
Combinatorial Structures in Quantum
Information

University College London

Joshua Lockhart

2

For Sarah.

Declaration

I, Joshua Lockhart confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the thesis.

3

4

My appreciation to Simone Severini for his advice, candour and friendship

throughout the PhD.

Thanks to Otfried Gühne for his insight on all things entanglement. Thanks to

David Roberson and Laura Mančinska for their encouragement, mentorship,

and hospitality. Many thanks also to Toby Cubitt for his open office door, and to

Carlos González-Guillén for his supply of counter-examples to conjectures.

Thanks to Scott Aaronson, Aram Harrow, Ashley Montanaro, Fernando Brandão,

László Babai, Andreas Winter, Giannicola Scarpa, and Will Matthews for help-

ful discussions.

To all those I have shared an office with, Dan Dervovic, Dimitris Stamos, Giu-

lia Luise, Alexander Botev, Nadish de Silva, Leonard Wossnig, Smudge the

rabbit, Andrea Rochetto, James Watson, Ed Grant, Carlo Sparaciari, Thomas

Galley, Alexandru Paraschiv and Octavio Zapata: thank you for all the good

times. Thanks to Dan in particular for going above and beyond to maintain

the cookie culture in Research Office 3.14. Big thanks to Cohort One of UCL’s

Delivering Quantum Technologies CDT for your support and friendship.

Finally, I thank Sarah Lockhart for her unwavering support over these four years.

Contents

1 Introduction 13

1.1 Quantum preliminaries . 19

2 Quantum state isomorphism 25

2.1 Graph isomorphism . 28

2.2 Probabilistic and interactive proofs 32

2.2.1 Proofs with private coins 35

2.2.2 Proofs with public coins 37

2.3 Isomorphisms of strings and states 41

2.3.1 Permutations and S T R I N G I S O M O R P H I S M 42

2.3.2 Permutations of quantum states and S TAT E I S O M O R P H I S M 43

2.3.3 Quantum complexity theory 45

2.3.4 Quantum interactive proofs and zero knowledge 54

2.3.5 Statistical zero knowledge 58

2.4 Summary . 63

3 Grid states 67

3.1 Chapter Overview . 69

3.2 Graphs and quantum entanglement 73

3.2.1 Subsequent work . 78

3.2.2 Discussion of literature . 81

3.3 Preliminaries . 82

3.3.1 Grid-labelled graphs and grid-states 83

3.3.2 Local isomorphism . 84

3.3.3 Local operations and classical communication 88

5

6 CONTENTS

3.4 The Degree Criterion . 92

3.4.1 Extensions and LE-isomorphism 99

3.4.2 Decompositions . 101

3.5 3× 3 graphs that satisfy the degree criterion 105

3.5.1 Edge contributions . 108

3.5.2 3× 3 degree criterion with 2 diagonal edges 111

3.5.3 3× 3 degree criterion with 3 diagonal edges 113

3.5.4 3× 3 degree criterion with 4 and 5 diagonal edges 114

3.5.5 Bound entanglement . 121

3.6 Matrix Realignment Criterion . 123

3.6.1 Realignment of combinatorial Laplacian matrices 124

3.6.2 Failure of the matrix realignment criterion 131

3.6.3 Applying the matrix realignment criterion to B4 and B5. . 135

3.7 Range criterion . 137

3.7.1 Row and column surgery 137

3.7.2 Bound entangled graphs via the range criterion 141

3.8 Summary . 149

4 Discussion 153

A Grid States Miscellany 181

A.1 Entanglement of B5 . 181

A.2 Counting graphs that satisfy the degree criterion 185

A.3 Proof of 6, 7, 8, 9 edge lemma . 191

Abstract

This work is an exploration of how graphs and permutations can be applied in the

context of quantum information processing. In Chapter 2 we consider problems

about the permutations of the subsystems of a quantum system. Explicitly, we

attempt to understand the problem of determining if two quantum states of

N qubits are isomorphic: if one can be obtained from the other by permuting

its subsystems. We show that the well known graph isomorphism problem is a

special case of state isomorphism. We also show that the complement of state

isomorphism, the problem of determining if two states are not isomorphic, can be

verified by a quantum interactive proof system, and that this proof system can be

made statistical zero knowledge. We also consider the complexity of isomorphism

problems for stabilizer states, and mixed states.

In Chapter 3 we work with a special class of quantum states called grid states, in

an effort to develop a toy model for mixed state entanglement. The key idea with

grid states is that they can be represented by what we call a grid-labelled graph,

literally, a graph forced to have vertices on a two dimensional grid. We show

that whether or not a grid state is entangled can sometimes be determined solely

from the structural properties of its corresponding grid-labelled graph. We use

the grid state framework to build families of bound entangled states, suggesting

that even in this restricted setting detecting entanglement is non-trivial and will

require more than a single entanglement criterion.

7

8 CONTENTS

Impact Statement

The thesis focuses on two ways in which mathematical tools more traditionally

associated with classical computer science can be brought to bear on questions

to do with quantum computing. Quantum computers are known to provide

exponential speed up over the best known classical algorithms for a number of

well known problems including integer factorisation and solving linear systems

of equations.

The first section is immersed in the theory of quantum computational complexity,

with the aim of bringing to it fresh ideas from classical computer science. We

consider a quantum generalisation of the graph isomorphism problem: the prob-

lem of determining if two quantum states are equivalent up to rearrangements of

their constituent subsystems. We show that this problem, which we call the state

isomorphism problem, has a number of similarities to its classical counterpart in

terms of its complexity classification. This work was presented as a poster at a

number of quantum computing conferences, with highlights being QIP and TQC,

suggesting that it is of interest to the broader theoretical quantum computing

community.

It is not clear which aspect of quantum mechanics is responsible for quantum

algorithmic speed up. One candidate phenomena is quantum entanglement, the

so called “spooky” way in which quantum particles can be correlated with one

another, and affect each others state despite potentially being astronomically far

apart. In this latter part of the thesis, we consider a special class of quantum states

that can be represented by graphs on a grid. We show that properties relating

to the entanglement of such a state can be deduced by considering structural

properties of its corresponding graph. The work in this direction has resulted in

a publication in Physical Review A. The work is intended to be inter-disciplinary,

9

10 CONTENTS

with the aim of fostering collaboration between the quantum information and

combinatorics communities. The work was presented as a talk at Eurocomb 2017

and the British Colloquium for Theoretical Computer Science.

Complexity Class Glossary

P: Polynomial time

NP: Non-deterministic Polynomial time

PSPACE: Polynomial Space

BPP: Bounded error Probabilistic Polynomial time

BQP: Bounded error Quantum Polynomial time

QMA: Quantum Merlin Arthur

QCMA: Quantum Merlin Arthur with classical certificate

QAM: Quantum Arthur Merlin

QCAM: Quantum Arthur Merlin with classical certificate

IP: Interactive Proofs

QIP: Quantum Interactive Proofs

QSZK: Quantum Statistical Zero Knowledge

QCSZK: Quantum Statistical Zero Knowledge with classical communication

MA: Merlin Arthur

AM: Arthur Merlin

11

12 CONTENTS

Chapter 1

Introduction

A computer that can access advanced processing power by tapping into the realm

of quantum physics is an idea that could have come straight from the pages

of a science fiction novel. However, at the time of writing a Canadian startup

have received $9 million in funding to investigate quantum machine learning [1],

China and the USA are engaged in what Bloomberg calls a “Quantum Computing
Arms Race” [2], and Microsoft have just released a Visual Studio plugin for Q#,

their quantum programming language [3]. It appears that science fiction is well

on its way to becoming fact.

Despite this recent explosion of activity, this field is not a new one. The idea

of a quantum computer is rooted in Feynman’s 1981 talk “Simulating Physics

with Computers” [4], in which he proposes that in order to provide an accurate

simulation of a quantum mechanical system, a computer must operate according

to quantum laws. Four years later, David Deutsch mapped out some of the the-

oretical underpinnings of such a computing device [5], before showing in 1992

with Richard Jozsa [6] that they could outperform classical computers at certain,

rather contrived, tasks.

It wasn’t until 1994, when Peter Shor [7] came up with a quantum algorithm

that could efficiently find the prime factors of large numbers, that the broader

scientific community started to pay attention. Here was a new kind of computing

device that, if built, would allow its users to break the RSA cryptosystem [8],

built on the assumption that this exact task was impractical. RSA formed, and

13

14 CHAPTER 1. INTRODUCTION

still forms, the backbone of secure Internet communications, so the implications

of such a device being built would be catastrophic. Another key result came in

1996, when Lov Grover [9] showed that quantum computers are inherently better

than classical computers at a foundational problem in information processing:

searching through unordered lists of data. Suppose you have a list of N elements,

and you are tasked with finding the location of a particular item on that list. In the

worst case, the marked item could be the last element: this would require you to

check all entries of the list, O(N) queries. Counter-intuitively, Grover’s quantum

search algorithm can find the marked element in at most O(
√
N) queries of the

list elements. This has immediate practical applications, even for NP-complete

problems like finding a satisfying assignment to a boolean function ofN variables.

The naive classical brute force search would require you to check O(2N) variable

assignments in the worst case. With Grover, the worst case complexity would be

O(2N/2) queries.

Building a practical quantum computing device that can realise these computa-

tional capabilities is a difficult problem. The challenge arises from the fact that

the computational primitive of such a computer, the qubit, must be constructed

from a physical system affected by the laws of quantum mechanics. Such systems,

perhaps photons of light [10], individual ionized atoms [11], or nuclear spins

of atoms “trapped” by an impurity in a semi-conducting material [12] tend to

be difficult to gain experimental control over. Worse, even if sufficient control is

obtained over these systems and they are prepared into a quantum mechanical

state usable for information processing, sometimes they interact with their sur-

roundings, diluting the quantum nature of their state. If they interact with their

environment too much, the quantum state decoheres into a classical state.

In the years surrounding Shor’s and Grover’s algorithms the importance of pro-

tecting this quantum information from environmental noise became clear. To this

end, a veritable menagerie of quantum error correcting codes sprang up: the

Shor code [14] which encodes the state of an error corrected logical qubit in the

collective state of nine physical qubits, the Steane [18] code which combines clas-

sical error correcting codes into a quantum code, later generalised into the CSS

(Calderbank-Shor-Steane) codes and stabilizer codes [15]. More recently, topolog-

ical codes based on Kitaev’s toric code [17] have come to the fore, with Google

15

focusing on utilising such schemes in their experimental quantum computing

hardware [19].

In the past decade, governmental and business interest in quantum computing

has grown substantially. More recent discoveries in quantum algorithms that

have applications in machine learning, for instance the Harrow-Hassidim-Lloyd

(HHL) linear systems algorithm [20], have captured the attention of the tech

giants Google [21], Microsoft [22], Alibaba [23], IBM [24], and Baidu [25].

These companies now fund their own quantum research groups, attracting both

experimental and theoretical researchers in an attempt to be the first to build the

first scalable quantum computing hardware. Governments on the other hand are

interested in the security offered by quantum information-based communication

schemes (see the outline given in the overview of the EU’s quantum technologies

flagship programme [26]), and of course the code-breaking capabilities offered

by Shor’s algorithm [27].

Quantum computer science

In the past fifty years we have visited the moon, deciphered our own genetic

code, and built a communications network that carries 1.2 zettabytes per year1.

All of this was achieved with computers that are either oblivious to quantum

effects, or are designed to cancel them out. Quantum theory is the best known

description of how the universe operates, so just what are we missing out on by

not building computers that are affected by it? If we can build devices that utilise

the quantum effects, then what are their capabilities (and limitations)? As we

have seen, the early results (c. f. Shor, Grover, HHL) look promising, a fact which

coupled with the (perhaps) near-term feasibility of implementing these devices

provides scientists a wonderful opportunity to study this question, which cuts to

the core of theoretical physics and computer science.

Stephen Cook’s 1971 paper “The Complexity of Theorem-Proving Procedures”

[29], along with Richard Karp’s “Reducibility among combinatorial problems”

[30] which came a year later, provided much of the bedrock on which the theory

of computational complexity was built. Computational complexity theory takes a

1A zettabyte is one trillion gigabytes. See [28] for more statistics on total Internet traffic.

16 CHAPTER 1. INTRODUCTION

model of computation, for example, the Turing machine, and attempts to cate-

gorise computational problems in terms of the resources required for that model

to solve them. Karp considers time as a resource, in an attempt to find out what

a Turing machine can do within a number of time steps that scales as some

polynomially bounded function in the length of their inputs (a concept that we

henceforth refer to as the Turing machine running in polynomial time). He con-

siders two classes of problem: P, those for which a Turing machine can find a

solution in polynomial time, and NP, those for which a Turing machine can verify
a solution in polynomial time. He also writes about what would later become

known as a Karp reduction between computational problems. A problem A is

said to be Karp reducible to a problem B (denoted A ≤p B) if any instance of A

can be transformed into an instance of B in polynomial time. Thus, if one has a

polynomial time algorithm for B, one can use it to solve any instance of A: just

translate it to an instance of B (in polynomial time, by definition) and solve it

with the algorithm for B.

Cook’s paper [29] deals with problems solvable in polynomial time by non-

deterministic Turing machines, a model of computation thought to be strictly

more powerful than standard Turing machines. Through the lens of Karp’s work,

his main result can be stated in the Cook-Levin Theorem. This theorem also bears

L. A. Levin’s name, due to work in this direction that he conducted independently

at around the same time as Cook [31].

Theorem 1.0.1 (The Cook-Levin Theorem) All problems in NP are Karp reducible
to the boolean satisfiability problem.

A problem in NP that has the property described in the Cook-Levin Theorem is

referred to as NP-complete, and is considered in all likelihood to be computation-

ally intractable. Karp’s paper lists twenty one such problems.

Almost fifty years later we know of many more complexity classes, but P and NP,

along with the notion of a Karp reduction, are still central ideas in the theory of

computational complexity. The set of NP-complete problems, essentially those

that are as hard as anything belonging in NP, now touches every corner of modern

scientific endeavour, encompassing problems in fields as diverse as graph theory,

operations research, economics, and even computer games [32, 33, 34].

17

The ideas above are not tied to one model of computation. We can attack other

models, provided that they are defined rigorously. Naturally, complexity theory

has been focused on analysing the computational capabilities of quantum com-

puters too. In 1997, Bernstein and Vazirani [35] built on Deutsch’s work on

quantum Turing machines, considering a quantum variant of P that they call

BQP. Later, Watrous [36] defined QMA, intended to capture the notion of a prob-

lem being efficiently verifiable by a quantum computer (as we will see later, the

probabilistic nature of quantum computing means that this class is not so much

a “quantum NP”, more “quantum Merlin-Arthur”). In a 2002 book on theoretical

aspects of quantum computing, Kitaev, Shen and Vyalyi [37] demonstrated that

the problem of determining the ground state energy of a local Hamiltonian is

complete for this class QMA. This result was improved several times, culminating

in Kempe, Kitaev and Regev’s result [40] showing that it is QMA-complete even

for Hamiltonians where all terms are 2-local. The theory of quantum computa-

tional complexity was well on its way, with a notion of efficient computation (the

problems in BQP) and a suite of problems thought to be too difficult for quantum

computers to solve efficiently (the QMA-complete problems). An excellent survey

on these ideas is [38] by Watrous, and a sizeable list of problems known to be

QMA-complete is compiled in [39].

This thesis is concerned with how ideas from combinatorics can be applied to

topics related to quantum information processing. Our focus in particular will

be on computational problems about quantum states. In Chapter 2 we consider

the problem of determining if two quantum states are isomorphic, a problem

directly inspired by the well known graph isomorphism problem. If one consid-

ers the problems that have received the most attention in quantum complexity

theory, the influence of theoretical physics on the direction of the field becomes

quite obvious: many of the problems are about Hamiltonians for instance. With

the state isomorphism problem, the idea is to explore analogues between the

quantum and classical complexity theories. The graph isomorphism problem is

particularly thorny and difficult to handle in a complexity context, so with the

state isomorphism problem I wanted to know if this thorniness could be made to

manifest itself in a quantum problem. The work in Chapter 2 is based on research

I conducted in collaboration with Carlos E. González Guillén [41].

18 CHAPTER 1. INTRODUCTION

In Chapter 3 we explore the problem of determining if a quantum state is en-
tangled or separable. Quantum entanglement is a key component of quantum

mechanics, and is thought to play a role in the speed up offered by quantum al-

gorithms. However, determining if a quantum system is entangled given a formal

description of its current state is known to be NP-hard (see Gurvits [124], and

later work by Ioannou [125] and Gharibian [181]). In the chapter we consider

how to detect entanglement in a class of quantum states called grid-states, each

parametrised by a special kind of graph. The entanglement properties of these

states can often be determined by considering structural properties of their corre-

sponding graphs. Chapter 3 is based on [42] and [43], written in collaboration

with Simone Severini and Otfried Gühne.

It is important to be clear on some basic notions in quantum information before

we proceed with the rest of the thesis. We will now outline some definitions and

basic ideas in this area. For a complete treatment of these topics, readers should

consult any of a number of excellent introductions to quantum information that

exist at the time of writing [44, 45, 46].

1.1. QUANTUM PRELIMINARIES 19

1.1 Quantum preliminaries

By convention, we represent the state of a quantum mechanical system with

a complex column vector. In particular, the valid states of a quantum system

with d degrees of freedom are the column vectors in Cd with `2-norm equal to

1. Such state vectors comprise the state space of the system, and are written in

Dirac bracket notation as |ψ〉. The conjugate transpose of such a state vector

|ψ〉 =
(
ψ1, . . . , ψd

)T
is denoted 〈ψ| =

(
ψ∗1, . . . , ψ

∗
d

)
. In this way the `2-norm

condition on |ψ〉 is expressed |〈ψ|ψ〉|2 = 1.

Consider a composite system of n ≥ 2 systems with respective state spaces

Cd1 , . . .Cdn. The state space of such a composite system is the unit vectors of

the tensor product space Cd1 ⊗ · · · ⊗ Cdn . Suppose we know the respective quan-

tum states of each constituent system |ψ1〉, . . . , |ψn〉. The state of the composite

system is obtained by taking the Kronecker product of these states. The Kronecker

product of two states |ψ〉 =
(
ψ1, . . . , ψq

)T
∈ Cp and |φ〉 =

(
φ1, . . . , φq

)T
∈ Cq is

the vector 

ψ1 ·


φ1

...

φq


...

ψp ·


φ1

...

φq




=: |ψ〉 ⊗ |φ〉.

Explicitly then, the state of the composite state is denoted |ψ1〉 ⊗ · · · ⊗ |ψn〉, and

belongs to Cd1 ⊗ · · · ⊗ Cdn.

In this thesis we will often consider quantum systems with d = 2 degrees of

freedom. Such systems are commonly called qubits (quantum bits). From the

above discussion, we know that the state space of a system of N qubits is the

unit vectors in C2N . The computational basis states which are used to represent

classical information on a quantum computer are a special subset of the states of

20 CHAPTER 1. INTRODUCTION

N qubits. First, define the single qubit states

|0〉 :=

(
1

0

)
and |1〉 :=

(
0

1

)
,

and let x = x1 . . . xN ∈ {0, 1}N be a bitstring of length N . Finally, define the

corresponding computational basis state |x〉 := |x1〉 ⊗ · · · ⊗ |xN〉. The reader can

verify that |x〉 has all coefficients equal to 0 except the coefficient in position∑N
i=0 xi · 2i, which is equal to 1. Occasionally it will make the discourse easier

to parse if we use various shorthand ways of writing the state of a composite

system. For example, the expressions |01〉, |0, 1〉, |0〉|1〉, and |0〉 ⊗ |1〉 are taken to

mean the same thing.

Note that {0, 1}N for an integer N ≥ 1 is standard notation used to denote the set

of bitstrings of length N , which we will use throughout the thesis. We will also

use {0, 1}∗ to denote the set of all bitstrings ∪N≥1{0, 1}N , and the | · | operator to

denote the length of a bitstring. That is, for all bitstrings x1 . . . xn, we have that

|x1 . . . xn| = n.

Definition 1.1.1 (Pure state entanglement) A bipartite state |ψAB〉 ∈ HAB is
said to be separable if there exists |ψA〉 ∈ HA and |ψB〉 ∈ HB such that |ψAB〉 =

|ψA〉 ⊗ |ψB〉. If a state is not separable then it is called entangled.

The Bell states are an important family of bipartite entangled pure states

|Ψ±〉 :=
1√
2

(|00〉 ± |11〉) ;

|Φ±〉 :=
1√
2

(|01〉 ± |10〉) ,

which we will come across several times in the thesis.

A quantum computer is simply a system of N qubits that can undergo evolution

that is controlled by an external user. The evolution of a quantum mechanical

system is modelled by applying particular unitary matrices to the system’s state

vector. Consider a quantum system with state space Cd. The quantum evolutions

of such a system are described by the unitary matrices on Cd: recall that a matrix

U is unitary when U †U = UU † = I.

1.1. QUANTUM PRELIMINARIES 21

X X

Figure 1.1: A three qubit quantum circuit.

In analogy to the notion of building a logic circuit from gates like AND, OR and

NOT, in quantum computing we build quantum circuits out of simple unitary

matrices called quantum gates. Some quantum gates that are commonly used are

the controlled-NOT gate (CNOT), and the Hadamard gate. These correspond to

the unitary matrices

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , H =
1√
2

(
1 1

1 −1

)
, and σx =

(
0 1

1 0

)

respectively. The reader can verify that the CNOT gate is a two qubit gate, which

has the following effect on two qubits in the computational basis:

CNOT|i, j〉 =

|i, j〉 if i = 0;

|i, 1− j〉 if i = 1,

for all i, j ∈ {0, 1}. The first qubit acts as the control qubit: if it is 1 then the second

target qubit is acted upon by a NOT. Another set of gates we will come across

repeatedly, and which may be familiar to readers with a physics background are

those corresponding to the Pauli matrices

X =

(
0 1

1 0

)
, Y =

(
0 i

−i 0

)
, Z =

(
1 0

0 −1

)
, and I =

(
1 0

0 1

)
.

The CNOT gate is part of a wider family of quantum gates with a control qubit. In

this thesis, we will make use of the controlled-Z gate, along with the controlled-

22 CHAPTER 1. INTRODUCTION

SWAP gate with

CZ =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 , and CSWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ,

as their respective unitary matrix representations.

Quantum circuits are represented diagrammatically, with horizontal lines repre-

senting single qubits, and gates drawn over them corresponding to the qubits

they act upon. Consider one such circuit diagram, illustrated in Figure 1.1. Cir-

cuits are read left to right: initially we apply a Hadamard gate on the first qubit

along with a Pauli X on the second, then a Hadamard on both the first and

second qubits, and so on. The connected circles represent a CNOT with the first

qubit as control and the second qubit as target. At the far right the box with the

“dial” on the first qubit corresponds to performing a measurement with respect to
Pauli Z. Quantum mechanical measurements are treated in terms of Hermitian

operators known as observables. The eigenvalues of the observable of a measure-

ment correspond to the possible outcomes of that measurement. Let |ψ〉 be the

state of a quantum system, and let M be an observable with spectrum {λi, |λi〉}.
When the measurement is performed, the probability of the λi outcome occurring

is equal to Tr[|λi〉〈λi|ψ〉〈ψ|]. Consider the Z measurement mentioned above. The

Hermitian matrix Z has |0〉 and |1〉 as +1 and −1 eigenvectors respectively, which

implies that for an arbitrary single qubit state |ψ〉 = α|0〉+ β|1〉, the probability

of outcome +1 is equal to |α|2, and the probability of outcome −1 is equal to |β|2.

Note that in this case | · | denotes the absolute value of a complex number.

The quantum states we have considered so far are called pure states. They are

used when we are certain of the state of the quantum system. This is not a

realistic scenario because sometimes we are not sure which state the system has

evolved to: perhaps something went wrong with the experimental apparatus,

or the system was affected by noise. We represent probabilistic uncertainty in

quantum information with mixed states. Consider a system in the lab about whose

true quantum state we are unsure. Suppose we know that it is in the pure state

1.1. QUANTUM PRELIMINARIES 23

|ψ1〉 with probability p1, the pure state |ψ2〉 with probability p2, and so on, up to

pure state k with probability pk. We represent the state of this quantum system

with the matrix ρ =
∑k

i=1 pi|ψi〉〈ψi|, which is called the density matrix of the

mixed state of the system we just described, which is said to have the probabilistic

ensemble {(pi, |ψi〉)}i=1,...,k. The density matrix of a composite system with n

subsystems that have respective state spaces Cd
1, . . . ,Cdn is a d1 . . . dk × d1 . . . dk

positive semi-definite matrix with unit trace. Mixed states are combined into

composite states analogously to the classical case, taking the Kronecker product

of the density matrices. Consider such a multi-particle density matrix ρ1,...,n. For

a subsystem of index 1 ≤ j ≤ n we can obtain the density matrix of the system

obtained by not considering that subsystem by using the partial trace with respect

to that subsystem. The reduced state is obtained by “tracing out” subsystem j in

the following way:

ρ1,...,n\j = Trj[ρ1,...,n]

:=

dj∑
i=1

〈i|jρ1,...,n|i〉j

In order to describe the reduced subsystems of entangled states, it is necessary

to use mixed states. In general, given some multi-particle pure state |ψ〉 we can

find one of its subsystem states by performing the partial trace on the density

matrix |ψ〉〈ψ|.

Definition 1.1.2 (Mixed state entanglement) A density matrix ρ on a bipartite
Hilbert space HAB is called separable if it can be written as

ρ =
∑
i

piρi ⊗ σi, (1.1)

where ρi and σi are density matrices on HA and HB respectively and for all i ≥ 1,
pi ≥ 0 such that

∑
i pi = 1. As before, a density matrix that is not separable is called

entangled.

The trace distance will be useful as a measure of similarity between two mixed

states. Let ρ, σ be mixed states on the same state space Cd. Their trace distance

24 CHAPTER 1. INTRODUCTION

is the quantity D(ρ, σ) = 1
2
‖ρ − σ‖1, where ‖M‖1 := Tr[|M |] for a matrix M

denotes its trace norm, equal to the sum of its singular values. Considering the

trace distance between two pure states, that is, ρ = |ψ〉〈ψ| and σ = |φ〉〈φ| for

pure |ψ〉, |φ〉 ∈ Cd, we have that 2

D(|ψ〉〈ψ|, |φ〉〈φ|) =
1

2
‖|ψ〉〈ψ| − |φ〉〈φ|‖1

=
√

1− |〈ψ|φ〉|2 =: D(|ψ〉, |φ〉).

We have covered all the basic mathematical tools needed for the rest of the thesis.

Let us begin now.

2see [47]

Chapter 2

Quantum state isomorphism

The G R A P H I S O M O R P H I S M problem (G I) is a beautiful problem, worthy of any

mathematician’s attention. However, it has two relatively benign characteristics

that when combined, make it a very dangerous problem indeed. G I manages to

concurrently be (a) so easy to state that a class of primary school children could

start working on problem instances right away, and (b) so difficult to handle

using the tools of modern complexity theory that after forty years of being listed

in the “Open Problems” appendix of Garey and Johnson [32], its complexity still

remains unclassified. While we now have good evidence that it is not NP-hard

(see Boppana, Håstad and Zachos [48], and later Schöning [49]), after all this

time it still eludes a polynomial time algorithm, despite some reasonable progress

on special cases. For instance, it has been known since 1974 that the problem

is efficiently solvable for planar graphs [50]. In 1980 it was shown that most

instances are efficiently solvable (shown using random graph theory in [51], in

a result that was later improved on by Czajka and Pandurangan in 2008 [52]).

Through the years the results improved. Notably, Luks showed that it is efficiently

solvable for bounded degree graphs [53]. A 1983 algorithm of Babai and Luks

[54] was, until relatively recently, the best known algorithm.

In November 2015, Babai claimed to have found a algorithm for G I that runs in

quasi-polynomial 1 time. The work, a technical tour-de-force that runs to almost

ninety pages, could be thought of as the culmination of the now decades-old

1An algorithm runs in quasi-polynomial time if there is some c > 0 such that for all inputs of
length n, it halts in time O

(
2(logn)c

)
25

26 CHAPTER 2. QUANTUM STATE ISOMORPHISM

programme initiated in Refs. [53, 54] of applying algorithmic group theory to

the symmetry groups of the graphs under consideration.

In early 2017, Helfgott announced that he had found a serious error in Babai’s

work [55]. When taken into account, this error demoted the algorithm’s running

time to sub-exponential2 rather than quasi-polynomial. The error, discovered

while Helfgott was preparing to give a Bourbaki seminar on Babai’s result, sent

shockwaves throughout the community. Five days later though, Babai announced

a modified algorithm, and the original result was saved: this new revised algo-

rithm ran in quasi-polynomial time, verified by Babai and Helfgott [58].

An outsider may look at the struggle to find a polynomial time algorithm for

graph isomorphism and conclude that no such algorithm exists, that perhaps the

problem is not easy after all. However, in 1987, Boppana, Håstad and Zachos

(BHZ) [48] showed that if graph isomorphism were NP-hard, then the polynomial
hierarchy would collapse. The polynomial hierarchy is a complexity theoretic

construction that can be thought of as an attempt to generalise P and NP: if

NP is the class of problems that have a P verifier (that is, can be verified by a

polynomial time algorithm), then we can define the next level in a hierarchy of

such classes by considering the class of problems that have an NP verifier, and

so on. While not as paradigm-shifting as NP collapsing to P (that is, P = NP), a

collapse of the hierarchy to some higher level is thought to be extremely unlikely.

This link between the graph isomorphism problem and the polynomial hierarchy

comes from the fact that graph non-isomorphism can be verified efficiently by

various kinds of interactive proof system, an idea that we will unpack in greater

depth later in the chapter.

In addition to the theoretical results that show that most instances of G I are

solvable in polynomial time, there are also well known software solvers for it

[56, 57]. That such software packages exist is perhaps not surprising, G I appears

in biomedical [59] and cheminformatics settings [60]. This disconnect between

theory and practice suggests that we as computer scientists should give some

thought as to how we classify problems as efficiently solvable. Our field is built

around the Cobham-Edmonds thesis [61, 62, 63], which takes the terms “solvable

2An algorithm runs in sub-exponential time if for all constants c > 0, it runs in time O(2n
c

)
on all inputs of length n.

27

efficiently” and “solvable in polynomial time” to be effectively synonymous. One

direction of this ‘polynomial time ≡ easy’ equivalence is borne out well: problems

in P tend to have algorithms with runtime involving relatively small exponents

(see the discussion in Section 1.2.1 of Aaronson’s mammoth survey of the P vs.

NP problem [64]). G I seems to cut against the equivalence hypothesis from

the other direction, constituting a problem that is known to be quite easy to

solve practically in the vast majority of cases, but which has so far resisted our

attempts to prove that it is in P. Either we have a lot more to discover about

graph algorithms, about what it means for a problem to be efficiently solvable,

or both.

In short, it appears that the graph isomorphism problem highlights a gap in our

knowledge about algorithms, or a deficiency in the mathematical tools we use to

analyse the computational complexity of problems. Regardless, it has provided

theorists with a worthy adversary over the years. In this chapter I formulate a

problem about quantum states that I call S TAT E I S O M O R P H I S M (SI) in the hope

of understanding if there are problems about quantum systems that have similar

properties to GI. The chapter is spent building up evidence that this problem

can be thought of as a quantum version of GI, by demonstrating a number of

similarities between the two problems. The work presented here is based on

my publication [41]. A number of the definitions and proofs presented in this

chapter are very similar or equivalent to the way they appear in the publication

itself.

SI is roughly the following problem: given a pair of N qubit quantum states |ψ〉
and |φ〉, can the subsystems of |ψ〉 be permuted in such a way that the resulting

state |ψ′〉 is close to |φ〉 under some suitable distance measure?

In this chapter we show that S I has a number of similar properties to GI: we

show that the problem is in QCMA, and is thus efficiently verifiable. We also show

that it has an efficient quantum interactive proof system, and that furthermore,

such a proof system can be made into a proof system that is statistical zero

knowledge. Immediately, these results give evidence against the problem being

QCMA-complete: if it was, then all problems in QCMA would have quantum

statistical zero knowledge proof systems. In the classical world, it is thought to

be unlikely that all problems in NP have (classical) statistical zero knowledge

28 CHAPTER 2. QUANTUM STATE ISOMORPHISM

proof systems, since this would collapse the polynomial hierarchy (see Aaronson

[84]). Because of this, it seems unlikely that all problems in QCMA have quantum

statistical zero knowledge proof systems. We also consider isomorphism problems

for different kinds of quantum states: stabilizer states and mixed states. We show

that these different kinds of states can make the problem easier or harder. In

particular, stabilizer states have similar complexity to standard pure states but

all interactive proof systems can be done with classical communication only.

Considering isomorphism of mixed states however is considerably more difficult,

we are able to show that this problem is QSZK-hard. An upper bound for this

problem is elusive at this point, as we will see later, it is difficult to even check if

two mixed states are similar, never mind isomorphic. This makes even verifying
that two mixed states are isomorphic under a permutation a difficult task.

In the next section we will explore more formally the mathematical concepts

that we will require for a discussion of the analysis of SI. In particular, we cover

G I and its mathematical formulation, classical complexity theory including the

classes P and NP, and similar notions in probabilistic computation captured by

the classes BPP, MA and AM.

2.1 Graph isomorphism

A graph encodes a relationship between a set of objects. The objects being mod-

elled, be they humans, research papers, or banks, are represented by the graph’s

vertices. If a pair of these objects are related (perhaps by a friendship, a citation,

or a loan) then we represent this by linking them together with an edge. The

graph allows us to consider an abstract collective relationship between a set of

objects. A pair of graphs made up of different constituent objects may represent

the same abstract collective relationship. Since we care about the relationship

between vertices rather than what the vertices themselves represent, we are of-

ten interested when this is the case. A pair of graphs that represent the same

abstract collective relationship are called isomorphic. A pair of isomorphic graphs

can be transformed into one another via a transformation called an isomorphism.

Graph theory is mostly concerned with the study of properties of graphs that are

2.1. GRAPH ISOMORPHISM 29

invariant under isomorphism. In Figure 2.1 we illustrate a pair of isomorphic

graphs.

Patricia
Partario

Helen

Bournemouth
Rosy

Imhotep

Lord Scotland

Jean

Brutus

(a)

(b)

Millsy

Figure 2.1: Two graphs that are isomorphic. Despite describing the friendship structure
of different sets of people, that friendship structure is the same in both graphs: it consists
of a clique of three people, with a ‘tail’ of two people not known to the rest of the clique.

Formally, a graph G is a set of vertices V , and a set of unordered pairs of vertices

E ⊆
(
V
2

)
called edges. Consider two such graphs G = (V,E) and H = (W,F). If

there exists a function f : V → W that satisfies the condition

{i, j} ∈ E if and only if {f(i), f(j)} ∈ F, (2.1)

then we say that G and H are isomorphic. The function f is often called an

isomorphism between G and H.

In order to define the problem of determining if two graphs are isomorphic, we

will use the decision problem framework. A decision problem is a set of bitstrings

30 CHAPTER 2. QUANTUM STATE ISOMORPHISM

D ⊆ {0, 1}∗ that correspond to what we will refer to as the YES instances of a

problem. Note that {0, 1}∗ denotes the set of all bitstrings, this is notation that

we will use quite a lot in the subsequent discussion. As an explicit example of

specifying a problem in this framework, consider the following

E V E N H A M M I N G := {x has even Hamming weight : x ∈ {0, 1}∗},

which specifies the problem of determining if a bitstring has an even number of

1’s. For example, the bitstrings 11, 110, 001111 belong in A, while 1110 does not.

We say that an algorithm solves a decision problem A if, for all x, the algorithm

outputs 1 if x ∈ A and 0 otherwise.

It is no longer common to define decision problems using “set-builder” notation

like we use above. Instead, problems are usually specified in terms of inputs

and the expected outputs of an algorithm that solves it. The graph isomorphism

problem is specified in this format like so.

Problem 2.1.1 G R A P H I S O M O R P H I S M

Input: A pair of graphs G and H.
Output: Y E S if and only if G and H are isomorphic.

When we specify problems in this informal way, we are not truly specifying a deci-

sion problem. For structured data like graphs, to do so would require a great deal

of “book-keeping”, for example, we would need to agree on a reasonable repre-

sentation of a graph as a bitstring. Normally decision problems are not specified

to that level of detail, because details about representation are not what we are

interested in. Often it is reasonable to just assume that a representation has been

agreed on beforehand, and that all data will be given to our algorithm in that for-

mat. A cleaner way of specifying computational problems is in terms of promise
problems. The promise problem framework allows us to assume things about the

problem under consideration in a formal way (literally, we make promises about

the problem instances that an algorithm is expected to solve). We will revisit

these ideas later in Section 2.3.3.

To proceed with our discussion of GI, we will need to define some of the complex-

ity classes we have discussed so far. The class P (Polynomial time) is the class of

2.1. GRAPH ISOMORPHISM 31

decision problems that can be solved by a Turing machine [108] in a number of

time steps that scales as some polynomial function of the length of the problem

instance. Such problems are considered efficiently solvable.

Definition 2.1.2 (P) Let A be a decision problem. We say that A is in the class P
if there exists a polynomial time Turing machine M such that for all x ∈ {0, 1}∗

• if x ∈ A then M accepts x;

• if x /∈ A then M rejects x.

The next class, NP (Non-deterministic Polynomial time), consists of problems

whose solutions can be verified efficiently. It is useful to consider such problems as

having a “P verifier”: there is an efficient algorithm that, when given the problem

instance and a short bitstring known as a certificate, can verify in polynomial time

that the problem instance satisfies the constraints of the decision problem. The

class is defined below, where the operator ‘◦’ denotes concatenation of bitstrings.

Formally, a function f : N → N is polynomially bounded if there exists c > 0

such that f ∈ O(nc). We occasionally use poly to denote the set of polynomially

bounded functions, or poly(n) to mean some generic function that is polynomially

bounded in argument n. Likewise, we occasionally use exp(n) to mean some

generic function that scales exponentially in n.

Definition 2.1.3 (NP) Let A be a decision problem. We say that A is in the class
NP if there exists a polynomial time Turing machine M and a polynomially-bounded
function p : N→ N such that for all x ∈ {0, 1}∗,

• if x ∈ A then there exists a bitstring c of length at most p(|x|) such that M
accepts x ◦ c;

• if x /∈ A then for all bitstrings of length at most p(|x|), M rejects x ◦ c.

If two graphs are isomorphic then it is always possible to describe the isomor-

phism f between G and H by specifying the action of f on each vertex of G with

the cardinality |V | set of tuples {(v, f(v)) : v ∈ V (G)}. In order to verify that

such an f does in fact constitute an isomorphism between G and H, all it takes

32 CHAPTER 2. QUANTUM STATE ISOMORPHISM

is to verify the isomorphism condition, Eq. 2.1, for each of G’s edges, of which

there are at most |V | · (|V | − 1). This reasoning can be used to show that G I is

in NP.

Formally, a decision problem A is hard for a complexity class C (and referred to

as C-hard) if for all problems B ∈ C, there is a polynomial time Karp reduction
from B to A. A Karp reduction from a problem B to a problem A is a function

f : {0, 1}∗ → {0, 1}∗ with the property that for all bitstrings x ∈ {0, 1}∗, we have

that x ∈ B if and only if f(x) ∈ A. If A is C-hard and A ∈ C then we say that A

is C-complete.

Boppana, Håstad and Zachos (BHZ) give complexity theoretic evidence against

G I being NP-hard: they show that if this was the case, then the polynomial hier-

archy would collapse. The mechanics behind this result provides us with much

of the motivation for the results we prove in this chapter, so we will spend some

time going through them. The crux of BHZ comes from the fact that G I’s com-
plement problem, G R A P H N O N I S O M O R P H I S M (G N I) is efficiently verifiable

using an Arthur-Merlin interactive proof system. Let us now discuss the notion of

verification using proof systems.

2.2 Probabilistic and interactive proofs

While it is easy to certify that two graphs G and H are isomorphic, it seems

almost impossible to efficiently verify that two graphs are not isomorphic. Of

course, we could check all bijections f : V (G) → V (H) to see if any of them

map G to H. If you try all such bijections, and none of them constitute such a

mapping then you know the graphs are not isomorphic. Unfortunately since the

number of bijections between G and H scales as an exponential function of the

number of vertices, this isn’t efficient. It seems unlikely that G N I is in NP.

However, the notion of “verifiability” captured by the class NP is rather strict:

a P verifier t be must be convinced by the certificate c that x is a YES instance.

Since P is a deterministic class, what we are talking about here is verification

without doubt. In the real world we rarely require such certainty. We are often

happy to be presented with predictions about the truth of a statement, provided

2.2. PROBABILISTIC AND INTERACTIVE PROOFS 33

the predictor gives us an idea of how sure they are about the prediction. In

complexity theory, we model this notion of being “pretty sure” about something

being true by using probabilistic Turing machines. A probabilistic Turing machine

is the same as a standard Turing machine, but it has access to a source of random

bits that it can make use of during the computation. Essentially, the model is just

a Turing machine with the ability to flip a fair coin and make decisions based on

the outcome.

A clean way of formalising probabilistic Turing machines is to consider a standard

Turing machine with access to an additional read-only tape called the random
tape, which is populated with a sequence of bits at the start of computation. At

each step of a computation, the machine can either operate as a standard Turing

machine, or serially read the next bit of its random tape. Such a Turing machine

M is given two bitstring inputs, x which is placed on its standard work tape, and

r which is placed on its random tape. We denote the state of M ’s post-halting

work tape after being given x and r as input by Mr(x). Then M accepts input

x with respect to random tape r if Mr(x) = 1, and rejects if Mr(x) = 0. The

acceptance probability of such a Turing machine is proportional to the number of

random tape initialisations that cause it to accept. As before, we say that such a

Turing machine runs in polynomial time if for all inputs,M halts within a number

of time steps that scales as a polynomially bounded function of the length of that

input. The class BPP (Bounded-error Probabilistic Polynomial time) is the set of

problems that can be solved in polynomial time by a probabilistic Turing machine.

Definition 2.2.1 (BPP) Let A be a decision problem. We say that A is in the
class BPP if there exists a polynomial time probabilistic Turing machine M and a
polynomially bounded function p : N→ N such that for all x ∈ {0, 1}∗,

• if x ∈ A then

1

2p(|x|)
∣∣{r ∈ {0, 1}p(|x|) : Mr(x) = 1}

∣∣ ≥ 2/3;

• if x /∈ A then

1

2p(|x|)
∣∣{r ∈ {0, 1}p(|x|) : Mr(x) = 1}

∣∣ ≤ 1/3.

34 CHAPTER 2. QUANTUM STATE ISOMORPHISM

Just like how we defined NP as the class of problems that have P verifiers, it is

meaningful to define complexity classes in terms of BPP verifiers. The following,

known as MA (Merlin-Arthur) is one such class.

Definition 2.2.2 (MA) Let A be a decision problem. We say that A is in the class
MA if there exists a polynomial time probabilistic Turing machine M and polynomi-
ally bounded functions p, q : N→ N such that for all x ∈ {0, 1}∗

• if x ∈ A there exists c ∈ {0, 1}q(|x|) such that

1

2p(|x|+|c|)
∣∣{r ∈ {0, 1}p(|x|+|c|) : Mr(x ◦ c) = 1}

∣∣ ≥ 2/3;

• if x /∈ A then for all c ∈ {0, 1}q(|x|) we have that

1

2p(|x|+|c|)
∣∣{r ∈ {0, 1}p(|x|+|c|) : Mr(x ◦ c) = 1}

∣∣ ≤ 1/3.

The reason for the strange name is because what is actually happening can

be thought of as an interaction between two parties: the computationally un-

bounded prover (the wizard, Merlin), and a probabilistic verifier restricted to

operate in polynomial time (the somewhat magically-limited King Arthur). Mer-

lin sends information in the form of a certificate c to Arthur in an attempt to

convince him with bounded error that a particular assertion is true. We can think

of NP in this Prover-Verifier setting too, the only difference being that Arthur is

required to output his decision without making mistakes. This argument can be

made rigorous to show that MA is a more general class than NP: in other words,

that NP ⊆ MA.

A dialogue is often more convincing than a monologue, so it seems unrealistic

that the prover should only get one shot at convincing the verifier of something.

We can generalise the notion of efficient verification even further by considering

verification protocols that consist of multiple rounds of interaction between the

parties. Arthur-Merlin proof systems can be generalised to multiple rounds, but

first we will consider the class IP, which captures the notion of Interactive Proof

systems.

2.2. PROBABILISTIC AND INTERACTIVE PROOFS 35

2.2.1 Proofs with private coins

Interactive proof systems involve a prover and a verifier, who take it in turns to

work over several rounds. When a party has finished working in one round, they

send a message to the other party, who then starts working again, and so on.

At the end, the verifier outputs a bit signifying its decision. In [65] Goldwasser,

Micali and Rackoff define such proof systems in terms of a special kind of Turing

machine they call an interactive Turing machine. Such a Turing machine has

a work tape, a random tape, and two communication tapes: one that is read-

only, and the other which is write-only. The work tape and random tape are the

same as in probabilistic Turing machines, where the random tape supplies the

Turing machine with a source of “coin flips” on which to base its decisions. The

communication tapes allow two interactive Turing machines to send messages to

one another, as we will now see.

Formally, an interactive protocol is a pair of interactive Turing machines (P, V)

such that the read-only communication tape of P is the write-only communi-

cation tape of V , and the read-only communication tape of V is the write-only

communication tape of P . In this way, P can send messages to V that V can read

but not modify. Likewise, V can do the same for P . Furthermore, the Turing ma-

chine P is computationally unbounded, but V is restricted to run in polynomial

time. A k-message interaction (for k even) of (P, V) on an input x ∈ {0, 1}∗ starts

with V running with x as its input and halting. The value on V ’s write-only tape

is message #1. Then P runs and halts. The value on P ’s write only tape after

halting is message #2. The parties run in this way, running while it’s their turn,

halting while the other is computing, until k messages have been exchanged. In

the last round, the verifier halts with a 1 or a 0 on its tape denoting acceptance

and rejection of x respectively, as has been the convention thus far. Naturally, the

verifier must go last, so for odd k, the prover goes first. The class IP(k), defined

below, is the class of problems that have k message interactive proof systems.

36 CHAPTER 2. QUANTUM STATE ISOMORPHISM

Definition 2.2.3 (IP(k)) Let A be a decision problem. We say that A belongs to
IP(k) for some k ≥ 1 if there exists a k-message interactive protocol (P, V) such that
for all x ∈ {0, 1}∗

• if x ∈ A then after the k-message interaction between P and V ,

Pr[V is in accepting state] ≥ 2/3;

• if x /∈ A then after any k-message interaction between V and any interactive
Turing machine P ′

Pr[V is in accepting state] ≤ 1/3.

Returning to our discussion of verifying that two graphs are not isomorphic, it

is possible to show that G N I has a 2 message interactive proof system. Let us

attempt to gain some intuition as to why this is the case. Consider two graphs

with the same vertex set, G1 = (V,E) and G2 = (V, F) (if they had a different

number of vertices then they couldn’t possibly be isomorphic). Denote by S|V |

the group of permutations of the vertices of the graphs. Consider the following

interactive protocol.

1. Verifier: Uniformly at random, select an index i ∈ {1, 2} and a permu-

tation σ ∈ S|V |. Send the permuted graph G′ := σ(Gi) to the prover.

2. Prover: Determine i from G′, and send back your best guess j.

3. Verifier: ACCEPT if and only if i = j.

On step 2, all the prover sees is a graph G′, they don’t receive the permutation σ

or the index i. The claim is that this protocol will allow the verifier to determine if

G1 is not isomorphic to G2, with some reasonable probability better than random

guessing.

Consider the case where the graphs are not isomorphic. By definition, for all

permutations of the vertices σ ∈ S|V | we have that σ(G1) 6= G2. In this case,

the prover can try all permutations of the vertices of G′. If one of the permuta-

tions yields G1, then they know that G1 is the pre-permutation graph. Likewise,

2.2. PROBABILISTIC AND INTERACTIVE PROOFS 37

if they came across G2 during their search through permutations, they know

that the original graph must have been G2. Since the prover is computationally

unbounded, they are perfectly within their rights to use such an algorithm (re-

member, we are interested in how to convince the verifier that the graphs are

non-isomorphic, NOT in solving the non-isomorphism problem efficiently).

In the case where the graphs are isomorphic to one another then there exists

a permutation σ such that σ(G1) = G2. There also exists a permutation π with

the property that π(G2) = G1 (of course π = σ−1). There is now insurmountable

ambiguity for the prover, since G′ could have come from either one of the original

graphs. The prover can do no better than to randomly guess the answer.

Determining non-isomorphism for a pair of graphs can be done by playing the

above game with the prover enough times to determine if they can genuinely

tell the permuted graphs apart from one another, or if they are just guessing

randomly. More rigorously, we need to show completeness of the protocol: for

all non-isomorphic graphs, the prover can convince the verifier that they are

non-isomorphic, and soundness: no malicious prover (P ′ in definition 2.2.3) can

convince the verifier that two isomorphic graphs are non-isomorphic. We have

shown completeness already: the prover can always search through all permu-

tations of G′ until they find the graph that it came from. Soundness follows

from the fact that the prover, despite being computationally unbounded, can

do no better than randomly guess in the case of isomorphism. In this case, the

prover’s wins and losses in the game will resemble tosses of a fair coin, and we

know that this can be efficiently detected by the verifier using elementary sta-

tistical techniques. Later, we will show that similar protocols can be employed

in the quantum case to verify that two quantum states are non-isomorphic: the

S TAT E N O N I S O M O R P H I S M problem.

2.2.2 Proofs with public coins

The protocol we described in the previous section is referred to as a private coin
interactive proof system, since it relies on the fact that the verifier is allowed

to withhold from the prover the result of its coin tosses that generate i ∈ {1, 2}
and the permutation σ. The above protocol would not work without the ability

38 CHAPTER 2. QUANTUM STATE ISOMORPHISM

to hold this information back from the prover. Remarkably there also exists a

public-coin proof system for G N I, where all of the verifier’s coin tosses are known

to the prover.

To proceed we will place a restriction on our two graphs G1 = (V,E) and G2 =

(V, F), we will assume that they have no non-trivial automorphisms. That is, we

assume that neither of the graphs are isomorphic to themselves: σ(G1) 6= G1 and

σ(G2) 6= G2 for all σ ∈ S|V | with the exception of the identity permutation. We

make this restriction to make the proof sketches that follow easier to understand,

but it is worth noting that the result holds for graphs with automorphisms too.

Consider the set of graphs that can be obtained from Gi via permutations

Si := {σ(Gi) : σ ∈ S|V |}.

Since G1 and G2 have no non-trivial automorphisms, we have that |G1| = |G2| =
n!, where n = |V |. Furthermore, if G1

∼= G2 then the set G1 is identical to the

set G2, and so in this case we would have |S1 ∪ S2| = n!. Conversely, if G1 6∼= G2

then for all permutations σ ∈ Sn, we have by definition that σ(G1) 6= G2. Even

stronger, for all pairs of permutations σ, π ∈ Sn, we have that σ(G1) 6= π(G2). So

in the case where the graphs are not isomorphic we have that S1 ∩ S2 = ∅ and so

|S1 ∪ S2| = 2n!.

Summarising, if G1
∼= G2 then |S1 ∪ S2| = n!, but if G1 6∼= G2 then |S1 ∪ S2| =

2n!. Determining non-isomorphism becomes a question about the size of the set

S1 ∪ S2.

Goldwasser and Sipser [100] demonstrate what has come to be known as a set
lower bound protocol: they show that there is a public coin interactive proof

system for certifying the size of S1 ∪ S2. This protocol can be implemented in the

Arthur-Merlin framework to show that G N I is in the class AM, the class of public

coin proof systems where Arthur goes first. In an AM proof system, Arthur and

Merlin as usual want to determine if some x belongs to a decision problem A or

not. Arthur goes first, sending Merlin a randomly generated bitstring s. Merlin

then responds with a certificate c, and Arthur uses both s and Merlin’s response

c to inform his decision as to whether x belongs to A. Crucially, none of Arthur’s

randomness can be hidden from the prover, Arthur must send all of his random

2.2. PROBABILISTIC AND INTERACTIVE PROOFS 39

string s to Merlin, and s must be the only random data he generates. This is

captured formally in the following.

Definition 2.2.4 (AM) Let A be a decision problem. We say that A is in the class
AM if there exists a polynomial time probabilistic Turing machine M , polynomially
bounded functions p, q : N→ N, and a collection of bitstrings {cr : r ∈ {0, 1}p(|x|)}
each of length q(|x|) such that for all x ∈ {0, 1}∗

• if x ∈ A then

1

2p(|x|)
∣∣{r ∈ {0, 1}p(|x|) : Mr(x ◦ cr)}

∣∣ ≥ 2/3;

• if x /∈ A then

1

2p(|x|)
∣∣{r ∈ {0, 1}p(|x|) : Mr(x ◦ cr)}

∣∣ ≤ 1/3.

It is possible to extend the Arthur-Merlin proof systems to arbitrarily many rounds

of interaction, defining the class AM[k] for k ≥ 3. However, increasing the number

of rounds of interaction has no effect since it is possible to prove that AM[k] = AM

(see Arora-Barak [108]).

While the restriction to public coins makes AM seem like a particularly weak

class, a remarkable fact is that it contains G R A P H N O N I S O M O R P H I S M. The

proof of this relies on the Goldwasser-Sipser set lower bound protocol [100],

which makes use of pairwise independent hash functions which are defined in the

following way, where we take x ∈R X to mean that x is drawn uniformly at

random from a finite set X.

Definition 2.2.5 (Pairwise independent hash functions) A family of functions
{fi : A→ B : i ∈ I} is called pairwise independent if for all x, x′ ∈ A such that
x 6= x′, and for all y, y′ ∈ B, we have that

Pri∈RI [hi(x) = y ∧ hi(x′) = y′] = |B|−2

For brevity, we will just show the AM protocol for G N I without proving it correct.

This is a classic result, so it is proved in a number of places. Interested readers

40 CHAPTER 2. QUANTUM STATE ISOMORPHISM

may consult the discussion in the Arora-Barak textbook [108], or the lecture

notes of Jonathan Katz for a neat proof [81].

In what follows, we take Ha,b to be a family of pairwise independent hash func-

tions from {0, 1}a to {0, 1}b. The below protocol depends on suitably chosen a

and b. Omitting details, we just state these appropriate sizes as l and m. The

set S in the protocol is any finite set, for example the set S1 ∪ S2 referred to

previously.

1. Arthur: Uniformly at random, select hi ∈ Hl,m.

2. Merlin: Find G ∈ S such that hi(G) = 0m. Send G to Arthur, along with

a certificate proving that G ∈ S.

3. Arthur: Accept if G ∈ S and hi(G) = 0m.

The key idea is that the hash function family provides a constraint on Merlin that

he must fulfil using data only from the set S. Note that Merlin cannot cheat and

pick some G not in S that satisfies the constraint, since by construction, Arthur

can verify membership in S in polynomial time. Intuitively, if the set S is small

then it will be more difficult for Merlin to find a bitstring that satisfies it, and his

winning probability is lower. If the set S is big then there are more opportunities

for him to find a bitstring that satisfies it, so he can win the game with higher

probability. The meat in the proof of correctness is that the difference between n!

and 2n! is large enough to make these two cases distinguishable when the game

is repeated only polynomially many times. It is possible to prove that there is a

constant separation in the probability of Merlin being able to find a graph G in

S that will satisfy the hash function constraint in each case.

This protocol is sufficient to show that G N I is in the class AM. Another way of

stating this result is to say that G I belongs to coAM, where coAM denotes the

complement of the complexity class AM. More generally, let C be a complexity

class. A problem A is in coC if and only if its complement problem A is in C.

It is this result that GI ∈ coAM combined with the fact that G I ∈ NP, that the BHZ

polynomial hierarchy collapse result hinges on. Explicitly, let A ∈ NP ∩ coAM. If

A is NP-complete then by definition of completeness, all problems in NP have a

polynomial time Karp reduction to A. Since A ∈ NP ∩ coAM this would imply

2.3. ISOMORPHISMS OF STRINGS AND STATES 41

that NP ⊆ coAM, equivalently, that coNP ⊆ AM, which they show via a technical

lemma implies that the polynomial hierarchy collapses.

We have drawn up an outline of some results about the G R A P H I S O M O R P H I S M

problem, focusing on how isomorphic graphs can be certified as isomorphic, and

also how non-isomorphism can be certified if we consider more general forms of

verification than P verifiers. The fact that G R A P H I S O M O R P H I S M is in NP, but

that its complement can be efficiently verified in the interactive proof setting can

be thought of as a defining characteristic of the problem. It is not clear if there

are other problems in NP that have this property, meaning that G I stands out

as a potential candidate for what Ladner [68] proves must exist if P 6= NP: an

NP-intermediate problem, not in P, not NP-complete, but in NP all the same.

Having focused on efficient verification of G N I, we now work on proving that

S TAT E N O N I S O M O R P H I S M (SNI) has similar characteristics in the quantum

setting. These results give some evidence that S TAT E I S O M O R P H I S M can be

thought of as a “quantum G R A P H I S O M O R P H I S M” which may turn out to be

intermediate for the quantum equivalent of the class NP.

In the next section we will formally define S TAT E I S O M O R P H I S M, before ex-

ploring the quantum complexity classes that correspond to the classical classes

we have covered so far.

2.3 Isomorphisms of strings and states

Our starting point is a classical problem known as S T R I N G I S O M O R P H I S M:

given two bitstrings and a permutation group, does there exist a permutation

in the group that maps one string to the other? Babai’s quasi-polynomial time

algorithm for G R A P H I S O M O R P H I S M [77] is in fact an algorithm for S T R I N G I -

S O M O R P H I S M, since it turns out that G R A P H I S O M O R P H I S M is a special case

of S T R I N G I S O M O R P H I S M. We focus on S T R I N G I S O M O R P H I S M because it

is quite obvious how to make a quantum generalisation: instead of considering

bitstrings, define the problem in terms of multi-qubit quantum states. Let us now

define these ideas rigorously.

42 CHAPTER 2. QUANTUM STATE ISOMORPHISM

2.3.1 Permutations and S T R I N G I S O M O R P H I S M

Let Ω be a finite set. A bijection σ : Ω → Ω is called a permutation of the set Ω.

The set of all permutations of a finite set Ω forms a group under composition.

This group is called the symmetric group, and we denote it by S(Ω). For x ∈ Ω

and σ ∈ S(Ω), we denote the image of x under σ by σ(x).

A string s : Ω→ Σ is an assignment of letters from a finite set Σ called an alphabet
to the elements of a finite index set Ω. Let s : Ω → Σ be a string. The letters of

s are indexed by elements of the index set Ω. The letter corresponding to i ∈ Ω

is thus denoted by si. Let σ ∈ S(Ω) be a permutation. Then the action of σ on

s is denoted by σ(s), and is a string such that for all i ∈ Ω, σ(s)i = sσ(i). Often

it is useful to deal with permutations of strings indexed by the natural numbers.

Hence, we denote the symmetric group S([n]) by Sn, where [n] := {1, . . . , n}. In

what follows we denote the fact that a group G is a subgroup of a group H by

G ≤ H.

Problem 2.3.1 S T R I N G I S O M O R P H I S M

Input: Finite sets Ω,Σ, a permutation group G ≤ S(Ω) specified by a set of

generators, and strings s, t : Ω→ Σ.

Output: Y E S if and only if there exists σ ∈ G such that σ(s) = t.

It is clear that S T R I N G I S O M O R P H I S M is at least as hard as G R A P H I S O M O R -

P H I S M: there is a polynomial time Karp reduction from G R A P H I S O M O R P H I S M,

obtained by “flattening” the adjacency matrices of the graphs in question into

bitstrings. The set of string permutations that correspond to graph isomorphisms

form a proper subgroup of the full symmetric group (see explicit details in [69]).

Now that we have this definition, it is easy to obtain the equivalent problem

about quantum states.

2.3. ISOMORPHISMS OF STRINGS AND STATES 43

2.3.2 Permutations of quantum states and S TAT E I S O M O R -

P H I S M

Let σ ∈ Sn be a permutation. Then the following is an n qubit unitary operator

that “implements” the permutation in terms of the qubit subsystems (recall the

Dirac bracket notation outlined in section 1.1)

Pσ :=
∑

x∈{0,1}∗
|σ(x)〉〈x|. (2.2)

In what follows, let Qm,n for m ≥ n denote the set of all quantum circuits with

m input qubits and n output qubits. In particular, Qn,n is the set of all pure state

quantum circuits on n qubits. Then, for m > n, Qm,n is the set of all mixed state

circuits that can be obtained by discarding the last m − n output qubits of the

circuits in Qm,m.

When we specify a circuit with a subscript label, such as Qψ ∈ Qm,n, we do so

to easily refer to the state of the output qubits when the circuit is applied to the

state |0m〉. In particular, when m = n this is the pure state |ψ〉 ∈ C2n, and the

mixed state ψ acting on C2n otherwise.

Problem 2.3.2 S TAT E I S O M O R P H I S M (SI)

Input: Efficient descriptions of quantum circuits Qψ0 and Qψ1 in Qn,n, a set of

permutations {τ1, . . . , τk} generating some permutation group 〈τ1, . . . , τk〉 =: G ≤
Sn, and a function ε : N→ [0, 1] such that ε(n) ≥ 1/poly(n) for all n.

Y E S: There exists a permutation σ ∈ G such that |〈ψ1|Pσ|ψ0〉| = 1.

N O: For all permutations σ ∈ G, |〈ψ1|Pσ|ψ0〉| ≤ ε(n).

The astute reader will have noticed that we have defined the above problem in a

different way to all the classical problems we have considered already. We have

split the ‘question’ of the problem in terms of a YES case and a NO case. This is

what we referred to earlier as a promise problem. Quantum complexity classes are

often defined in terms of these promise problems, rather than decision problems.

Formally, a promise problem is a pair of sets of bitstrings AYES, ANO ⊆ {0, 1}∗

such that AYES ∩ ANO = ∅. These sets respectively correspond to the YES and

44 CHAPTER 2. QUANTUM STATE ISOMORPHISM

NO instances of the problem, and so the intersection must be empty or else

the definition wouldn’t make sense from this perspective. An algorithm is said to

decide a promise problem if for any x ∈ AYES∪ANO, it can decide which of the two

sets it belongs to. The promise problem framework is useful because bitstrings

that are not in AYES or ANO need not be considered by the algorithm. In contrast,

in the decision problem framework, it is necessary to make an implicit assumption

that the bitstrings received by the algorithm encode a meaningful instance of

the problem. For example, implicit in many graph decision problems is that

the bitstring instance encodes a graph in some meaningful way. In the promise

problem framework we are allowed to make such an assumption explicitly: we

don’t consider nonsense bitstrings at all, only those that represent graphs.

Let us now define the two variants of S I we also consider: S TA B I L I Z E R S TAT E I -

S O M O R P H I S M, and M I X E D S TAT E I S O M O R P H I S M. To get to the definition of

the first problem, we need to define the stabilizer states. The Gottesman-Knill

theorem [78] states that any quantum circuit made up of CNOT, Hadamard and

phase gates along with single qubit measurements can be simulated in polyno-

mial time by a classical algorithm. Such circuits are called stabilizer circuits, and

any n-qubit quantum state |ψ〉 such that |ψ〉 = Q|0〉⊗n for a stabilizer circuit Q is

referred to as a stabilizer state.

Let |ψ〉 be an n-qubit state. A unitary U is said to be a stabilizer of |ψ〉 if U |ψ〉 =

±1|ψ〉. The set of stabilizers of a state |ψ〉 forms a finite group under composition

called the stabilizer group of |ψ〉, denoted Stab(|ψ〉).
The Pauli matrices form a finite group P called the single qubit Pauli group under

composition. The n-qubit Pauli group Pn is the group with elements {(±1)U1 ⊗
· · · ⊗ (±1)Un : Uj ∈ P} ∪ {(±i)U1 ⊗ · · · ⊗ (±i)Un : Uj ∈ P}.
It is well known (c.f. [94] Theorem 1) that an n-qubit stabilizer state |ψ〉 is

uniquely determined by the finite group S(|ψ〉) := Stab(|ψ〉) ∩ Pn, of size 2n.

Hence, |ψ〉 is determined by the n = log(2n) elements of Pn that generate S(|ψ〉).
These elements each take 2n bits to specify the Pauli matrices in the tensor

product, and an extra bit to specify the overall ±1 phase. As we will see later, this

fact, along with a result about preparing such a description efficiently, means that

given a polynomial number of copies of a stabilizer state |ψ〉, we can produce an

efficient classical description of that state by means of the generators of S(|ψ〉).

2.3. ISOMORPHISMS OF STRINGS AND STATES 45

We can now state the first problem variant.

Problem 2.3.3 S TA B I L I Z E R S TAT E I S O M O R P H I S M (SSI)

Input: Efficient descriptions of quantum circuits Qψ0 and Qψ1 in Qn,n such that

|ψ0〉 and |ψ1〉 are stabilizer states, a set of permutations {τ1, . . . τk} generating

some permutation group 〈τ1, . . . , τk〉 =: G ≤ Sn, and ε : N → [0, 1] such that

ε(n) ≥ 1/poly(n) for all n.

Y E S: There exists a permutation σ ∈ G such that |〈ψ1|Pσ|ψ0〉| = 1.

N O: For all permutations σ ∈ G, |〈ψ1|Pσ|ψ0〉| ≤ ε(n).

The last problem is where we consider isomorphism of mixed states. Note that in

this definition, we consider quantum circuits in Q2n,n, that is, those that take 2n

qubits to n qubits. We do this in order to represent n qubit mixed states, which

are obtained by an implicit partial trace in the quantum circuit.

Problem 2.3.4 (ε, 1− ε)-M I X E D S TAT E I S O M O R P H I S M (MSI)

Input: Efficient descriptions of quantum circuits Qρ0 and Qρ1 in Q2n,n, a set of

permutations {τ1, . . . , τk} generating some permutation group 〈τ1, . . . , τk〉 =: G ≤
Sn, and ε : N→ [0, 1].

Y E S: There exists a permutation σ ∈ G such that D(Pσρ0P
†
σ , ρ1) ≤ ε(n).

N O: For all permutations σ ∈ G, D(Pσρ0P
†
σ , ρ1) ≥ 1− ε(n).

We also consider the above problems where the permutation group specified is

equal to the symmetric group G = Sn. We denote these problems with the prefix

Sn, for example, Sn-SI. It is clear that S S I ≤p S I ≤p M S I.

2.3.3 Quantum complexity theory

In this section we turn our attention to complexity classes that correspond to

quantum computation. Since this is the focus of the chapter, we will define the

classes with more rigour than we did for the classical classes in the previous

section.

46 CHAPTER 2. QUANTUM STATE ISOMORPHISM

A good starting point is to formalise what it means for a problem to be solvable

efficiently by a quantum computer. While quantum generalisations of the Turing

machine have been considered [35], certainly at the time of writing, the lingua-

franca of quantum algorithms is that of circuits made up of unitary gates. Just

what does it mean for such a quantum circuit to be efficient? Do we count the

number of gates it consists of? Or perhaps consider the depth of the circuit?

Remember that the composition of two unitary gates is also unitary, so if we

wanted to we could simplify the circuit by collapsing some gates into one. With

considerations like this, the notion of what constitutes an “efficient quantum

circuit diagram” could become quite subtle.

We can get rid of these issues entirely by considering quantum circuits that are

generated by efficient classical Turing machines. Such an idea may seem strange

at first because of the use of classical Turing machines. However, such such a

definition makes sense from a practical point of view. After all, we’d need to

program our quantum hardware to perform the algorithm, so it makes sense

that we would need a means of quickly producing a classical description of it.

Likewise, it wouldn’t make sense if we claimed to have an efficient quantum

algorithm that solves a problem, but there was no way of efficiently producing a

description of a circuit that implemented it. We refer to a set of quantum circuits

QN := {Qn : n ∈ N} as a family of circuits indexed by the natural numbers. We

say that such a family QN is uniformly generated in polynomial time if there is a

Turing machine M and some polynomially bounded function p : N→ N such that

when any n ∈ N is given as input to M it halts after at most p(n) time steps with

a description of circuit Qn on its tape. Note that the description is left undefined,

we assume that some reasonable means of specifying quantum circuits is agreed

upon beforehand. Such means of specification of course do exist, so we don’t

care about the details. In this chapter we also use families of circuits indexed by

the set of bitstrings, that is, families of the form {Qx : x ∈ {0, 1}∗}. In this case,

everything is defined in the same way, but the generating Turing machine must

halt in time polynomial in the length of the bitstring x given as input.

Now that we have covered the basic notions involved in quantum complexity

theory, let us now provide some definitions. We use the definitions in [38, 105]

as our guide. First of all, we consider the class BQP (Bounded Error Quantum

2.3. ISOMORPHISMS OF STRINGS AND STATES 47

Polynomial time), which is interpreted as the class of problems that can be solved

efficiently by a quantum computer. We say that a circuit Q accepts a quantum

state |ψ〉 if, when we measure the first qubit of Q|ψ〉 in the computational basis

the measurement outcome is 1. Otherwise, we say that the circuit has rejected

|ψ〉.

Definition 2.3.5 (BQP) Let A = (AYES, ANO) be a promise problem. We say that
A is in the class BQP if there exists a polynomial time generated uniform family of
quantum circuits {Qi : i ∈ N} such that for all x ∈ AYES ∪ ANO

• if x ∈ AYES then

Pr[Q|x| accepts |x〉] ≥ 2/3;

• if x ∈ ANO then

Pr[Q|x| accepts |x〉] ≤ 1/3.

Now that we know what it means for a promise problem to be solvable efficiently

by a quantum computer, we will look at the notion of verification using a quantum

computer. Since the notion of efficient quantum computation is a bounded error

class, it makes sense to turn to a quantum extension of Merlin-Arthur games. The

next class QMA (Quantum Merlin Arthur) captures this notion [36].

Definition 2.3.6 (QMA) Let A = (AYES, ANO) be a promise problem. We say that
A is in QMA if there exists a polynomial time generated uniform family of quantum
circuits {Vx : x ∈ {0, 1}∗} and polynomially bounded p : N→ N such that

• for all x ∈ AYES there exists |ψ〉 ∈ C2p(|x|) such that

Pr[Vx accepts |ψ〉] ≥ 2/3;

• for all x ∈ ANO and for all |ψ〉 ∈ C2p(|x|),

Pr[Vx accepts |ψ〉] ≤ 1/3.

48 CHAPTER 2. QUANTUM STATE ISOMORPHISM

Verifying problems using a quantum computer has an interesting subtlety not

present in the classical case. In QMA, the verification is performed using quantum

certificates: the state |ψ〉 in the definition above. What would happen if we were

to restrict the certificates to classical bitstrings instead? Can Merlin convince

Arthur of more facts if he is allowed to send a quantum state, rather than a

classical state? The class QCMA (Quantum Classical Merlin Arthur) captures the

notion of using BQP verifiers but with classical certificates [70].

Definition 2.3.7 (QCMA) Let A = (AYES, ANO) be a promise problem. We say
that A is in QCMA if there exists a polynomial time generated uniform family
of quantum circuits {Vx : x ∈ {0, 1}∗} and a polynomially bounded function
p : N→ N such that

• for all x ∈ AYES there exists c ∈ {0, 1}p(|x|) such that

Pr[Vx accepts |c〉] ≥ 2/3;

• for all x ∈ ANO and for all c ∈ {0, 1}p(|x|),

Pr[Vx accepts |c〉] ≤ 1/3.

Of course, computational basis states are still quantum states and therefore

count as a special case of quantum certificate. Hence, it is possible to prove

that QCMA ⊆ QMA. While an oracle separation between the classes was demon-

strated by Aaronson and Kuperberg [82] (later revisited and improved upon by

Fefferman and Kimmel in [83]), it is still not known if this inclusion is proper.

H H

Figure 2.2: The SWAP test circuit.

Let us now show that S I can be verified efficiently using classical certificates. In

doing so we make use of a quantum circuit known as the SWAP test [76], illus-

2.3. ISOMORPHISMS OF STRINGS AND STATES 49

trated in Figure 2.2 where the three qubit gate in the middle is a controlled-SWAP

gate. This circuit takes as input pure states |ψ〉, |φ〉 and accepts with probability

(1 + |〈ψ|φ〉|2)/2. Note that the circuit accepts with probability 1 if |ψ〉 = eiτ |φ〉 for

some τ ∈ [−2π, 2π], but only accepts with probability 1/2 if they are orthogonal.

Theorem 2.3.8 S TAT E I S O M O R P H I S M ∈ QCMA.

Proof. In the case of a YES instance, by definition there exists σ ∈ G such that

|〈ψ1|Pσ|ψ0〉| = 1. The latter equality can be verified by performing a SWAP test on

the states Pσ|ψ0〉 and |ψ1〉, which by definition will accept with probability equal

to 1. Since the states |ψ0〉 and |ψ1〉 are given as efficient classical descriptions of

quantum circuits that will prepare them, this verification can be performed in

quantum polynomial time. Furthermore, there exists an efficient classical descrip-

tion of the permutation σ in terms of the generators of the group specified in the

input, each of which can be described via their permutation matrices. The unitary

Pσ can be performed efficiently via a series of SWAP gates given the description

of σ.

Determining membership/non-membership of some permutation σ ∈ Sn in the

permutation group G ≤ Sn specified by the set of generators {τ1, . . . , τk} can

be verified in classical polynomial time by utilizing standard techniques from

computational group theory. In particular, since we are considering permutation

groups we can use the Schreier-Sims algorithm to obtain a base and a strong

generating set for G in polynomial time from {τ1, . . . , τk}. These objects can then

be used to efficiently verify membership in G [73, 74, 75].

In the case that the states are not isomorphic, we have by definition that for all

permutations σ ∈ G, |〈ψ1|Pσ|ψ0〉| ≤ ε(n), which can again be verified by using the

SWAP test, which will accept the states with probability at most 1/2 + ε(n). Since

ε(n) = 1/poly(n), via standard amplification techniques [38] this acceptance

probability can be reduced below 1/3 by performing the above process at most a

polynomial number of times.

50 CHAPTER 2. QUANTUM STATE ISOMORPHISM

It is not clear if M I X E D S TAT E I S O M O R P H I S M (M S I) is in QCMA, or even

in QMA. While the isomorphism σ can still be specified efficiently classically,

it is not known if there exists an efficient quantum circuit for testing if two

mixed states are close in trace distance. In fact, this problem is known as the

S TAT E D I S T I N G U I S H A B I L I T Y problem, and is known to be QSZK-complete

[98].

There exists a polynomial time Karp reduction from G R A P H I S O M O R P H I S M

to S TA B I L I Z E R S TAT E I S O M O R P H I S M (S S I), indeed it is identical to the re-

duction from G R A P H I S O M O R P H I S M to S T R I N G I S O M O R P H I S M. S S I is in

turn trivially reducible to the isomorphism problems for pure and mixed states

respectively. These problems are therefore at least as hard as G R A P H I S O M O R -

P H I S M. Interestingly however, there also exists a reduction from G R A P H I S O -

M O R P H I S M to a restricted form of S I where the permutation group is equal

to the full symmetric group Sn, which we call Sn-S TAT E I S O M O R P H I S M). In

order to demonstrate this, we require a family of stabilizer states referred to as

graph states [89]. Let G = (V,E) be an n-vertex graph. For each vertex v ∈ V , de-

fine the observable K(v) := X(v)
∏

w∈N(v) Z
(w) where N(v) is the neighborhood3

of v, and X(j) denotes the n-qubit operator consisting of Pauli X applied to the

jth qubit and identity on the rest (defined analogously for Z(j)). The graph state

|G〉 is defined to be the state stabilized by the set SG := {K(v) : v ∈ V }, that

is, K(v)|G〉 = |G〉 for all v ∈ V . Since the stabilizers of a graph state |G〉 are all

elements of the |V | qubit Pauli group, graph states are stabilizer states, and the

following theorem provides an upper bound on the overlap of non-equal graph

states (see also [95], Theorem 8).

Theorem 2.3.9 (Aaronson-Gottesmann [94].) Let |ψ〉, |φ〉 be non-orthogonal sta-
biliser states, and let s be the minimum, taken over all sets of generators {P1, . . . , Pn}
for S(|ψ〉) and {Q1, . . . , Qn} for S(|φ〉), of the number of values of i where Pi 6= Qi.
Then |〈ψ|φ〉| = 2−s/2.

3The neighbourhood of a vertex is the set of vertices it is connected to: N(v) := {w ∈
V (G) : {v, w} ∈ E(G)}

2.3. ISOMORPHISMS OF STRINGS AND STATES 51

We can now describe the reduction.

Theorem 2.3.10 G R A P H I S O M O R P H I S M ≤p Sn-S TAT E I S O M O R P H I S M.

Proof. Consider two n-vertex graphs G and H. If G = H then clearly |〈G|H〉|2 =

1 since |G〉 and |H〉 are the same state up to a global phase. Suppose G 6=
H. Then necessarily s > 0, so by Theorem 2.3.9 we have that |〈G|H〉|2 ≤ 1

2
.

Consider a permutation σ ∈ Sn. Then for each v ∈ V , K(σ(v)) = PσK
(v)P T

σ , so

|〈σ(G)|Pσ|G〉|2 = 1. Explicitly, if G ∼= H then there exists a permutation of the

vertices σ such that σ(G) = H and so |〈σ(G)|H〉|2 = |〈G|P T
σ |H〉|2 = 1. If G 6∼= H

then for all σ, 〈G|P T
σ |H〉|2 ≤ 1

2
.

To complete the reduction we must show that for any graph G = (V,E), a de-

scription of a quantum circuit that prepares |G〉 can be produced efficiently clas-

sically. This is trivial, an alternate definition of graph states [89] gives us that

|G〉 = Π{i,j}∈ECZij|+〉⊗|V |, where CZij is the controlled-Z operator with qubit i

as control and j as target.

Therefore, the S TAT E I S O M O R P H I S M problem where no restriction is placed

on the permutations is at least as hard as G R A P H I S O M O R P H I S M. Since the

states involved in the reduction are stabilizer states, we have actually proved the

stronger result that G I ≤p Sn-S S I. The complexity of Sn-S TAT E I S O M O R P H I S M

stands in stark contrast to the complexity of the corresponding classical problem,

which is trivially in P: two bitstrings are isomorphic under Sn if and only if they

have the same Hamming weight, which is easily determined.

As we have described, QMA and QCMA can be thought of as quantum generali-

sations of the class MA. Quantum generalisations of AM[k] can also be defined,

let us do so now. In what follows we define a QAM verification procedure to be a

tuple (V,m, s) where

V = {Vx,y : x ∈ {0, 1}∗, y ∈ {0, 1}s(|x|)}

is a uniform family of polynomial time generated quantum circuits, and m, s :

N → N are polynomially bounded functions. Each circuit in V acts on m(|x|)
qubits sent by Merlin and k(|x|) qubits which correspond to Arthur’s workspace.

As usual, for all x, y, we say that Vx,y accepts (resp. rejects) a state |ψ〉 ∈ C2m(|x|)

52 CHAPTER 2. QUANTUM STATE ISOMORPHISM

if, upon measuring the first qubit of the state

Vx,y|ψ〉|0〉⊗k(|x|)

in the computational basis, the outcome is ‘1’ (resp. ‘0’). The class can be defined

like so [105].

Definition 2.3.11 (QAM) A promise problem A = (AYES, ANO) is in QAM if there
exists a QAM verification procedure (V,m, s) such that

• for all x ∈ AYES, there exists a collection of m(|x|)-qubit quantum states
{|ψy〉} such that

1

2s(|x|)

∑
y∈{0,1}s(|x|)

Pr[Vx,y accepts |ψy〉] ≥ 2/3;

• for all x ∈ ANO, and for all collections of m(|x|)-qubit quantum states {|ψy〉},
it holds that

1

2s(|x|)

∑
y∈{0,1}s(|x|)

Pr[Vx,y accepts |ψy〉] ≤ 1/3.

The class QCAM is defined in the same way but with the states {|ψy〉} restricted

to computational basis states.

2.3. ISOMORPHISMS OF STRINGS AND STATES 53

To complete this section, we will show that S TA B I L I Z E R S TAT E N O N I S O M O R -

P H I S M (SSNI) is in QCAM. This follows from the following theorem, which

shows that stabilizer states can be described efficiently classically.

Theorem 2.3.12 (Montanaro [92], corollary of Theorem 1) There exists a quan-
tum algorithm with the following properties:

• Given access to O(n) copies of an n-qubit stabilizer state |ψ〉, the algorithm
outputs a bitstring describing a set of n-qubit Pauli operators s1, . . . , sn ∈ Pn
such that 〈s1, . . . , sn〉 = S(|ψ〉);

• the algorithm halts after O(n3) classical time steps;

• all collective measurements are performed over at most two copies of the state
|ψ〉;

• the algorithm succeeds with probability 1− 1/ exp(n).

We now prove the result.

Theorem 2.3.13 S TA B I L I Z E R S TAT E N O N I S O M O R P H I S M is in QCAM.

Proof. For a stabilizer state |ψ〉, denote by s(1)
ψ , . . . , s

(n)
ψ ∈ {±I,±X,±Y,±Z}n the

classical strings that describe the stabilizer generators of |ψ〉 that we can obtain

efficiently using the algorithm of Theorem 2.3.12. We denote by sψ the length

2n string that is obtained by concatenating these stabilizer strings, that is sψ =

s
(1)
ψ . . . s

(n)
ψ . Then for any permutation σ ∈ Sn, we take σ(sψ) = s

(σ(1))
ψ , . . . , s

(σ(n))
ψ .

For a permutation group G ≤ Sn, consider the set

SG :=
⋃

j∈{0,1},σ∈G

{(
σ
(
sψj

)
, π
)

: π ∈ G ∧ π
(
σ
(
sψj

))
= σ

(
sψj

)}
.

If there exists σ such that |〈ψ1|Pσ|ψ0〉| = 1 then σ(sψ0) = sψ1, and so in this case

|SG| = |G|. If for all σ ∈ G we have that |〈ψ1|Pσ|ψ0〉| ≤ 1 − ε(n) then likewise

for all σ ∈ G, σ(sψ0) 6= sψ1 and therefore |SG| = 2|G|. If we can show that

membership in SG can be efficiently verified by Arthur then since all elements

of the set are classical bitstrings, we can apply the Goldwasser-Sipser set lower

bound protocol [100] to determine isomorphism of the states. To convince Arthur

54 CHAPTER 2. QUANTUM STATE ISOMORPHISM

with high probability that (σ(sψj
), π) ∈ SG, Merlin sends the permutation σ and

the index j ∈ {0, 1}. Arthur can then obtain the string sψj
with probability greater

than 1 − 1/exp(n) using Montanaro’s algorithm of Theorem 2.3.12 applied to

Uψj
|0〉. He can then verify in polynomial time that the string he received is equal

to σ(sψj
), that π is an automorphism of σ(sψj

), and that the permutation σ is in

the group G.

2.3.4 Quantum interactive proofs and zero knowledge

As we have seen previously, an interactive proof system consists of a verifier
and a prover. The computationally unbounded prover attempts to convince the

computationally limited verifier that a particular statement is true. A quantum

interactive proof system [103] is where the verifier is equipped with a quantum

computer, and quantum information can be transferred between verifier and

prover. Again, our formal definitions will follow those of Watrous [98, 38].

A quantum verifier is a polynomial time computable function V , where for each

x ∈ {0, 1}∗, V (x) is an efficient classical description of a sequence of quantum

circuits V (x)1, . . . , V (x)k(|x|). Each circuit in the sequence acts on v(|x|) qubits that

make up the verifier’s private workspace, and a buffer of c(|x|) communication

qubits that both verifier and prover have read/write access to.

A quantum prover is a function P where for each x ∈ {0, 1}∗, P (x) is a sequence of

quantum circuits P (x)1, . . . , P (x)l(|x|). Each circuit in the sequence acts on p(|x|)
qubits that make up the prover’s private workspace, and the c(|x|) communication

qubits that are shared with each verifier circuit. Recall that the prover is defined

to be computationally unbounded, so no restrictions are placed on the circuits

P (x). For instance, unlike the circuits corresponding to the verifier, they don’t

need to be polynomial time generated. We say that a verifier V and a prover P are

compatible if all their circuits act on the same number of communication qubits,

and if for all x ∈ {0, 1}∗, k(|x|) = bm(|x|)/2+1c and l(|x|) = bm(|x|)/2+1/2c, for

some m(|x|) which is taken to be the number of messages exchanged between the

prover and verifier. We say that (P, V) are a compatiblem-message prover-verifier

2.3. ISOMORPHISMS OF STRINGS AND STATES 55

pair. Given such a pair (P, V), we define the quantum circuit

(P (x), V (x)) :=

V (x)1 · P (x)1 . . . P (x)m(|x|)/2 · V (x)m(|x|)/2+1 if m(|x|) is even,

P (x)1 · V (x)1 . . . P (x)(m(|x|)+1)/2 · V (x)(m(|x|)+1)/2 if m(|x|) is odd.

Let q(|x|) = p(|x|)+ c(|x|)+v(|x|). We say that (P, V) accepts an input x ∈ {0, 1}∗

if the result of measuring the verifier’s first workspace qubit of the state

(P (x), V (x))|0〉⊗q(|x|)

in the computational basis is ‘1’, and that it rejects the input if the measurement

result is ‘0’.

Definition 2.3.14 (QIP(k)) Let M = (MYES, MNO) be a promise problem, and let
k ∈ N. Then M ∈ QIP(k) if and only if there exists a k-message verifier V such that

• if x ∈ MYES then

max
P

(Pr[(P, V) accepts x]) ≥ 2/3,

• if x ∈ MNO then

max
P

(Pr[(P, V) accepts x]) ≤ 1/3,

where the maximisation is performed over all compatible k-message provers
P . We say that the pair (P, V) is an interactive proof system for M .

We can now prove that S N I has a two message quantum interactive proof system.

We make use of the following result.

56 CHAPTER 2. QUANTUM STATE ISOMORPHISM

Lemma 2.3.15 (Harrow-Lin-Montanaro [107], Lemma 12) Given access to a
sequence of unitaries U1, . . . , Un, along with their inverses U †1 , . . . , U

†
n and controlled

implementations c-U1,. . . ,c-Un, as well as the ability to produce copies of a state |ψ〉
promised that one of the following cases holds:

1. For some i, Ui|ψ〉 = |ψ〉;

2. For all i, |〈ψ|Ui|ψ〉| ≤ 1− δ.

Then there exists a quantum algorithm which distinguishes between these cases
using O(log n/δ) copies of |ψ〉, succeeding with probability at least 2/3.

Theorem 2.3.16 S TAT E N O N I S O M O R P H I S M is in QIP(2).

Proof. We will prove that the following constitutes a two message quantum

interactive proof system for SNI.

1. (Verifier) Uniformly at random, select σ ∈ G and j ∈ {0, 1}. Send

the state |Ψ〉⊗k to the prover, where k = O(log(|G|)/(1 − ε(n))) and

|Ψ〉 = Pσ|ψj〉.

2. (Prover) Determine j from |Φ〉⊗k. Send your best guess j′ ∈ {0, 1} to

the verifier.

3. (Verifier) Accept if and only if j′ = j.

Obtaining a uniformly random element from G as in step 1 can be achieved

efficiently if the verifier is in possession of a base and a strong generating set

for G. These can be obtained in polynomial time from any generating set of G

by using the Schreier-Sims algorithm [73, 74, 75]. For a permutation π ∈ G,

we define the 2n qubit circuit U (j)
π = SWAP · (Pπ−1 ⊗ Pπ), where the SWAP

acts like SWAP|ψ0〉|ψ1〉 = |ψ1〉|ψ0〉. Now consider the sets of quantum circuits

C
(j)
G = {U (j)

π : π ∈ G} for j ∈ {0, 1}, each of cardinality |G|. Since each circuit in

C
(0)
G ∪C

(1)
G is made up two permutations and a SWAP gate, each of their inverses

can easily be obtained. Additionally, the controlled versions of these gates can be

implemented via standard techniques.

2.3. ISOMORPHISMS OF STRINGS AND STATES 57

Consider first the YES case. The k = O(log(|G|)/(1− ε(n))) copies of |Ψ〉 enables

the prover to determine j with success probability at least 2/3 in the following

manner.

1. Uniformly at random, select j′ ∈ {0, 1}.

2. Prepare k copies of the state |Ψ〉|ψj′〉

3. Use the HLM algorithm with the state |Ψ〉|ψj′〉 and the set of circuits

C
(j′)
G as input. If the algorithm reports case 1 then output j′, otherwise

output j′ ⊕ 1.

Let us check that the HLM algorithm will work for our purposes. In the case that

the prover’s guess is correct and j′ = j, we have that |Ψ〉|ψj′〉 = (Pσ ⊗ I)|ψj〉|ψj〉,
and so

Uσ(Pσ ⊗ I)|ψj〉|ψj〉 = SWAP · (Pσ−1 ⊗ Pσ) · (Pσ ⊗ I)|ψj〉|ψj〉

= SWAP · (I ⊗ Pσ)|ψj〉|ψj〉

= |Ψ〉|ψj〉.

This corresponds to case 1 of Lemma 2.3.15. If the prover’s guess is incorrect

(j′ 6= j) then for all π ∈ G

|〈Ψ|〈ψj′|Uπ|Ψ〉|ψj′〉| = |〈Ψ|〈ψj′ |SWAP · (Pπ−1 ⊗ Pπ)(Pσ ⊗ I)|ψj〉|ψj′〉|

= |〈Ψ|〈ψj′ |(Pπ ⊗ Pπ−1·σ)|ψj′〉|ψj〉|

≤ |〈ψj|P †σPπ|ψj′〉| · |〈ψj′ |Pπ−1·σ|ψj〉|

≤ ε(n)2,

with the last inequality following from the fact that we are in the YES case: for

all σ ∈ G, we have that |〈ψ2|Pσ|ψ1〉| ≤ ε(n). This corresponds to case 2 of Lemma

2.3.15. Therefore, the HLM algorithm allows the prover to determine if their

guess was correct or not, with success probability at least 2/3.

Consider now the NO case, where we have that for some σ ∈ G, |〈ψ1|Pσ|ψ2〉| = 1.

To determine j correctly, a cheating prover must be able to distinguish the mixed

states ρj = 1
|G|
∑

π∈G
(
Pπ|ψj〉〈ψj|P †π

)⊗k correctly for j ∈ {1, 2}, when given k

58 CHAPTER 2. QUANTUM STATE ISOMORPHISM

copies. However,

‖ρ1 − ρ2‖1 =
1

|G|

∥∥∥∥∥∑
π∈G

P⊗kπ (|ψ1〉〈ψ1|)⊗k P †⊗kπ −
∑
π∈G

P⊗kπ (|ψ2〉〈ψ2|)⊗k P †⊗kπ

∥∥∥∥∥
1

=
1

|G|

∥∥∥∥∥∑
π∈G

P⊗kπ P⊗kσ (|ψ1〉〈ψ1|)⊗k P †⊗kσ P †⊗kπ −
∑
π∈G

P⊗kπ (|ψ2〉〈ψ2|)⊗k P †⊗kπ

∥∥∥∥∥
1

=
1

|G|

∥∥∥∥∥∑
π∈G

P⊗kπ (|ψ2〉〈ψ2|)⊗k P †⊗kπ −
∑
π∈G

P⊗kπ (|ψ2〉〈ψ2|)⊗k P †⊗kπ

∥∥∥∥∥
1

= 0,

so they are indistinguishable. Note that the fact that the prover has been given k

copies does not help, as the overlap is still 0. In this case, the probability that the

prover can guess j correctly is therefore equal to 1/2.

2.3.5 Statistical zero knowledge

Some interactive proof systems can be performed in such a way that the veri-

fier learns nothing about the problem instance, except for whether it is a YES

instance or a NO instance. Intuitively, this captures the idea that in some pro-

tocols, the prover doesn’t need to withhold any information from the verifier

throughout the protocol. It can be shown that the two message interactive proof

system for G R A P H N O N I S O M O R P H I S M is such a protocol. There are a number

of definitions of zero knowledge, but we concern ourselves only with statistical
zero knowledge. Formally, a protocol is statistical zero knowledge if the entire

interaction with the prover can be simulated by the verifier, and this simulated

interaction with the prover is statistically indistinguishable from the true interac-

tion. Contrast this with computational zero knowledge, a weaker notion where

the simulated interaction need only be computationally indistinguishable from

the true interaction. Classical zero knowledge and its application to cryptography

is given a comprehensive treatment in [109].

Quantum interactive proof systems can also exhibit the zero knowledge prop-

erty [98]. We will now define the notion of quantum statistical zero-knowledge.

2.3. ISOMORPHISMS OF STRINGS AND STATES 59

Consider the function

viewV,P (x, j) := TrP [(P (x), V (x))j|0q(|x|)〉〈0q(|x|)|(P (x), V (x))†j],

where (P (x), V (x))j is the circuit obtained from running (P (x), V (x)) up to

the jth message. For some index set X, we say that a set of density operators

{ρx : x ∈ X} is polynomial time preparable if there exists a polynomial time

uniformly generated family of quantum circuits {Qx : x ∈ X}, each with a des-

ignated set of output qubits, such that for all x ∈ X, the state of the output qubits

after running Qx on a canonical initial state |0〉⊗n is equal to ρx. The following

class, Quantum Statistical Zero-Knowledge (QSZK) captures the notion of hav-

ing a statistical zero knowledge proof system in the quantum setting [98]. The

definition makes use of negligible functions. A function δ : N → R is negligible

if for every positive integer c there is some Nc such that for all x > Nc, δ(x) is

bounded from above by x−c.

Definition 2.3.17 (QSZK) Let M = (MYES, MNO) be a promise problem, and let
k : N→ N. ThenM ∈ QSZK(k) if and only ifM ∈ QIP(k) with quantum interactive
proof system (P, V) such that there exists a polynomial time preparable set of density
operators {ρx,i} and a negligible function δ : N→ [0, 1] such that for all x ∈ {0, 1}∗,
if x ∈ MYES then

D(ρx,i, viewP,V (x, i)) ≤ δ(|x|).

The above class assumes an honest verifier, so technically we have defined the

class Honest Verifier Quantum Statistical Zero-Knowledge (HVQSZK). However,

it is known that such proof systems are equivalent to the more general case [98],

so we need only consider honest verifiers.

We can use a standard amplification argument to modify the above protocol

so that it has negligible completeness error, which means that it can be made

statistical zero knowledge. We prove this now.

Theorem 2.3.18 S TAT E N O N I S O M O R P H I S M is in QSZK.

Proof. We first show that the protocol above can be modified to have expo-

nentially small completeness error. This allows us to show that the view of the

60 CHAPTER 2. QUANTUM STATE ISOMORPHISM

protocol can be simulated with error scaling as a negligible function of the input

length.

First, the verifier sends the prover k′ = O(n log(|G|)/(1 − ε(n))) copies of the

state |Ψ〉. The prover can then use HLM n times to guess j, responding with the

value of j that appears in n/2 or more of the trials. Let X1, . . . , Xn ∈ {‘T’, ‘F’}
be independent random variables corresponding to whether or not the prover

guessed correctly on the ith repetition. By Lemma 2.3.15, we have that Pr[Xi =

‘T’] ≥ 2/3 and so

Pr [Prover guesses correctly] = 1− Pr

[
1

n

n∑
i=1

Xi < 1/2

]

= 1− Pr

[
1

n

n∑
i=1

Xi − 2/3 < −1/6

]
≥ 1− 2−Ω(n)

via the Chernoff bound: for p, q ∈ [0, 1], we have that

Pr

[
n∑
i=1

(Xi − p)/n < −q

]
< e−q

2n/2p(1−p).

Clearly, sending k′ copies of |Ψ〉 rather than k gives no advantage to the prover,

the trace distance between the mixed states ρ0 and ρ1 is still 0 in the NO case.

What remains is to show that the protocol is statistical zero knowledge. This is

easily obtained, and follows by similar reasoning to the protocol in [98]: the view

of the verifier after the first step can be obtained by the simulator by selecting σ

and j then preparing k′ copies of the state |Ψ〉. The view of the verifier after the

prover’s response can be obtained by tracing out the message qubits and supply-

ing the verifier with the value j. Since the completeness error is exponentially

small, the trace distance between the simulated view and the actual view is a

negligible function.

We know that S I belongs in QCMA, since permutations are classical objects

and can be described with computational basis state certificates. However, the

protocol requires quantum communication: the communicating parties need to

2.3. ISOMORPHISMS OF STRINGS AND STATES 61

send more than permutations to one another, they must send quantum states.

It is not enough to just be able to discuss the solution to the problem as in the

QCMA protocol. In these more complicated protocols it is necessary to discuss

the problem instance itself, which is of course defined in terms of quantum states.

It is not clear if a similar protocol exists that uses classical communication only.

In the next theorem we show that such a protocol does exist for S TA B I L I Z E R -

S TAT E N O N I S O M O R P H I S M, since stabilizer states can be described efficiently

classically. In order to do so we make use of Theorem 2.3.12 again.

Theorem 2.3.19 S TA B I L I Z E R S TAT E N O N I S O M O R P H I S M is in QCSZK.

Proof. It suffices to show that the state |Ψ〉 in the protocol above can be communi-

cated to the prover using classical communication only. We know from Theorem

2.3.12 that a classical description can be obtained efficiently from O(n) copies

of |Ψ〉. These copies can be prepared efficiently, since they are specified in the

problem instance by quantum circuits that prepare them.

We now prove that M I X E D S TAT E I S O M O R P H I S M (M S I) is QSZK-hard. We

actually prove the following stronger result.

Theorem 2.3.20 (ε, 1− ε)-Sn-M I X E D S TAT E I S O M O R P H I S M is QSZK-hard for
all ε(n) = 1/ exp(n).

We prove this by reduction from the following problem (α, β)-P R O D U C T S TAT E,

which as shown in [91] is QSZK-hard even when α = ε, β = 1 − ε and ε goes

exponentially small in n.

Problem 2.3.21 (α, β)-P R O D U C T S TAT E

Input: Efficient description of a quantum circuit Qρ in Q0,n.

YES: There exists an n-partite product state θ1⊗· · ·⊗ θn such that D(ρ, θ1⊗
· · · ⊗ θn) ≤ α

NO: For all n-partite product states θ1 ⊗ · · · ⊗ θn, D(ρ, θ1 ⊗ · · · ⊗ θn) ≥ β.

We make use of the following lemma. For an n-partite mixed state ρ, let ρi denote

the state of the ith subsystem, obtained by tracing out the other subsystems.

62 CHAPTER 2. QUANTUM STATE ISOMORPHISM

Lemma 2.3.22 (Gutoski et al. [91], Lemma 7.4) Let ρ be an n qubit state. If
there exists a product state θ1 ⊗ · · · ⊗ θn such that ‖ρ − θ1 ⊗ · · · ⊗ θn‖1 ≤ α, then
‖ρ− ρ1 ⊗ · · · ⊗ ρn‖1 ≤ (n+ 1)α.

...

1

2

n

1

2

n

1

2

n

...
...

...

...

1

2

n

...

Figure 2.3: Constructing the state ρ′ = ρ1 ⊗ · · · ⊗ ρn from n copies of the input circuit
Qρ.

Proof of Theorem 2.3.20. We now must show that every instance of (α, β)-

P R O D U C T S TAT E can be converted to an instance of (α′, β′)-Sn-M S I. In partic-

ular, consider an instance ρ of (α, β)-P R O D U C T S TAT E. Our reduction takes this

to an instance (ρ, ρ′) of ((n + 1)α, β)-Sn-M S I, where ρ′ = ρ1 ⊗ · · · ⊗ ρn can be

prepared in the following way from n copies of the state ρ. Denote these n copies

as ρ(1), . . . , ρ(n). The ith qubit line of ρ′ is the ith qubit line of ρ(i), all unused qubit

lines are discarded (illustrated in Figure 2.3).

Let ρ be an n-partite state. If ρ is product then D(ρ, ρ1 ⊗ · · · ⊗ ρn) ≤ (n + 1)α/2

and so (ρ, ρ′) corresponds to a YES instance of ((n + 1)α, β)-Sn-M S I. If ρ is a

2.4. SUMMARY 63

NO instance of (α, β)-P R O D U C T S TAT E then D(ρ, θ) ≥ β for all product states θ.

This means that D(ρ, Pσρ1 ⊗ · · · ⊗ ρnPσ) ≥ β for all σ ∈ Sn since all such states

are product.

In this section we have shown that S TAT E I S O M O R P H I S M is in QSZK, and so

is unlikely to be QCMA-complete unless all problems in QCMA have quantum

statistical zero knowledge proof systems. We have also shown that S TA B I L I Z E R -

S TAT E I S O M O R P H I S M has a quantum statistical zero knowledge proof system

that uses classical communication only, and that M I X E D S TAT E I S O M O R P H I S M

is QSZK-hard.

2.4 Summary

In this chapter we have considered a quantum generalisation of G R A P H I S O -

M O R P H I S M (G I), the problem of determining if two quantum states can be

“rearranged” into one another. We spent time gathering evidence that this prob-

lem, S TAT E I S O M O R P H I S M (S I), exhibits similar properties to G I.

We showed that G I is a special case of S I (Theorem 2.3.10: G I ≤p S I), and

that S I can be verified efficiently by a quantum computer (Theorem 2.3.8:

S I ∈ QCMA). G I is unique in that it is in NP, but its complement G R A P H -

N O N I S O M O R P H I S M can be efficiently verified by an Arthur-Merlin proof sys-

tem (G I ∈ coAM). This fact has formed the main motivation for the results we

obtained in this chapter about S I. We showed that S TAT E N O N I S O M O R P H I S M

can be verified by a two message quantum interactive proof system (Theorem

2.3.16: S N I ∈ QIP(2)), and that this proof system can be made quantum statisti-

cal zero knowledge (Theorem 2.3.18: S N I ∈ QSZK). We were unable to prove

that S N I ∈ QAM. In Chapter 4 we discuss some of the reasons why this may be

a difficult result to obtain.

We also explored how the types of states under consideration changes the com-

plexity of determining if two states are isomorphic. We showed that restricting the

problem to the stabilizer states considering S TA B I L I Z E R S TAT E N O N I S O M O R -

P H I S M (S S N I) makes it easier. We showed that in this case, the aforementioned

interactive protocols can be modified to make all communication between parties

64 CHAPTER 2. QUANTUM STATE ISOMORPHISM

Figure 2.4: A graphical representation of the relationship between the complexity classes
considered in this chapter.

classical (Theorem 2.3.19: S S N I ∈ QCSZK). The fact that stabilizer states can be

“discussed” classically by the interacting parties means that S S N I can be verified

with a quantum Arthur-Merlin proof system that uses classical communication

2.4. SUMMARY 65

only (Theorem 2.3.13: S S N I ∈ QCAM). In contrast, isomorphism problems

about mixed states are more challenging, highlighted by Theorem 2.3.20 where

we show that M I X E D S TAT E I S O M O R P H I S M is QSZK-hard.

In Figure 2.4 we summarise the finding of the chapter. The figure shows the

relationship between the myriad complexity classes we have come across, indi-

cating where the quantum isomorphism problems fit. A directed edge from one

complexity class to another indicates that the former is a subset of the latter. A

directed edge from a problem to a class indicates that the problem is included

in the class, while a directed edge from a class to a problem indicates that the

problem is hard for the class.

In Chapter 4 we reflect on these results in more detail. Now we move away from

complexity theory, focusing on quantum entanglement.

66 CHAPTER 2. QUANTUM STATE ISOMORPHISM

Chapter 3

Grid states

In the standard mathematical formalism of quantum mechanics, we consider

the states of multi-particle systems by combining the states of their constituent

subsystems with the Kronecker product. Hence, tensor product Hilbert spaces

have a fundamental role in describing the behaviour of physical phenomena.

Inherent to this tensor product space setting is that some quantum states can be

decomposed as a Kronecker product of their constituent subsystems, and others

cannot. Remarkably, this mathematical quirk gives us one of physics’ most well

known phenomena: quantum entanglement. In quantum information processing,

it is now clear that entanglement has ubiquitous applications in cryptographic

protocols, and computation [110]. See the work of Jozsa and Linden [112] and

Vidal [113] for evidence that quantum speed up depends on the presence of a

sufficiently large amount of entanglement.

In quantum information theory, the role of entanglement is more clear cut, see

for example its role in zero-error quantum information theory [114, 115, 116],

and superactivation of channels [117, 118, 119]. Entanglement is an inherently

quantum feature embodying non-classical correlations between the constituent

parts of a physical system [120].

Determining if a quantum system is entangled or separable is highly non-trivial:

no necessary and sufficient entanglement criterion has been found that will effi-

ciently determine this from the density matrix of the system. In fact, the problem

of determining if a density matrix is separable is NP-hard [124], which suggests,

67

68 CHAPTER 3. GRID STATES

rather disappointingly, that no “silver-bullet” entanglement criteria exists that

works efficiently in all cases. Due to its central position and myriad technological

applications, quantum information theorists and mathematicians have developed

a rich set of tools in relation to the problem. The toolbox includes hierarchies

of positive semi-definite programs, results from operator theory and functional

analysis, ideas from linear algebra and matrix theory, etc. [125, 110]. While pure

state entanglement is relatively well understood, the study of the mixed state

case has revealed numerous subtleties.

In this chapter we come at the mixed state entanglement problem from a new

direction, considering a simple class of mixed states of two qudits that we call

grid states, and attempting to classify which of them are separable and which

are entangled. The unique aspect of grid-states is that they can be represented

visually with an object we refer to as a grid-labelled graph. The chapter will

be devoted to unravelling how the structural properties of grid-labelled graphs

correspond to separability or entanglement in their underlying grid states. The

work is based on two publications, [42] and [43]. Some of the definitions and

proofs in this chapter are very similar or equivalent to the way they appear in

the publications themselves.

The next section will give a brief tour of some of the highlights of the chapter.

Since much of the work is visual, we will attempt to give a pictorial overview,

leaving most of the formal definitions for subsequent sections.

3.1. CHAPTER OVERVIEW 69

3.1 Chapter Overview

A grid state is defined in terms of what could be called “Bell-ish” states, of the

form

|i, j; k, l〉 :=
1√
2

(|i, j〉 − |k, l〉)

for i, j, k, l > 01.

Formally, given a set of Bell-ish states E = {|i, j; k, l〉}, we refer to the state

1

2|E|
∑
|e〉∈E

|e〉〈e|

as the grid state over E. The set E can be represented by drawing lines between

points on a grid, as illustrated in Figure 3.1.

Figure 3.1: We can represent the Bell-ish state 1√
2
(|i, j〉 − |k, l〉) by drawing a line be-

tween points (i, j) and (k, l) on a suitably sized Cartesian grid. A set of such states
E = {|1, 1; 1, 2〉, |1, 2; 1, 3〉, |2, 1; 3, 2〉, |2, 2; 3, 3〉, |3, 3; 2, 4〉} can thus be represented as
above.

Since a grid state is parametrised by a set of Bell-ish states, the construction in

Figure 3.1 is a kind of graphical representation of a grid state. We refer to this

graphical representation as the grid state’s grid-labelled graph. To summarise then,

Bell-ish states are pure states of two qudits, grid states are uniform mixtures of

these states which can be represented by grid-labelled graphs. The grid states thus

1The states |i, j〉 are of course computational basis states. Conventionally these are indexed
starting from 0, but in this chapter we start from 1. This will make the indices in the equations
and the pictorial representations of the states that come later much easier to read.

70 CHAPTER 3. GRID STATES

Figure 3.2: Separable graphs, constructed from the ‘X’ shape graph.

form a discrete family of bipartite mixed states, the entanglement properties of

which we will attempt to understand through the properties of their grid-labelled

graphs.

The main idea of this chapter is that the pictorial representation offered by the

grid-labelled graph allows us to spot generalisable patterns in the states we

consider. For example, it is well known that the uniform mixture of the Bell

states 1√
2

(|1, 1〉 − |2, 2〉) and 1√
2

(|1, 2〉 − |2, 1〉) is separable. The grid state that

corresponds to such a mixture is in the shape of an ‘X’ (see Figure 3.2 top-left).

In fact, we will use the notion of local isomorphism that we develop in Section

3.3.2 to show that such an ‘X’ graph is always separable, regardless of its position

on the grid. We say that pair of grid-labelled graphs are locally isomorphic to one

another if they can be obtained by swapping rows and columns, as illustrated in

Figure 3.3. We show in this section that for two locally isomorphic grid-labelled

graphs, one is separable if and only if the other is.

Returning to our example of the ‘X’-shaped graphs from earlier: any such graph

is separable simply because the edges can be transported to the top left again

by means of row and column swaps. Another fact we prove early on is that the

union of two separable graphs is always separable. We therefore know just by

examining their structure that all graphs in Figure 3.2 are separable: they can all

be built from taking unions of ‘X’ graphs and performing row or column swaps.

3.1. CHAPTER OVERVIEW 71

Figure 3.3: Swapping rows and columns to obtain new grid-labelled graphs.

With this reasoning we are able to prove that a graph that has a decomposition

into ‘X’ graphs corresponds to a separable state, regardless of grid dimension.

A key theme of the work in this chapter is the question of whether there exists

more such “graphical rules” for determining if a grid state is separable.

We also consider applying various entanglement criteria to the grid state density

matrices, and show that they can be recast in terms of graph structure. As we

survey later, some work has already been done on applying the Peres-Horodecki

criterion [126, 127] to Laplacian matrices of graphs, and we show in Section

3.4 that these results can be brought to bear on grid states. In terms of the

grid-labelled graph picture, these results involve performing the partial transpose
operation on the graph (literally, replace each edge {(i, j), (k, l)} with the edge

{(i, l), (k, j)}) then checking if any vertex degrees change. If this happens, then

the corresponding grid state is entangled.

In Section 3.6 we demonstrate an infinite family of grid states that are entangled,

but not detectable by the matrix realignment criterion [151]. The grid state

perspective may be useful in generating more such pathological states to push

the limits of existing entanglement criteria.

Later in Section 3.7 we apply the range criterion [153] to grid states, which

72 CHAPTER 3. GRID STATES

Figure 3.4: An example of surgery. It is possible to use the techniques developed in
Section 3.7 that if a product vector |α〉|β〉 is in the range of the left hand graph, then it
must also be in the range of the right hand graph. We say that the graph on the right is
obtainable by surgery on vertex (2, 2) of the left hand graph.

requires us to count the number of product states in the range of the density

matrix under consideration. We will see that performing an operation called

surgery on the grid-labelled graph under consideration will allow us to simplify

the graph, but maintain the number of product states in its range (illustrated in

Figure 3.4.)

We apply this graphical range criterion to construct two infinite families of bound
entangled states, some examples are illustrated in Figure 3.5. Bound entangled

states are a peculiar class of entangled mixed states for which the entanglement

is not distillable into pure entanglement: their useful ingredient stays “locked

up” inside and is not directly usable quantum information processing tasks. Fam-

ilies of such states have been discussed in the literature up until now, see for

example the pyramid and tile states of Bennett et al. [176]. However, the bound

entangled states we construct seem to be the only families of such states that

are parametrised by discrete objects, in our case graphs. The fact that there exist

bound entangled grid states gives credibility to our endeavours, suggesting that

grid states are worth considering as a combinatorial “toy-model” of mixed state

entanglement.

We have given a brief round-up of what is to come in this chapter. Let us review

some existing literature that relates graph theory and quantum entanglement,

before getting started with the main technical work.

3.2. GRAPHS AND QUANTUM ENTANGLEMENT 73

Figure 3.5: Three examples from two different families of grid-labelled graphs that
correspond to bound entangled grid states.

3.2 Graphs and quantum entanglement

This chapter revolves around the combinatorial Laplacian matrix of a graph

(Laplacian for short). The Laplacian combines the degree matrix and adjacency

matrix of a graph, and allows mathematicians to apply linear algebraic and ma-

trix theoretic techniques to the study of graphs. For example, the second smallest

eigenvalue of the Laplacian is directly related to how connected its graph is (in-

deed, this eigenvalue is often called the algebraic connectivity of a graph [121]).

Let G = (V,E) be a simple undirected graph, with a finite vertex set V =

{1, . . . ,m}. The adjacency matrix of G is the m×m matrix A(G) with entries

[A(G)]ij :=

1 if {i, j} ∈ E

0 otherwise.

74 CHAPTER 3. GRID STATES

The degree of a vertex v ∈ V is the number of vertices incident to v. Formally

d(v) := |{w ∈ V : w 6= v, {v, w} ∈ E}|. The degree matrix of G is the diagonal

matrix made up of the degrees of the vertices of G: D(G) := diag(d(1), . . . , d(m)).

The Laplacian of G is the m×m matrix L(G) := D(G)− A(G).

For all graphs G, the corresponding Laplacian matrix L(G) is positive semi-

definite, and so the unit trace ρ(G) := L(G)/Tr(L(G)) can be interpreted as

the density matrix of a quantum state. In [122], Braunstein, Ghosh and Severini

(BGS) consider such density matrices. They explore a number of ideas in this

direction relating to entanglement and von Neumann entropy, and the one we

focus on is the following.

For which graphs is ρ(G) separable?

In an attempt to answer this, BGS apply the Peres-Horodecki entanglement crite-
rion. Roughly stated, Peres-Horodecki tells us that if a density matrix is separable,

then its transpose with respect to one of its constituent Hilbert spaces (the partial
transpose), must also be a density matrix. We can use this fact to determine if

a density matrix is entangled: take its partial transpose, and check for negative

eigenvalues.

In a follow up paper [123] these ideas are fleshed out further. They show that

the partial transpose of a Laplacian manifests itself as a manipulation of the

edges of its graph. They then demonstrate that if this edge manipulation causes

a change in the vertex degrees of the graph, then the Laplacian density matrix is

entangled. This Peres-Horodecki criterion for graphs (the degree criterion) then

amounts to the following: 1. perform the partial transpose, 2. if a vertex has

a different degree, then the state is entangled. In these two works, Braunstein

et al. have transformed questions about separability of a quantum mechanical

state into a purely combinatorial question. In some cases, they can show that a

quantum state is entangled just by manipulating the edges of a graph. This will

form the foundation of the ideas developed in this chapter, so let us now examine

their work in more detail.

Consider a bipartite density matrix ρAB with state space Cm ⊗ Cn. The interpre-

tation of the matrix ρAB as being the density matrix of a bipartite system means

3.2. GRAPHS AND QUANTUM ENTANGLEMENT 75

that we consider it as an m×m block matrix ρ,

ρAB =


M11 M12 . . . M1m

M21
. . .

...

Mm1 Mmm


where each block Mij is n × n. The partial transpose is performed with respect

to a subsystem. The partial transpose of ρAB with respect to A is

ρΓA
AB =


M11 M21 . . . Mm1

M12
. . .

...

M1m Mmm

 ,

and the partial transpose with respect to B is

ρΓB
AB =


MT

11 MT
12 . . . MT

1m

MT
21

. . .
...

MT
m1 MT

mm

 .

We define these notions formally later, but for now it suffices to understand

that either we transpose the density matrix with respect to its blocks, or we

transpose each block. The Peres-Horodecki criterion states that if either one of

the partial transpositions of a bipartite density matrix results in a matrix with a

negative eigenvalue (such a matrix will no longer be positive semi-definite and

has no interpretation as a state of a quantum system) then the density matrix

corresponds to an entangled state.

In order to proceed with characterising the entanglement of a graph G = (V,E),

it is necessary to imbue ρ(G) with a state space structure. The way Braunstein

et al. achieve this is to assume that ρ(G) is a bipartite density matrix with state

space Cm ⊗ Cn, choosing m and n such that m× n = |V |. With this assumption,

76 CHAPTER 3. GRID STATES

Figure 3.6: From left to right: a graph, a tuple labelling of the graph, redrawn labelled
graph.

ρ(G) can be interpreted as an m×m block matrix with respect to the standard

bipartite computational basis {|i〉 ⊗ |j〉 : (i, j) ∈ [m]× [n]}, where each block is

n× n. To reflect this structure, the vertices of the graph are labelled with tuples

(i, j) ∈ [m]× [n]. See Figure 3.6 for an example of this process: a graph is fixed,

suitable subsystem dimensions are decided upon (in the case illustrated in the

figure, m = 2, n = 3), and the vertices are labelled accordingly.

After the subsystem dimensions are fixed in this way, Braunstein et al. [123] show

that the partial transpose of a graph can be interpreted as a manipulation of the

edges. Explicitly, they show that the partial transpose with respect to subsystem

A (resp. subsystem B) on the Laplacian of the labelled graphs is to map each

edge between a pair of labelled vertices (i, j) and (k, l) to an edge between (i, k)

and (j, l) (resp. to an edge between (k, j) and (i, l)). They prove that if such a

mapping causes one of the vertices to change degree, then ρ(G) is not positive

under partial transpose, and so the density matrix is entangled. We illustrate this

operation being performed in Figure 3.7. Examining the right hand graph, we

can see that most vertices have changed degree. Applying this graphical Peres-

Horodecki criterion, we know that the density matrix under consideration is

entangled.

This idea of a graphical Peres-Horodecki criterion being used to “diagnose” en-

tanglement in a graph just by manipulating its edges and checking degrees is

compelling. Perhaps other entanglement criteria can be cast in this framework,

and we can progress towards a combinatorial theory of entanglement, throwing

3.2. GRAPHS AND QUANTUM ENTANGLEMENT 77

Figure 3.7: The graph obtained by performing the ‘graph partial transpose’ operation on
the far right graph in Figure 3.6.

off the chains of density matrices and eigenvalues. Not so fast! Unfortunately,

the question of whether a graph is separable or entangled doesn’t make sense.

Entanglement is a physical phenomena that is present in systems comprised of

two or more quantum particles, so in order to talk about a graph being entan-

gled it is necessary to decide on a subsystem structure. This leads to ambiguity.

For example, consider a graph G with 20 vertices. In the BGS framework, the

Laplacian L(G) can be interpreted as the density matrix of a state in C10 ⊗ C2,

C5⊗C4 (or even C5⊗C2⊗C2 if we are open to the possibility of graphs living on

a three-dimensional grid). Just which quantum state are we talking about here?

The central thesis in these works, that structural graph theory can be used to

reason about entanglement in quantum states, doesn’t go very far when this sub-

system ambiguity is taken into account. Whether a density matrix is entangled or

separable is tied up intrinsically in how we divide it into subsystems. Even worse,

two isomorphic graphs can correspond to both separable and entangled states

respectively. Consider the two labellings of the graph K2]K1]K1, illustrated

in Figure 3.8. The Laplacian of the graph on the left is separable, whereas the

Laplacian of the graph on the right is entangled.

Despite these issues, these two papers [123, 122] do contain some exciting ideas.

There are several subsequent works that build on their foundations, but inherit

the problems we have discussed. The work in this chapter is focused on how to

modify the foundations of this theory of “combinatorial entanglement” so that it

results in more physically meaningful notions. It will therefore be useful to take

a tour of this literature.

78 CHAPTER 3. GRID STATES

Figure 3.8: These graphs are isomorphic, and yet the graph on the left corresponds to
an entangled state and the graph on the right to a separable one.

3.2.1 Subsequent work

A major contributor to the literature that builds on the work of Braunstein et

al. is C. W. Wu, who has up to now written a string of single author papers

tackling questions in this direction. In [132] they consider what will later come

to be known as the degree conjecture: that the graphical Peres-Horodecki cri-

terion (the degree criterion) elucidated in [122] and [123] is a necessary and

sufficient entanglement criterion for all graph Laplacians. Wu proves that the

degree criterion is necessary and sufficient for graph Laplacians considered as

density matrices on C2 ⊗ Cq, for all q ≥ 2. This stands in remarkable contrast to

when we apply the Peres-Horodecki criterion to arbitrary density matrices, for

which it is necessary and sufficient for Cp ⊗ Cq for p · q ≤ 6 only. Explicitly, there

exists density matrices in Cp ⊗ Cq for p · q > 6 that remain positive semi-definite

under partial transpose, but are entangled. Such states are referred to as bound
entangled states, and will be our focus later in the chapter.

In [134], Hildebrand, Mancini and Severini show that the degree conjecture is in

fact false. They manage to find a 9× 9 Laplacian matrix M that is positive under

partial transpose (PPT), but is entangled in C3 ⊗ C3. Explicitly, M is the 9 × 9

matrix

M =

 I4 0 −I4

0 0 0

−I4 0 I4

 ,

which corresponds to the graph illustrated in Figure 3.9. We will come across

3.2. GRAPHS AND QUANTUM ENTANGLEMENT 79

Figure 3.9: The graph that serves as the counter-example to the degree criterion, from
[134].

this state again in Section 3.5.

Hildebrand et al. conclude the paper by providing an additional proof that the

degree criterion is necessary and sufficient in C2 ⊗ Cq for q ≥ 2. It is worth

reiterating here that the labelling problem arises in this work. Despite the fact

that Hildebrand et al. have found a bound entangled graph, not all labellings

correspond to states that are PPT. In this way, it is not so much that the graph as

a structural object corresponds to a bound entangled state, more that for at least

one labelling of that structure, the corresponding Laplacian is a bound entangled

density matrix.

The case of multi-particle entanglement of Laplacians is considered in a number

of papers. In [140], Wu considers separability in the bipartite case before extend-

ing analysis to arbitrary multi-particle systems. The labelling problem arises in

this setting too: while some graphs are entangled for all vertex labellings, most

have the property where they are separable for some labellings and entangled for

others. Wu explicitly draws attention to this, even stating in the introduction that

the paper considers separability of Laplacians, rather than graphs. In another pa-

per, [135], Wang and Wang consider tripartite separability, and explicitly build a

pair of isomorphic graphs G and H such that ρ(G) is separable and ρ(H) is entan-

gled. Wu returns to multi-particle entanglement in [136], this time trying to give

more thought towards labellings and separability. In this work, they define three

classes of graphs: class S, the graphs with Laplacians that are separable under all

vertex labellings; class SE, those graphs with Laplacians separable under some

labellings and entangled under the rest; and class E, the graphs with Laplacians

that are entangled under all vertex labellings. Wu proves that the class S is made

up of the complete graphs Kn, along with K2,2 and its complement. Note that

80 CHAPTER 3. GRID STATES

in [140], Wu has already implicitly explored the class E, and has shown certain

families of complete bipartite graphs to be multi-particle entangled under all

vertex labellings.

In [137], Wu comes back to separability of Laplacians from an enumerative com-

binatorics perspective, attempting to count the number of separable graphs as

a function of the number of vertices. In Appendix A.2 we consider similar ques-

tions. In [133], Dutta et al. consider separability in the bipartite setting. They

introduce the notions of partially symmetric graphs and degree symmetric graphs.

This work is not particularly clear, because the definitions depend on the graphs

being laid out on a grid, and yet they consider the traditional definition of a graph

which has no fixed embedding on a grid. As we will see later in the chapter, these

concepts come out clearly when we take the grid-labelling as part of the graph

itself, removing ambiguity. Rahiminia and Amini [138, 144] consider graphs with

entangled edges. As will become clear later, such edges correspond to diagonal

edges on a grid-labelled graph. They show that a graph with one entangled edge

is always entangled. Adhikari et al. [139] consider a more general approach for

connecting quantum information with graph theory, by considering weighted

graphs that are allowed to have self-loops. While they don’t consider questions

relating to separability, they show that various kinds of quantum states can be

parametrised by a matrix they call the signed Laplacian matrix, and attempt to

characterise which signed Laplacians correspond to pure and mixed states. Has-

san and Joag also consider graphs with real edge weights in [141]. They consider

recasting a number of quantum information theoretic concepts in this weighted

graph framework, covering von Neumann entropy, separability and even attempt

to view adding and removing edges as a quantum operation using the Kraus

operator framework. They define a modified form of the graph tensor product.

Hassan and Joag return to this framework in [142], where they claim to show

that the degree criterion is necessary and sufficient for pure multi-particle quan-

tum states. In [143], Xie, Zhao and Wang apply the matrix realignment criterion

to graph Laplacians, and use this to prove entanglement results for some explicit

families of graphs such as the star graphs, and the nearest point graphs. They

also consider the tensor product of Laplacians, showing that the tensor prod-

uct of graphs is separable. In [145] Zhao and Fan consider a matrix called the

3.2. GRAPHS AND QUANTUM ENTANGLEMENT 81

signless Laplacian as a density matrix, and also work with edge weighted, and

vertex weighted graphs. In an interesting series of papers, Dutta, Adhikari and

Banerjee take the graph Laplacian state framework to new areas: quantifying

quantum discord [146, 147], representing local unitaries as graph operations

[149], and defining a quantum generalisation of Seidel switching [148] to gener-

ate co-spectral density matrices. Finally, in an exercise in spectral graph theory Li,

Chen, and Yang [150] consider which edges can be added to a graph via LOCC,

by considering the von Neumann entropy of the corresponding density matrices.

3.2.2 Discussion of literature

Attacking the problem of determining if a density matrix is separable or entan-

gled using new mathematical tools is a worthwhile venture: there are certain

difficult problems in entanglement theory that might yield with the aid of a new

perspective. In particular, classifying the computational complexity of the separa-

bility problem might be easier if we were able to recast this problem as a graph

theoretic one: there are a huge number of graph theoretic NP-complete problems

that may be useful for a reduction. Such a reduction would likely be considerably

simpler than the geometric techniques employed in the proof of NP-hardness by

Gurvits [124].

The fact that the graph Laplacian is positive semi-definite, and therefore fits into

the mathematical framework of quantum information, makes it a good starting

point for a “graph theoretic entanglement theory”. The fact that there is already

an established literature [131, 128] on algebraic and spectral graph theory makes

this topic very tempting to work on, as evidenced by the number of papers written

in the few years since the original Braunstein et al. papers [122, 123]. As I’ve

touched upon, this work gradually diverges from physically meaningful questions

due to what I feel is its weak foundation: assigning too much significance to

conventional graph theory. In particular, these papers tend to suffer from one

or both of two problems that I call respectively, the labelling problem, and the

subsystems problem. Consider a graph G, with normalised Laplacian ρ(G). If

we want to consider the normalised Laplacian ρ(G) as the density matrix of a

quantum state then as we have shown, we need to fix two things: the labelling

82 CHAPTER 3. GRID STATES

of the vertices, and the segmentation of the state space. If these two things

are not fixed beforehand, then we are not talking about a quantum state at all,

we are talking about a matrix. As has become clear, it doesn’t make sense for

us to talk about entanglement if we have not decided where the split between

the subsystems is. The existing literature displays what is for me a pathological

fixation upon the simple graph G, even after it is shown that the same graph G

can correspond to multiple different quantum states, some of which are separable,

and others are entangled. Clearly there is no physical meaning behind any of the

graph structure if isomorphic graphs with the same structure can have completely

different entanglement properties.

The answer I propose is to stop considering conventional graphs as the starting

point of the theory. Instead, we will impose that our graphs have vertices that

form a two dimensional grid, and are labelled accordingly. Traditional notions of

isomorphism are not relevant to these grid-labelled graphs, we will only concern

ourselves with a restricted form of isomorphism that is physically motivated

(see Section 3.3.2). As we will see, using grid-labelled graphs as our foundation

means that there is no longer any ambiguity about subsystem structures or basis

labellings.

3.3 Preliminaries

The core object in this work is a family of quantum states called grid states.
Each grid state corresponds to a combinatorial structure called a grid-labelled
graph. As we shall see, whether or not a grid-state is entangled can sometimes

be determined from the structure of its corresponding grid-labelled graph.

The first result we prove is that the density matrix of a grid-state is exactly equal

to the normalised Laplacian matrix of its grid-labelled graph. Make no mistake,

we are considering the same kind of states as considered in the Laplacian en-

tanglement literature, and this allows us to make use of some results from this

literature. However, considering the grid-labelling as “baked-in” to the graph

itself means that the questions we consider have a firmer grounding in physical

reality. This allows us to go further than the existing literature. An explicit exam-

3.3. PRELIMINARIES 83

ple of how this grid-labelling restriction helps us is when we come to consider

physically meaningful notions of isomorphism between grid-labelled graphs. It

turns out that swapping the vertices in a row or column of a grid-labelled graph

corresponds to a local operation on the density matrix, a kind of physical ma-

nipulation that preserves separability. We call grid-labelled graphs that can be

obtained from one another in this fashion locally isomorphic.

3.3.1 Grid-labelled graphs and grid-states

Figure 3.10: A 3× 3 grid-labelled graph with four edges.

An m×n grid-labelled graph is a tuple (V,E), where the elements of V ⊆ [m]×[n]

are called vertices, and the elements of set E ⊆
(
V
2

)
are called edges. Grid-labelled

graphs can be drawn on the plane, as illustrated in Figure 3.10. Essentially, a

grid-labelled graph is just a graph with a grid structure imposed on its vertices.

Let G = (V,E) be an m× n grid-labelled graph. We refer to the quantum state

ρ(G) :=
1

|E|
∑

{(i,j),(k,l)}∈E

(
|i, j〉 − |k, l〉√

2

)(
〈i, j| − 〈k, l|√

2

)

as the grid state of G.

For readability we will now make some definitions. Let e = (i, j), (k, l) ∈ E be an

edge of G. Then its edge state is the bipartite pure state |e〉 = |i,j〉−|k,l〉√
2

, and G’s

grid state is the uniform mixture over its edge states ρ(G) = 1
|E|
∑

e∈E |e〉〈e|.
We can consider the Laplacian of a grid-labelled graph by imposing an ordering on

its vertices. In what follows we consider the row-wise ordering r((i, j)) 7→ mi+ j.

The following lemma allows us to connect grid-states to the literature discussed

84 CHAPTER 3. GRID STATES

in the previous section.

Lemma 3.3.1 Let G = (V,E) be a grid-labelled graph. Then ρ(G) = L(G)/2|E|.

Proof. Consider G as defined in the statement of the lemma. Then by definition

ρ(G) =
1

|E|
∑
e∈E

|e〉〈e|

=
1

|E|
∑

{(i,j),(k,l)}∈E

(
|ij〉 − |kl〉√

2

)(
〈ij| − 〈kl|√

2

)

=
1

2|E|

 ∑
(i,j)∈V

|ij〉〈ij| −
∑

{(i,j),(k,l)}∈E

|ij〉〈kl|+ |kl〉〈ij|


=

1

2|E|
(D(G)− A(G)).

An issue with the work of Braunstein et al. [122, 123] is that separability is not

invariant under isomorphism. That is, there are pairs of graphs G1, G2 for which

ρ(G1) is separable and ρ(G2) is entangled, but we have that G1
∼= G2. In the next

section we will consider a form of isomorphism that preserves separability: local
isomorphism.

3.3.2 Local isomorphism

It is known that if a quantum mechanical system undergoes a unitary evolution

that can be decomposed into the Kronecker product of unitaries, each acting on

a separate part, then the amount of entanglement between the particles cannot

increase [110]. Such unitaries are known as local. Let us now attempt to put

these notions on a mathematically firmer footing.

Let U be a unitary operator that acts on an n-partite Hilbert space Cd1⊗· · ·⊗Cdn .

If U = U1 ⊗ · · · ⊗ Un, where Ui acts on Cdi for 1 ≤ i ≤ n then we say that the

unitary U is local. Consider the following lemma.

Lemma 3.3.2 Let ρ be an n-partite density matrix with state space H, and let U be
a local unitary on H. Then the state UρU † is separable if and only if ρ is separable.

3.3. PRELIMINARIES 85

Proof. If ρ is separable then by definition there exists {ρ(i)
1 , . . . , ρ

(i)
n } and {p(i)}

such that ρ =
∑

i p
(i)ρ

(i)
1 ⊗ · · · ⊗ ρ

(i)
n , and so

UρU † =
∑
i

p(i)U1ρ
(i)
1 U

†
1 ⊗ · · · ⊗ Unρ(i)

n U
†
n,

which is again by definition separable. Conversely, if the state UρU † is separable

then by definition it has some decomposition

UρU † =
∑
i

q(i)U1σ
(i)
1 U †1 ⊗ · · · ⊗ Unσ(i)

n U
†
n,

and so ρ = U †UρU †U which implies that ρ =
∑

i q
(i)σ

(i)
1 ⊗ · · · ⊗ σ

(i)
n

The above lemma shows that local unitaries can be useful when trying to deter-

mine if a density matrix is entangled or separable. Suppose we want to know if a

particular density matrix is separable. We could transform it into another state by

means of a local unitary. If this state is somehow more amenable to analysis then

we have made progress: we know that the original state is separable if and only

if the easier state is. For example, consider the uniform mixture of two Bell pairs

ρBell = 1
2

(|Ψ−〉〈Ψ−|+ |Φ−〉〈Φ−|). Perhaps surprisingly, this state is separable, but

we would require some more sophisticated techniques2 if we wanted to easily

see this just by looking at its density matrix. However, the local unitary H ⊗H
2We will revisit this in a later section on the Peres-Horodecki criterion.

86 CHAPTER 3. GRID STATES

transforms the density matrix into a state which is more obviously separable:

(H ⊗H)
1

2

(
|Ψ−〉〈Ψ−|+ |Φ−〉〈Φ−|

)
(H ⊗H)†

=
1

16


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

 ·


1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1

 ·


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



=
1

2


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0


=

1

2
(|01〉〈01|+ |10〉〈10|) =

1

2
(|0〉〈0| ⊗ |1〉〈1|+ |1〉〈1| ⊗ |0〉〈0|) .

We can use these ideas to define a form of isomorphism that preserves separability

of grid-labelled graphs.

Definition 3.3.3 (Local isomorphism) A pair of m × n grid-labelled graphs G
andH are said to be locally isomorphic if there exists an m×m permutation matrix
P and an n× n permutation matrix Q such that ρ(G) = (P ⊗Q) · ρ(G) · (P ⊗Q).

Local isomorphisms have a neat interpretation in terms of permutations of the

rows and columns of a grid-labelled graph: the permutation P permutes the row

labels, and Q permutes the column labels.

In Figure 3.11 we illustrate a pair of locally isomorphic grid-labelled graphs. In

what follows we will use the symbol ‘∼=’ to denote local isomorphism. The next

lemma follows from the definition of local isomorphism, and as a corollary of

Lemma 3.3.2.

Lemma 3.3.4 Let G and H be a pair of locally isomorphic grid-labelled graphs.
Then ρ(G) is separable if and only if ρ(H) is separable.

Lemma 3.3.4 assures us that local isomorphism is what we are looking for: a

method of modifying graphs that preserves separability. From now on, we will

3.3. PRELIMINARIES 87

Figure 3.11: A pair of locally isomorphic graphs. The graph on the right can be obtained
from the graph on the left by swapping rows 1 and 3.

denote by S the set of grid-labelled graphs G such that ρ(G) is separable. For

example, if G is separable we say that G ∈ S.

The computational problem of determining if two grid-labelled graphs are locally

isomorphic is at least as hard as the “conventional” graph isomorphism problem.

Let us define these notions in more formality and prove this assertion. Two

conventional graphs G and H are isomorphic if there is an n × n permutation

matrix P such that P · L(G) · P T = L(H). Recall the following decision problem

from Chapter 2.

Problem 3.3.5 G R A P H I S O M O R P H I S M

Input: Graphs G and H.
Question: Are G and H isomorphic?

The corresponding problem about grid-labelled graphs and local isomorphism is

defined in the following way.

Problem 3.3.6 L O C A L I S O M O R P H I S M

Input: Grid-labelled graphs G and H.
Question: Are G and H locally isomorphic?

We have the following.

Theorem 3.3.7 There exists a polynomial time Karp reduction from G R A P H I S O -

M O R P H I S M to L O C A L I S O M O R P H I S M.

88 CHAPTER 3. GRID STATES

Proof. Let G = (V,E) be a simple graph G with n vertices. Let G′ be the 1 × n
grid-labelled graph with edge set E ′ = {{(1, v), (1, w)} : {v, w} ∈ E}. It is clear

that L(G) = L(G′).

Consider G and H as defined in the statement of the theorem. If G is isomorphic

to H then there exists a permutation matrix P such that P · L(G) · P T = L(H).

Likewise, (1⊗ P)L(G′)(1⊗ P) = L(H ′), where 1 is the unit scalar.

Since the unit scalar is the only 1× 1 permutation matrix, the converse follows

for the same reason as above.

In the next section we will broaden our discussion of local operations, and show

that some grid-labelled graphs can be constructed via local unitaries and classical

communication, starting with some canonical separable state.

3.3.3 Local operations and classical communication

Intuitively, a unitary acting on a system of multiple parts is local if it can be

carried out with no interaction between each of the parts. We can think of the

different parts of the evolution being split up and “out-sourced” to a number of

separate parties, each carrying out their assigned part of the unitary evolution on

the part of the state they have been given. If entanglement requires interaction

to generate, how can it be generated in such a setting?

A more general setting involves classical communication: the parties are allowed

to communicate via a classical channel. It is possible to prove that they would still

not be able to generate entanglement in this setting, referred to in the literature

as LOCC (Local Operations and Classical Communication). We rely on this fact in

what follows, and direct the interested reader to [111, 110] for a more in depth

discussion of what can be achieved with LOCC.

As we have seen earlier on in the discussion, a grid state is just a uniform mixture

of a set of states parametrised by the edges of its grid-labelled graph. In fact, the

orientation of the edges determines whether or not that particular component

of the mixed state is separable or entangled. For instance, the horizontal and

vertical edges always correspond to product states, and so if we have a grid-

labelled graph that consists exclusively of such edges then we can expect its

corresponding density matrix to be separable as a mixture of product states is

3.3. PRELIMINARIES 89

always separable. Let us explore this in more detail with the following definition.

Definition 3.3.8 An edge {(i, j), (k, l)} of a grid-labelled graph is said to be

• horizontal if i = k and j 6= l,

• vertical if j = l and i 6= k,

• diagonal if i 6= k and j 6= l.

It turns out that if a grid-labelled graph consists exclusively of non-diagonal

edges then two parties can construct the corresponding density matrix from the

pure state |1〉|1〉 using local unitaries and shared randomness only. We will use

a particular family of local unitaries to prove this, which are constructed in the

following lemma.

Lemma 3.3.9 Consider a bipartite Hilbert spaceHAB
∼= Cm⊗Cn for 2 ≤ m,n <∞.

For all 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n with i 6= k and j 6= l there exists a unitary
matrix U(i,j),(k,l) on HAB such that

U(i,j),(k,l)|1〉A|1〉B 7→
1√
2

(|i〉A|j〉B − |k〉A|l〉B) .

Furthermore, U(i,j),(k,l) is a local unitary if

• i = k and j 6= l, or

• if i 6= k and j = l.

Proof. It is trivial to prove that there always exists a unitary matrix U(i,j),(k,l)

mapping |1, 1〉 to a state 1√
2
(|i, j〉 − |k, l〉), so we must only prove the latter half,

regarding such a unitary being local if the above conditions are met. Consider

the matrix

Vh = IA ⊗ (HB ⊕ I),

where IA is the identity matrix of size a× a acting on HA,

HB =
1√
2

(
1 1

−1 1

)
,

90 CHAPTER 3. GRID STATES

and I is an identity matrix of size (b−2)×(b−2). Here, “⊕” denotes matrix direct

sum. The matrix V is real-orthogonal, because HB is a Hadamard matrix. We

have that VH |1, 1〉 = 1√
2
(|1, 1〉−|1, 2〉). This state can be mapped to any horizontal

edge state 1√
2
(|i, j〉 − |i, k〉) by applying two local isomorphisms, a row swap to

bring it from row 1 to row i, followed by two column swaps to bring the incident

vertices to the correct horizontal position.

Likewise, consider the matrix

Vv = (HA ⊕ I)⊗ IB.

We have that Vv|1, 1〉 = 1√
2
(|1, 1〉 − |2, 1〉), which can then be mapped to any

vertical edge in the same way, by means of local isomorphisms.

With the use of this lemma, we can now prove the result we want, elucidated in

the following theorem.

Theorem 3.3.10 Let G be a grid-labelled graph with m edges. If all edges of G are
horizontal or vertical then ρ(G) can be obtained from the state ρ0 = |1〉A|1〉B〈1|A〈1|B
by application of local unitaries and log(m) bits of classical communication.

Proof. We prove this statement by demonstrating a protocol by which two parties

can turn the density matrix ρ0 into ρ(G), for grid-labelled graphs G with no diag-

onal edges. The protocol uses only classical communication and local unitaries

acting on ρ0.

With every edge {(i, j), (k, l)}, we can associate the unitary matrix U(i,j),(k,l). If all

edges are horizontal or vertical, then by Lemma 3.3.9 all m of these matrices are

implementable by applying local unitaries on ρ0. Both Alice and Bob know what

each of these matrices are, and which local unitaries they need to perform on

their respective Hilbert space.

3.3. PRELIMINARIES 91

The protocol is as follows:

1. Alice: uniformly at random, select {(i, j), (k, l)} ∈ E(G) and perform

half on |1〉A. Send {(i, j), (k, l)} to Bob, and erase classical memory of

{(i, j), (k, l)}.

2. Bob: perform other half of U(i,j),(k,l) on |1〉B. Erase classical memory of

{(i, j), (k, l)}.

The protocol uses only local unitaries. At the end of the protocol, the final state

is equal to

ρ =
1

m

∑
{(i,j),(k,l)}∈E(G)

U(i,j),(k,l)ρ0U(i,j),(k,l)
†

=
1

2m

∑
{(i,j),(k,l)}∈E(G)

(|i〉A|j〉B − |k〉A|l〉B)(〈i|A〈j|B − 〈k|A〈l|B)

= ρ(G),

Alice needs to communicate logm bits to communicate the edge {(i, j), (k, l)} to

Bob.

We can conclude this section with the following corollary, which shows how the

adjacency structure of a grid-labelled graph influences physical properties of the

corresponding quantum state. Recall that S is the set of separable graphs.

Corollary 3.3.11 If a grid-labelled graph G has only horizontal and vertical edges
then G ∈ S.

Proof. This follows from Theorem 3.3.10 and from Lemma 3.3.4. If LOCC is

sufficient to obtain ρ(G) from the separable state ρ0, provided the edges of G are

either horizontal or vertical, then for any such grid-labelled graph, G ∈ S.

In the next section we will talk about the first technique for determining if a

grid-labelled graph is separable or entangled: the degree criterion.

92 CHAPTER 3. GRID STATES

3.4 The Degree Criterion

We have referred to the Peres-Horodecki criterion a number of times so far. Let

us finally give a rigorous overview of this entanglement criterion, starting with a

definition of its crucial component, the partial transpose of a density matrix.

Definition 3.4.1 (Partial transpose [110]) Let ρAB be a density operator acting
on a bipartite Hilbert space HAB, and let {|i, j〉} ⊂ HAB denote a fixed product
basis of HAB. Then the partial transpose with respect to subsystem A of ρAB is the
density operator ρΓA

AB defined such that

〈i, j|ρΓA
AB|k, l〉 := 〈k, j|ρAB|i, l〉

for all i, j, k, l. Respectively, the partial transpose with respect to subsystem B of ρAB
is defined

〈i, j|ρΓB
AB|k, l〉 := 〈i, l|ρAB|k, j〉.

Armed with this definition, we can state the Peres-Horodecki criterion.

Theorem 3.4.2 (Peres-Horodecki criterion [126, 127]) Let ρAB be a bipartite
density operator. If ρAB is separable, then ρΓA

AB (resp. ρΓB
AB) is positive semi-definite.

Horodecki et al. [127] prove that this criterion is necessary and sufficient for

separability for density operators acting on bipartite Hilbert spaces of dimension

d ≤ 6, a result which is summarised in the following theorem.

Theorem 3.4.3 (Horodecki et al. [127]) Let ρAB be a density operator acting on
C2 ⊗C2 or C2 ⊗C3. Then ρAB is separable if and only if ρΓA

AB (resp. ρΓB
AB) is positive

semi-definite.

This entanglement criterion is the one applied by Braunstein et al. in [122, 123],

and which translates into the graphical entanglement criterion which became

known as the degree criterion. The degree criterion can of course be applied to

grid-labelled graphs, since the underlying state is a Laplacian matrix. First, let us

define the partial transpose of a grid-labelled graph.

3.4. THE DEGREE CRITERION 93

Definition 3.4.4 (Partial transpose of a graph) The partial transpose of a grid-
labelled graph G = (V,E) is the grid-labelled graph Γ(G) = (V,Γ(E)) where an
edge {(i, j), (k, l)} ∈ Γ(E) if and only if the edge {(i, l), (k, j)} ∈ E.

Figure 3.12: Two grid-labelled graphs side by side with their partial transpositions.

Example 3.4.5 In Figure 3.12, we show two grid-labelled graphs alongside their

partial transpositions. Note that the partial transpose operation does not affect

horizontal and vertical edges, but transposes each diagonal edge.

Let us now state the degree criterion. The proof of the following theorem follows

the proof of Theorem 2 in [123]. Recall that D(G) is the degree matrix of G.

Theorem 3.4.6 (Degree criterion) If G ∈ S then D(G) = D(Γ(G)).

Proof. Let G be a grid-labelled graph. Let A(G) be the adjacency matrix of G, and

let L(G) be the Laplacian matrix of G. For an a · b× a · b matrix M , let the matrix

Γ(M) := MΓA be its partial transpose. Without loss of generality, we consider

only partial transpositions with respect to the A subsystem, and do not consider

94 CHAPTER 3. GRID STATES

normalisation factors. Clearly,

Γ(L(G)) = D(G)− A(Γ(G))

= D(G)−D(Γ(G)) + L(Γ(G)).

Thus, Γ(L(G)) = L(Γ(G)) + ∆, where ∆ := D(G) − D(Γ(G)). The a · b × a · b
matrix ∆ is of course real and diagonal, with trace

Tr(∆) = Tr(D(G))− Tr(D(Γ(G))) = 0.

This implies that if ∆ is not equal to the zero matrix then there must be one or

more negative entries on its diagonal. Let δi := ∆i,i be one such non-zero entry.

Let |ψ0〉 =
∑a·b

j=1 |j〉 be the all-ones vector, and |φ〉 := k|i〉 for k ∈ R.

Then for |χ〉 := |ψ0〉+ |φ〉,

〈χ|(L(G) + ∆)|χ〉 = 〈χ|L(G)|χ〉+ 〈χ|∆|χ〉

= 〈ψ0|L(G)|ψ0〉+ 〈ψ0|L(G)|φ〉+ 〈φ|L(G)|ψ0〉+ 〈φ|L(G)|φ〉

+ 〈ψ0|∆|ψ0〉+ 〈ψ0|∆|φ〉+ 〈φ|∆|ψ0〉+ 〈φ|∆|φ〉.

Since |ψ0〉 is a eigenvector of the (symmetric) matrix L(G) with eigenvalue 0,

and that 〈ψ0|∆|ψ0〉 = Tr(∆) = 0, it follows that

〈χ|(L(G) + ∆)|χ〉 = 〈φ|L(G)|φ〉+ 〈ψ0|∆|φ〉+ 〈φ|∆|ψ0〉+ 〈φ|∆|φ〉.

Finally, we have

〈φ|L(G)|φ〉 = k2[L(G)]i,i = k2d(i), where d(i) is the degree of vertex i, 〈φ|∆|φ〉 =

δik
2, and 〈ψ0|∆|φ〉 = 〈φ|∆|ψ0〉 = δik. Hence,

〈χ|(L(G) + ∆)|χ〉 = k2(d(i) + δi) + 2δik. (3.1)

Since δi < 0 by definition, a positive k can be chosen small enough to make

Equation 3.1 negative. We therefore have that L(G) + ∆ 6≥ 0. If G ∈ S then by

Theorem 3.4.2, Γ(L(G)) ≥ 0. Since Γ(L(G)) = L(Γ(G)) + ∆, then this can only

be true if ∆ = 0, which means that D(G) = D(Γ(G)).

3.4. THE DEGREE CRITERION 95

The degree criterion is equivalent to applying the PPT criterion to the Laplacian of

the graph. However, the degree criterion turns out to be necessary and sufficient

for 2× b grid-labelled graphs, for arbitrary b. Contrast this result with Theorem

3.4.3, which states that Peres-Horedecki is necessary and sufficient for states in

C2 ⊗ C3 and C3 ⊗ C2.

Theorem 3.4.7 For a 2× b grid-labelled graph G with b ≥ 2,

∆(G) = ∆(Γ(G))

if and only if G ∈ S.

To prove this we require some technical lemmas. A decomposition of a (conven-

tional) graph G is a set of subgraphs {H1, H2, ..., Hk} that partition the edges of

G:
⋃k
i=1Hi = G and for all i 6= j, E(Hi)∩E(Hj) = ∅. Notice that isolated vertices

do not contribute to a decomposition and so each Hi can always be seen as a

spanning subgraph (this is a subgraph that contains all the vertices). It will be

useful to explicitly define some of these graph theoretic concepts in the context

of grid-labelled graphs. Let G and H be grid-labelled graphs. We say that G is a

subgraph of H, denoted G ⊆ H if for all edges e ∈ E(G), we have that e ∈ E(H).

On the other hand, if G and H have no edges in common E(G) ∩ E(H) = ∅
then we say that they are edge disjoint, and the union of G and H is the grid-

labelled graph G ∪H with edge set E(G) ∪ E(H). A set of edge disjoint graphs

G1, . . . , Gn ⊆ G is called a decomposition of G if
⋃n
i=1 Gi = G.

Lemma 3.4.8 is easy to prove, but valuable since it allows us to break up a grid-

labelled graph into its Horizontal, Vertical and Diagonal components, which we

refer to as its HVD decomposition.

96 CHAPTER 3. GRID STATES

Lemma 3.4.8 (HVD decomposition) Given a grid-labelled graphG withm edges,
its density matrix can be written in the form

ρ(G) =
|E(H)|
m

ρ(H) +
|E(V)|
m

ρ(V) +
|E(D)|
m

ρ(D),

where the graphs H,V,D contain all of the horizontal, vertical, and diagonal edges
of G respectively. These graphs form a unique decomposition of G, which we will
call the HVD decomposition.

Proof. For any grid-labelled graph G with m edges,

ρ(G) =
1

2m
L(G)

=
1

2m
(L(H) + L(V) + L(D))

=
1

2m
(2 |E(H)| ρ(H) + 2 |E(V)| ρ(V) + 2 |E(D)| ρ(D))

=
|E(H)|
m

ρ(H) +
|E(V)|
m

ρ(V) +
|E(D)|
m

ρ(D).

Lemma 3.4.9 Let G be a grid-labelled graph. Let H,V and D be the components
of the HVD decomposition of G. Then, G satisfies the degree criterion if and only if
D satisfies the degree criterion.

Proof. By definition H and V contain only horizontal and vertical edges. These

edges remain invariant under the partial transpose operation, and hence can be

disregarded when considering the degree criterion.

3.4. THE DEGREE CRITERION 97

Figure 3.13: Moving clockwise from top-left, we illustrate a grid-labelled graph and its
Horizontal, Vertical and Diagonal components, constituting its HVD decomposition.

In Figure 3.13 we illustrate a graph with its HVD decomposition. The last com-

ponent needed to prove Theorem 3.4.7 is the following theorem of Ando [152],

which we state without proof.

Theorem 3.4.10 (Ando [152]: Theorem 4.9) Any positive semi-definite matrix
of the form (

C A

A† C

)
,

where A and C are b× b complex matrices, is separable in C2 ⊗ Cb.

Proof of Theorem 3.4.7. We need to show that if we have some 2 × b grid-

labelled graph G that satisfies the degree criterion then G ∈ S. We know from

Lemma 3.4.9 that G satisfies the degree criterion if and only if D satisfies the

degree criterion, where D is from the HVD decomposition of G and contains all

diagonal edges of G. Hence, we need to show that if the degree criterion holds

98 CHAPTER 3. GRID STATES

then D ∈ S. Up to normalisation, the structure of this density matrix is

ρ(D) =

(
∆(1) A

AT ∆(2)

)
,

where ∆(1) and ∆(2) are diagonal matrices encoding the degrees of the vertices in

rows 1 and 2 respectively, ∆
(i)
j,j = d((i, j)), and the matrix A encodes the diagonal

edges of G. This can be seen from the fact that the adjacency matrix of any grid-

labelled graph G with diagonal edges only is a 2× 2 symmetric block matrix with

block diagonals equal to the zero matrix: diagonal edges are incident to vertices

in different rows by definition. Performing the partial transpose operation on the

edges of D yields a graph with density matrix

ρ(Γ(D)) =

(
∆(2) AT

A ∆(1)

)
.

By assumption, the degree criterion holds, so diag(ρ(D)) = diag(ρ(Γ(D))), and

we have that ∆(1) = ∆(2). Since density matrices are by definition positive semi-

definite, we know from Theorem 3.4.10 that ρ(D) is separable.

In proving this theorem we have uncovered the following corollary, which comes

from the requirement that the matrices ∆(1) and ∆(2) are equal for 2 × b grid-

labelled graphs that satisfy the degree criterion.

Corollary 3.4.11 Let G be a 2 × b grid-labelled graph. Then G ∈ S if and only if
d((1, j)) = d((2, j)) for 1 ≤ j ≤ b after discarding all horizontal and vertical edges
of G.

That is, we can always check if a 2 × b grid-labelled graph is separable or en-

tangled by throwing out horizontal and vertical edges before checking each of

the “column-pairs” of vertices: if there is a degree mismatch, then the state is

entangled.

It will be useful for the work we do later to introduce a generalisation of local iso-

morphism, LE-isomorphism. The idea is that adding extra empty rows or columns

of vertices to a grid-labelled graph does not affect separability of its grid state.

3.4. THE DEGREE CRITERION 99

3.4.1 Extensions and LE-isomorphism

Figure 3.14: The grid-labelled graph on the right is an extension of that on the left.

It seems intuitively reasonable that if we take some grid-labelled graph and

extend its grid without changing the edges, then the resulting state should have

the same entanglement properties. Adding isolated vertices won’t have any effect

on the underlying state, since we are just thinking of the same state living in

a higher dimensional Hilbert space. This idea is formalised in the following

definition, that of an extension.

Definition 3.4.12 (Grid-labelled graph extension) LetG be an a×b grid-labelled
graph, and let H be a c× d grid-labelled graph such that c ≥ a and d ≥ b. We say
that H is an extension of G if H has the same edge set as G.

Example 3.4.13 In Figure 3.14, the graph on the right is an extension of the

graph on the left, because it can be obtained by increasing the dimensions of the

grid.

In the same way, if two graphs turn out to be locally isomorphic to one another if

they are placed on a grid the same size, then it seems likely that they should

have the same entanglement properties. Such graphs we call LE-isomorphic
(Local+Extendible+isomorphic).

100 CHAPTER 3. GRID STATES

Figure 3.15: Two grid-labelled graphs that are LE-isomorphic.

Definition 3.4.14 (LE-isomorphism) Grid-labelled graphs G and H are said to
be LE-isomorphic if at least one of the following conditions is true

• G has an extension G′ such that G′ ∼= H,

• H has an extension H ′ such that H ′ ∼= G.

Note that from the way we have defined it, LE-isomorphism is reflexive. When

two grid-labelled graphs are LE-isomorphic we denote this with the ‘'’ symbol.

Example 3.4.15 The two grid-labelled graphs in Figure 3.15 are LE-isomorphic.

The graph on the right can be obtained from the graph on the left by increasing

the grid size to 3× 3 and swapping columns 2 and 3, then swapping rows 2 and

3 before swapping rows 1 and 2.

Proposition 3.4.16 If two grid-labelled graphs are locally isomorphic then they
are LE-isomorphic. The converse is not necessarily true.

Proof. If two grid-labelled graphs G and H are locally isomorphic, then their grid

dimensions are identical. Trivially, the grid-labelled graphs are extensions of one

another, and are hence LE-isomorphic.

The converse is not true becauseG ' H does not imply that their grid dimensions

are equal. This property is required by the definition of local isomorphism.

3.4. THE DEGREE CRITERION 101

Proposition 3.4.17 LetG,H be two grid-labelled graphs withG ' H. Then G ∈ S
if and only if H ∈ S.

Proof. IfG andH have identical grid dimensions then they are locally isomorphic

and the result follows from Lemma 3.3.4. It suffices to prove that if a graph A is

an extension of a graph B then A ∈ S if and only if B ∈ S. This follows trivially

from the fact that ρ(A) and ρ(B) are the same matrix, but ρ(A) acts on a higher

dimensional Hilbert space than ρ(B)

In the next section we will consider decompositions of grid-labelled graphs in

greater depth.

3.4.2 Decompositions

It makes sense that a mixture of two separable states will not be entangled. We

can express this in terms of decompositions of grid-labelled graphs, and show

that if a grid-labelled graph can be decomposed into separable graphs then it too

is separable.

Theorem 3.4.18 (Separable Decompositions) If there exists a decomposition X
of G such that for all H ∈ X we have H ∈ S, then G ∈ S.

Proof. We know that

ρ(G) =
1

2|E(G)|
L(G)

=
1

2|E(G)|
∑
H∈X

L(H)

=
1

2|E(G)|
∑
H∈X

2|E(H)| · ρ(H)

=
∑
H∈X

|E(H)|
|E(G)|

ρ(H).

If for all H ∈ X, H ∈ S then a convex combination of the form given by Equation

(1.1) can be formed by setting pi = |E(H)|/|E(G)|. Therefore, G ∈ S.

102 CHAPTER 3. GRID STATES

The partially-symmetric graphs are discussed in [133]. A similar notion can be

applied to the grid-labelled context, which we call “pair-symmetry”, because

diagonal edges are grouped together into symmetric pairs.

Definition 3.4.19 (Pair-symmetric grid-labelled graphs) A grid-labelled graph
is said to be pair-symmetric if each of its diagonal edges {(i, j), (k, l)} have a coun-

terpart edge {(k, j), (i, l)}. An edge and its counterpart are referred to as a counter-

part pair.

All pair-symmetric grid-labelled graphs are separable, which is quite obvious

when we consider that such graphs are just mixtures of graphs that are locally

isomorphic to the ‘cross’ graph illustrated in Figure 3.16. This cross graph is the

uniform mixture of Bell pairs that we have come across a number of times so far

in this chapter.

Proposition 3.4.20 Every pair-symmetric grid-labelled graph is separable.

Proof. Let G be a pair-symmetric grid-labelled graph with k counterpart pairs.

Let Hi for 1 ≤ i ≤ k be the subgraph of G containing only the edges of the ith

counterpart pair. Let Hk+1 be the subgraph of G containing the remaining edges

of G, that is, those edges not part of the list of k counterpart pairs. Clearly, the

Figure 3.16: A 2× 2 graph with a cross.

set X = {H1, H2, ..., Hk+1} forms a decomposition of G. To prove the proposition

it suffices to show that for each H ∈ X,H ∈ S. It is obvious that for 1 ≤ i ≤ k,

Hi ' S, where S is shown in Figure 3.16. This graph is invariant under partial

transpose, and since it is 2×2 we know it is separable, since the degree criterion is

necessary and sufficient in these grid dimensions. Hence, for all 1 ≤ i ≤ k, S ' Hi,

and so Hi ∈ S.

The last component of the decomposition X, Hk+1, has only horizontal and verti-

cal edges (since by definition, all diagonal edges in a pair-symmetric graph are

3.4. THE DEGREE CRITERION 103

involved in a counterpart pair). Hence from Corollary 3.3.11, Hk+1 ∈ S, and so

X is a separable decomposition of G. The proposition thus follows via Theorem

3.4.18.

We will now explore another family of grid-labelled graphs, which we call strat-
ified. It turns out that satisfaction of the degree criterion is a necessary and suf-

ficient condition for separability of stratified grid-labelled graphs. Furthermore,

such grid-labelled graphs exist in all bipartite dimensions.

Definition 3.4.21 (Stratified grid-labelled graphs) A grid-labelled graph is called
row (resp. column) stratified if for all of its diagonal edges {(i, j), (k, l)}, |i−k| = 1

(resp. |j − l| = 1).

Figure 3.17: A row stratified graph

Example 3.4.22 Figure 3.17 illustrates a row stratified grid-labelled graph. The

endpoints of all diagonal edges are restricted to nearest neighbour rows of ver-

tices, hence the name “stratified”.

The following lemma is obvious.

Lemma 3.4.23 (Strata decomposition) Let G be a row (resp. column) stratified
grid-labelled graph. Let D be the diagonal part of the HVD decomposition of G.
Then, D has a decomposition S = {Si} for 1 ≤ i < a, where Si is the subgraph of
D containing the edges {(p, q), (r, s)} ∈ E(D) with p = i and r = i+ 1 (resp. q = i

and s = i+ 1). We call S the strata decomposition of G.

104 CHAPTER 3. GRID STATES

This can be used to prove the following.

Lemma 3.4.24 Let G be a stratified grid-labelled graph. If G satisfies the degree
criterion then each element of its strata decomposition satisfies the degree criterion.

Proof. We prove the lemma for row stratified graphs. The same argument holds

for column stratified graphs if all references to “rows” are replaced by “columns”.

In what follows, we refer to graphs that satisfy the degree criterion as “DC”, and

those that do not as “non-DC”.

By definition, the elements of a strata decomposition of a graph G are LE-

isomorphic to 2 × b graphs – that is, we are only interested in the vertices in

the 2 “occupied rows” of the strata. By Corollary 3.4.11 if a 2 × b grid-labelled

graph is non-DC then the degrees of the vertices in the upper row do not match

those of the lower row. Therefore, if a single element Si of the strata decomposi-

tion of G (in this case, corresponding to the subgraph induced by vertices in row

i and i+ 1 of G) is non-DC, then the degree of at least 1 vertex in these rows will

change after partial transpose. If this happens, then of course G is non-DC.

To finish the proof of this lemma, we must show that if two or more elements

of the strata decomposition of G are non-DC then G is non-DC. This must be

considered because conceivably the degree changes in 2 or more non-DC strata

could cancel out in some way, leaving D(G) equal to D(Γ(G)).

The only way two strata degree changes could cancel out would be if two non-DC

strata shared a row of G. That is, if the strata Si and Si+1 were non-DC. However,

if this were the case then rows i and i+ 2 would have a partial transpose degree

change. By the same argument, no additional non-DC strata can be selected

either side of these to cancel out the degree changes. The lemma follows.

Theorem 3.4.25 A stratified grid-labelled graph G is separable if and only if it
satisfies the degree criterion.

Proof. The degree criterion has been proved to be necessary for separability,

hence we must only prove sufficiency.

From Lemma 3.4.23, for any stratified grid-labelled graph G there exists a de-

composition S = {Si} for 1 ≤ i < b. Each of the a×b graphs Si are LE-isomorphic

to a 2 × b graph S ′i: we can discard each isolated vertex. If the degree criterion

3.5. 3× 3 GRAPHS THAT SATISFY THE DEGREE CRITERION 105

holds for G, then by Lemma 3.4.24 it holds for each S ′i. Hence, by sufficiency of

the degree criterion for separability for grid-labelled graphs with a = 2, each S ′i
is separable, and the strata decomposition S is a separable decomposition of G.

Separability of G follows from Theorem 3.4.18.

Note that the work of Wu [132] explores separability of matrices with line-sum

symmetric blocks, and proves results of the same flavour to what we do in this

section. Perhaps there is a link between grid-labelled graphs that are locally iso-

morphic to stratified grid-labelled graphs and combinatorial Laplacian matrices

with line-sum symmetric blocks.

3.5 3× 3 graphs that satisfy the degree criterion

We would like to understand the structural properties of the grid-labelled graphs

that correspond to entangled states. As we’ve seen in previous sections, the 2× n
entangled graphs are fully classified by the degree criterion. In this section we go

into uncharted territory and consider the 3× 3 grid-labelled graphs that satisfy

the degree criterion, showing that not all such graphs are separable.

It turns out that all such graphs in 3 × 3 can be constructed from a set of four

graphs that we refer to as the building block graphs, described below.

Figure 3.18: Clockwise from top-left, the graphs B2, B3, B4, and B5.

106 CHAPTER 3. GRID STATES

Definition 3.5.1 (Building-blocks) The following grid-labelled graphs are illus-
trated in Figure 3.18.

• The criss-cross B2 has two edges: {(1, 1), (2, 2)} and {(1, 2), (2, 1)}.

• The tally B3 has three edges {(1, 1), (2, 2)}, {(1, 2), (2, 3)} and {(2, 1), (1, 3)}.

• The cross-hatchB4 has four edges: {(1, 1), (2, 3)}, {(2, 1), (3, 3)}, {(1, 2), (3, 1)}
and {(1, 3), (3, 2)}.

• The skew-meshB5 has five edges: {(1, 1), (3, 3)}, {(1, 2), (2, 1)} and {(1, 3), (2, 2)},
{(2, 2), (3, 1)}, {(2, 3), (3, 2)}.

Let us obtain these graphs from first principles. Along the way, we will define

some mathematical objects that will aid us in classifying more complicated exam-

ples. It was established early in on this chapter that when considering the graphs

that satisfy the degree criterion, we need only consider graphs with diagonal

edges. Horizontal and vertical edges remain invariant under partial transpose,

and so can be discarded. Note however that it is not clear that we can discard

such edges when considering separability. We have no guarantee that for instance,

adding a horizontal edge to an entangled state wouldn’t cause it to become sepa-

rable.

It will be useful to further classify diagonal edges into uphill and downhill edges.

Consider an edge {(i, j), (k, l)}. We say that the edge is uphill if sgn(i − k) 6=
sgn(j − l), and downhill if sgn(i − k) = sgn(j − l). Intuitively, uphill edges are

those which travel from bottom-left vertices to top-right vertices, and downhill

edges are those which travel from top-left to bottom-right. The grid-labelled

graph in Figure 3.19 has 3 downhill edges and 2 uphill edges. In order for a grid-

labelled graph to satisfy the degree criterion, the degrees of its vertices must not

change after the partial transpose operation. Each edge of the graph contributes 1

to the degrees of its two incident vertices, v1 and v2. If the edge is diagonal, then

after the partial transpose operation, this edge will contribute 1 to the degrees of

two different vertices, w1 6= v1 and w2 6= v2.

Consider a graph G with a single diagonal edge {(1, 1), (2, 2)}. This graph does

not satisfy the degree criterion, indeed, without much thought we can convince

3.5. 3× 3 GRAPHS THAT SATISFY THE DEGREE CRITERION 107

Figure 3.19: A grid-labelled graph with 2 uphill and 3 downhill diagonal edges.

ourselves that there is no grid-labelled graph with a single diagonal edge that

satisfies it. Let us consider how we can add a single edge to make this graph

satisfy the degree criterion. As we have seen before, horizontal and vertical edges

are invariant under partial transpose, so the edge we add must be diagonal. The

edge added to G must be added in such a way that the degrees remain the same

before and after partial transpose. In order for this to be the case, the new edge

must be placed such that after partial transpose, the vertices (1, 1) and (2, 2) have

degree 1. Also, the vertices to which the edge moves to after partial transpose,

(1, 2) and (2, 1), must have degree 1 before partial transpose. The only edge that

can be added such that the graph will have these two properties is easily seen

to be the edge {(1, 2), (2, 1)}. With this simple reasoning, we have proved that

a grid-labelled graph with two diagonal edges satisfies the degree criterion if

and only if it is LE-isomorphic to B2. Note that this holds for all grid dimensions,

although with larger numbers of vertices we will not be able to guarantee that

this is true so we will stay in 3× 3.

This reasoning about pre- and post-transpose degree properties can be gener-

alised to grid-labelled graphs with more edges via the concept of edge contribu-
tions, which we will explore in the next section.

108 CHAPTER 3. GRID STATES

3.5.1 Edge contributions

Definition 3.5.2 (Edge contribution matrix) LetG be an a×b grid-labelled graph
with edge set E. For each diagonal edge {(i, j), (k, l)} ∈ E, define its a × b edge

contribution matrix A(i,j),(k,l) such that

[A(i,j),(k,l)]pq :=


+1 if p = i, q = j or p = k, q = l;

−1 if p = i, q = l or p = k, q = j;

0 otherwise.

Definition 3.5.3 (Graph contribution matrix) Let G be a grid-labelled graph
with diagonal edge set D ⊆ E(G). The contribution matrix of G is defined

C(G) =
∑

{(i,j),(k,l)}∈D

A(i,j),(k,l). (3.2)

The contribution matrix of a grid-labelled graph encodes the pre- and post-

transpose degree contributions of all its edges. If the partial transpose changes

the degree of a vertex, then this means that there is some edge whose pre- and

post-transpose degree contribution do not match and cancel out. Hence there is

a non-zero component somewhere in the contribution matrix of the graph.

Lemma 3.5.4 Let G be a grid-labelled graph with contribution matrix C(G). Then
G satisfies the degree criterion if and only if C(G) is equal to the a× b matrix with
all entries equal to 0.

Proof. Let G be a grid-labelled graph. Without loss of generality we may assume

that it contains only diagonal edges. From the definition of the contribution

matrix of a graph it is clear that for each vertex (i, j) ∈ V (G) with degree d, there

will be d edge contribution matrices in the sum in Equation (3.2) that have +1

for their ijth element.

If G satisfies the degree criterion then for each vertex (i, j) ∈ V (G) with degree

d there will be d edges {(i, l), (k, j)} ∈ E(G) such that after partial transpose, an

endpoint of each edge will be the vertex (i, j). By definition, the edge contribution

3.5. 3× 3 GRAPHS THAT SATISFY THE DEGREE CRITERION 109

matrices of these edges will have −1 in their ijth entry. Hence, the ijth entry of

C(G) is zero. This is true for all entries of C(G).

For the other direction, if C(G) is equal to the zero matrix then for each element

of the edge contribution matrices in the sum in Equation (3.2) there will be an

equal number of positive and negative entries. This means that the degrees of

the vertices of the graph are the same before and after the partial transpose, by

definition of the graph contribution matrix.

Figure 3.20: A grid-labelled graph that does not satisfy the degree criterion.

Example 3.5.5 The contribution matrix of a graphGwith three edges, {(1, 1), (2, 2)},
{(3, 1), (1, 3)} and {(2, 1), (3, 3)}, as illustrated in Figure 3.20, is

C(G) = A(1,1),(2,2) + A(3,1),(1,3) + A(2,1),(3,3)

=

+1 −1 0

−1 +1 0

0 0 0

+

−1 0 +1

0 0 0

+1 0 −1

+

 0 0 0

+1 0 −1

−1 0 +1



=

0 −1 +1

0 +1 −1

0 0 0

 .

It is clear from the fact that the contribution matrix C(G) is non-zero that the

graph G does not satisfy the degree criterion. However, it is easily checked that

adding the edge {(1, 3), (2, 2)} causes the contribution matrix to become equal

to the zero matrix.

Let us now discuss a method of pictorially representing the contribution matrix

110 CHAPTER 3. GRID STATES

of a graph: contribution tables. We will use this pictorial representation heavily

in the next few sections, where we try to pick out graphs that satisfy the degree

criterion.

Definition 3.5.6 (Contribution table) Let C be an a × b edge contribution ma-
trix of dimension a × b. The contribution table of C is an a × b grid, whose cells
are populated with diagonal dashes running from top-left to bottom-right (down

dashes), or bottom-left to top-right multi-particle (up dashes).
The dash placement on the table corresponding to C is as follows. If Cij = +1 then
place a down dash in the corresponding grid square. If Cij = −1 then place an up
dash in the corresponding grid square.

We call dashes in the same grid square but in different directions complementary.

Two complementary dashes are called a cross (because the drawing looks like an

‘X’). If a cell contains a dash that can not be uniquely paired with a complementary

dash, then that dash is called unmatched. The addition of two contribution tables

is the contribution table with all dashes from both tables. The contribution table

of a graph is the addition of the contribution tables of each of its edges.

Example 3.5.7 The contribution table of the grid-labelled graph G defined in

Example 3.5.5 and illustrated in Figure 3.20 is found to be equal to

+ + = .

The contribution table of G has four crosses and four unmatched dashes.

The next lemma follows directly from Lemma 3.5.4.

Lemma 3.5.8 Let G be a grid-labelled graph. Then G satisfies the degree criterion
if and only if its contribution table contains no unmatched dashes.

Let us now put the contribution table framework to work.

3.5. 3× 3 GRAPHS THAT SATISFY THE DEGREE CRITERION 111

3.5.2 3× 3 degree criterion with 2 diagonal edges

It turns out that the only way to arrange two diagonal edges such that the result

satisfies the degree criterion is to arrange them so that they cross over: the criss-

cross graph. We prove this in the 3 × 3 case with the following lemma, which

will come in handy later because a lot of the analysis to come will require us to

reason about the number of crosses in a contribution table.

Lemma 3.5.9 Let G be a grid-labelled graph with m edges. If G satisfies the degree
criterion, then its contribution table will contain exactly 2m crosses.

Proof. By definition, each edge in a grid-labelled graph contributes 4 dashes to the

contribution table, so there are 4m dashes on the table. If a grid-labelled graph

satisfies the degree criterion, then we know that each dash must be matched.

A ‘match’ consists of two dashes, meaning there are 4m/2 = 2m crosses on the

table.

Lemma 3.5.10 Let G be a 3× 3 grid-labelled graph with 2 diagonal edges. Then G
satisfies the degree criterion if and only if it is locally isomorphic to B2.

Proof. From Lemma 3.5.9, it follows that any graph with 2 edges that satisfies

the degree criterion must have a table with 4 crosses, for example,

, and , etc.

There are of course several additional tables that have 4 crosses. However, not

all of these are associated with a grid-labelled graph. For example, it is clear that

there is no 2 edge graph that will have the table

.

112 CHAPTER 3. GRID STATES

The only valid tables are those with four crosses in a rectangular placement, as

illustrated in the first example. It is clear that the only grid-labelled graphs which

lead to such tables are locally isomorphic to B2.

In proving Lemma 3.5.10 we have seen that there exist contribution tables that

do not correspond to graphs. If a contribution table does not correspond to a

graph then we call it invalid. The following lemma will be useful.

Lemma 3.5.11 If a 3 × 3 contribution table has a column or row with only 1

non-empty cell then it is invalid.

Proof. By definition, the sum of any number of edge contribution matrices will

never produce a matrix with a column or row with only 1 non-zero entry. Hence,

no contribution table will have a column or row with only 1 non-empty cell.

Figure 3.21: Two grid-labelled graphs that have the same contribution table. Note that
they both satisfy the degree criterion.

Analogously to the case for grid-labelled graphs, we say that two contribution

tables that can be obtained from one another by permuting rows and columns are

locally isomorphic. Two locally isomorphic graphs will have locally isomorphic

contribution tables. However, the converse is not the case: consider the pair of

graphs in Figure 3.21. Both of these have the same contribution table, since both

satisfy the degree criterion. However, they are not locally isomorphic graphs. It

is clear that for a valid contribution table, there is a set of graphs that have that

3.5. 3× 3 GRAPHS THAT SATISFY THE DEGREE CRITERION 113

contribution table. If two valid contribution tables are locally isomorphic, then

the set of corresponding graphs for one can be obtained from the set for the other

by performing the corresponding local isomorphisms to the grid-labelled graphs.

Using these observations, we can proceed with our characterisation of the 3× 3

grid-labelled graphs that satisfy the degree criterion. In what follows we will

consider all valid contribution tables for a fixed number of edges, then we will

work out the grid-labelled graphs that can correspond to such contribution ta-

bles. It does not make sense to consider pairs of contribution tables which can

be obtained from one another by rotation since we are only interested in the

“topological” properties of the graphs that satisfy the degree criterion.

3.5.3 3× 3 degree criterion with 3 diagonal edges

Lemma 3.5.12 A 3 × 3 grid-labelled graph G with 3 diagonal edges satisfies the
degree criterion if and only if it is locally isomorphic to B3 or a rotation of B3.

Proof. From Lemma 3.5.9 we know that any 3× 3 grid-labelled graph G with 3

diagonal edges which satisfies the degree criterion has a contribution table with

6 crosses. It can be verified by direct inspection that all valid 6 cross contribution

tables are locally isomorphic to rotations of

,

which can only be the contribution table of a grid-labelled graph locally isomor-

phic to B3.

Notice that our reasoning so far about grid-labelled graphs with 2 or 3 edges

that satisfy the degree criterion is valid for arbitrary grid-labelled graphs, not just

3× 3. Indeed, this observation along with Lemmas 3.5.10 and 3.5.12 can be used

to prove the following.

114 CHAPTER 3. GRID STATES

Theorem 3.5.13 A grid-labelled graph G with 2 (resp. 3) diagonal edges is separa-
ble if and only if G ' B2 (resp. G ' B3).

Proof. We know from Lemmas 3.5.10 and 3.5.12 that a 3× 3 grid-labelled graph

with 2 (resp. 3) diagonal edges satisfies the degree criterion if and only if it is

locally isomorphic to B2 (resp. a rotation of B3). The reasoning in the proofs

of these lemmas is independent of grid dimension. It is clear from the structure

of B2 and B3 that all grid-labelled graphs that are LE-isomorphic to rotations of

these grid-labelled graphs are row or column stratified. From Theorem 3.4.25,

such grid-labelled graphs are separable.

3.5.4 3× 3 degree criterion with 4 and 5 diagonal edges

Lemma 3.5.14 A 3×3 grid-labelled graph with 4 diagonal edges satisfies the degree
criterion if and only if it is locally isomorphic to B4 or the union of two grid-labelled
graphs locally isomorphic to B2.

Proof. From Lemma 3.5.9, we know we must only consider tables with 8 crosses.

We leave to the reader to verify that the only ways of placing 8 crosses on a table

such that the table is valid correspond to placements that are locally isomorphic

to

, (3.3)

or locally isomorphic to rotations of either

, (3.4)

3.5. 3× 3 GRAPHS THAT SATISFY THE DEGREE CRITERION 115

Figure 3.22: Edges that can be removed from the contribution table in Equation (3.3)
that lead to a valid contribution table.

or

. (3.5)

Let us now reason about which edges a grid-labelled graph must have to attain

the tables (3.3), (3.4), and (3.5), starting with (3.3).

Without loss of generality we may pick any edge supported by the table as a

starting point. However, selecting some edges will lead us to a dead-end, unable

to proceed further. For an example of an edge leading to a dead-end, let us choose

{(1, 1), (3, 3)}, removing its associated dashes from the table. This leaves us with

.

Removing any edge from this table will cause it to have at least 1 row or column

with an isolated cross. From Lemma 3.5.11, we know that this will mean the

table is invalid.

Indeed, the only single diagonal edges that can be removed from the table in

(3.3) that do not lead to a dead-end are those belonging to the graph illustrated

in Figure 3.22. Removal of any one of these 8 edges results in a table locally

116 CHAPTER 3. GRID STATES

isomorphic to a rotation of

.

We leave it to the reader to check that proceeding in this way to add edges to

the graph to clear the contribution table will yield the graph B4. Likewise, each

rotation of the table will yield a graph that is locally isomorphic to B4.

All there is left to prove is that the graphs compatible with tables (3.4) and (3.5)

are exclusively made up of the union of two graphs locally isomorphic to B2.

Indeed, this is self-evident. The only compatible grid-labelled graphs are those

with their edges arranged into two criss-crosses.

Before continuing to the 5 edge case, it will be useful to have the following

technical lemmas. The first concerns adding single edges to a graph that satisfies

the degree criterion.

Lemma 3.5.15 Let G be a grid-labelled graph that satisfies the degree criterion,
and let G′ be a grid-labelled graph obtained by adding a single diagonal edge to G.
Then G′ does not satisfy the degree criterion.

Proof. Since G satisfies the degree criterion, when considering how to add edges

to it to preserve the degree criterion it is logically equivalent to considering

adding edges to the empty graph. We know that a graph with a single diagonal

edge never satisfies the degree criterion, which proves the lemma.

The next lemma will make the 5 edge case easier to prove.

Lemma 3.5.16 Let G be a 3× 3 grid-labelled graph with 5 edges that satisfies the
degree criterion. If G has 6 vertices with degree 1, and 2 vertices with degree 2, then
G is equal to the union of two graphs locally isomorphic to B2 and B3.

Proof. We will consider a number of possible edge contribution tables. Each

will have 6 cells containing a single cross (corresponding to the 6 vertices with

degree 1), 2 cells containing a double cross (corresponding to the 2 vertices with

degree 2), and a single empty cell. As before, we will start with a particular edge

3.5. 3× 3 GRAPHS THAT SATISFY THE DEGREE CRITERION 117

contribution table, and attempt to clear it by adding edges to an empty 3 × 3

grid-labelled graph. If we can not clear the table by adding edges, we know that

the table is invalid. In order to clear a single cross from the table, 2 edges must

be added. In order to clear a double cross from the table, it is clear that 4 edges

must be added. A double cross can be in the same row (resp. column) as the

empty cell, or on a different row (resp. column).

Let us reason about both cases now. Without loss of generality, assume 1 of the

double cross cells is on the same row as the empty cell. Then the table is locally

isomorphic to the following,

,

where the black dots denote cells whose contents are irrelevant to the proof. It

is obvious that the empty cell restricts the choice of edges that can be selected

to remove the double cell. To remove each dash from the double cell under

consideration, the four edges in the following graph must be selected,

,

because these are the only edges that are compatible with such a contribution

table. Selecting these four edges will produce a grid-labelled graph that is locally

isomorphic to the union of 2 grid-labelled graphs locally isomorphic to B2. We

know by Lemma 3.5.15 that a single edge cannot be added to such a graph to

produce a grid-labelled graph that satisfies the degree criterion. Such tables are

therefore invalid. When a double cross cell is not on the same row as the empty

118 CHAPTER 3. GRID STATES

cell then the table is locally isomorphic to the following:

.

To remove all the dashes from the double cross cell, 4 of the 6 edges from the

following grid-labelled graph must be selected:

.

It is impossible to choose 4 edges from this grid-labelled graph without intro-

ducing a subgraph locally isomorphic to B2. Any remaining edges added to this

grid-labelled graph in such a way that it would still satisfy the degree criterion

would need to be from a grid-labelled graph that itself satisfied it. By Lemma

3.5.12, the only three edge graphs that have this property are locally isomorphic

to B3. The lemma then holds.

Lemma 3.5.17 A 3 × 3 grid-labelled graph G with 5 diagonal edges satisfies the
degree criterion if and only if it is locally isomorphic to B5 or has a decomposition
into two graphs locally isomorphic to rotations of B2 and B3 respectively.

Proof. By Lemma 3.5.9 we must consider all tables with 10 crosses. There are a

limited number of ways of placing 10 crosses on a 3×3 table that lead to the table

being valid. In order to fit all the crosses on the table, there must be some cells

of the table that have double crosses. In Lemma 3.5.16 we have seen that we

don’t need to consider the tables with 2 double crosses. It is obvious that tables

3.5. 3× 3 GRAPHS THAT SATISFY THE DEGREE CRITERION 119

with more than 2 double crosses are invalid, so, we must only consider the tables

with a single double cross. We can reason about these tables by considering the

example

, (3.6)

to which all others of this kind are locally isomorphic. To eliminate the double

cross in the middle of the table, 4 edges from the graph

. (3.7)

must be selected. It is clear that the 4 edges must be chosen such that there is

no subgraph locally isomorphic to B2. If there was a such a subgraph, then the

remaining 3 edges would need to form a graph locally isomorphic to B3 in order

for the degree criterion to be satisfied, and we have already considered such a

case. Consider the removal of the downhill edge {(1, 1), (2, 2)}. This leads to the

table

.

Clearly the remaining three edges we must choose from Table (3.7) must be

chosen to be downhill, as there is no other way of selecting edges without intro-

ducing isolated crosses on rows or columns. If instead we chose our first edge

to be uphill, by similar reasoning the remaining three must also be chosen to be

uphill.

120 CHAPTER 3. GRID STATES

We can then observe that removal of 4 uphill or downhill edges from the board

(3.6) in the way described leaves a single edge in the direction that completes

the grid-labelled graph G5. Hence, the lemma is proved.

The next lemma is proved in Appendix A.3.

Lemma 3.5.18 Let G be a grid-labelled graph with 6 ≤ e ≤ 9 diagonal edges. If G
satisfies the degree criterion, then it has a decomposition {X1, . . . , Xn} where for
all 1 ≤ i ≤ n, Xi is locally isomorphic to a rotation of a building-block graph.

Lemma 3.5.19 Let G be a grid-labelled graph with e ≥ 6 diagonal edges. If G
satisfies the degree criterion, then it has a decomposition {X1, . . . , Xn} where for
all 1 ≤ i ≤ n, Xi is locally isomorphic to a rotation of a building-block.

Proof. A 3 × 3 grid-labelled graph can have up to 18 diagonal edges. If a 3 × 3

grid-labelled graph has 10 or more diagonal edges, then it is obvious that it must

contain a subgraph locally isomorphic to B2. The remainder of the cases, graphs

with 6 ≤ e ≤ 9 diagonal edges, are covered in Lemma 3.5.18 which is proved in

Appendix A.3. The lemma then follows by induction.

We can finally outline a catalogue of the 3 × 3 grid-labelled graphs that satisfy

the degree criterion.

Theorem 3.5.20 A 3 × 3 grid-labelled graph satisfies the degree criterion if and
only if it has a decomposition {X1, . . . , Xn} where each Xi is locally isomorphic to
a rotation of a building-block.

Proof. It is obvious that a grid-labelled graph obtained as a union of building-

block graphs will satisfy the degree criterion, because each building-block graph

satisfies it.

Let us now prove the other direction. Let G be a grid-labelled graph that sat-

isfies the degree criterion. From Lemmas 3.5.10, 3.5.12, 3.5.14 and 3.5.17 we

know that if G has 2 ≤ m ≤ 5 diagonal edges then it is locally isomorphic to

a building-block Bm, or has a decomposition into grid-labelled graphs that are

locally isomorphic to building-blocks, or rotations of building blocks.

Finally, from Lemma 3.5.19, we know that this is also true for graphs with 6 or

more diagonal edges. This concludes the proof.

3.5. 3× 3 GRAPHS THAT SATISFY THE DEGREE CRITERION 121

We have characterised all of the 3× 3 grid-labelled graphs that satisfy the degree

criterion. We have found that such grid-labelled graphs satisfy the degree crite-

rion if and only if they are built out of a small set of “building-block graphs”. It

is reasonable to assume that the same is true for the grid-labelled graphs on a

larger grid. A natural question is how the size of the building-block set grows as

a function of grid dimension.

In some cases, we can apply these results to characterising not just graphs that

satisfy the degree criterion, but graphs that are separable in 3× 3 and higher. In

particular, Theorem 3.5.13 characterises all separable graphs with 2 or 3 diagonal

edges (note that all graphs with a single diagonal edge are entangled: they never

satisfy the degree criterion).

In arbitrary dimensions a, b there are of course a finite number of graphs with

fixed number of edges k that satisfy the degree criterion. Finding all of the build-

ing blocks for k = 4 and k = 5 case would be an interesting extension of the

work in this section.

In Appendix A.2 we consider enumerating entangled grid-labelled graphs in some

more detail. A fascinating question that we have not yet considered would be

to count how many graphs satisfy the degree criterion as a function of k, when

fixed grid dimensions are not taken into account. The reasoning to be used in

this case would be exactly equivalent to what we have done in this section, but

on an infinite grid and with infinite sized contribution tables.

3.5.5 Bound entanglement

As we will verify in sections to come, not all of the 3×3 building-blocks correspond

to separable states. It is possible to verify via the matrix realignment criterion
[151], and the range criterion that both B4 and B5 correspond to entangled

states. Recall that the Peres-Horodecki criterion is not necessary and sufficient in

all bipartite dimensions. Likewise, the degree criterion is not sufficient for 3× 3

grid-labelled graphs, and so here we have two graphs B4 and B5 with density

matrices positive under partial transpose, but that are entangled. Such states are

known as bound entangled states. The term seems to originate in a 1998 work

[156] of Michał, Paweł, and Ryszard Horodecki, where they show that if a mixed

122 CHAPTER 3. GRID STATES

state is distillable then it must not be positive under partial transpose. It is possible

to transform some number of mixed entangled states into a smaller number of

arbitrarily pure entangled pairs via a process called entanglement distillation
[157]. The Horodeckis [156] showed that in order for this distillation process to

work, the state must not satisfy the PPT criterion. They showed that this implied

that some entangled states were not distillable, the entanglement was “bound-up”

in an inaccessible form in the state itself and couldn’t be extracted into a form

usable in quantum protocols e.g. teleportation. 3

The problem of characterising these bound entangled states has attracted some

attention from theorists. Whole families of bound entangled states, mostly in

C3 ⊗ C3 have been discovered, such as the pyramid and tile states of Bennett

et al. [176], revisited some time later in [175] to generalise them to higher

dimensions; the checkerboard states [171] which stem from an early example

of a bound state discovered by Bruß and Peres [172]; and the so called Smolin
state [164]. The existence of bound entangled states has been experimentally

verified, with bound entanglement being prepared in the polarization of photons

[158, 161], and also in the continuous variable setting [159, 160]. On the more

theoretical side, certain characterisations of bound entanglement in terms of the

rank of the density matrix have been attempted [178, 179, 167, 169, 170], with

[167] in particular showing that there are no bipartite bound entangled states of

rank 2.

While bound entanglement cannot be distilled, it has been shown that they can be

used in so called activation protocols [162] to improve fidelity of some quantum

communication protocols, and also can achieve teleportation with better than

classical fidelity [180]. It was shown by Masanes [163] that all bound entangled

states can in some way be used as a non-classical resource. It has also been

shown that bound entanglement has applications in a cryptographic context for

the generation of secure private keys [165, 177].

In the previous paragraphs we alluded to the matrix realignment and range

entanglement criteria, which are often used to show that a particular state is

bound entangled. In the next two sections we will apply these criteria to grid

3Contrast this with free states, the term used in [156] for entangled states that are not bound
which hasn’t caught on.

3.6. MATRIX REALIGNMENT CRITERION 123

states, showing that they can be recast in terms of graph structure.

3.6 Matrix Realignment Criterion

The matrix realignment criterion is defined in terms of the Ky Fan norm of the

realigned density matrix of the state under consideration. Let us define these

concepts.

Let M be an m× n matrix. Then its vectorization is the (m · n)-dimensional row

vector

vec(M) :=
(

[M]11 [M]21 . . . [M]m1 [M]12 . . . [M]mn

)
.

The vectorization of the blocks of a matrix are used to realign it:

Definition 3.6.1 (Realigned matrix) Let M be an m×m block matrix with n×n
blocks Mij. The realignment of M with respect to n is the m2 × n2 matrix

Rn(M) :=



vec(M11)
...

vec(Mm1)
...

vec(M1m)
...

vec(Mmm)


.

Definition 3.6.2 (Ky Fan Norm) The Ky Fan norm of a matrix M is the quantity

‖M‖K =
∑
i

si(M),

where si is the ith singular value of M .

The following theorem describes the entanglement criterion.

124 CHAPTER 3. GRID STATES

Figure 3.23: A grid-labelled graph, the Laplacian of which we will realign.

Theorem 3.6.3 (Matrix realignment criterion [151]) Let ρ be the density ma-
trix of a bipartite quantum state with state space Cm ⊗ Cn. If ‖Rn(ρ)‖K > 1, then
ρ is entangled.

3.6.1 Realignment of combinatorial Laplacian matrices

The density matrices we consider in this work are real matrices. It is well known

that for any real matrix M ,

si(M) =
√
λi(MT ·M) =

√
λi(M ·MT),

where λi(M) denotes the ith eigenvalue of a matrix M . The fact thatMT ·M (resp.

M ·MT) is real and symmetric implies that si(M) ∈ R. Thus, to apply the matrix

realignment criterion to the bipartite quantum state ρ acting on Cm⊗Cn we will

require the eigenvalues of the matrices Rn(ρ)T · Rn(ρ) and Rn(ρ) · Rn(ρ)T . The

non-zero eigenvalues of both matrices are identical. Therefore, without loss of

generality, we need only consider the eigenvalues of Rn(ρ) ·Rn(ρ)T . In particular,

we will determine the form of Rn(ρ) · Rn(ρ)T when ρ is the density matrix of a

grid-labelled graph.

Xie et al. [143] briefly study the matrix realignment criterion for combinatorial

Laplacian matrices and present a structural entanglement criterion. In what fol-

3.6. MATRIX REALIGNMENT CRITERION 125

lows we go further, finding a general form for the realigned Laplacian, and using

it to find an algebraic entanglement criteria for grid-labelled graphs.

The best way to understand the structure of a realigned Laplacian matrix is to

calculate one explicitly. Consider the graph illustrated in Figure 3.23. With some

work we can write out its Laplacian matrix

L =



2 −1 0 0 0 0 0 0 0 0 −1 0

−1 2 0 0 0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0 0 −1 0 0

0 0 0 1 0 0 0 0 −1 0 0 0

0 0 0 0 1 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 3 −1 0 −1 0

0 0 0 −1 0 0 0 −1 3 0 0 −1

0 0 −1 0 0 0 0 0 0 1 0 0

−1 0 0 0 0 0 0 −1 0 0 2 0

0 0 0 0 0 0 0 0 −1 0 0 1



.

Realigning according to Definition 3.6.1 we obtain

R4(L) =



2 −1 0 0 −1 2 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 −1 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

1 0 −1 0 0 0 0 0 −1 0 1 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 0

0 0 0 −1 0 0 −1 0 −1 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0 −1 0 0 0 0

3 0 0 −1 0 1 0 0 0 0 2 0 −1 0 0 1


.

In the above, certain matrix elements are highlighted in bold. These are the

entries that are on the diagonal of L, which represent the vertex degrees. From

inspection of the above, it is clear that the realigned Laplacian matrix provides

126 CHAPTER 3. GRID STATES

a “topographic” view of the grid-labelled graph with vertex degrees stored in

a grid layout, and with edge information between them. Note for example the

edge between vertices (1, 1) and (1, 2), which manifests itself in the realigned

Laplacian as −1 entries at positions 1, 2 and 1, 5.

We leave it to the reader to convince themselves that this topographic structure,

in which the matrix directly represents how the graph is oriented on the plane, al-

ways emerges when the Laplacian is realigned. We use this topographic structure

to our advantage. In particular, consider a grid-labelled graph with no horizontal

or vertical edges. It is easy to see that the realigned Laplacian matrix for such a

graph will take the following form,

where the filled blocks denote the parts of the matrix where the diagonal edge

information is. Let G be an a×b grid-labelled graph with no horizontal or vertical

edges. We use the matrix structure to find a general form of the matrix Rb(L(G)) ·
Rb(L(G))T . We have that

Rb(L(G)) = Rb (D(G)− A(G))

= Rb (D(G))−Rb (A(G)) .

We know from the structure of the realigned matrices that for G with no hori-

zontal or vertical edges, Rb(D(G)) ·Rb(A(G))T = Rb(A(G)) ·Rb(D(G))T = 0, and

3.6. MATRIX REALIGNMENT CRITERION 127

so

Rb(L(G)) ·Rb(L(G))T = (Rb(D(G))−Rb(A(G))) · (Rb(D(G))−Rb(A(G)))T

= Rb(D(G)) ·Rb(D(G))T +Rb(A(G)) ·Rb(A(G))T .

The first term is easily obtained by direct computation

Rb(D(G)) ·Rb(D(G))T =

b∑
j=1



d((1, j))2 0 . . . 0 d((1, j))d((2, j)) 0 0 d((1, j))d((b, j))

0 0 0
...

...
...

0 0 0

d((2, j))d((1, j)) 0 . . . 0 d((2, j))2 0 0 d((2, j))d((b, j))

0 0 0
...

...
...

...
...

...

0 0 0

d((a, j))d((1, j)) 0 . . . 0 d((a, j))d((2, j)) 0 0 d((a, j))d((b, j))



.

Now we will find a general form for the realigned adjacency matrix. In order to

do so, we will make use of the following definitions.

Definition 3.6.4 (Row subgraphs) Let G be an a × b grid-labelled graph. Then
R(G, i, j) is a row subgraph of G: the 2× b grid-labelled graph with edge set

{{(c(i), p), (c(j), q)} : {(i, p), (j, q)} ∈ E(G)},

where c(i) = 1 and c(j) = 2.

Equivalently, R(G, i, j) is the graph with vertex set populated with all vertices

from rows i and j ofG, and edge set populated by all edges strictly between those

rows, and endpoints in different rows. Note that for any grid-labelled graph, all

128 CHAPTER 3. GRID STATES

Figure 3.24: From left to right, a grid-labelled graph G, and row subgraphs
R(G, 1, 2), R(G, 1, 3), R(G, 3, 2) ⊆ G.

edges of any row subgraph Ri,i are horizontal, and also for any R(G, i, j),

R(G, i, j) = Γ(R(G, i, j)).

In Figure 3.24 we illustrate several row subgraphs.

Definition 3.6.5 (Intersection) Let G and H be grid-labelled graphs. Their inter-

section is the grid-labelled graph G ∩H with edge set E(G) ∩ E(H).

The following lemma will aid us in what is to come.

Lemma 3.6.6 Let G be a grid-labelled graph with adjacency matrix A. Then,

[
Rb(A) ·Rb(A)T

]
ij

= r(i mod a, di/ae; j mod a, dj/ae),

where

r(i, j; k, l) := |E(R(G, i, j) ∩R(G, k, l))|.

Proof. By definition,

Rb(A(G)) ·Rb(A(G))T =


vec(A11)

vec(A21)
...

vec(Aaa)

 ·
(

vec(A11)T vec(A21)T . . . vec(Aaa)
T
)
,

3.6. MATRIX REALIGNMENT CRITERION 129

where the n× n blocks Aij of A have the form

Aij =


e(i, 1; j; 1) e(i, 1; j, 2) . . . e(i, 1; j, b)

e(i, 2; j; 1) e(i, 2; j, 2) . . . e(i, 2; j, b)
...

...

e(i, a; j; 1) e(i, a; j, 2) . . . e(i, a; j, b)

 ,

where the function e(p, q; r, s) is equal to 1 if there is an edge {(p, q), (r, s)} ∈
E(G), and is equal to 0 otherwise. Hence, the matrix Aij encodes the edges from

row i to row j. Clearly

vec(Aij) · vec(Akl)
T =

b∑
p,q=1

e(i, p; j, q)e(k, p; l, q)

= |E(R(G, i, j) ∩R(G, k, l))| =: r(i, j; k, l).

Therefore,

[
Rb(A(G) ·Rb(A(G)T

]
ij

= vec(Aimod a,di/ae) · vec(Ajmod a,dj/ae)
T

= r(i mod a, di/ae; j mod a, dj/ae).

Since G has no horizontal or vertical edges, we have seen from the discussion

previously about the topographic structure of these matrices that Rb(L(G)) =

Rb(D(G)) ·Rb(D(G))T +Rb(A(G)) ·Rb(A(G))T .

For a graph with no horizontal or vertical edges, we can make use of the structure

of the matrices Rb(D(G)) ·Rb(D(G))T and Rb(A(G)) ·Rb(A(G))T to simplify fur-

ther. It is clear from looking at our exploration of the structure of these matrices

above that they have disjoint supports. In this case then the matrix Rb(L(G)) is

permutation similar to a matrix D(G) ⊕ A(G), where D(G) and A(G) are the

degree structure and adjacency structure matrices of G respectively, which we now

define. Recall that d((i, j)) is the degree of the vertex (i, j) ∈ V (G).

130 CHAPTER 3. GRID STATES

Definition 3.6.7 (Degree structure matrix) LetG be an a×b grid-labelled graph.
Then the degree structure matrix of G is the a× a matrix with entries

[D(G)]i,j :=
b∑

p=1

d((i, p))d((j, p)).

Definition 3.6.8 (Adjacency structure matrix) Let G be an a × b grid-labelled
graph with all edges diagonal. Then the adjacency structure matrix of G is the
a(a− 1)× a(a− 1) matrix

A(G) :=



r(1, 2; 1, 2) r(1, 2; 1, 3) . . . r(1, 2; 2, 1) . . . r(1, 2; a, a− 1)

r(1, 3; 1, 2) r(1, 3; 1, 3) . . . r(1, 3; 2, 1) . . . r(1, 3; a, a− 1)
...

...
...

...
r(2, 1; 1, 2) r(2, 1; 1, 3) . . . r(2, 1; 2, 1) . . . r(2, 1; a, a− 1)

...
...

...
...

r(a, a− 1; 1, 2) r(a, a− 1; 1, 3) . . . r(a, a− 1; 2, 1) . . . r(a, a− 1; a, a− 1)


,

where we take r(i, j; k, l) to be equal to |E(R(i, j)) ∩ E(R(k, l))|.

It is obvious that the degree and adjacency structure matrices of any a× b grid-

labelled graph G with no horizontal or vertical edges can be obtained from

Rb(D(G)) · Rb(D(G))T and Rb(A(G)) · Rb(A(G))T respectively, by applying suit-

able permutations and discarding empty rows and columns. We are concerned

only with the eigenvalues of these matrices, so empty rows and columns are not

important.

We have thus proved the following theorem, where the factor 1/2e is for normal-

isation.

Theorem 3.6.9 Let G be a grid-labelled graph with e edges, all diagonal. Let Λ :=

sp(A(G)) and Θ := sp(D(G)) be the set of non-zero eigenvalues of the adjacency
structure and degree structure matrices of G. Then

‖Rb(ρ(G))‖K =
1

2e

(∑
λ∈Λ

√
λ+

∑
θ∈Θ

√
θ

)
.

3.6. MATRIX REALIGNMENT CRITERION 131

In the next section we will use this theorem to demonstrate an infinite family

of entangled quantum states that are not detected by the matrix realignment

criterion.

3.6.2 Failure of the matrix realignment criterion

In order to proceed, we require the following two definitions.

Definition 3.6.10 (Row orthogonality) Let G be a grid-labelled graph. We say
that G is row orthogonal if for all i, j ∈ [m] and k ∈ [n],

d((i, k))d((j, k)) 6= 0

if and only if i = j.

Equivalently, we say that two rows of vertices are orthogonal if each column (two

vertices aligned vertically) has at least one isolated vertex. A grid-labelled graph

is then row orthogonal if all of its vertex rows are pairwise orthogonal.

Definition 3.6.11 (Singleton edge) LetG be a grid-labelled graph. An edge {v1, v2} ∈
E(G) is described as a singleton if

d(v1) = d(v2) = 1.

We can now prove the following theorem.

Theorem 3.6.12 Let G be a 2× b row orthogonal grid-labelled graph with e edges,
such that all edges are singleton and diagonal. If e ≥ 4 then ‖Rb(ρ(G))‖K ≤ 1.

Proof. Since G has a = 2 rows,

A(G) =

(
r(1, 2; 1, 2) r(1, 2; 2, 1)

r(2, 1; 1, 2) r(2, 1; 2, 1)

)
,

and

D(G) =
b∑

j=1

(
d((1, j))2 d((1, j))d((2, j))

d((2, j))d((1, j)) d((2, j))2

)
.

132 CHAPTER 3. GRID STATES

Since G is row orthogonal,

r(1, 2; 2, 1) = r(2, 1; 1, 2) = 0,

and

b∑
j=1

d((1, j))d((2, j)) =
b∑

j=1

d((2, j))d((1, j)) = 0,

so both A(G) and D(G2,b
l) are diagonal. Hence,

‖Rb(ρ(G))‖K =

√
r(1, 2; 1, 2) +

√
r(2, 1; 2, 1) +

√∑b
j=1 d((1, j))2 +

√∑b
j=1 d((2, j))2

2e

=
2
√
e+

√∑b
j=1 d((1, j))2 +

√∑b
j=1 d((2, j))2

2e
.

Since all edges are singleton, all degrees are either 0 or 1. This means that

‖ρ(G)‖K =
4
√
e

2e

=
2√
e
,

from which the theorem follows.

The fact that such grid-labelled graphs are row orthogonal means that they do not

satisfy the degree criterion. Since the degree criterion is necessary and sufficient

for separability for grid-labelled graphs with a = 2 (Theorem 3.4.7), these grid-

labelled graphs describe quantum states that are entangled. An example of a

family of grid-labelled graphs with the properties described in Theorem 3.6.12

are the 2× 2k graphs with edge sets

Ek :=
k⋃
i=1

{
{(1, 2i− 1), (2, 2i)}

}
for k ≥ 4. For example, the k = 4 case corresponds to the quantum state with

3.6. MATRIX REALIGNMENT CRITERION 133

density matrix

ρ =
1

4

(
|1, 1; 2, 2〉〈1, 1; 2, 2|+ |1, 3; 2, 4〉〈1, 3; 2, 4|

+ |1, 5; 2, 6〉〈1, 5; 2, 6|+ |1, 7; 2, 8〉〈1, 7; 2, 8|
)

acting on C2 ⊗ C8.

In this section we have applied the matrix realignment criterion to grid-labelled

graphs. We showed that entanglement in grid-labelled graphs can be detected

using the eigenvalues of their adjacency and degree structure matrices. We used

this result to construct a family of entangled quantum states that are not detected

as entangled by the matrix realignment criterion. Let us conclude by explicitly

calculating the adjacency and degree structure matrices for an example grid-

labelled graph, in the hope that it will be illuminating for the reader.

Example 3.6.13 Let us calculate the degree and adjacency structure matrices

for an example graph.

D




=




=

2 3 2

3 9 6

2 6 5


As illustrated above, finding the entries of the degree structure matrix of a m× n
grid-labelled graph amounts to taking the pairwise inner product of the m vectors

134 CHAPTER 3. GRID STATES

of dimension n which have as their entries the degrees of the vertices in that row.

It can be seen that the entries of the adjacency structure matrix are in some sense

equal to the “overlap” of each row subgraph, as we now illustrate pictorially:

A




=





=



2 0 0 2 0 1

0 0 0 0 0 0

0 0 2 1 0 2

2 0 1 3 0 2

0 0 0 0 0 0

1 0 2 2 0 3


,

where shaded regions denote the row subgraphs being compared. For example,

the entry at index (6, 3) compares the row subgraphs R1,2 and R2,3, which have

2 edges in their intersection. The entry at index (3, 1) compares R1,2 and R2,1,

which have 0 edges in their intersection.

3.6. MATRIX REALIGNMENT CRITERION 135

3.6.3 Applying the matrix realignment criterion to B4 and B5.

Let us now apply the matrix realignment criterion to the building block B4. Some

calculation yields the following

D(B4) =

3 2 3

2 2 2

3 2 3


which has eigenvalues 2(2±

√
3), and

A(B4) =



1 0 0 1 0 0

0 2 0 0 0 0

0 0 1 0 0 0

1 0 0 1 0 0

0 0 0 0 2 0

0 0 0 0 0 1


which has 4 rows with only diagonal non-zero entries, and so examining these

rows will have two of its eigenvalues equal to 1, and another two of its eigen-

values equal to 2. Hence, applying Theorem 3.6.9 we have that ‖ρ(B4)‖K ≥
(2 + 2

√
2 +

√
2(2 +

√
3) +

√
2(2−

√
3))/8 ≈ 8.3/8 > 1 and so via the matrix

realignment criterion the state is entangled.

The graph B5 is not as convenient to handle as B4, since A(B5) doesn’t have the

136 CHAPTER 3. GRID STATES

almost diagonal form of A(B4). The realigned Laplacian matrix is equal to

Rn(L(B5)) =
1

10



1 0 0 0 1 0 0 0 1

0 0 0 −1 0 0 0 −1 0

0 0 −1 0 0 0 0 0 0

0 −1 0 0 0 −1 0 0 0

1 0 0 0 2 0 0 0 1

0 0 0 −1 0 0 0 −1 0

0 0 0 0 0 0 −1 0 0

0 −1 0 0 0 −1 0 0 0

1 0 0 0 1 0 0 0 1


.

The singular values of this matrix as reported by Mathematica are
√

2(3± 2
√

2)

10
,
1

5
,
1

5
,

1

10
,

1

10

 .

The sum of these is exactly 1, so the matrix realignment criterion is inconclusive.

Confusingly, the IsSeparable method in the QETLAB [154] library reports that

the state is entangled, and that it came to this conclusion by applying the matrix

realignment criterion. Computing the singular values in the NumPy linalg [155]

library yields 9 non-zero singular values, 3 of which are very small. Since the

realigned Laplacian is rank 6 (see that there are exactly 6 linearly independent

rows: rows 1 through 5, and row 7), these 3 small singular values should be

considered to be numerical errors, and be taken to be 0. It is therefore clear

that QETLAB is erroneously reporting that the matrix realignment criteria points

to the state being entangled because it is including these three small non-zero

entries in the sum from the definition of the Ky Fan norm.

While it is not possible to use the matrix realignment criterion to prove it, the

state ρ(B5) does turn out to be entangled. This can be shown using the range

criterion as we see in the next section.

3.7. RANGE CRITERION 137

3.7 Range criterion

In this section we will explore how another entanglement criterion, the range

criterion, can be applied to grid states. First, let us state the criterion in its most

general form. Recall the following from basic linear algebra.

Definition 3.7.1 (Range and kernel of a matrix) Let M be a matrix acting on
a finite dimensional Hilbert space Cd. We say that a vector ~v ∈ Cd is in the range of
M if there is a non-zero vector ~w such that M ~w = ~v. We say that ~v is in the kernel
of M if M~v = ~0.

The set of vectors in the range (resp. kernel) of a matrix M forms a vector space,

which we denote by R(M) (resp. K(M)).

Theorem 3.7.2 (Rank-nullity) LetM be a matrix acting on Cn. Then dim(R(M))+

dim(K(M)) = n.

The following encompasses the range criterion.

Theorem 3.7.3 (Horodecki ’97) Let ρ be a density matrix acting on a multi-
particle Hilbert space Cd1 ⊗ · · · ⊗ Cdn. If ρ is separable then there exists a set
of product vectors P = {|ψ(i)

1 〉 ⊗ · · · ⊗ |ψ
(i)
n 〉}i such that R(ρ) = spanCP .

The following corollary will be useful for our purposes.

Corollary 3.7.4 Let ρ be a density matrix acting on Ca⊗Cb. If for all product states
|ψ〉|φ〉 ∈ Ca ⊗ Cb we have that |ψ〉|φ〉 /∈ R(ρ) then ρ is entangled.

It is possible to use the range criterion to show that ρ(B5) is entangled. The proof

is long and uses only elementary linear algebra, so we relegate it to Appendix

A.1. Let us now dig into the details of how the criterion can be applied to grid

states.

3.7.1 Row and column surgery

In order to apply the range criterion to a grid state, we will need to reason about

its range. The range of a graph Laplacian can be complicated, so we will make

use of a technique called surgery to simplify things.

138 CHAPTER 3. GRID STATES

Figure 3.25: Consider vertex (2, 3) of the top-left graph. Performing row surgery yields
the graph on the top-right, and performing column surgery yields the bottom graph.

Definition 3.7.5 (Row/Column Surgery) Let G be a grid-labelled graph with an
isolated vertex (i, j). Then GR

i,j (resp. GC
i,j) is the graph obtained by performing row

(resp. column) surgery which has two steps:

• CUT: for all edges e ∈ E(G), if e is incident to a vertex in row i (resp. column
j) then remove it.

• STITCH: add the minimum possible number of edges between vertices not in
row i (resp. row j) such that the following property holds: for all vertices
v, w ∈ V (G) not in row i (resp. column j), if there was a path between them
in G then there is a path between them in GR

i,j (resp. GC
i,j).

In Figure 3.25 we show how surgery is performed on a graph. Note that the CUT

step of row surgery on (2, 3) causes vertices (3, 1) and (1, 4) to no longer be in

the same connected component. This is fixed by the STITCH step, where an edge

is added between them. The following proposition shows how we will use this

graph simplification procedure to study the range of a grid-labelled graph.

3.7. RANGE CRITERION 139

Proposition 3.7.6 LetG be a grid-labelled graph with isolated vertex (i, j) ∈ V (G).
For all product vectors |α〉|β〉 ∈ Cm ⊗ Cn, if |α〉|β〉 ∈ R[ρ(G)] then |α〉|β〉 ∈
R[ρ(GR

(i,j))] or |α〉|β〉 ∈ R[ρ(GC
(i,j))].

Before proving this result, we need two lemmata. The first provides a character-

ization of the range of a grid state. For its formulation, we denote by C(G) the

set of connected components of a graph. Here, also disconnected vertices are

considered to constitute a connected component. We also associate with every

grid-labelled graph G the state |G〉 =
∑

(i,j)∈V (S) |ij〉4. This construction can also

be applied to a single connected component S ∈ C(G).

Lemma 3.7.7 Let G be an m × n grid-labelled graph, and let C(G) denote the
set of its connected components. Then |ψ〉 ∈ R(ρ(G)) if and only if |ψ〉 ⊥ |S〉 for
all S ∈ C(G). This implies that for any m × n vertex grid-labelled graph G, the
dimension of the kernel of ρ(G) is equal to the number of connected components
|C(G)|. Therefore, the rank of ρ(G) is equal to m · n− |C(G)|.

Proof. For all graphs G, ρ(G) is Hermitian so |ψ〉 ∈ R(ρ(G)) if and only if |ψ〉 ⊥
K[ρ(G)]. For any connected component S ∈ C(G) with k vertices, ρ(S)|S〉 = 0,

so |S〉 ∈ K[ρ(S)]. Since S is connected, it has a spanning tree T with k− 1 edges.

The edges of T correspond to a set of linearly independent vectors (|ij〉−|kl〉)/
√

2

in the range of R[ρ(S)], so dim(K[ρ(S)]) = k− (k− 1) = 1. Therefore, K[ρ(S)] =

spanC(|S〉).
The density operator ρ(G) can be decomposed in terms of C(G),

ρ(G) =
1

2|E|
∑

{(i,j),(k,l)}∈E(G)

(|ij〉 − |kl〉)(〈ij| − 〈kl|)

=
1

2|E|
∑

S∈C(G)

2|E(S)|ρ(S)

=
∑

S∈C(G)

|E(S)|
|E(G)|

ρ(S).

=
∑

S∈C(G)

|E(S)|
|E(G)|

∑
(i,j),(k,l)∈E(S)

(|ij〉 − |kl〉)(〈ij| − 〈kl|).

4Note that this is not the same as the graph states we consider in Chapter 2.

140 CHAPTER 3. GRID STATES

By definition the components S have no edges or vertices in common, so |ψ〉 ⊥
K[ρ(G)] if and only if |ψ〉 ⊥ K[ρ(S)] = spanC(|S〉) for all S ∈ C(G).

To proceed further, we will need to define the vectors

|Gi,∗〉 :=
∑

(k,l)∈V (G)
k 6=i

|kl〉 (3.8)

and

|G∗,j〉 :=
∑

(k,l)∈V (G)
l 6=j

|kl〉, (3.9)

for any grid-labelled graph G. Then we have:

Lemma 3.7.8 Let G be a grid-labelled graph with m× n vertices. If a state |ψ〉 is
orthogonal to all states in

• {|Si,∗〉 : S ∈ C(G)} and {|i, 1〉, . . . , |i, n〉} then |ψ〉 ∈ R[ρ(GR
(i,j))];

• {|S∗,j〉 : S ∈ C(G)} and {|1, j〉, . . . , |m, j〉} then |ψ〉 ∈ R[ρ(GC
(i,j))].

Proof. It is clear that GR
(i,j) can be obtained by performing surgery on each

connected component of G. For such a component S ∈ C(G), we have that

K[ρ(S)] =
∑

(k,l)∈V (S) |kl〉. Performing the CUT step of surgery on row i of S

removes all edges to vertices in that row, which introduces new isolated vertices.

The STITCH step then ensures that the remnants of the graph remain connected.

Therefore, if a state |ψ〉 is orthogonal to
∑

(k,l)∈V (S) |kl〉 for k 6= i, and is orthogo-

nal to {|i, q〉} for all of the new isolated vertices (i, q), then it is in the range of

ρ(SR(i,j)) by Lemma 3.7.7. It is clear that if |ψ〉 is orthogonal to each of the states

|Si,∗〉 for S ∈ C(G), as well as all the isolated vertex states |i, 1〉, . . . , |i,m〉 intro-

duced by performing CUT on each component then it is in the range of ρ(GR
(i,j))

by Lemma 3.7.7. By similar reasoning, the same is true for the graph obtained

by column surgery.

We may now prove Proposition 3.7.6.

Proof of Proposition 3.7.6. Since (i, j) is isolated then |i, j〉 ∈ K[ρ(G)]. There-

fore, if |α〉|β〉 ∈ R(ρ(G)) then either |α〉 ⊥ |i〉 or |β〉 ⊥ |j〉. Suppose the former

3.7. RANGE CRITERION 141

is the case. Then clearly |α〉|β〉 is orthogonal to all |i, 1〉, . . . , |i,m〉. Further, we

know that for all S ∈ C(G), |α〉|β〉 is orthogonal to |S〉, and so must be orthogo-

nal to |Si,∗〉. Therefore, by Lemma 3.7.8 it must be in the range of ρ(GR
(i,j)). If we

instead assume that |β〉 ⊥ |j〉 then by similar reasoning, |α〉|β〉 ∈ R[ρ(GC
(i,j))].

We can use some consequences of Proposition 3.7.6 to come up with a “graphical

range criterion” and discover some bound entangled grid-states.

3.7.2 Bound entangled graphs via the range criterion

We warm up by proving something we already know, that B4 is entangled. We do

this by showing that there are no product vectors in the range of ρ(B4), which

is achieved by considering the result of performing successive surgeries on the

graph and applying Proposition 3.7.6.

(a) (b) (c)

Figure 3.26: (a) The cross-hatch graph B4 (b) B4 after performing row surgery on
isolated vertex (2, 2) (c) B4 after performing column surgery on isolated vertex (2, 2).

From examining the illustration of graphB4 (Figure 3.26 (a)), we see that it has a

single isolated vertex, (2, 2). Suppose that there is a product vector |ψ〉|φ〉 =: |ψp〉
in the range of ρ(B4). Then we know from Proposition 3.7.6 that this product

vector is in the range of the graph obtained by performing row surgery on this

vertex (illustrated in Figure 3.26 (b)) or of the graph obtained by performing

column surgery (illustrated in Figure 3.26 (c)). In order to understand where

the vector |ψp〉 could fit, we now must understand the ranges of these two new

graphs. We do this by performing more surgeries. When those surgeries are done,

we consider surgeries on the new graphs, and so on.

Let us consider the first graph above, obtained by performing row surgery on B4.

We now have a number of isolated vertices that we could perform surgery on:

142 CHAPTER 3. GRID STATES

(1, 2), (1, 3), (2, 2), (3, 1), and (3, 2). For simplicity, let’s see what happens when we

try performing surgery on the same vertex again, (2, 2). Performing row surgery

on this vertex will eliminate both edges from the graph, leaving us with the 3× 3

empty graph. However, performing column surgery doesn’t remove any edges,

leaving the graph unchanged. In this case, applying Proposition 3.7.6 is useless,

all that we have been able to discover is that if our product vector |ψp〉 is in the

range of ρ(B′4), then it is either in the range of an empty graph, or in the range

of ρ(B′4). Of course, this is a tautology. Performing surgeries on the other isolated

vertices in column 2 has the same effect, we don’t learn anything new about the

range by performing surgery there. It’s clear in general that we can only learn

something new by performing surgery on isolated vertices that are not part of a

full row or column of isolated vertices. We call isolated vertices that are not part

of an isolated row/column viable vertices.
The graph we are considering has 2 viable vertices: (1, 3) and (3, 1). We need

only consider one of these due to symmetry, it’s clear from the structure here

that the surgeries will yield the same graphs. Column surgery on (1, 3) yields the

empty graph, row surgery yields a graph with a single edge {(2, 1), (3, 3)} From

Proposition 3.7.6, we know that if our product vector is in the range of the graph

in Figure 3.26 (c), then it is in the range of either the empty graph, or the single

edge graph above. It’s clear furthermore that any surgery on a viable vertex of

this single edge graph will remove the edge, resulting in the empty graph. Now

we are making progress: if we can show that any sequence of surgeries starting

from vertex (2, 2) in graph B4 will terminate in an empty graph then we have

shown that there are no product vectors in the range of ρ(B4). Proposition 3.7.6

tells us that the product vector |ψp〉 must be in the range of one of these empty

graphs, but this is not possible since the empty graph corresponds to the zero

matrix, which has no non-trivial product vectors in its range.

In Figure 3.27 we summarise the above reasoning with a picture. We illustrate all

sequences of surgeries starting from (2, 2) of B4 (the starting point B4 is marked

with a star on the figure). Note that we cut off part of the tree for brevity, this

part can be obtained easily from symmetry. From examining this “surgery tree” it

is clear that all surgeries will terminate in empty graphs, implying that there are

no product vectors in R(ρ(B4)).

3.7. RANGE CRITERION 143

Figure 3.27: A series of surgeries being performed on B4. We start at the starred graph.

144 CHAPTER 3. GRID STATES

Figure 3.28: The cross-hatch graph B4 in arbitrary grid dimensions.

We therefore have the following.

Lemma 3.7.9 The grid state ρ(B4) is entangled.

The cross-hatch pattern of B4 can be extended to arbitrary grid dimensions, as

illustrated in Figure 3.28. With some thought we can show that this generalised

cross-hatch graph is entangled in all grid dimensions, not just 3× 3.

Theorem 3.7.10 The cross-hatch graph in m× n is entangled for all m,n ≥ 3.

Proof. Examining Figure 3.28, it is clear that the vertices (i, j) ∈ {2, . . . ,m −
1} × {2, . . . , n− 1} are always viable for arbitrary m,n ≥ 3. Performing the CUT

step of row surgery on one of these viable vertices (i, j) removes two edges:

{(i − 1, 1), (i, n)} and {(i, 1), (i + 1, n)}. Likewise, performing the CUT step of

column surgery on (i, j) removes {(1, j− 1), (m, j)} and {(1, j), (m, j+ 1)}. Since

all of the edges in the graph are singleton (see Definition 3.6.11), removing these

edges will not require any application of the STITCH step in the surgery: there

are no connected components that will become disconnected by the CUT step.

We are left with a proper subgraph of the graph we started with. This subgraph

will always have viable vertices, and so another surgery can be performed, which

removes two more edges either running vertically or horizontally. It is clear

that any non-empty subgraph of the original cross-hatch graph has at least two

viable vertices, so surgery can always be performed. Furthermore, each such

subgraph can have surgery performed on it without needing to perform the

3.7. RANGE CRITERION 145

STITCH step and add new edges. Therefore, each surgery always produces a

proper subgraph of the original cross-hatch graph. Therefore, all sequences of

surgeries will terminate in the empty graph, which implies that there are no

product vectors in the range of the original cross-hatch graph.

In proving the above, we have started to get a taste of some techniques we can

apply in our search for bound entangled grid states. First of all, we have identified

a special type of grid-labelled graph: those for which all sequences of surgeries

starting on any of their viable vertices terminate in the empty graph. While not

all entangled grid states have this property (consider the 2× 3 graph with edges

{(1, 1), (2, 2)} and {(2, 2), (1, 3)}: row surgery on (2, 1) unavoidably introduces a

horizontal edge {(1, 1), (1, 3)} that is impossible to remove by subsequent surg-

eries), it is clear that graphs with this property have no product states in their

range, and are therefore entangled. We call these graphs clearable.

The cross-hatch graph has another useful property that helps us in showing

that it is clearable: for all sequences of surgeries, at no point will a STITCH

step need to be applied. This means that all we need to do to prove that it is

clearable is to show that all subgraphs have viable vertices. In general, if a graph

has these two properties then we know that at all stages we will be able to

perform both kinds of surgery (since surgery will always produce a subgraph via

removal of edges), and the number of edges will always decrease. This means

that all sequences of surgeries eventually end up with the empty graph and so

the original graph is clearable. An example of a family of graphs with the “no-

STITCH” property are the graphs where all edges are singleton. This is because all

connected components have either 1 or 2 vertices since they either correspond to

an isolated vertex or they correspond to a singleton edge. If a 2 vertex connected

component becomes disconnected by a CUT, then there is no need to add an

edge to reconnect the vertices since one of them must be on the row or column

that the surgery is being performed with respect to. We can prove the following

about such singleton graphs.

Lemma 3.7.11 Let G be a singleton graph. If for all non-empty subgraphs H ⊆ G,
H has a viable vertex, then G is clearable.

Proof. Trivially, G ⊆ G so it has a non-empty set of viable vertices W . For any

146 CHAPTER 3. GRID STATES

Figure 3.29: The building block graph B5, the “skew mesh” graph, in arbitrary dimen-
sions.

w ∈ W , performing a surgery will remove at least one edge from the graph. Since

G is singleton, none of its components will become disconnected in a way that

requires edges to be added in the STITCH step. Therefore, for all w ∈ W and for

both kinds of surgery, we obtain a proper subgraph Hw ⊂ G, and furthermore,

this subgraph is singleton since edges have only been removed, not added. By

assumption, Hw must have at least one viable vertex. The same reasoning holds

for this new subgraph, and so the process can be iterated until there are no more

edges. Therefore, all sequences of surgeries will result in the empty graph, and

so G is clearable.

Let us now consider a different type of bound entangled graph, the generalisation

of B5, as illustrated in Figure 3.29. We are not able to apply Lemma 3.7.11 here

since such graphs are not singleton. However, we can strengthen Lemma 3.7.11

into something more useful by considering which edges could potentially be

added by any STITCH step. Consider a connected component of a graph C ⊆ G.

If C became disconnected due to the edges of a particular vertex v ∈ C being

removed, then we would need to apply the STITCH step: new edges would need

to be added in order to reconnect the relevant parts of C again. There is no

reason to add an edge that is incident to a vertex that is not part of C, since by

definition the STITCH step adds the minimum number of edges. Therefore, when

we consider the set of all edges that could potentially be added in a STITCH step

3.7. RANGE CRITERION 147

Figure 3.30: Left is a grid-labelled graph, to the right is its completion with new edges
highlighted in orange.

to “repair” C, we need only consider all possible edges between the vertices of

C. This leads us to our next definition.

Definition 3.7.12 Let G be a grid-labelled graph, and let C ⊆ G be a connected
component of G with more than one vertex. The completion of G with respect to
C is the graph obtained by adding edges between all pairs of vertices of C. The
completion of G is the graph obtained by completing all of its non-trivial connected
components.

Example 3.7.13 In Figure 3.30 we illustrate a graph and its completion.

We now have a bit of a handle on which edges could potentially be added to a

graph during a sequence of surgeries. If we know that all possible graphs that

can come out of a surgery will have viable vertices then we know that for no

sequence of surgeries will we get to a graph with no viable vertices where we

cannot proceed. With some thought, it is possible to show that for some kinds of

graphs, surgery will always reduce the number of edges. Let us formalise these

notions in the following.

Lemma 3.7.14 LetG be a grid-labelled graph, and letG′ be its completion. If for all
non-empty subgraphs H ⊆ G′, H has at least one viable vertex then G is clearable.

148 CHAPTER 3. GRID STATES

Proof. We first show that for all H ⊆ G′ with viable vertex set WH , we have for

all w ∈ WH

(a) HR
w ⊆ G′ and HC

w ⊆ G′,

(b) |E(HR
w)| < |E(H)| and |E(HC

w)| < |E(H)|.

That is, for any subgraph of the completion of G, performing surgery of either

kind on any of its viable vertices leads to a graph which is also a subgraph of its

completion, and that has strictly fewer edges than H.

Let G be as defined, and let H ⊆ G′ be non-empty. By assumption, the set WH

of viable vertices of H is non-empty. Consider performing row surgery on one

such vertex w ∈ WH . Since w is viable, the CUT step removes at least 1 edge

from the graph. If the removal of these edges causes a connected component

C ⊆ G to become disconnected, then the STITCH step of the surgery comes

into operation. The disconnected component is reconnected by adding one or

more edges between vertices in V (C). By definition, such edges belong to the

completion of G. Hence, all edges in HR
w are also edges of G′ and so HR

w ⊆ G′.

The same is true for HC
w , and so we have proved (a).

We can prove (b) by showing that the CUT step removes more edges from H

than the STITCH step adds. Consider performing row (resp. column) surgery on

a viable vertex, and let v be another vertex on that same row (resp. column), with

e edges. The CUT step removes these e edges, splitting the connected component

of v into sub-components {C1, . . . Ck}∪{v} that are not connected to one another.

Note that the number of such sub-components is upper bounded k ≤ e: suppose

removing the e edges of v caused the graph to split into k′ > e disconnected com-

ponents. Then v would have had to be connected to k′ vertices, a contradiction.

The STITCH step requires that the union over {C1, . . . , Ck} be connected, which

can always be achieved by adding k − 1 edges (recall that each component Ci
is a connected graph by definition). Therefore, for each such vertex v, the CUT

step has removed d(v) edges and the STITCH step needs to add at most d(v)− 1

edges.

Since G ⊆ G′, we have by assumption that G has a non-empty set of viable

vertices. From the above reasoning we know that for any of these vertices, per-

forming either kind of surgery leads to a subgraph of G′ with fewer edges, which

3.8. SUMMARY 149

again by assumption has a non-empty set of viable vertices. Therefore, any se-

quence of surgeries starting from a viable vertex of G will iteratively decrease

the number of edges in the graph until there are no edges left.

We can put what we just proved to good use in the proof of the following theorem.

Theorem 3.7.15 The skew-mesh graph in m×n is bound entangled for all m,n >
3.

Proof. By examining the structure of the graph from Figure 3.29, it is clear that

the completion has the property that all subgraphs have viable vertices. Therefore,

by Lemma 3.7.14, the graph is clearable for all grid sizes, which means that there

are no product vectors in the range of the corresponding grid states. Therefore,

all the states are entangled by application of the range criterion. By inspection,

the graphs all satisfy the degree criterion, so they correspond to bound entangled

states.

We have shown that the generalisations of B4 and B5 to higher grid dimensions

also correspond to bound entangled states. This is encouraging for our “visual”

approach to studying entanglement, it has enabled us to pick out generalisable

patterns and use them to build families of bound entangled states.

3.8 Summary

In this chapter we have spent a great deal of time working with a family of

quantum states we call grid states. We did this because each grid state can be

represented by a special kind of graph we call a grid-labelled graph, that has as its

vertices the points on a subsection of the Cartesian grid. The fact that these states

have such a discrete mathematical representation means that we can understand

certain things about them just by reasoning about and manipulating their grid-

labelled graphs. The main idea that we have explored is that the entanglement

properties of grid states can sometimes be understood using these considerations

and manipulations of grid-labelled graphs. This is exciting because grid states

correspond to mixed states, a class of quantum mechanical states that is difficult

to understand the entanglement properties of. Perhaps our graphical techniques

150 CHAPTER 3. GRID STATES

can be put to good use in the future to provide a fresh perspective on mixed state

entanglement. The main thrust of this chapter has been to develop the grid state

setting as a toy model of mixed state entanglement, with a combinatorial handle

attached – the grid-labelled graph – that may draw attention from discrete math-

ematicians not working in the field of quantum information. In a nutshell then,

we hope to draw in fresh ideas and perspectives from other areas of mathematics

in the hope that they will have something to say about the perplexing problem

of mixed state entanglement. We do this by developing a theory of combinatorial

entanglement which cuts out the “traditional” tools and settings from quantum

information, to lower the barrier of entry to this area, with the hope that some

questions about entanglement can possibly be recast as purely combinatorial

questions.

Explicitly then, in this chapter we have considered how mixed state entanglement

can be explored combinatorially via grid-labelled graphs. We surveyed existing

literature that approaches entanglement from a graph theoretic perspective, and

identified some issues in the foundations on which it is built. In particular, these

papers focus on determining structural properties of traditional graphs that relate

to entanglement. The issues arise because in order to relate graphs to entangle-

ment, some assumptions need to be made about the subsystem structure and

vertex labels. In particular, the major issue with the framework is that separabil-

ity is not invariant under isomorphism.

We spent the chapter exploring how a minor modification to the starting point

of this theory of “combinatorial entanglement” allows it to proceed in a more

natural and physically better motivated direction. We consider a combinatorial

object called a grid-labelled graph, a graph-like object restricted so that vertices

are always on a two dimensional grid. Thinking about graphs in this way allow

us to define a physically motivated notion of isomorphism, which we refer to as

local isomorphism. We showed early on that two locally isomorphic grid labelled

graphs have the same entanglement properties, in particular that one is separable

if and only if the other is.

We’ve talked about how the Peres-Horodecki (Section 3.4), matrix realignment

(Section 3.6) and range (Section 3.7) entanglement criteria can be applied to

grid-labelled graphs, and their corresponding states (grid states). We’ve used

3.8. SUMMARY 151

these “graphical entanglement criteria” to construct families of bound entangled

states (Section 3.7.2), as well as entangled states that are not detected by the

matrix realignment criterion (Section 3.6.2). We’ve also catalogued the 3 × 3

grid-labelled graphs that correspond to states that are positive under partial

transposition.

In the next chapter, we will summarise all of the work in the thesis. In the latter

half of this summary we will spend some time developing some ideas as to how

this theory of combinatorial entanglement could be taken further.

152 CHAPTER 3. GRID STATES

Chapter 4

Discussion

This thesis has developed a two-threaded discussion of how combinatorial objects

and concepts can inform topics in quantum information processing. In Chapter

2 we brought the graph isomorphism problem into the quantum realm with

the S TAT E I S O M O R P H I S M problem. This first thread starts with an observation

that in quantum computational complexity, many of the problems considered

are focused around quantum Hamiltonians. This is in stark contrast with the

wide variety of computational problems that are studied in classical complexity

theory. Of course, this disparity comes from the fact that quantum computers

are a relatively recent object of study, and quantum complexity theory as a field

even more so. The classical “problem collectors” have had a considerable head-

start on their quantum counterparts. Nevertheless, this chapter was conducted

with the idea that our collection of quantum problems could be boosted quite

considerably if some ideas from the realm of graph theory could be generalised

to the quantum realm.

We went about this by considering the problem of determining if two quantum

states can be obtained from one another by rearranging their subsystems with

permutations from a particular group, the S TAT E I S O M O R P H I S M (S I) problem.

We have seen that this problem is a generalisation of G R A P H I S O M O R P H I S M

(G I), explicitly deriving a Karp reduction from G I to S I in Theorem 2.3.10.

Remarkably, G I can be reduced to a restricted form of S I, where the permutation

group is the full symmetric group. We showed that in analogy to how G I can

153

154 CHAPTER 4. DISCUSSION

be efficiently verified with a classical computer, instances of S I can be verified

efficiently when equipped with a quantum verifier (Theorem 2.3.8: S I is in

QCMA).

While the complement of the graph isomorphism problem G R A P H N O N I S O -

M O R P H I S M (G N I) is not thought to be in NP, it can be verified efficiently in

some “weaker” settings in terms of probabilistic verifiers. Explicitly, G N I has a

two message interactive proof system (Ref. [86]: G N I is in IP(2)), which can be

made statistical zero knowledge (G N I is in SZK, see discussion in [85]), as well

as public-coin (G N I is in AM). We were able to prove that the complement of

the state isomorphism problem, S TAT E N O N I S O M O R P H I S M (S N I), has similar

properties. We think that it is unlikely that S N I belongs to QCMA for similar

reasons to how G N I is unlikely to be in NP: there doesn’t seem to be a better

way of being certain that two states are not isomorphic than just comparing all

permutations. However, similarly to G N I, we have been able to show that S N I

has a two round quantum interactive proof system (Theorem 2.3.16: S N I is

in QIP(2)), and that this interactive proof system can be made statistical zero

knowledge (Theorem 2.3.18: S N I is in QSZK). Since QSZK is closed under

complement [98], a corollary of this result is that SI is in QSZK.

Results pertaining to public-coin quantum interactive proof systems have been

more challenging to obtain. While G N I is in AM, we haven’t been able to prove

the analogous quantum result that S N I is in QAM. As a consolation prize, we

were able to prove that if the states under consideration can be efficiently de-

scribed classically then the problem can be verified with a public coin quantum

interactive proof system. Stabilizer states have this property, and we show in The-

orem 2.3.13 that S TA B I L I Z E R S TAT E N O N I S O M O R P H I S M (S S N I) is in QCAM.

While this result shows that stabilizer states are relatively easy to handle in an

interactive setting, the other end of the spectrum is mixed states, which seem to

be substantially more difficult to work with. This is evidenced by Theorem 2.3.20,

that M I X E D S TAT E I S O M O R P H I S M is QSZK-hard. Remarkably, even determin-

ing if two mixed states are close together in trace distance is QSZK-complete

[98]. This latter result means that it’s not even clear if M S I is in QCMA, verify-

ing isomorphism would require us to solve this QSZK-complete problem.

It is not clear if S N I actually belongs to QAM, or we have been trying in vain to

155

achieve a result that doesn’t hold. It could possibly be proved by adapting the set

lower bound techniques used in Goldwasser-Sipser [100] to the quantum setting.

Explicitly, these techniques would need to be generalised to the case where the

sets are sets of quantum states rather than bitstrings. Let’s take a brief detour to

look at some ideas in this direction.

Recall that the set lower bound proof of G N I ∈ AM (discussed in Section 2.2.2)

involves the set S(G) := {σ(G) : σ ∈ S|V |} for a graph G = (V,E). If G is

isomorphic to a graph H = (V, F) then assuming G and H have no non-trivial

automorphisms, the union of these two ‘isomorphism classes’ S(G) ∪ S(H) has

cardinality n!. Compare this to the case when they are not isomorphic, where the

set must be of cardinality 2n!. At first glance, it seems obvious that this notion

can be used in the case where we are considering isomorphism of two n qubit

quantum states |ψ〉 and |φ〉. For instance, we could define the set S(|ψ〉) :=

{Pσ|ψ〉 : σ ∈ Sn}, then consider how big the set S(|ψ〉) ∪ S(|φ〉) is. An issue

arises here stemming from the question of what it means for a set of quantum

states to be “big”. A tentative definition could be something along the following

lines.

Definition 4.0.1 (ε-cardinality of a set of vectors) Let S = {|ψ1〉, . . . , |ψk〉} ⊆
Cd be a set of vectors. For 0 ≤ ε ≤ 1, an ε-subset of S is a set of vectors {|ψi1〉, . . . , |ψil} ⊆
S such that for all pairs 1 ≤ m,n ≤ l we have that |〈ψim |ψin〉| ≤ ε. The ε-cardinality

of S is the size of its largest ε-subset.

Suppose we want to know if |ψ〉 and |φ〉 are isomorphic or not. Explicitly, we want

to distinguish between the case where there exists σ such that |〈ψ|Pσ|φ〉| = 1, and

the case where for all σ, we have that |〈ψ|Pσ|φ〉| ≤ ε for some ε. A nice assumption

to make would be that the states |ψ〉 and |φ〉 have no non-trivial automorphisms.

That is, for all non-identity permutations σ, we have that |〈ψ|Pσ|ψ〉| ≤ ε and

|〈φ|Pσ|φ〉| ≤ ε. If it is reasonable to make this non-automorphism assumption

about the states, then isomorphism of |ψ〉 and |φ〉 would imply that the size of the

largest ε-subset of S(|ψ〉)∪S(|φ〉) is n! and so the ε-cardinality is n!. Conversely, if

the states were not isomorphic then there would be an ε-subset of S(|ψ〉)∪S(|φ〉)
size 2n!.

156 CHAPTER 4. DISCUSSION

Thus, verifying S N I becomes a question of lower bounding the ε-cardinality of

S(|ψ〉) ∪ S(|φ〉). Unfortunately, things get more difficult from this point onwards,

as it is not clear how to do so! It might be possible to define some notion of

quantum pairwise independent hash functions. Indeed, a weaker notion in this

direction is 2-universal families of hash functions, of which unitary 2-designs are

known to be quantum examples of [87]. This could be a fruitful approach in this

direction.

A result that comes early on in the chapter, where we show that G I is a special

case of S I (Theorem 2.3.10), immediately makes the problem more interesting:

if one can find an efficient quantum algorithm that solves S I, then one can use it

to efficiently solve G I. For a long time, researchers have suspected that G I has an

efficient quantum algorithm, since it has similar complexity theoretic properties

to the problem of factoring integers, FA C T O R I N G. Of course, FA C T O R I N G is

the problem solved efficiently by Shor’s algorithm. It was thought that since both

FA C T O R I N G and G I are unlikely to be NP-complete as well as being difficult to

put in P that they share some sort of structure, and that there must therefore exist

some efficient quantum algorithm for G I too1. However, after receiving a great

deal of attention in the early 2000’s [66, 67], no efficient quantum algorithm

has been found. While we don’t consider it directly in this work, this algorithmic

consideration was part of my original motivation for considering S I: perhaps

focusing on permuting quantum states will lead to some breakthrough. At the

least, we have learned more about graphs by considering how to determine if

they are isomorphic (consider the deep links between abstract and linear algebra

and graph theory, for example, considering automorphism groups [128], and

graph spectra [130, 129]). Perhaps considering isomorphism of quantum states

will lead to an injection of new mathematical ideas to quantum information in

the same way.

Reading our discussion so far, it seems reasonable to ponder exactly what the

quantum analogue of a graph is. The fact that graph and state isomorphism have

such similar properties from a complexity point of view suggests that we might as

well think of pure states as being a “quantum graph”, and try to recast some more

1It turns out that FA C T O R I N G is the only other problem listed in Garey and Johnson that
remains unclassified alongside G I.

157

classical problems in terms of pure states. One concrete example is a quantum

generalisation of the NP-complete problem S U B G R A P H I S O M O R P H I S M, regard-

ing the subsystems of a quantum state. Explicitly, consider a problem where we

are given two states, |ψ0〉 on m qubits, and |ψ1〉 on n ≤ m qubits. We want to

know if there is some way of rearranging |ψ0〉 such that its first n qubits are close

in trace distance to |ψ1〉.

Problem 4.0.2 S U B S TAT E I S O M O R P H I S M

Input: Efficient descriptions of quantum circuits Qψ0 in Qm,m, and Qψ1 in Qn,n
with n ≤ m, and a function ε : N→ [0, 1] such that ε(n) ≥ 1/poly(n) for all n.

Y E S: There exists a permutation σ such that

D (Trn,...,m [|ψ0〉〈ψ0|] , |ψ1〉〈ψ1|) = 0.

N O: For all permutations σ

D (Trn,...,m [|ψ0〉〈ψ0|] , |ψ1〉〈ψ1|) ≥ 1− ε(n).

This problem has the same feel as the QMA-complete problem Q U A N T U M C I R -

C U I T S AT: given a quantum circuit U , find a pure state input |ψ〉 that makes it

accept. We can cast this as a problem about subsystems of “post-execution” state

U |ψ〉: in the case of acceptance, the first qubit will be close to |1〉. It’s not clear if

there is a reduction from this problem to S U B S TAT E I S O M O R P H I S M however,

since there is no room in the definition to accommodate the unitary U . Further-

more, it may even be a challenge to put the problem in QMA: while the per-

mutation can be specified efficiently, in full generality the state Trn,...,m [|ψ0〉〈ψ0|]
is mixed. Perhaps it is possible to modify the SWAP test to determine distance

between this mixed state and the pure state |ψ1〉〈ψ1|.
In general it seems like an interesting direction to attempt to find a QMA- or

QCMA-complete problem that is about pure quantum states.

Moving away from questions about pure states, the second thread to the thesis

starts in Chapter 3, where we consider a combinatorial theory of mixed state en-

tanglement. The problem of determining if a mixed quantum state is entangled

158 CHAPTER 4. DISCUSSION

or separable has attracted a great deal of attention over the years due to its link

to foundations of quantum mechanics, and quantum technologies. It turns out

to be a difficult and subtle problem, and the literature surrounding it employs

a wide variety of mathematical techniques: hierarchies of positive semi-definite

programs, results from operator theory and functional analysis, ideas from linear

algebra and matrix theory, etc. [125, 110]. The focus of this chapter has been

to come at this problem from a different angle. Instead of considering the sep-

arability problem for arbitrary density matrices, we consider a special family:

the grid states. As we have outlined in great detail in the discourse, each grid

state corresponds to a combinatorial object called a grid-labelled graph. From

this graphical representation, we can sometimes determine if the underlying grid

state is entangled or separable.

We have shown that several well known entanglement criteria, when applied

to grid states, can be reinterpreted as structural criteria placed on their grid-

labelled graphs. For example, in Section 3.4 we explore how the Peres-Horodecki

criterion, recast as the degree criterion by Braunstein et al. [123, 122], can be

applied to grid states. Determining if certain grid-labelled graphs are entangled

in this way involves replacing each diagonal edge with its mirror image (the

partial transpose of the graph), and checking if the vertex degrees are modified

by this procedure. In Section 3.6 we show that the matrix realignment criterion

can be applied to grid states by finding the eigenvalues of a pair of matrices that

take into account degree and adjacency structure. The last criterion is the range

criterion, which involves determining how many product vectors belong in the

range of the grid state density matrix. In Section 3.7 we show how a procedure

called graph surgery allows us to remove edges from a grid-labelled graph in

such a way that the range remains the same. By repeatedly applying surgeries,

sometimes we can simplify the graph under consideration to something trivial,

and show that there are not enough product vectors in the range for the original

grid state to be entangled.

While we have used traditional linear algebraic techniques in the derivation of

the proofs involved in developing these structural entanglement criteria, there

is minimal technical work required in applying them to grid-labelled graphs. In

Section 3.7 for instance, we were able to apply the graphical range criterion we

159

developed along with some very basic structural lemmas to prove that the cross-

hatch graphs and the skew-mesh graphs correspond to bound entangled states

in all grid-dimensions. Once the groundwork has been laid, the proof that these

families of states are entangled involves manipulating the grid-labelled graphs ac-

cording to the recipe prescribed by the surgery, and observing that all sequences

of surgeries lead to an empty graph. By considering the possible sequences of

surgeries of a grid-labelled graph in this way, one can reason about entangle-

ment in these grid states purely combinatorially. To me, this seems like a victory,

because of the possibility of engaging researchers from outside of the quantum

information community. Perhaps a combinatorial perspective on entanglement

will allow new progress on old problems.

A concrete example of an issue that a combinatorial perspective may help with is

in clearing up some loose ends in the complexity classification of the separability

problem. In 2003, Gurvits [124] showed that the problem of determining if a

given density matrix is separable is NP-hard. However, as pointed out in a com-

prehensive discussion by Ioannou [125] on the matter, the Gurvits proof seems

to go through because some entangled density matrices can be exponentially

close to being separable. In these cases, the difficulty essentially comes from

determining which of the two cases holds, which of course requires exponential

precision. Later, Gharibian [181] is able to improve the NP-hardness proof in a

way that does not require this exponential precision.

Another issue with the NP-hardness of separability testing comes from the type

of reduction used. The most common way of showing that a problem is NP-hard

is to show that there exists a Karp reduction from some other NP-hard problem

(e.g. 3-S AT) to that problem. A Karp reduction shows that every instance of the

existing, “source” NP-hard problem can be transformed into an instance of the

“target” problem, and that the transformation can be achieved in time that scales

as a polynomial in the problem instance. However, the type of reduction used in

the Gurvits proof is a weaker form of reduction called a Turing reduction. Loosely,

when a problem is Turing reducible to some target problem then that problem is

solvable in polynomial time if a solution to the target problem is known. While

this weaker notion seems to make more practical sense, complexity theorists still

consider Karp reductions as the gold standard of reductions, for better or for

160 CHAPTER 4. DISCUSSION

worse. Ioannou [125] suggests that separability testing may be the first natural

example of a problem that is NP-hard with respect to Turing reductions, but not

Karp reductions. Note that even the improved NP-hardness result of Gharibian

[181] still involves a Turing reduction.

I think that some progress could be made in this area using the grid state for-

malism because it translates the problem of determining if a state is separable

into the language of complexity theory: discrete mathematical structures. The

separability problem that we discuss in traditional quantum information, and as

defined and studied in a complexity theoretic sense by by Gurvits, Ioannou and

Gharibian is an inherently continuous problem. The objects are complex matri-

ces, and this unavoidably introduces issues of precision. What if a state is almost
separable? While this doesn’t make much sense from a physical perspective, it

certainly has caused issues in the complexity analysis as Ioannou has pointed

out. On the other hand, a grid-labelled graph either corresponds to a separable

state, or an entangled state. There is no ambiguity, and no need for precision

considerations, because the object is discrete.

The problem of determining if a grid-labelled graph is separable is a genuine

special case of the more general separability problem for arbitrary density matri-

ces, since the grid states are just a special kind of density matrix. If the problem

about grid-labelled graphs is NP-hard, then trivially, the more general problem

about arbitrary states is NP-hard as well. Perhaps it is possible to reduce one

of the many and varied NP-hard graph problems to the grid-state entanglement

problem, thus clearing up the issues with the Gurvits proof we have outlined

above.

Another area that may benefit from this combinatorial perspective is in the ex-

ploration and cataloguing of the bound entangled states. The bound entangled

states are a mysterious class of states that contain entanglement, but in a form

that is “locked away”, not distillable into a pure form to be used in quantum

protocols such as teleportation [182]. The neat graphical representation of the

states we have considered in this thesis has been beneficial in identifying whole

families of such states. To clarify, the bound entangled states we came across in

Section 3.5 when we attempted to enumerate all of the 3× 3 states that satisfy

the degree criterion have very identifiable structures, reflected by the names we

161

chose to call them cross-hatch, and skew-mesh. The former can be generalised

in the obvious way (a big cross-hatch!), and the latter with some work can be

generalised too. These generalisable structures are made much more visible with

the grid-labelled graph framework, which allowed us to immediately see how

they would work in higher dimensions. A potential direction in this theme is to

attempt a full characterisation of the PPT states in higher dimensions than 3× 3.

In this way, perhaps a catalogue of the bound entangled grid states is possible.

To cast these questions in language more familiar to quantum information theo-

rists, when we talk about grid states, what we are really talking about is uniform

mixtures of what I will now refer to as “Bell-ish” states: pure states of the form

(|i, j〉 − |k, l〉) /
√

2. The problem of entanglement in grid states is equivalent to

the following

When is a uniform mixture of Bell-ish states separable?

As referred to previously, we can apply basic techniques from quantum informa-

tion to show that the uniform mixture of (|0, 0〉 − |1, 1〉)
√

2 and (|0, 1〉 − |1, 0〉)
√

2

is separable. The grid-labelled graph framework gives us a means of visualising

the mixtures we are considering: each edge represents a Bell-ish state, the full

graph represents the uniform mixture of its edges. When we draw the grid-

labelled graph corresponding to the uniform mixture of these two states, we

obtain the criss-cross state. Applying the partial transpose, we see that the graph

remains unchanged, and so the corresponding mixed state is separable. In fact,

it’s not just the criss-cross on a 2 × 2 grid: the criss-cross between any four ver-

tices is locally isomorphic to a 2 × 2 criss-cross. We have identified a rule: two

Bell-ish states that overlap in a criss-cross correspond to a uniform mixture that

is separable. The main exercise in Chapter 3 has been an attempt to run with this

idea of finding more general rules.

In Section 3.5 when we attempt to catalogue the 3 × 3 graphs that satisfy the

degree criterion, we do not consider horizontal or vertical edges. Since the partial

transpose leaves such edges unaffected, when considering the graphs that satisfy

it, it does not make sense to include them. This motivates a simplification of the

more general Bell-ish entanglement problem considered above: what if we just

consider graphs that have diagonal Bell-ish states only? Remarkably, this doesn’t

162 CHAPTER 4. DISCUSSION

seem to make things easier: all of the building block graphs in Section 3.5 are

built up using diagonal edges only, and two of these (B4 and B5) are bound

entangled. In Section 3.7 we are able to build quite substantial families of bound

entangled states in larger grid dimensions. In fact, it seems quite challenging to

build a grid-labelled graph out of diagonal edges in such a way that the state

is separable. It is possible, with minor set up, to state a formal conjecture based

on this feeling that mixing diagonal Bell-ish states seems to always produce

entangled states in all but a few cases.

The only families of separable diagonal-only graphs in 3× 3 and above that we

have been able to find in this research are those that are built out of generali-

sations of cross-hatch states and crosses. Consider the diagonal-graphs of size

2× q, where each pair of vertices in each column has equal degree. Such graphs

encompass the criss-cross graph, all unions of criss-crosses, any graph that looks

like a tally mark, and so on (see Corollary 3.4.11). I conclude this thesis by con-

jecturing that the only separable diagonal-only grid-labelled graphs are those

obtained by taking the union of these kinds of graphs. An example of such a

decomposable graph is illustrated in Figure 4.1.

Conjecture 1 A diagonal-only grid-labelled graph is separable if and only if it has
a decomposition X1, . . . , Xk such that for all 1 ≤ i ≤ k, Xi has either two rows or
two columns, and satisfies the degree criterion.

Figure 4.1: A grid-labelled graph, decomposed into 2×q or q×2 graphs that each satisfy
the degree criterion.

Bibliography

[1] Xanadu – Overview on Crunchbase.com, https://www.crunchbase.com/

organization/xanadu-2 (Retrieved 14/06/2018).

[2] S. Decker, C. Yasiejko, “Forget the Trade War. China Wants to Win Computing

Arms Race.” https://www.bloomberg.com/news/articles/2018-04-08/

forget-the-trade-war-china-wants-to-win-the-computing-arms-race

(Retrieved 14/06/2018).

[3] Microsoft Quantum Development Kit – Microsoft Visual Studio Marketplace,

https://marketplace.visualstudio.com/items?itemName=quantum.

DevKit (Retrieved 14/06/2018).

[4] R. P. Feynman, “Simulating physics with computers”, International Journal
of Theoretical Physics 21, 6-7, pp. 467-488 (1982).

[5] D. Deutsch, “Quantum theory, the Church-Turing principle and the universal

quantum computer”, Proceedings of the Royal Society of London A 400, pp.

97-117 (1985).

[6] D. Deutsch, R. Jozsa. “Rapid solutions of problems by quantum computation”.

Proceedings of the Royal Society of London A. 439 553. (1992)

[7] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and Dis-

crete Logarithms on a Quantum Computer”, SIAM Journal on Scientific and
Statistical Computing 26 1484 (1997).

[8] R. L. Rivest, A. Shamir, L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems.”, Communications of the ACM 21, 2, pp. 120-

126 (1978).

163

https://www.crunchbase.com/organization/xanadu-2
https://www.crunchbase.com/organization/xanadu-2
https://www.bloomberg.com/news/articles/2018-04-08/forget-the-trade-war-china-wants-to-win-the-computing-arms-race
https://www.bloomberg.com/news/articles/2018-04-08/forget-the-trade-war-china-wants-to-win-the-computing-arms-race
https://marketplace.visualstudio.com/items?itemName=quantum.DevKit
https://marketplace.visualstudio.com/items?itemName=quantum.DevKit

164 BIBLIOGRAPHY

[9] L. K. Grover, “A fast quantum mechanical algorithm for database search”,

Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
(STOC), pp. 212-219 (1996).

[10] G. J. Milburn, “Photons as qubits”, Physica Scripta 2009, T137, 014003

(2009).

[11] H. Haeffner, C.F. Roos, R. Blatt, “Quantum computing with trapped ions”,

Physics Rep. 469, pp. 155-203 (2008).

[12] B. E. Kane, “A silicon-based nuclear spin quantum computer”, Nature 393,

pp. 133-137 (1998).

[13] D. Gottesman, “An Introduction to Quantum Error Correction and Fault-

Tolerant Quantum Computation”, arXiv:0904.2557 [quant-ph] (preprint)
(2009).

[14] P. W. Shor, “Scheme for reducing decoherence in quantum memory”, Physi-
cal Review A 52, pp. 2493-2496 (1995).

[15] D. Gottesman, “Stabilizer codes and quantum error correction”, Caltech
Ph.D. thesis, quant-ph/9705052 (1997).

[16] H. Bombin, “Topological Codes”, book chapter in Quantum Error Correction,

edited by Daniel A. Lidar and Todd A. Brun, Cambridge University Press,

New York (2013).

[17] A. Yu. Kitaev, “Fault-tolerant quantum computation by anyons”, Annals
Physics 303 pp. 2-30 (2003).

[18] A. Steane, “Multiple-Particle Inference and Quantum Error Correction”,

Proc. Roy. Soc. Lond. A. 452 pp. 2551-2577 (1996).

[19] “A Preview of Bristlecone, Google’s New Quantum Proces-

sor” Google AI Blog, https://ai.googleblog.com/2018/03/

a-preview-of-bristlecone-googles-new.html (Retrieved 09/06/2018).

https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html

BIBLIOGRAPHY 165

[20] A. W. Harrow, A. Hassidim, S. Lloyd, “Quantum algorithm for solving linear

systems of equations”, Physical Review Letters 15, 103, pp. 150502 (2009).

[21] M. Mohseni, P. Read, H. Neven, S. Boixo, V. Denchev, R. Babbush, A. Fowler,

V. Smelyanskiy, J. Martinis, “Commercialize quantum technologies in five

years”, Nature 543 pp. 171-174 (2017).

[22] R. Cellan-Jones, “Microsoft gambles on a quantum leap in computing”,

BBC News https://www.bbc.co.uk/news/technology-43580972 (Retrieved

09/06/2018).

[23] R. Chirgwin, “Alibaba fires up a cloudy quantum computer”, The
Register https://www.theregister.co.uk/2018/03/05/alibaba_quantum_
cloud_computer/ (Retrieved 09/06/2018)

[24] N. Summers, “This is what a 50-qubit quantum computer

looks like”, Engadget https://www.engadget.com/2018/01/09/

this-is-what-a-50-qubit-quantum-computer-looks-like/ (Retrieved

09/06/2018).

[25] M. Borak, After Alibaba, “Baidu leaps into quantum computing”, Techn-
ode, https://technode.com/2018/03/08/baidu-quantum-computing/ (re-

trieved 09/06/2018)

[26] M. F. Riedel, D. Binosi, R. Thew, T. Calarco, “The European quantum tech-

nologies flagship programme”, Quantum Science and Technology, 2, 3 (2017).

[27] S. Rich, B. Gellman, “NSA seeks to build quantum computer that could

crack most types of encryption”, The Washington Post Jan 2 2014, Retrieved

from https://www.washingtonpost.com on 09/06/2018.

[28] “The Zettabyte Era: Trends and Analysis”, Cisco Whitepaper, https:

//www.cisco.com/c/en/us/solutions/collateral/service-provider/

visual-networking-index-vni/vni-hyperconnectivity-wp.html (Re-

trieved 09/06/2018).

https://www.bbc.co.uk/news/technology-43580972
https://www.theregister.co.uk/2018/03/05/alibaba_quantum_cloud_computer/
https://www.theregister.co.uk/2018/03/05/alibaba_quantum_cloud_computer/
https://www.engadget.com/2018/01/09/this-is-what-a-50-qubit-quantum-computer-looks-like/
https://www.engadget.com/2018/01/09/this-is-what-a-50-qubit-quantum-computer-looks-like/
https://technode.com/2018/03/08/baidu-quantum-computing/
https://www.washingtonpost.com
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

166 BIBLIOGRAPHY

[29] S. A. Cook, “The Complexity of Theorem-Proving Procedures”, Proceedings
of the Third Annual ACM Symposium on the Theory of Computing (STOC)
(1971).

[30] R. M. Karp, “Reducibility among combinatorial problems”, Complexity of
computer computations, pp. 85-103 (1972).

[31] L. A. Levin, “Universal Sequential Search Problems”, Probl. Peredachi Inf.,
9, 3, pp. 115-116 (1973); Problems Inform. Transmission, 9, 3, pp. 265-266

(1973).

[32] M. R. Garey, D. S. Johnson, “Computers and Intractability; A Guide to

the Theory of NP-Completeness”, W. H. Freeman & Co. New York, NY, USA

(1990)

[33] “A compendium of NP optimization problems”, edited by P. Crescenzi

and V. Kann, http://www.csc.kth.se/~viggo/wwwcompendium/ (Retrieved

14/06/2018).

[34] Greg Aloupis, Erik D. Demaine, Alan Guo, Giovanni Viglietta, “Classic

Nintendo Games are (Computationally) Hard”, arXiv:1203.1895 (preprint)
(2012).

[35] E. Bernstein, U. Vazirani, “Quantum complexity theory”, SIAM Journal of
Comput. 26, 5, pp. 1411–1473 (1997).

[36] J. Watrous, “Succinct quantum proofs for properties of finite groups”, Pro-
ceedings of IEEE FOCS’2000, pp. 537-546, (2000).

[37] A. Yu. Kitaev, A. Shen, M. N. Vyalyi, “Classical and Quantum Computation”,

American Mathematical Society, Boston, MA, USA (2002)

[38] J. Watrous, “Quantum Computational Complexity” arXiv:0804.3401
(preprint) (2008).

[39] A. D. Bookatz, “QMA-complete problems”, Quantum Information and Com-
putation, 14, 5-6 (2014).

http://www.csc.kth.se/~viggo/wwwcompendium/

BIBLIOGRAPHY 167

[40] J. Kempe, A. Kitaev, O. Regev, “The Complexity of the Local Hamiltonian

Problem”, SIAM Journal of Computing, Vol. 35(5), pp. 1070-1097 (2006).

[41] J. Lockhart, C. E. González Guillén, “Quantum State Isomorphism”

arXiv:1709.09622 [quant-ph] (preprint) (2017).

[42] J. Lockhart, S. Severini, “Combinatorial Entanglement”, arXiv:1605.03564
(preprint) (2016).

[43] J. Lockhart, O. Gühne, S. Severini, “Entanglement properties of quantum

grid states”, Physical Review A 97, 062340 (2018).

[44] M. A. Nielsen, I. L. Chuang, “Quantum Computation and Quantum Infor-

mation: 10th Anniversary Edition” Cambridge University Press (2011).

[45] N. David Mermin, “Quantum Computer Science: An Introduction”, Cam-
bridge University Press (2007).

[46] J. Watrous, “The Theory of Quantum Information”, Cambridge University
Press (2018).

[47] Ashley Montanaro, Ronald de Wolf, “A Survey of Quantum Property Testing”,

Theory of Computing Graduate Surveys 7 (2016).

[48] R. B. Boppana, J. Håstad, S. Zachos, “Does co-NP have short interactive

proofs?”, Information Processing Letters 25(2) pp. 126-132 (1987).

[49] U. Schöning, “Graph isomorphism is in the low hierarchy”, Journal of Com-
puter and System Sciences, 37, pp. 312-323 (1988).

[50] J. E. Hopcroft, J. K. Wong, “Linear time algorithm for isomorphism of planar

graphs (Preliminary Report)”, Proceedings of the sixth annual ACM Sympo-
sium on Theory of Computing (STOC), pp. 172-184 (1974).

[51] L. Babai, P. Erdös, S. M. Selkow. “Random graph isomorphism”, SIAM Jour-
nal on Computing 9, 3 pp. 628-635, (1980).

[52] T. Czajka and G. Pandurangan, “Improved random graph isomorphism”,

Journal of Discrete Algorithms 6(1) pp. 85-92 (2008).

168 BIBLIOGRAPHY

[53] E. M. Luks, “Isomorphism of graphs of bounded valence can be tested in

polynomial time”, Journal of Computer and System Science 25(1) pp. 42–65

(1982).

[54] L. Babai and E. M. Luks, “Canonical labeling of graphs”, Proceedings of
the fifteenth annual ACM symposium on Theory of computing, pp. 171-183,

(1983).

[55] Harald Helfgott, “Graph isomorphism in sub-exponential time”, The
value of the variable (Personal Blog) https://valuevar.wordpress.com/

2017/01/04/graph-isomorphism-in-subexponential-time/ (Retrieved

29/05/2018).

[56] B. D. McKay, “Practical Graph Isomorphism” Congr. Numer. 30, pp. 45-87,

(1981).

[57] B.D. McKay, A. Piperno, “Practical Graph Isomorphism, II” Journal of Sym-
bolic Computation 60, pp. 94-112 (2014).

[58] From Babai’s personal home page http://people.cs.uchicago.edu/

~laci/update.html.

[59] K. Baxter, J. Glasgow, “Protein structure determination: combining inexact

graph matching and deformable templates”, Proc. Vision Interface 2000 pp.

179-186 (2000).

[60] P. J. Hansen, P. C. Jurs, “Chemical applications of graph theory. Part I.

Fundamentals and topological indices”, Journal of Chem. Educ. 65, 7, pp.

574 (1988).

[61] A. Cobham, “The intrinsic computational difficulty of functions.” Proc. 1964
Congress for Logic, Methodology, and the Philosophy of Science. (1964).

[62] J. Edmonds, “Paths, Trees, and Flowers”, Canad. Journal of Mathematics 17

pp. 449-467 (1965).

[63] O. Goldreich , “Computational complexity: a conceptual perspective”, Cam-
bridge University Press, p. 128 (2008).

https://valuevar.wordpress.com/2017/01/04/graph-isomorphism-in-subexponential-time/
https://valuevar.wordpress.com/2017/01/04/graph-isomorphism-in-subexponential-time/
http://people.cs.uchicago.edu/~laci/update.html
http://people.cs.uchicago.edu/~laci/update.html

BIBLIOGRAPHY 169

[64] S. Aaronson, “P ?
= NP”, hosted https://www.scottaaronson.com/papers/

pnp.pdf (Retrieved 11/05/2018).

[65] S. Goldwasser, S. Micali, C. Rackoff, “The knowledge complexity of inter-

active proof systems”, Proceedings of the seventeenth annual ACM symposium
on Theory of computing (STOC) pp. 291-304, (1985).

[66] C. Lomont, “The Hidden Subgroup Problem - Review and Open Problems”,

arXiv:quant-ph/0411037 (preprint) (2004)

[67] A. M. Childs, W. van Dam, “Quantum algorithms for algebraic problems”,

Rev. Mod. Physics 82 pp. 1-52 (2010).

[68] R. Ladner, “On the Structure of Polynomial Time Reducibility”, Journal of
the ACM 22, 1 pp. 155-171 (1975).

[69] R. J. Lipton, K. W. Regan, “Permutation Problems With Strings”, Blog
post on Gödel’s Lost Letter and P = NP, https://rjlipton.wordpress.com/

2015/12/07/permutation-problems-with-strings/ (2015) (Retrieved

01/07/2018).

[70] D. Aharonov, T. Naveh, “Quantum NP – A Survey”, arXiv:quant-ph/0210077
(preprint) (2002).

[71] L. Babai, “Monte-Carlo algorithms in graph isomorphism testing”, Université
de Montréal Technical Report, DMS:79-10 pp. 42 (1979).

[72] “Group-Theoretic Algorithms and Graph Isomorphism”, Lecture Notes in
Computer Science 136, Editor: C. M. Hoffmann (1982).

[73] C. C. Sims, “Computation with permutation groups”, Proceedings of the
Second ACM Symposium on Symbolic and Algebraic Manipulation pp. 23-28

(1971).

[74] M. Furst, J. Hopcroft, E. Luks, “Polynomial-time algorithms for permutation

groups”, 21st Annual Symposium on Foundations of Computer Science (1980).

https://www.scottaaronson.com/papers/pnp.pdf
https://www.scottaaronson.com/papers/pnp.pdf
https://rjlipton.wordpress.com/2015/12/07/permutation-problems-with-strings/
https://rjlipton.wordpress.com/2015/12/07/permutation-problems-with-strings/

170 BIBLIOGRAPHY

[75] E. M. Luks, “Permutation groups and polynomial-time computation”.

Groups and Computation, DIMACS Series in Discrete Mathematics and The-
oretical Computer Science 11 pp. 139-175 (1993).

[76] H. Buhrman, R. Cleve, J. Watrous, R. de Wolf. “Quantum fingerprinting”,

Physical Review Letters, 87, 16, 167902 (2001).

[77] L. Babai, “Graph Isomorphism in Quasipolynomial Time” arXiv:1512.03547
(preprint) (2015).

[78] D. Gottesman, talk at International Conference on Group Theoretic Methods
in Physics, arXiv:quant-ph/9807006 (preprint) (1998).

[79] R. Jain, Z. Ji, S. Upadhyay, J. Watrous, “QIP=PSPACE”, arXiv:0907.4737
(preprint) (2009).

[80] M. Nielsen, I. Chuang, “Quantum Computation and Quantum Information”,

10th ed., Cambridge University Press (2011).

[81] J. Katz, Lecture notes on Complexity Theory, http://www.cs.umd.edu/

~jkatz/complexity/f11/lecture17.pdf (Retrieved 01/06/2018).

[82] S. Aaronson, G. Kuperberg, “Quantum Versus Classical Proofs and Advice”,

arXiv:quant-ph/0604056 (preprint) (2006).

[83] B. Fefferman, S. Kimmel, “Quantum vs. Classical Proofs and Subset Verifi-

cation”, arXiv:1510.06750 (preprint) (2015).

[84] S. Aaronson, “NP-complete Problems and Physical Reality”, ACM SIGACT
News, March 2005.

[85] L. Trevisan, “Interactive and probabilistic proof-checking” Annals of Pure
and Applied Logic 104 pp. 325-342 (2000).

[86] O. Goldreich, S. Micali, A. Wigderson, “Proofs that Yield Nothing But Their

Validity, or, All Languages in NP Have Zero-Knowledge Proof Systems”, Jour-
nal of the Association of Computing Machinery 38, 1, pp. 691-729 (1991).

http://www.cs.umd.edu/~jkatz/complexity/f11/lecture17.pdf
http://www.cs.umd.edu/~jkatz/complexity/f11/lecture17.pdf

BIBLIOGRAPHY 171

[87] “Near-linear constructions of exact unitary 2-designs”, Quantum Informa-
tion and Computation, 16, 9 & 10, pp. 721-756 (2016).

[88] A. W. Harrow, “The Church of the Symmetric Subspace” arXiv:1308.6595
(preprint) (2013).

[89] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, H.-J. Briegel

“Entanglement in Graph States and its Applications”, Proceedings of the In-
ternational School of Physics “Enrico Fermi”: Quantum Computers, Algorithms
and Chaos pp. 115-218 (2006).

[90] S. Aaronson, “BQP and the Polynomial Hierarchy”, arXiv:0910.4698
(preprint) (2009).

[91] G. Gutoski, P. Hayden, K. Milner, M. M. Wilde, “Quantum interactive proofs

and the complexity of separability testing” Theory of Computing, 11(3), pp.

59-103 (2015).

[92] A. Montanaro, “Learning stabilizer states by Bell sampling”,

arXiv:1707.04012 (preprint) (2017).

[93] D. Gottesman, “Stabilizer Codes and Quantum Error Correction”,

arXiv:quant-ph/9705052 (PhD thesis) (1997).

[94] S. Aaronson, D. Gottesmann, “Improved simulation of stabilizer circuits”

Physical Review A 70, 052328 (2004).

[95] H. J. Garcia, I. L. Markov, A. W. Cross, “Efficient Inner-product Algorithm

for Stabilizer States”, arXiv:1210.6646 (preprint) (2012).

[96] T Yamakami, “Quantum NP and a Quantum Hierarchy”, Proceedings of the
2nd IFIP International Conference on Theoretical Computer Science, pp. 323-

336 (2002).

[97] S. Gharibian, J. Kempe, “Hardness of approximation for quantum prob-

lems”, Quantum Information and Computation 14 (5 and 6) pp. 517-540

(2014).

172 BIBLIOGRAPHY

[98] J. Watrous, “Quantum statistical zero-knowledge”, arXiv:quant-ph/0202111
(preprint) (2002).

[99] S. Aaronson, “Quantum versus classical proofs and advice”, arXiv:quant-
ph/0604056 (preprint) (2006).

[100] S. Goldwasser, M. Sipser, “Private coins versus public coins in interactive

proof systems”, Proceedings of the Eighteenth Annual ACM Symposium on
Theory of Computing (STOC) pp. 59-68 (1986).

[101] H. Kobayashi, F. Le Gall, H. Nishimura, “Generalized Quantum Arthur-

Merlin Games”, Proceedings of the 30th Conference on Computational Com-
plexity (CCC2015), pp. 488-511 (2015).

[102] C. W. Helstrom, “Quantum Detection and Estimation Theory”, Academic
Press, New York, (1976).

[103] J. Watrous, “PSPACE has constant-round quantum interactive proof sys-

tems”, Proceedings of the 40th IEEE Conference on Foundations of Computer
Science (FOCS), pp. 112-119 (1999).

[104] R. Jain, S. Upadhyay, J. Watrous, “Two-message quantum interactive

proofs are in PSPACE” Proceedings of the 50th IEEE Conference on Foundations
of Computer Science (FOCS), pp. 534–543 (2009).

[105] C. Marriott, J. Watrous, “Quantum Arthur-Merlin Games”,

arXiv:cs/0506068 (preprint) (2005).

[106] A. Kitaev and J. Watrous. “Parallelization, amplification, and exponential

time simulation of quantum interactive proof systems”, Proceedings of the
32nd ACM Symposium on Theory of Computing (STOC), pp. 608-617 (2000).

[107] A. Harrow, C. Y. Lin, A. Montanaro, “Sequential measurements, distur-

bance and property testing”, arXiv:1607.03236 (preprint) (2016).

[108] S. Arora, B. Barak, “Computational Complexity: A Modern Approach” Cam-
bridge University Press (2009).

BIBLIOGRAPHY 173

[109] O. Goldreich, “Probabilistic proof systems”, Technical Report TR94-008,
Electronic Colloquium on Computational Complexity (1994).

[110] R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Quantum Entan-

glement, Rev. Mod. Physics 81 (2009).

[111] E. Chitambar, D. Leung, L. Mancinska, M. Ozols, A. Winter, “Everything

You Always Wanted to Know About LOCC (But Were Afraid to Ask)”, Com-
munications Mathematical Physics, 328, 1, pp. 303-326 (2014).

[112] R. Jozsa, N. Linden, “On the role of entanglement in quantum-

computational speed-up”, P. Roy. Soc. A-Mathematical Phy. 459, 2036 (2003).

[113] G. Vidal, “Efficient classical simulation of slightly entangled quantum com-

putations”, Physical Review Letters 91, 147902 (2003).

[114] R. Duan, S. Severini, A. Winter, “Zero-error communication via quantum

channels, non-commutative graphs and a quantum Lovasz theta function”,

IEEE T. Inform. Theory 59, 2 (2013).

[115] S. Beigi, P. W. Shor, “On the Complexity of Computing Zero-Error

and Holevo Capacity of Quantum Channels”, arXiv:quant-ph/0709.2090 []
(preprint) (2007).

[116] D. Leung, L. Mančinska, W. Matthews, M. Ozols, A. Roy, “Entanglement

can increase asymptotic rates of zero-error classical communication over

classical channels”, Communications Mathematical Physics 311, 1 (2012).

[117] T. S. Cubitt, G. Smith, “An extreme form of superactivation for quantum

zero-error capacities”, IEEE T. Inform. Theory 58, 3 (2012).

[118] T. S. Cubitt, J. Chen, A. W. Harrow, “Superactivation of the Asymptotic

Zero-Error Classical Capacity of a Quantum Channel”, IEEE T. Inform. Theory
57, 12 (2011).

[119] R. Duan, “Super-activation of zero-error capacity of noisy quantum chan-

nels”, arXiv:0906.2527 (preprint) (2009).

174 BIBLIOGRAPHY

[120] J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, “Proposed experiment to

test local hidden-variable theories”, Physical Review Letters 23, 15 (1969).

[121] Eric. W. Weisstein, “Algebraic Connectivity.” From MathWorld–A Wolfram

Web Resource. http://mathworld.wolfram.com/AlgebraicConnectivity.

html

[122] S. L. Braunstein, S. Ghosh, S. Severini, “The laplacian of a graph as a den-

sity matrix: a basic combinatorial approach to separability of mixed states”,

Ann. Combinatorics 10, 3 (2006).

[123] S. L. Braunstein, S. Ghosh, T. Mansour, S. Severini, R. C. Wilson, “Some

families of density matrices for which separability is easily tested”, Physical
Review A 73, 012320 (2006).

[124] L. Gurvits, “Classical deterministic complexity of Edmonds’ problem and

Quantum Entanglement”, arXiv:quant-ph/0303.055v1 (preprint) (2003).

[125] L. M. Ioannou, “Computational complexity of the quantum separability

problem”, Quantum Information and Computation 7, 4 (2007).

[126] A. Peres, “Separability Criterion for Density Matrices”, Physical Review Let-
ters 77 (1996).

[127] M. Horodecki, P. Horodecki, R. Horodecki, “Separability of mixed states:

necessary and sufficient conditions”, Physics Letters A 223, 1-2 (1996).

[128] C. Godsil, G. F. Royle, “Algebraic Graph Theory”, Volume 207 of Graduate

Texts in Mathematics, Springer New York (2001).

[129] W. H. Haemers, E. R. van Dam, “Which graphs are determined by their

spectrum?”, Linear Algebra and its Applications 373, 241-272 (2003).

[130] A.E. Brouwer, W.H. Haemers, “Spectra of graphs”, Springer, New York, etc.

(2012).

[131] F. R. K. Chung, “Spectral Graph Theory”, American Mathematical Society

(1997)

http://mathworld.wolfram.com/AlgebraicConnectivity.html
http://mathworld.wolfram.com/AlgebraicConnectivity.html

BIBLIOGRAPHY 175

[132] C. W. Wu, “Conditions for separability in generalized Laplacian matrices

and diagonally dominant matrices as density matrices”, Physics Letters A 351,

1-2 (2006).

[133] S. Dutta, B. Adhikari, S. Banerjee, R. Srikanth, “Bipartite separability and

non-local quantum operations on graphs”, Physical Review A 94, 012306

(2016).

[134] R. Hildebrand, S. Mancini, S. Severini, “Combinatorial laplacians and pos-

itivity under partial transpose”, Mathematical Struct. Comp. Sci. Volume 18,

Special Issue 1 (2008).

[135] Z. Wang, Z. Wang, “The tripartite separability of density matrices of

graphs”, Electronic Journal of Combinatorics 14, 2 (2007).

[136] C. W. Wu, “On graphs whose Laplacian matrix’s multipartite separability

is invariant under graph isomorphism”, Discrete Mathematics 310, 21 (2010).

[137] C. W. Wu, “Graphs whose normalized Laplacian matrices are separable

as density matrices in quantum mechanics”, Discrete Mathematics 339, 4

(2016).

[138] H. Rahiminia, M. Amini, “Entangled Graphs”, arXiv:cs/0609156 (preprint)
(2006).

[139] B. Adhikari, S. Banerjee, S. Adhikari, A. Kumar, “Laplacian matrices of

weighted digraphs represented as quantum states”, Quantum Inf. Process. 16,

79 (2017).

[140] C. W. Wu, “Multipartite separability of Laplacian matrices of graphs”, Elec-
tronic Journal of Combinatorics 16, 1 (2009).

[141] A. S. M. Hassan, P. S. Joag, “A combinatorial approach to multipartite

quantum systems: basic formulation”, Journal of Physics A-Mathematical
Theor, 40, 33 (2007).

176 BIBLIOGRAPHY

[142] A. S. M. Hassan, P. S. Joag, “On the degree conjecture for separability of

multipartite quantum states”, Journal of Mathematical Physics 49, 012105

(2008).

[143] C. Xie, H. Zhao, Z. Wang, “Separability of density matrices of graphs for

multipartite systems”, Electronic Journal of Combinatorics 20, 4 (2013).

[144] H. Rahiminia, M. Amini, “On separability of graphs with some entangled

edges”, Quantum Inf. Process. 8, 6 (2008).

[145] Z. Hui, F. Jiao, “Separability of Generalized Graph Product States”, Chinese
Physics Letters 30, 9 (2013).

[146] S. B. Adhikari, S. Banerjee, “Quantum discord of states arising from

graphs”, Quantum Inf. Process. 16, 183 (2017).

[147] S. Dutta, B. Adhikari, S. Banerjee, “Zero discord quantum states arising

from weighted digraphs”,arXiv:1705.00808 [quant-ph] (preprint) (2017).

[148] S. Dutta, B. Adhikari, S. Banerjee, “Seidel switching for weighted

multi-digraphs and its quantum perspective”, arXiv:1608.07830 [math.CO]
(preprint) (2016).

[149] S. Dutta, B. Adhikari, S. Banerjee, “A graph theoretical approach to states

and unitary operations”, Quantum Inf. Process. 15, 5 (2016).

[150] J. Li, X. Chen, Y. Yang, “Quantum state representation based on com-

binatorial Laplacian matrix of star-relevant graph”, Quantum Information
Processing 14, 12 (2015).

[151] K. Chen, L. Wu, “A matrix realignment method for recognizing entangle-

ment”, Quantum Information and Computation, Vol. 3, No. 3 193-202 (2003).

[152] T. Ando, “Cones and norms in the tensor product of matrix spaces”, Linear
Algebra Appl. 379 (2004).

[153] P. Horodecki, “Separability Criterion and Inseparable Mixed States with

Positive Partial Transposition”, Physics Letters A 232, (1997).

BIBLIOGRAPHY 177

[154] Nathaniel Johnston, QETLAB: A MATLAB toolbox for quantum entangle-

ment, version 0.9. http://www.qetlab.com, (2016).

[155] T. E. Oliphant, “A guide to NumPy”, USA: Trelgol Publishing, (2006).

[156] M. Horodecki, P. Horodecki, R. Horodecki, “Mixed-state entanglement

and distillation: is there a “bound” entanglement in nature?” Physical Review
Letters 80 pp. 5239 - 5242 (1998).

[157] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, W. K.

Wootters, “Purification of Noisy Entanglement and Faithful Teleportation via

Noisy Channels”, Physical Review Letters 76 pp. 722 - 725 (1996).

[158] J. Lavoie, R. Kaltenbaek, M. Piani, K. J. Resch, “Experimental bound entan-

glement in a four-photon state”, Physical Review Letters 105 130501 (2010)

[159] J. DiGuglielmo, A. Samblowski, B. Hage, C. Pineda, J. Eisert, R. Schn-

abel, “Experimental Unconditional Preparation and Detection of a Contin-

uous Bound Entangled State of Light”, Physical Review Letters 107, 240503

(2011).

[160] F. E. S. Steinhoff, M. C. de Oliveira, J. Sperling, W. Vogel, “Bipartite bound

entanglement in continuous variables through degaussification”, Physical
Review A 89, 032313 (2014).

[161] E. Amselem, M. Sadiq, and M. Bourennane, “Experimental bound entan-

glement through a Pauli channel”, Sci. Rep. 3, 1966 (2013).

[162] P. Horodecki, M. Horodecki, R. Horodecki, “Bound entanglement can be

activated”, Physical Review Letters 82 pp. 1056 - 1059 (1999).

[163] Ll. Masanes, “All entangled states are useful for information processing”,

Physical Review Letters 96, 150501 (2006).

[164] J. A. Smolin, “Four-party unlockable bound entangled state”, Physical Re-
view A, 63 032306 (2001).

http://www.qetlab.com

178 BIBLIOGRAPHY

[165] K. Horodecki, M. Horodecki, P. Horodecki, J. Oppenheim, “Secure key

from bound entanglement”, Physical Review Letters 94, 160502 (2005)

[166] P Hyllus, C. Moura Alves, D. Bruß, C. Macchiavello, “Generation and de-

tection of bound entanglement”, Physical Review A 70, 032316 (2004).

[167] P. Horodecki, J. A. Smolin, B. M. Terhal, A. V. Thapliyal, “Rank two bipar-

tite bound entangled states do not exist”, Theoretical Computer Science 292

pp 589-596 (2003).

[168] L. Pankowski, M. Piani, M. Horodecki, P. Horodecki, “A Few Steps More

Towards NPT Bound Entanglement”, IEEE Transactions on Information Theory
56 8 (2010).

[169] L. Chen, D. Z̆. Ðoković, “Distillability and PPT entanglement of low-rank

quantum states”, Journal of Physics A: Mathematical Theor. 44 285303

(2011).

[170] L. Chen, D. Z̆. Ðoković, “Corrigendum: Distillability and PPT entangle-

ment of low-rank quantum states”, Journal of Physics A: Mathematical and
Theoretical, 45, 059501 (2012).

[171] D. Z̆. Ðoković, “The checkerboard family of entangled states of two qutrits”,

Cent. Eur. Journal of Physics 9(1) pp. 65 - 70 (2011)

[172] D. Bruß, A. Peres, “Construction of quantum states with bound entangle-

ment”, Physical Review A 61, 030301(R) (2000).

[173] K.-C. Ha, S.-H. Kye, “Construction of 3 ⊗ 3 entangled edge states with

positive partial transposes”, Journal of Physics A: Mathematical and General
38 9039 (2005).

[174] M. Lewenstein, B. Kraus, J. I. Cirac, P. Horodecki, “Optimization of entan-

glement witnesses”, Physical Review A62 052310 (2000).

[175] D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, B. M. Terhal, “Un-

extendible Product Bases, Uncompletable Product Bases and Bound Entan-

BIBLIOGRAPHY 179

glement”, Communications in Mathematical Physics, 238, 3, pp. 379 - 410

(2003).

[176] C. H. Bennett, D. P. DiVincenzo, T. Mor, P. W. Shor, J. A. Smolin, and B.

M. Terhal, “Unextendible Product Bases and Bound Entanglement”, Physical
Review Letters 82, 5385 (1999).

[177] M. Ozols, G. Smith, J. A. Smolin, “Bound Entangled States with a Private

Key and their Classical Counterpart”, Physical Review Letters 112, 110502

(2014).

[178] L. Clarisse, “Construction of bound entangled edge states with special

ranks”, Physics Letters A 359 pp. 603-607 (2006).

[179] W. C. Kim, Comment on: “Construction of bound entangled edge states

with special ranks” [Physics Letters A 359 (2006) 603], Physics Letters A 372

pp. 2336 - 2338 (2008).

[180] N. Linden, S. Popescu, “Bound Entanglement and Teleportation”, Physical
Review A 59, 137 (1999).

[181] S. Gharibian, “Strong NP-Hardness of the Quantum Separability Problem”,

Quantum Information and Computation 10, No. 3&4, pp. 343-360 (2010)

[182] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. K. Woot-

ters, “Teleporting an Unknown Quantum State via Dual Classical and Ein-

stein–Podolsky–Rosen Channels”, Physical Review Letters 70, pp. 1895-1899

(1993).

180 BIBLIOGRAPHY

Appendix A

Grid States Miscellany

A.1 Entanglement of B5

Let us use the range criterion to prove that ρ(B5) is entangled. This follows as a

corollary of the following, the proof of which I credit to Otfried Gühne.

Proposition A.1.1 The range of ρ(B5) is of dimension 5, and contains exactly 2

product vectors.

Proof. We consider the range of the matrix

ρ =



1 0 0 0 −1 0 0 0 0

0 1 0 0 0 −1 0 0 0

0 0 1 0 0 0 −1 0 0

0 0 0 1 0 0 0 −1 0

−1 0 0 0 2 0 0 0 −1

0 −1 0 0 0 1 0 0 0

0 0 −1 0 0 0 1 0 0

0 0 0 −1 0 0 0 1 0

0 0 0 0 −1 0 0 0 1


.

The matrix ρ is rank 5 (size of largest set of linearly independent rows is 5: see

rows 1 through 5), so it has 5-dimensional range. We can write ρ =
∑5

i=1 |ψi〉〈ψi|,

181

182 APPENDIX A. GRID STATES MISCELLANY

where

|ψ1〉 := |00〉 − |11〉,

|ψ2〉 := |01〉 − |12〉,

|ψ3〉 := |02〉 − |20〉,

|ψ4〉 := |10〉 − |21〉,

|ψ5〉 := |11〉 − |22〉.

It is easily verified that each of the following vectors are in the kernel of ρ

|φ1〉 := |01〉+ |12〉,

|φ2〉 := |02〉+ |20〉,

|φ3〉 := |10〉+ |21〉,

|φ4〉 := |00〉+ |11〉+ |22〉.

These vectors are mutually orthogonal, and since by rank-nullity the kernel is

4-dimensional, we know they span the kernel of ρ. Consider a product vector

|α〉|β〉 = (α0|0〉+ α1|1〉+ α2|2〉) (β0|0〉+ β1|1〉+ β2|2〉) in the range of ρ. Since ρ

is Hermitian, |α〉|β〉 must be orthogonal to the kernel, which implies that

α0β1 + α1β2 = 0,

α0β2 + α2β0 = 0,

α1β0 + α2β1 = 0,

α0β0 + α1β1 + α2β2 = 0.

That is, for some α = (α0 α1 α2) we have that any β∗ = (β∗0 β
∗
1 β
∗
2) must be

orthogonal to each of α0

α1

α2

 ,

 0

α0

α1

 ,

α2

0

α0

 and

α1

α2

0

 .

A.1. ENTANGLEMENT OF B5 183

If such a β∗ existed then these four vectors must only span a 2-dimensional

subspace of C3 (there of course can only be three mutually orthogonal vectors

in C3). Hence, any triple of these vectors must not be linearly independent, that

is, any triple must contain a vector linearly dependent on one of the others.

Considering one such triple, for this to be true then

det

 0 α2 α1

α1 0 α2

α2 α0 0

 = 0

implying that (α2
0 + α2

2)α1 = 0. We now consider cases.

184 APPENDIX A. GRID STATES MISCELLANY

CASE α1 = 0: this implies that

det

α0 0 α2

0 α0 0

α2 0 α0

 = 0

which implies that α0 (α2
0 − α2

2) = 0.

SUBCASE α0 = 0: this would imply that

det

 0 α2 0

0 0 α2

α2 0 0

 = 0

implying that α2 = 0 and therefore α = 0.

SUBCASE α0 6= 0: without loss of generality we can normalise α such

that α0 = 1, which implies that α2
2 = 1 which means that α2 = ±1. We

have two possibilities now for orthogonal α, β pairs:

αA =

1

0

1

 and βA =

 1

0

−1


or

αB =

 1

0

−1

 and βB =

1

0

1

 .

A.2. COUNTING GRAPHS THAT SATISFY THE DEGREE CRITERION 185

CASE α1 6= 0: this implies that α2
0 + α2

2 = 0.

SUBCASE α0 = 0: this cannot be true since then α2 = 0 and so

det

 0 0 α1

α1 0 0

0 α1 0

 = 0

which means that α1 = 0.

SUBCASE α0 6= 0: again, without loss of generality we can normalise so

that α0 = 1 which implies that α2 = ±i, meaning that

det

 1 0 ±i
α1 1 0

±i α1 1

 = 0.

This implies that 1± iα2
1−1 = 0, so α2

1 = 0 and we obtain a contradiction.

We conclude that there are only two product vectors in the range of ρ: αA ⊗ βA

and αB ⊗ βB.

A.2 Counting graphs that satisfy the degree crite-

rion

In Section 3.5 we showed that the 3× 3 grid-labelled graphs satisfy the degree

criterion if and only if they are constructed from a small number of building-

block graphs. Now we will outline a more general framework for enumeration of

grid-labelled graphs of type a× b, with k edges, that satisfy the degree criterion.

In what follows, the quantity Pk(a, b) is defined to be the number of graphs of

type a×bwith k edges that satisfy the degree criterion. LetDk(a, b) be the number

of graphs of type a× b with k edges, all diagonal, that satisfy the degree criterion.

186 APPENDIX A. GRID STATES MISCELLANY

Definition A.2.1 (Rook’s graph) The rook’s graph is the grid-labelled graph with
an edge between every pair of vertices in the same row or column. It is well known
that the a× b rook’s graph has

r(a, b) :=
a · b(a+ b)

2
− a · b

edges.

Lemma A.2.2 For any a, b, k ∈ N,

Pk(a, b) =

(
r(a, b)

k

)
+

k∑
i=2

Di(a, b) ·
(
r(a, b)

k − i

)
.

Proof. Let G(a, b, d, h) be equal to the number of a× b grid-labelled graphs with

d diagonal edges and h non-diagonal (horizontal or vertical) edges that satisfy

the degree criterion. Clearly,

Pk(a, b) =
k∑
i=0

G(a, b, i, k − i).

Since the degree criterion is not affected by horizontal or vertical edges, and

there are at most r(a, b) horizontal and vertical edges in a a × b grid-labelled

graph, it is clear that for any i, j ≥ 0,

G(a, b, i, j) = Di(a, b) ·
(
r(a, b)

j

)
.

Since for any a, b, D0(a, b) = 1 and D1(a, b) = 0, the lemma holds.

We obtain the first few values of Dk(a, b) in the next statement.

Proposition A.2.3 For any a, b ≥ 2, the following are true:

• D2(a, b) =
(
a
2

)
·
(
b
2

)
;

• D3(2, b) = 2 ·
(
b
3

)
;

• D4(2, b) = 3 ·
(
b
3

)
+ 9 ·

(
b
4

)
.

A.2. COUNTING GRAPHS THAT SATISFY THE DEGREE CRITERION 187

Figure A.1: The reflections of B3 that are relevant for separability in 2× b grid-labelled
graphs.

Proof. By Lemma 3.5.10, a 3 × 3 grid-labelled graph G with 2 diagonal edges

satisfies the degree criterion if and only if it is locally isomorphic to B2. Indeed,

for such a graph in arbitrary grid dimensions a × b it must be the case that it

satisfies the degree criterion if and only if it is LE-isomorphic to B2. Therefore,

we must count the number of a× b graphs with this property. For a = 2 this is of

course
(
b
2

)
. Increasing a gives an additional

(
a
2

)
-dimensional degree of freedom,

so

D2(a, b) =

(
a

2

)
·D2(2, b)

=

(
a

2

)
·
(
b

2

)
.

By Lemma 3.5.12, we know that any 3× 3 graph with 3 diagonal edges satisfies

the degree criterion if and only if it is locally isomorphic to a rotation of B3.

Similarly to the 2 edge case, this generalises to arbitrary a × b grid-labelled

graphs with 3 edges. In other words,an a× b graph with three edges satisfies the

degree criterion if and only if it is LE-isomorphic to a rotation of B3. Here, we

only consider the 2× b. Unlike B2, the graph B3 is not invariant under reflections.

Indeed, there are two graphs that we must consider when counting the 3 edge

degree criterion in 2× b grid-labelled graphs, which are illustrated in Figure A.1.

By similar reasoning to the 2 edge case, D3(2, b) = 2 ·
(
b
3

)
. In order to obtain

188 APPENDIX A. GRID STATES MISCELLANY

Figure A.2: An example of a 0, 1 and 2 degree graph of grid size 2× 4 and with 4 edges.

Figure A.3: Two examples of the 0 and 1 degree grid-labelled graphs with 4 edges on
grid size 2× 4. There is a bijection between such graphs and the derangements of a set
of 4 elements.

D4(2, b), we will take a different approach. We know from Corollary 3.4.11 that a

2× b grid-labelled graph satisfies the degree criterion if and only if the degrees of

the vertices in the top row are equal to the vertices in the bottom row. We leave

it to the reader to verify that there are only two types of four edge grid-labelled

graphs of type 2× b with this condition: those with all vertices of degree 0, 1 or

2, and those with all vertices of degree 0 or 1. The former kind are all locally

isomorphic to the grid-labelled graph illustrated in Figure A.2. Hence there are

3 ·
(
b
3

)
grid-labelled graphs of type (2, b) with this pattern of degrees, because

there are three columns of non-zero degree vertices: two with degree 1 vertices,

one with degree 2. Therefore, there are
(
b
3

)
placements of these columns, and 3

orderings within each placement.

We can enumerate the latter kind of grid-labelled graph by noticing that they

are precisely the derangements of a set of 4 elements (consider the illustration

in Figure A.3. Let us recall that a derangement of a finite set is a permutation

without fixed points. The number of derangements on a set of n elements is

counted by the sub-factorial function, defined

!n := (n− 1)(!(n− 1)+!(n− 2)).

Hence, in this case, there are !4 ·
(
b
4

)
= 9 ·

(
b
4

)
grid-labelled graphs under consid-

A.2. COUNTING GRAPHS THAT SATISFY THE DEGREE CRITERION 189

eration with this edge pattern. Therefore,

D4(2, b) = 3 ·
(
b

3

)
+ 9 ·

(
b

4

)
.

From what we have proved we are able to see the following.

Theorem A.2.4 (Entanglement of random grid-labelled graphs)

• Let G be a random a× b grid-labelled graph with 2 edges. Then asymptotically
almost surely (a.a.s), G 6∈ S.

• Let G be a random 2× b grid-labelled graph with 3 (resp. 4) edges. Then a.a.s,
G 6∈ S.

Proof. We know from Lemma 3.4.9 that we only need to consider the diagonal

edges of a grid-labelled graph to test if it satisfies the degree criterion. Let us

compare the growth of Dk(a, b) as a function of grid dimension with that of

GD
k (a, b), the total number of grid-labelled graphs with k edges, all diagonal.

Let us first obtain a general form for GD
k (a, b). Let Q(a, b) be the number of

diagonal edges in the a× b complete grid-labelled graph Ka·b. Then

GD
k (a, b) =

(
Q(a, b)

k

)
.

Clearly

Q(a, b) = |E(Ka·b)| − r(a, b)

=
a · b(a · b− 1)

2
− a · b(a+ b)

2
+ a · b

=
a2 · b2 − a · b− a2 · b− a · b2

2
+ a · b

=
(a2 − a)(b2 − b)

2

= 2

(
a

2

)
·
(
b

2

)
,

190 APPENDIX A. GRID STATES MISCELLANY

Hence,

GD
k (a, b) =

(
2 ·
(
a
2

)
·
(
b
2

)
k

)
,

and so GD
2 (a, b) ∼ (a4 · b4). We know from Proposition A.2.3 that D2(a, b) =(

a
2

)
·
(
b
2

)
∼ (a2 · b2). Therefore, given a random grid-labelled graph with grid

dimensions a, b ≥ 2 and with k = 2 edges, a.a.s. it will not satisfy the degree

criterion and is therefore not separable.

Setting a = 2, we find that

GD
3 (2, b) =

(
2 ·
(
b
2

)
3

)
∼ (b2)3

= b6,

and

GD
4 (2, b) =

(
2
(
b
2

)
4

)
∼ (b2)4

= b8.

In comparison,

D3(2, b) = 2 ·
(
b

3

)
∼ b3,

and

D4(2, b) = 3 ·
(
b

3

)
+ 9 ·

(
b

4

)
∼ b4.

We can conclude that for a random grid-labelled graph with grid dimensions

a = 2, b ≥ 2 and k = 3, 4 edges, a.a.s. it will not satisfy the degree criterion and

is therefore not separable.

In order to find a general form for Dk(a, b), more sophisticated techniques from

A.3. PROOF OF 6, 7, 8, 9 EDGE LEMMA 191

enumerative combinatorics will need to be employed. On the basis of what we

have been able to prove so far however, it is safe to conjecture that for any

grid-labelled graph G, a.a.s. G 6∈ S.

A.3 Proof of 6, 7, 8, 9 edge lemma

Let us now prove Lemma 3.5.18.

Proof. Let G be a 3 × 3 grid-labelled graph. We wish to prove that if G has

6 ≤ m ≤ 9 diagonal edges, then it has a decomposition into building-block

graphs.

That this is true is most easily seen by direct inspection. Through exhaustive

computer search, all graphs with a set number of diagonal edges can be enumer-

ated. There are a large number of graphs to be checked, especially in the 9 edge

case. To make the lists smaller and easier to parse, we remove subgraphs locally

isomorphic to the cross graph. Then, we remove all duplicate graphs from the

list. In Figures A.4, A.5, A.6 and A.7 we show all 3 × 3 graphs that satisfy the

degree criterion with 6, 7, 8 and 9 diagonal edges respectively. It can be verified

by examining these figures that each of the grid-labelled graphs have decomposi-

tions into grid-labelled graphs locally isomorphic to building-blocks or rotations

of building-blocks.

192 APPENDIX A. GRID STATES MISCELLANY

Figure A.4: All 6 edge grid-labelled graphs that satisfy the degree criterion up to local
isomorphism, with cross subgraphs removed.

Figure A.5: All 7 edge grid-labelled graphs that satisfy the degree criterion up to local
isomorphism, with cross subgraphs removed.

A.3. PROOF OF 6, 7, 8, 9 EDGE LEMMA 193

Figure A.6: All 8 edge grid-labelled graphs that satisfy the degree criterion up to local
isomorphism, with cross subgraphs removed.

Figure A.7: All 9 edge grid-labelled graphs that satisfy the degree criterion up to local
isomorphism, with cross subgraphs removed.

	Introduction
	Quantum preliminaries

	Quantum state isomorphism
	Graph isomorphism
	Probabilistic and interactive proofs
	Proofs with private coins
	Proofs with public coins

	Isomorphisms of strings and states
	Permutations and StringIsomorphism
	Permutations of quantum states and StateIsomorphism
	Quantum complexity theory
	Quantum interactive proofs and zero knowledge
	Statistical zero knowledge

	Summary

	Grid states
	Chapter Overview
	Graphs and quantum entanglement
	Subsequent work
	Discussion of literature

	Preliminaries
	Grid-labelled graphs and grid-states
	Local isomorphism
	Local operations and classical communication

	The Degree Criterion
	Extensions and LE-isomorphism
	Decompositions

	33 graphs that satisfy the degree criterion
	Edge contributions
	33 degree criterion with 2 diagonal edges
	33 degree criterion with 3 diagonal edges
	33 degree criterion with 4 and 5 diagonal edges
	Bound entanglement

	Matrix Realignment Criterion
	Realignment of combinatorial Laplacian matrices
	Failure of the matrix realignment criterion
	Applying the matrix realignment criterion to B4 and B5.

	Range criterion
	Row and column surgery
	Bound entangled graphs via the range criterion

	Summary

	Discussion
	Grid States Miscellany
	Entanglement of B5
	Counting graphs that satisfy the degree criterion
	Proof of 6,7,8,9 edge lemma

