variants proposed in this

paper (hierarchical prediction and ECOC method, i.e. OC-H against OC-E), it
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Table 3: Experimental results obtained for the different methods considered in the total order

over-sampled dataset

Method Acc GM AMAE MMAE

Nominal methods

MLR 0.623 0.402 0.862 1.207

RMLR 0.641 0.404 0.854 1.148

ELMNO 0.557 0.283 1.070 1.370

SVC1V1 0.626 0.334 0.947 1.481

SVC1VA 0.616 0.323 0.977 1.414

Ordinal methods

POM 0.598 0.378 0.815 1.016

ELMOR 0.569 0.410 0.861 1.167

SVORIM 0.560 0.356 0.856 1.276

REDSVM 0.548 0.338 0.871 1.276

WSVMOP 0.630 0.375 0.899 1.276

KDLOR 0.475 0.322 0.914 1.414

Proposed methods - Partial order

H-LR 0.644 0.381 0.865 1.333

H-SVM 0.637 0.358 0.847 1.148

OC-E-LR 0.625 0.344 0.929 1.345

OC-E-SVM 0.548 0.362 0.861 1.094

OC-H-LR 0.641 0.339 0.940 1.448

OC-H-SVM 0.621 0.326 0.885 1.370

seems that the hierarchical method works better for LR (where very competitive

results are obtained for all the metrics), while the ECOC framework is better620

suited for SVM, where minority classes are very well-classified. Moreover, H-LR

and OC-H-LR frameworks significantly improve their performance considering

all the performance metrics with respect to POM and RMLR. This allows the

use of two linear models for melanoma detection and thickness classification with
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Table 4: Experimental results obtained for the different methods considered in the partial

order over-sampled dataset.

Method Acc GM AMAE MMAE

Nominal methods

MLR 0.625 0.402 0.855 1.172

RMLR 0.630 0.390 0.880 1.333

ELMNO 0.569 0.320 1.053 1.481

SVC1V1 0.625 0.366 0.894 1.333

SVC1VA 0.617 0.352 0.904 1.333

Ordinal methods

POM 0.612 0.413 0.756 0.953

ELMOR 0.596 0.424 0.824 1.103

SVORIM 0.539 0.316 0.896 1.345

REDSVM 0.537 0.302 0.869 1.379

WSVMOP 0.651 0.388 0.875 1.310

KDLOR 0.512 0.348 0.875 1.414

Proposed methods - Partial order

H-LR 0.639 0.368 0.916 1.426

H-SVM 0.601 0.291 0.896 1.241

OC-E-LR 0.625 0.369 0.945 1.296

OC-E-SVM 0.562 0.348 0.903 1.276

OC-H-LR 0.644 0.368 0.945 1.352

OC-H-SVM 0.637 0.363 0.877 1.296

feature relevance analysis purposes. The differences of partial order proposals625

with respect to SVORIM and REDSVM are more clear for ordinal metrics

(AMAE and MMAE). This is due to the fact that, given than partial order is

not exploited by standard ordinal regression methods, they can misclassify class

C1 with a higher probability. As C1 is an extreme class, the errors committed

for this class tend to be of higher magnitude.630
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Thirdly, the CNN Inception-v3 performance in Acc was acceptable. How-

ever, it presents the lowest possible GM and a large magnitude of errors in

AMAE and MMAE. The confusion matrix revealed that it was not able of

correctly classify any pattern of stage 0 and have numerous errors in stage II

and stage III (which are the minority classes, see Table 1). On the other hand,635

it correctly classified patterns of classes Non-melanoma and stage I (majority

classes). Then we can conclude that Inception-v3 need more patterns of minor-

ity classes to improve the model performance for those type of situations. Note

that this model is not specifically designed to deal with imbalanced or ordinal

data.640

In order to compare our results with the ones reported in the literature,

which are generally based on binary classification approaches, we provide the

performance of the melanoma presence (positive class) or absence (negative

class) classification task. The H-LR performance is 86.61%/90.58% (sensitiv-

ity/specificity) in the original dataset, 89.24%/85.25% in the total oversampled645

dataset, and 89.19%/85.00% in the partial order oversampled dataset. The per-

formance is aligned with that reported in previous binary classification works

89%/89% in [9], 84.09%/96.61% in [7], and 91.2%/81.7% in [62]. The reader

should consider that our proposals solve a more difficult five-class classifica-

tion problem instead of a binary classification task. In addition, the features650

extracted differ.

Tables 3 and 4 present the results for the over-sampled datasets, where Ta-

ble 3 shows the performance obtained when using the full-ordinal regression

over-sampling approach (considering the total order of the data) and Table 4

represents the partial order of the data. This means that the full-ordinal regres-655

sion over-sampling approach obviates the partial order of the problem, trying

to reconstruct the original ordinal manifold using all the classes (including C1),

whereas the partial order over-sampling only considers those classes that hypo-

thetically would represent an order between them. The conclusions that can be

extracted from these tables are the following. Firstly, the over-sampling with660

partial order (Table 4) shows better performance in general than the full-order
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over-sampling (Table 3), as shown by the highlighted best models, which mo-

tivates again the necessity of developing specific methods which consider the

structure of the data. Secondly, the use of over-sampling in an imbalanced do-

main improves the results in the case of nominal and ordinal methods, but not665

in partial order ones. This could be due to the fact that the proposed meth-

ods already take into account the imbalance nature of the dataset, proposing

decompositions that alleviate this degree of imbalance (e.g. separating benign

lesions from melanoma). When introducing in this setting new synthetic pat-

terns, great emphasis is put in these minority classes, then producing worse670

results (probably due to over-fitting). Finally, it can be seen that the appli-

cation of the over-sampling method is more beneficial for POM, ELMOR and

ELMON. However, these results are worse than the one obtained by decompo-

sition methods without over-sampling. This means that, although the results

of baseline methods can be improved by the use of over-sampling techniques,675

a method specifically designed for a given problem (as in this case, a method

designed for imbalanced learning and partially ordered classes) has a greater

potential than a generic method combined with over-sampling.

6.4. Feature selection results

The high number of dimensions (100 features) motivates the use of feature680

selection (FS) methods to discard potentially useless features. FS can be divided

into individual feature ranking (FR) and feature subset selection (FSS). The

former measures feature-class relevance to create a rank of features, and the

top-ranked ones are selected. On the other hand, FSS aims at finding a set of

features which presents good performance. In [63], the fast correlation-based685

filter (FCBF) is proposed as an hybrid model which takes advantage of both

approaches. In this work we use the FCBF implementation available in Weka

[64].

The FCBF method was applied to the original dataset and it reduced the

number of features to 18 (x1-x3,x10,x13,x16,x25,x29-x33,x37,x38,x55,x61,x64,x96).690

This subset of features is included in Figure 10 in the following Section to allow
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Table 5: Experimental results obtained for the different methods considered in the original

dataset after performing feature selection.

Method Acc GM AMAE MMAE

Nominal methods

MLR 0.662 0.341 0.866 1.296

RMLR 0.626 0.331 0.920 1.259

ELMNO 0.603 0.197 1.112 1.741

SVC1V1 0.649 0.315 0.901 1.444

SVC1VA 0.639 0.322 0.948 1.379

Ordinal methods

POM 0.601 0.277 0.887 1.276

ELMOR 0.601 0.246 0.967 1.759

SVORIM 0.635 0.294 0.848 1.448

REDSVM 0.651 0.325 0.843 1.379

WSVMOP 0.626 0.272 0.939 1.352

KDLOR 0.544 0.412 0.789 1.059

Proposed methods - Partial order

H-LR 0.642 0.328 0.821 1.138

H-SVM 0.655 0.357 0.839 1.207

OC-E-LR 0.585 0.342 0.851 1.047

OC-E-SVM 0.536 0.313 0.855 1.188

OC-H-LR 0.603 0.301 0.908 1.196

OC-H-SVM 0.644 0.341 0.838 1.138

comparison between the selected features and the feature weights of the H-LR

model in the original dataset. Table 5 presents the results of all the methods in

the reduced dataset. The CNN was excluded since it works with raw images.

The comparison of results in tables 2 and 5 is illustrated in Figure 9, which695

shows the performance difference for all the metrics.

From Table 5, we can conclude that the best results are achieved by KDLOR
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Figure 9: Performance difference between the dataset with all the original features and that

including only the ones selected by FCBF. To ease the comparison, Acc and GM are expressed

as errors (Mean zero-one error, MZE = 1 − Acc, and GME = 1 − GM , respectively) and

all the metrics are scaled in the range [0, 1]. Positive values represent performance differences

favouring the FCBF method.

(best results in GM , AMAE and second best result in MMAE). The perfor-

mance of partial ordering methods is still very competitive (see H-LR, H-SVM

and OC-E-LR), and it is better than that of nominal and ordinal classification700

methods, with the exception of KDLOR for GM , AMAE and MMAE.

Figure 9 leads to the following conclusions. In general, the performance

of most of the methods is reduced by feature selection. The results in Acc

are not significantly affected. However, the performance of the metrics which

are sensitive to class imbalance is decreased in the majority of cases. This705

behaviour can be explained because many feature selection methods can sup-

press features/attributes which may not affect the global performance, but are
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important to distinguish the minority classes.

In conclusion, the models produced after FS are much more simple but lead

to a general performance decay. A wider study including more filters could710

improve the efficiency for the minority classes. However, such a study is out of

the scope of the present work.

6.5. Features and model analysis

This section presents an analysis of the relevance of the features used by

H-LR models as well as a comparison of them with the features subset selected715

by FCBF.

6.5.1. Analysis of the original dataset H-LR model
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Figure 10: Box plots of the 10 H-LR models (binary and ordinal models) together with the

best performing model. The figure represents the weight wi of each model corresponding

to every feature. Since the features are standardised, we use the absolute value of wi. The

ordinal model is represented in logarithmic scale. The features selected by the FCBF filter

are marked with a “×” symbol (see Section 6.5.2).

This section presents an analysis of the H-LR models corresponding to ex-

periments summarised in Table 2. We analyse some of the variables because

a whole feature analysis is out of the scope of the current work. Since these720
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experiments correspond to a 10-fold set up, we have 10 resulting models. Fig-

ure 10 presents box plots of these 10 models together with the best performing

model. Each hierarchical model is composed of a binary model (upper plot in

the figure) and an ordinal model (bottom plot of the figure represented in log-

arithmic scale). Each figure represents the absolute wi values of each model,725

so that we can analyse the relevance and robustness of each variable for each

classification task. As a general comment, feature weights with low values and

small variance do not have high relevance to the model. On the other hand,

weights with higher values have greater contribution to the model. The high

variability of some weights can be interpreted as a lack of robustness of corre-730

sponding feature, whose relevance highly depends on the train data sample of

the fold.

Figure 10 also indicates which features were designed to contribute to each

one of the two classification tasks (melanoma distinction and thickness estima-

tion). For instance, we can see that circularity index (x1) is more relevant in735

the binary case than in the ordinal one. On the other side, it should be noticed

that some variables designed to measure the thickness of the melanoma are also

relevant for the binary classification task (see x15, x19, x20, x22 among others).

As expected, variables such as the percentage of the lesion area of reference

colours (x12-x17) have higher relative weight in the POM model that in the LR740

model.

Considering the features corresponding to shape (x1-x11) and percentage of

colour area (x12-x17), these seem more robust than the ones based on statistical

descriptors of colours (x19-x54). That is, for the last ones, even though these

variables highly influence the models, their influence is affected by the training745

sample. This behaviour could be explained by the fact that these features,

in comparison to others, are not as clearly defined as clinical criteria for both

problems. In addition, we can hypothesise that with a larger training sample

the variance of some of the weights could be reduced so more robust conclusions

could be achieved. The analysis of these descriptors reveals that some channels750

are more relevant than others. For instance, features x43-x48 are the entropy
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of RGB and L∗a∗b∗ colour spaces. In this case, entropy of green (x44) and L

(x46) is more relevant to both models than the entropy of other components.

Regarding pigment network features (x55-x57), network density ratio (x55) is not

relevant for the binary model, but the other two features are relevant for both755

models. The texture features (x58-x100) are in general more robust variables

where some of them have a very low weight, specially in the case of the binary

model. Finally, in the POM model, the following blocks of variables based on

MRF model [36] are outlined: x78-x81, x84-x87 and x90-x93.

Finally, the features added with respect to previous works also contribute760

to both models. These are: shape features x6 and x7 (specially in the ordinal

models) and colour features x43-x54 (with more relevance in the binary models).

6.5.2. Comparison of H-LR model to FCBF feature selection

In this last section, we compare the relevance that H-LR assigns to features

in the original dataset to the FCBF subset obtained in Section 6.4. Figure 10765

represent the FCBF selected features to ease the comparison.

Considering the binary model, some of the FCBF features are relevant (for

instance x1, x13, x16, x29-x33 and x37) whereas x38 and x55 have a low contri-

bution to the H-LR model. Regarding the ordinal model, the FCBF features

x1-x3 are not relevant (these variables seem to be important only for the binary770

model). Features x13, x16,x55 are known to be clinically relevant to distinguish

deeper melanomas. Indeed, x13 and x16 are relevant for the ordinal model but

x55 has a smaller contribution to this model. Finally, other variables such as x61

and x64 are relevant variables in the ordinal model and have also been selected

by the FCBF algorithm.775

7. Conclusions

This paper presents a novel approach for automatic melanoma character-

isation via computational image analysis and machine learning methods. 100

features based on clinical insights are extracted to describe each image. Learning

is tackled using classifiers which simultaneously differentiate melanomas from780
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benign lesions and, in the case of melanomas, predict the stage. The stage

(depth) is characterised by using a set of ordered labels, representing different

stages according to the Breslow index. We experimentally confirm the hypoth-

esis that topology-aware methods improve different aspects of the classification

(evaluated through different performance metrics such as GM , AMAE and785

MMAE). More specifically, we propose three decomposition based approaches

(a hierarchical model and two methods based on the ordinal cascade utility

model). For the ordinal cascade utility model, two different strategies for fusing

the predictions of the binary models are used.

We experimentally confirm that this problem is a partially ordered dataset,790

since the best performance was achieved by the partial order methods with

respect to a wide collection of nominal and ordinal classifiers. The results outline

that this partial order should be taken into account to minimise the magnitude

of the errors. Also, the optimisation of model hyper-parameters with AMAE as

selection criteria contributed to reduce the magnitude of errors and to balance795

the prediction of all the classes. Finally, we have applied over-sampling schemes

that take into account the topology of the classes in the input space, which

are able to improve the performance of standard nominal and ordinal methods

(especially if the partial order is considered during synthetic data generation).

Our approaches have been also compared to a recent convolutional deep800

neural network (CNN) technique specifically designed for classifying skin lesions.

The global accuracy was aligned with the rest of the methods, but the CNN

model presented worse performance for minority classes. This can be due to the

fact that CNN models need large amounts of data to be trained, and the number

of patterns for this problem is low in some cases. However, the CNN performance805

could be improved in several ways. The first is increasing the training data, not

only including new images, but also testing the effect of generating new images

by applying rotation, zoom and translation operations to the training pictures.

Besides, specific architecture and parameter tuning could be explored.

We have included a study on feature relevance (weights) assigned by the810

best performing method and a set of experiments with feature filtering. In this
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case, the performance was clearly affected for the minority classes. As future

work, an extended analysis of feature selection could bring a trade-off between

model complexity (in terms of number of variables) and performance for all the

classes. In addition to this, non-negative linear models [65] can be explored to815

focus on model interpretability.

Future work lines mostly rely on data acquisition. Although the use of a

public dataset has advantages (such as experiment reproducibility or to avoid

dependencies on specific hardware), more images acquired with modern der-

matoscopes are needed. A larger and more modern dataset would strengthen820

the conclusions regarding the expected performance of the system (as well as

model analysis conclusions) and would allow the construction of a more general

skin lesion detection framework. Finally, partial order classification methods

could also be tested in other application fields, to validate their usefulness un-

der the assumption of partial order.825
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[13] P. A. Gutiérrez, M. Pérez-Ortiz, J. Sánchez-Monedero, F. Fernandez-

Navarro, C. Hervás-Mart́ınez, Ordinal regression methods: survey and ex-875

perimental study, IEEE Transactions on Knowledge and Data Engineering

28 (1) (2016) 127–146.

[14] O. M. Doyle, E. Westman, A. F. Marquand, P. Mecocci, B. Vellas, M. Tso-

laki, I. K loszewska, H. Soininen, S. Lovestone, S. C. R. Williams, A. Sim-

mons, Predicting Progression of Alzheimer’s Disease Using Ordinal Regres-880

sion, PLoS ONE 9 (8) (2014) 1–10.

[15] J. Sánchez-Monedero, P. Campoy-Muñoz, P. A. Gutiérrez, C. Hervás-
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in 1982. He received the B.S in Computer Science from the University of1040

Granada, Spain, in 2008 and the M.S. in Multimedia Systems from the Univer-

sity of Granada in 2009. In 2013 he obtained the Ph.D. degree on Information

and Communication Technologies of the University of Granada. He is work-

ing as Associate Professor with the Department of Quantitative Methods at
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