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Abstract. A crucial limitation of current high-resolution 3D photoacoustic tomography (PAT)
devices that employ sequential scanning is their long acquisition time. In previous work, we demon-
strated how to use compressed sensing techniques to improve upon this: images with good spatial
resolution and contrast can be obtained from suitably sub-sampled PAT data acquired by novel
acoustic scanning systems if sparsity-constrained image reconstruction techniques such as total vari-
ation regularization are used. Now, we show how a further increase of image quality can be achieved
for imaging dynamic processes in living tissue (4D PAT). The key idea is to exploit the additional
temporal redundancy of the data by coupling the previously used spatial image reconstruction models
with sparsity-constrained motion estimation models. While simulated data from a two-dimensional
numerical phantom will be used to illustrate the main properties of this recently developed joint-
image-reconstruction-and-motion-estimation framework, measured data from a dynamic experimen-
tal phantom will also be used to demonstrate its potential for challenging, large-scale, real-world,
three-dimensional scenarios. The latter only becomes feasible if a carefully designed combination of
tailored optimization schemes is employed, which we describe and examine in more detail.

Key words. Photoacoustic tomography, dynamic imaging, compressed sensing, simultaneous
motion estimation, variational regularization.
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1. Introduction.

1.1. Compressed Sensing Photoacoustic Tomography. Optical absorption
of biological tissues is a desirable source of image contrast for a variety of clinical and
preclinical applications. In particular, its wavelength dependence provides spectro-
scopic (chemical) information on the absorbing molecules (chromophores). Photoa-
coustic Tomography (PAT ) is an ”Imaging from Coupled Physics”-technique [3] that
employs laser-generated ultrasound (US) to obtain optical absorption images with the
high spatial resolution of US. For recent reviews on the physical principles, technical
realizations and (pre-)clinical applications of PAT, we refer the reader to [63, 4, 48, 66].
In [1], we discussed the particular challenges of acquiring high quality three-dimensional
(3D) photoacoustic (PA) images with sequential scanning schemes, such as the Fabry-
Pérot based PA scanner (FP scanner): To reach a spatial resolution less than one
hundred µm, acoustic waves containing frequencies up to a few tens of MHz have to be
sampled over cm scale apertures. For a scanning pattern to satisfy the spatial Nyquist
criterion, sampling intervals in the order of tens of µm have to be chosen, which leads
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to several thousand detection points and thereby, long acquisition times. This imposes
a severe limit for dynamic PAT (4D PAT), i.e., imaging dynamic anatomical and phys-
iological events in high resolution in real time, an area of research of increasing interest
[19]. The key observation to overcome this limitation is that the Nyquist criterion
is often too conservative because it guarantees perfect recovery of the broad class of
images that are band-limited but otherwise arbitray. However, images of absorbing
tissue structures come from a much smaller sub-class of images, as they typically also
have a rather low spatial complexity (or a high sparsity). Therefore, data recorded
in a conventional, regularly sampled fashion, satisfying the Nyquist criterion, is of-
ten highly redundant. Compressed Sensing (CS ) [12, 22, 28] techniques exploit this
fact by combining sub-sampling schemes that try to maximize the non-redundancy
of the data with image reconstruction approaches that employ sparsity-constraints.
In [1], we demonstrated the implementation of CS techniques to accelerate 3D PAT
acquisition by using spatial sparsity constraints. In the context of 4D PAT, such
techniques can be employed to reconstruct each temporal frame separately, i.e., as a
frame-by-frame (fbf ) image reconstruction method.

1.2. Spatio-Temporal Image Reconstruction. In this work, we show that
another significant acceleration can be obtained by also accounting for the temporal
evolution of the target within a full spatio-temporal reconstruction scheme. A wide
range of such approaches have been proposed for different applications and dynamics.
If the dynamics between separate frames are sufficiently simple (e.g., affine deforma-
tions), low-dimensional parametric models can often be used to efficiently constrain
the image reconstruction in time. An application to PAT is demonstrated in [15] and
theoretical analysis of such approaches can be found in [35, 34, 33]. In such situations,
the aim is often rather to compensate for the motion (see, e.g., [45] for an overview
on compensating respiratory motion) than to resolve it, which is our main aim here.
Several approaches rely on extending popular spatial constraints into time. Incor-
porating `2 regularization of the temporal differences between frames is examined in
[55, 56] and recently, extending `1 functionals such as total variation functional and its
higher order variants to spatio-temporal settings have been proposed and have been
shown to work well for certain dynamics, e.g., [37, 54]. In the Bayesian approach
to inverse imaging problems, spatio-temporal methods are commonly refered to as
Kalman filtering or smoothing : Filtering refers to reconstructing each image frame
based only on measured data up to that point in time, most often done via updating
the previous image frame based on the most recent data. While this is the only option
for real-time or online image reconstruction, it is also popular in offline image recon-
struction due to its lower computational complexity compared to smoothing, which
refers to estimating each image frame based on the whole set of measured data. See
Section 4 in [42] for a general introduction and further references to Kalman fitering
and [57] for recent work on this topic. In the context of compressed sensing applica-
tions, low-rank-type models have been examined extensively, see, e.g., [36, 62, 60, 52].
These models rely on strong spatio-temporal decomposition assumptions which are
very effective when fulfilled but not appropriate for every dynamics.
In this work, we adopt a very general spatio-temporal modelling framework intro-
duced in [10] that can encode a-priori information about a wide range of dynamics: It
formulates an explicit PDE model for the image dynamics and then jointly estimates
the image sequence and the corresponding motion field by minimizing a variational
energy. An overview of similar approaches to joint image reconstruction and motion
estimation can be found in the introduction of [10], which also contains theoretical
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Table 1
List of commonly occurring abbreviations.

Abbreviation Meaning Reference
ACS alternate convex search Sec. 4.2
ADMM alternating direction method of multipliers Sec. 4.4, Alg. 4.2
fbf frame-by-frame Sec. 2.2
FP Fabry-Pérot Sec. 1.1
mIP maximum intensity projection Fig. 2
NNLS non-negative least squares Sec. 5.1
(Q)PAT (quantitative) photoacoustic tomography Sec. 1
PDHG primal dual hybrid gradient Sec 4.3, Alg. 4.1
TV total variation regularization Sec. 3.2
TVTVL2 Joint image reconstruction and motion estimation approach Sec. 3.2, (3.5)

10-9 10-6 10-3 100 103 

laser	pulse	dura*on	
photon	transport	

absorp*on	
thermaliza*on		

ultrasound		
propaga*on	

laser		
pulse		
rate	

desirable	
temporal	
resolu*on	

time scales in seconds 

complete	
scan	

(Nyquist)	

Fig. 1. Sketch of the relevant time scales in high resolution 4D PAT with sequential acquisition:
PAT is particularly suited to image dynamic processes in living tissue that are related to blood
circulation. For this, one would ideally like to obtain a temporal resolution close to the heart beat
(∼ 1s for humans, ∼ 0.1s for mice). As the processes that contribute to a single PA signal take
place within nanoseconds to microseconds, the main temporal limitation of sequential acquisition
systems is given by the excitation laser pulse rate. Lasers with sufficiently high pulse energies are
currently limited to ∼ 200Hz, which typically leads to longer acquisition times for a complete scan
than what is desired. For instance, scanning 20 000 locations with a 20Hz laser takes 1000s while
using a 200Hz laser in combination with a multi-beam read-out system as described in [41] takes
12.5s. In the latter case, applying compressed sensing with a sufficiently high sub-sampling factor
would yield the desired temporal resolution.

analysis of this approach. While it was used for 2D dynamic computed tomography
reconstruction in [9], we present the first application to a challenging, large-scale 3D
dynamic problem with experimental data, which also requires the development of
tailored numerical optimization schemes.

1.3. Structure. The remainder of the paper is organized as follows: Section 2
introduces the mathematical modeling of dynamic PAT and illustrated the limitations
of reconstruction approaches that only account for spatial sparsity. Based on this, a
variational spatio-temporal image reconstruction framework based on joint motion
estimation is presented in Section 3. Section 4 discusses the numerical solution of the
optimization problems that originate from the variational approach and in Section 5,
we present results with a simple 2D scenario with simulated data and a challenging 3D
scenario with experimental data. Finally, we discuss the results of our work and point
to future directions of research in Section 6. Table 1 lists all commonly occurring
abbreviations for reference.

2. Background and Previous Work.
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2.1. Sequential Acquisition of Compressed Dynamic PAT. Let us denote
the biological tissue to be imaged by Ω ∈ Rd (d = 2, 3), the space variable by r ∈ Ω,
the measurement interval by [0, T ] and the (continous) time variable by τ ∈ [0, T ].
A reasonable mathematical model of dynamic PAT has to make certain assumptions
about the different time scales involved in signal generation and measurement, in
particular if the PA signal is scanned in a sequential manner. Firstly, as described
in more detail in Section 1.1. of [2], the photoacoustic effect is only significant if
the laser pulse duration, photon transport, photon absorption by chromophores and
subsequent thermalization take place sufficiently fast, i.e., within a few nanoseconds.
The induced, local pressure increase p : Ω→ R+ initiates a broadband acoustic pulse
that travels through Ω within a few microseconds. Therefore, this part of the signal
generation is commonly modelled as an initial value problem for the wave equation:

(2.1) (∂ττ − c2∆)p̆(r, τ) = 0 , p̆(r, τ = 0) = p , ∂τ p̆(r, τ = 0) = 0 .

This approximates the whole optical part as instantaneous, which is equivalent to
assuming the tissue remains at rest until the thermalization is complete. Sequential
scanning systems can only measure a single spatial projection of p̆(r, τ) over a sensor
surface S ⊂ ∂Ω for each pulse of the excitation laser:

(2.2) fm,l =

∫
[0,T ]

∫
S
p̆(r, τ)φm(r)ψl(τ) dr dτ, m = 1, . . . ,M, l = 1, . . . ,Mτ .

where φm(r) describes the spatial window function used for the measurement associ-
ated with the m-th laser pulse, and ψl is the l-th temporal window function (we will
only consider equidistant temporal point sampling in the following).
A single pressure-time series is recorded within a few microseconds, and can therefore
be regarded as instantaneous if we are interested in imaging dynamics taking place
on the scale of a few seconds or even minutes. However, as described in more detail
in [1], to form high resolution 3D images, the spatial Nyquist criterion necessitates
that several thousand of such time series are recorded. As the pulse repetition rates
of conventional excitation lasers are typically limited to tens of Hz, this means that
the scanning process and the image dynamics interfere - the image is moving while
the scanning is taking place - and neglecting this by assuming an instantaneous mea-
surement can lead to severe motion blurring in the reconstructed images. A summary
of the relevant time scales is depicted in Figure 1.
A fully continuous modelling encompassing all the different and interfering spatio-
temporal processes described above is of only limited practical value and will not be
pursued here. Instead, we assume that a temporal binning of the sequential acquisi-
tions (2.2) into temporal frames, t = 1, . . . , T , is chosen in such a way that the initial
pressure can be assumed to be static during one frame. We then model the linear
mapping of the discretized initial pressure pt ∈ RN to fully-sampled, discrete data
ft ∈ RMMτ via (2.1) and (2.2) by a time-independent, i.e., instantaneous, operator
A. In this context, ”fully-sampled” refers to an ideal scanning scheme that samples
S as demanded by the spatial Nyquist criterion, although our measurement set-up
might practically not allow for doing that within the duration of a single temporal
bin. The real measurement is modeled by applying a time-dependent sub-sampling
or compression operator Ct ∈ RMcMτ×MMτ to ft:

(2.3) f ct = Ctft = CtApt + εt , t = 1, . . . , T ,

where εt accounts for additive measurement noise, which we assume can be modeled
as i.i.d. standard normal distributed after suitable data pre-processing is carried out.
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We will mainly use s-periodic sequences Ct, t = 1, 2, . . ., such that for any t0 > 1,

(2.4) C̄t0 =


Ct0
Ct0+1

...
Ct0+s


is invertible can be transformed into C̄1 by row-permutation. This amounts to split-
ting a conventional, full scanning pattern C̄ ∈ RMMτ×MMτ consisting of M spa-
tial projections into smaller temporal bins comprising disjoint sub-sets of Mc spa-
tial projections and allows for an intuitive definition of the sub-sampling factor as
Msub = M/Mc. However, the methods presented here can be used for any sequence
{Ct}Tt .
From now on, any reference to time is with respect to the image and measurement
dynamics (indexed by t), not to the acoustic wave propagation (indexed by τ). Fur-
thermore, we will often ease the notation when dealing with spatio-temporal quan-
tities: Dropping the temporal index t refers to the whole sequence as a vector, e.g.,
p ∈ RNT . When spatial operators like the gradient ∇ are applied to such a vectorized
dynamic quantity, it is understood as a frame-by-frame application, i.e., ∇p means
(IT ⊗∇) p, where IT is the T dimensional identity matrix.

2.2. Previous Work. In [1], we focused on fbf image reconstruction techniques
for (2.3), i.e., we reconstructed each pt separately, agnostic to any temporal relation-
ship in the data f ct . In particular, we showed that variational approaches,

(2.5) p̂t = argmin
pt>0

{
1

2
‖CtApt − f ct ‖22 + αJ (pt)

}
, α > 0 ,

that use the regularization functional J (p) to impose sparsity constraints that en-
code a-priori knowledge that the images mainly consist of structures of low spatial
complexity outperform linear reconstructions such as time-reversal or other back-
projection-type approaches [26, 64, 2]. Similar studies by others confirm these results
[51, 32, 65, 46, 47, 39, 6, 23]. As (2.5) has to be solved by iterative optimization
schemes, fbf image reconstruction is appealing from a computational perspective.
However, as it can only encode spatial a-priori information, its ability to obtain good
quality images from sub-sampled dynamic data (2.3) is limited. With data from an
experimental phantom that will be described in more detail in Section 5.2, we were
able to show in [1] that while fbf reconstructions with Msub = 8 still give acceptable
results, using Msub = 16 leads to reconstructions too heavily impaired by missing-
data artefacts and noise. However, an inspection of consecutive frames as shown in
Figure (2) reveals that the temporal correlation between both noise and artefacts dif-
fers strongly from the smooth spatio-temporal evolution of the target. Consequently,
noise and artefacts should be effectively removed when using an appropriate smooth
spatio-temporal image model. This is the key observation we will utilize to enhance
dynamic compressed sensing PAT, either to improve the image quality compared to
fbf reconstructions or to allow for higher sub-sampling factors Msub.

3. Joint Image Reconstruction and Motion Estimation.
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(a) t = 22, X mIP (b) t = 23, X mIP

(c) t = 22, Y mIP (d) t = 23, Y mIP

(e) t = 22, Z mIP (f) t = 23, Z mIP

(g) t = 22, X slice (h) t = 23, X slice

Fig. 2. Limitations of applying frame-by-frame image reconstruction (2.5) to a dynamic PAT
data set (details given in Section 5.2) when using a high sub-sampling factor Msub = 16: Figures
in the left and right column show maximum intensity projections ( mIP) along different directions
((a)-(f)) and slice view visualizations ((g)-(h)) of the results p22 and p23, respectively. One can
easily see that image artefacts are not correlated between the two subsequent time frames (same
coloured circles in left and right images highlight examples) while the target’s motion is.

3.1. Simultaneous Motion Estimation. A full non-parametric, spatio-temporal
variational scheme reads

(3.1) p̂ = argmin
p>0

{
T∑
t

1

2
‖CtApt − f ct ‖22 +R(p)

}
,
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where the regularization R(p) is now a function of the whole image sequence p ∈ RNT
that cannot be decomposed over frames, i.e., R(p) 6=

∑
t Jt(pt). Here, we choose a

particular construction of such a scheme introduced in [10]. For our time-discrete
dynamic PAT problem, it is given as:

(3.2) (p̂, v̂) = argmin
(p>0,v)

{
T∑
t

1

2
‖CtApt − f ct ‖22 + αJ (pt) + βH(vt) + γM(p, v)

}

Here, each vt ∈ RdN describes a d-dimensional vector field describing the motion
between pt and pt+1, J (pt) and H(vt) are spatial regularization terms on image and
motion field, respectively, and α, β, γ are non-negative regularization parameters. The
key term is M(p, v), which enforces a relation between image sequence p and related
motion field sequence v by measuring how well they fulfil a (discretized) motion PDE
chosen to model a-priori information about the underlying image dynamics. Note that
(3.1) can be obtained from (3.2) by dropping v̂ from the left hand side and replacing
the argmin over v with a minimization over v.

3.2. Optical Flow Constraints. The purpose of this work is a proof-of-concept
study to show that a more sophisticated spatio-temporal approach like (3.2) can gen-
erally improve upon simpler fbf reconstruction. Therefore, we stick to rather generic
choices of J , H and M and leave the examination of problem-specific regularizers
encoding more detailed information about image and dynamics for future work. For
J and H we choose the popular (isotropic) total variation (TV ) functional also used
in [1]. The motion term M(p, v) should enforce a simple continuity equation, known
as the optical flow equation [38] in the field of computer vision:

(3.3) ∂τp(r, τ) + (∇rp(r, τ)) · v(r, τ) = 0 .

One way to achieve this is to let M measure the least-squares error of a forward
difference discretization of (3.3) in time:

(3.4) M(p, v) =

T−1∑
t

1

2
‖pt+1 − pt + (∇pt) · vt‖22

In total, this leads to the variational scheme

(p̂, v̂) =argmin
p>0,v

{
E(p, v)

}
:= argmin

p>0,v

{
T∑
t

1

2
‖CtApt − f ct ‖22+

α‖∇+pt‖1 + β

d∑
i

‖∇+vxi,t‖1 +
γ

2
‖pt+1 − pt + (∇±pt) · vt‖22

}
,

(3.5)

where we define pT+1 := pT , vT := 0 to simplify the formula. The spatial gradients in
the TV terms are implemented with forward differences (denoted by ∇+) as described
in Appendix A in [1]. We chose to implement the TV of the motion field as a sum
over the TV of the single components here and leave other possible choices for future
work. The spatial gradient ∇pt in the optical flow term is discretized using central
differences, denoted by ∇±. As the scheme is solved implicitly for p given v, this
gives a stable discretization of (3.3). More details on the discretization can be found
in [20]. We will refer to (3.5) as TVTVL2 model.
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4. Optimization. The TVTVL2 model (3.5) leads to a large-scale, non-smooth,
bi-convex optimization problem in p and v involving the computationally intensive
acoustic propagation operator A applied to T image frames. We will therefore de-
compose it into several sub-problems to disentangle its most complicated components.
All sub-problems will be solved with iterative first order techniques. For general in-
troductions to numerical optimization suited for imaging applications, we refer to
[11, 14].

4.1. Forward-Backward Splitting. Computing each matrix-vector product
Apt or A∗ft involves the numerical solution of a potentially inhomogenous 3D wave
equation (2.1) with high spatial and temporal resolution. For this, we will use the
k-space pseudospectral time domain method [44, 18, 59] implemented in the k-Wave
Matlab Toolbox [58]. With this implementation, each matrix-vector product with A
or A∗ has the complexity O(MτN log(N)) [2] and typically Mτ > N . In contrast, all
linear operators in the regularization terms in (3.5) have complexity O(N). For this
reason, we build the outer-most iteration (index i) of our scheme by decoupling the
smooth, convex data term containing A from all other terms and the non-negativity
constraints on p by a proximal forward-backward splitting/proximal gradient descent
scheme (see [30] for an extensive overview). For this, we need to define the proximal
operator of a functional J (x) as

(4.1) proxαJ (y) := argmin
x

{
αJ (x) +

1

2
‖x− y‖22

}
.

Furthermore, as v is not part of the data term, it appears only in the second step of
the iterative scheme:

p̃t = pit − ηA∗C∗t
(
CtAp

i
t − f ct

)
∀ t = 1, . . . , T (forward step)(4.2a) (

pi+1, vi+1
)

= proxηR (p̃) (backward step),(4.2b)

where R(p, v) combines all regularization terms on p and v from (3.5):

(4.3) R(p, v) :=

T∑
t

α‖∇+pt‖1 + β

d∑
i

‖∇+vxi,t‖1 +
γ

2
‖pt+1 − pt + (∇±pt) · vt‖22 .

In (4.2a)-(4.2b), we initialize p0 = 0 and set the step size η to 1.5/maxt Lt. Lt is an
approximation of the Lipschitz constant of A∗C∗t CtA which can be pre-computed for
a given setting and sub-sampling scheme with a simple power iteration. The basic
scheme (4.2a)-(4.2b) is extended by a gradient extrapolation step (accelerated or fast
gradient methods) which will lead to an asymptotic convergence rate of O(1/i2). For
this, we use the FISTA extrapolation [5] with restart whenever an increase in the
total energy E occurs.

4.2. Biconvex Optimization. Combining (4.3) and (4.1), we see that solving
the proximal operator in (4.2b) amounts to solving the following TVTVL2-regularized
denoising problem:

(
pi+1, vi+1

)
= proxηR (p̃) = argmin

p>0,v

{
Ẽ(p, v)

}
:= argmin

p>0,v

{
T∑
t

1

2
‖pt − p̃t‖22

+ηα‖∇+pt‖1 + ηβ

d∑
i

‖∇+vxi,t‖1 +
ηγ

2
‖pt+1 − pt + (∇±pt) · vt‖22

}
,

(4.4)
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The main difficulty here is the motion term. The product (∇±pt) · vt renders it bi-
convex, i.e., Ẽ(p, v) is convex in each of the single variables p or v once the other is
fixed, but non-convex as a function of both variables. As such, bi-convex problems
are global optimization problems that can have a large number of local minima. An
overview over bi-convex optimization can be found in [31]. Compared to general
global optimization problems, the convex sub-structures can be utilized to design
efficient optimization schemes with certain global convergence properties. A popular
approach is given by the alternate convex search (ACS ) method which alternates
between minimizing Ẽ(p, v) for one variable while keeping the other fixed. Applied to
(4.4), the ACS iteration (index j) reads:

(4.5a) pj+1 = argmin
p>0

{
T∑
t

1

2
‖pt− p̃t‖22 + α̃‖∇+pt‖1 +

γ̃

2
‖pt+1− pt + (∇±pt) · vjt ‖22

}

(4.5b) vj+1 = argmin
v

{
T∑
t

β̃
d∑
i

‖∇+vxi,t‖1 +
γ̃

2
‖pj+1
t+1 − p

j+1
t + (∇±pj+1

t ) · vt‖22

}
,

where we defined α̃ = ηα, β̃ = ηβ, γ̃ = ηγ. The first problem (4.5a) is a denoising
problem for p with a regularization consisting of a TV and a transport term. The
problem (4.5b) for v is an optical flow estimation problem with TV regularization.
Note that it is separable in t, i.e., it can be solved fbf. Both sub-problems are convex
and therefore, approximate solutions can be found reasonably fast by iterative first
order schemes (iteration index k). The next two sections will present two different
approaches for each sub-problem. First, we will repeat how to apply the primal dual
hybrid gradient (PDHG) [50, 13] algorithm as already proposed in [10]. While this
will be sufficient for treating small-scale 2D problems such as examined in Section 5.1,
we will then introduce tailored alternating direction method of multipliers (ADMM )
(e.g., [7]) schemes that will be shown to be sufficiently efficient to also treat large-scale
3D problems as encountered in the real-data scenarios examined in Section 5.2.
However, as (4.5a) and (4.5b) are non-smooth, both PDHG and ADMM rely on dual
or primal-dual formulations and can therefore not guarantee a monotonous decay of
the iterates energy Ẽ(p, v). This leads to a potential problem: While ACS will still
converge in objective value Ẽ(p, v) if we do not solve the sub-problems exactly but
only find fast approximate solutions, we need to guarantee that Ẽ(p, v) decreases in
every step. Therefore, we will need to track the energies of all iterates and allow
sub-routines to run long enough to ensure a sufficient decay. In addition, we will
warm-start the sub-routines with all the variables from their last call, even though
this will lead to an increased memory consumption.

4.3. Solution of Convex Subproblems by PDHG. The PDHG algorithm
has become the de facto standard template for solving convex, non-smooth optimiza-
tion problems in a vector space X involving complicated linear operators K : X → Y
for which matrix-vector products with K and K∗ can be computed. The idea is to
formulate the problem in the primal form as

(4.6) min
x∈X

E(x) = min
x∈X

G(x) + F(Kx) ,

with proper, convex functionals G and F and to then switch to the equivalent primal-
dual formulation,

(4.7) min
x∈X

max
y∈Y
〈Kx, y〉+ G(x)−F∗(y) ,
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which involves the convex conjugate F∗ of F . The advantage of this formulation over
(4.6) is that the operator K does not show up in the non-linear terms any more. The
PDHG algorithm then solves the saddle-point problem (4.7) by basically alternating a
gradient descent in the primal variable and a gradient ascent in the dual variable. In
addition, it performs an overrelaxation step in one of the variables (here, the primal
one), see Algorithm 4.1. To apply this to (4.5a), i.e., x = p, we choose

Algorithm 4.1 Primal Dual Hybrid Gradient Scheme (PDHG)

Given µ > 0, ν > 0, θ ∈ [0, 1], x̂0, y0, iterate for k = 1, 2, . . .:

yk+1 = proxνF∗

(
yk + νKx̂k

)
(prox-grad step in y)(4.8a)

xk+1 = proxµG
(
xk − µK∗yk+1

)
(prox-grad step in x)(4.8b)

x̂k+1 = xk+1 + θ
(
xk+1 − xk

)
(overrelaxation)(4.8c)

Kp =

[
∇+

∂+t +
∑d
i v

j
xi∂
±
xi

]
p :=

[
∇+

Dvj

]
p , K∗y = −∇+ · y1 +D∗vj y2 ,(4.9a)

G(p) = χ+(p) +

T∑
t

1

2
‖pt − p̃t‖22 , χ+(p) :=

{
0 if pi > 0 ∀ i
∞ else.

,(4.9b)

F(y) = F
([
y1
y2

])
= α̃‖y1‖1 +

γ̃

2
‖y2‖22 ,(4.9c)

where y1 ∈ RNTd represents a d-dimensional spatio-temporal vector field resulting
from applying ∇+ to every frame of a d-dimensional dynamic image p (d = 2, 3 here).
The explicit form of the proximal operators needed to implement Algorithm 4.1 with
these choices are listed in Appendix A. We can use the PDHG scheme to solve (4.5b),
i.e., x = v, by choosing

Kv =
(
Id ⊗∇+

)vx1

...
vxd

 , K∗y =

−∇
+ · y1
...

−∇+ · yd

 ,(4.10a)

G(v) =
γ̃

2

T∑
t

‖pj+1
t+1 − p

j+1
t + (∇±pj+1

t ) · vt‖22 ,(4.10b)

F(y) = F


y1...
yd


 =

T∑
t

β̃

d∑
i

‖yi,t‖1 .(4.10c)

Here, y ∈ RNTd2 represents a (d × d)-dimensional spatio-temporal tensor field with
components yi ∈ RNTd representing the spatial Jacobian of every frame of a d-
dimensional dynamic vector field v. Again, the solution of the involved proximal
operators is shifted to Appendix A. Note that as (4.5b) can be solved fbf, i.e., for
each vt separately, the PDHG algorithm sketched above can be parallelized over t.
While this is an appealing option, for its use within ACS one has to implement it
such that the overall energy Ẽ(p, v) (which is summed over t) deceases sufficiently, cf.
Section 4.2.
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The overrelaxation parameter θ in both PDHG schemes is chosen as 1. Furthermore,
we need to choose the step sizes µ, ν in dependence on K to ensure convergence
(cf. [13, 14]). Due to the complicated structure of (4.9a), we use the extension of
PDHG by diagonal preconditioning proposed in [49] (the α parameter in [49] is set to
1), which is easy to compute for our problem and was found to work well compared
to standard choices based on estimates of ‖K‖2,2. The operator K in (4.10a) has
a simple structure and it can be shown that ‖K‖2,2 6 4d [13]. As such, the choice
µ = 1/2d, ν = 1/2 fulfils µν‖K‖22,2 6 1 and leads to convergence (this balancing
between µ and ν was found empirically).

4.4. Solution of Convex Subproblems by ADMM. In the ADMM ap-
proach, the unconstrained but coupled convex problem (4.6) is first converted into
an equality-constrained but uncoupled convex problem by introducing an auxiliary
variable y = Kx,

(4.11) (4.6)⇐⇒ min
x∈X ,y∈Y

G(x) + F(y) such that y = Kx ,

which is then solved by a combination of dual ascent, augmented Lagrangian tech-
niques, and the method of multipliers. The final ADMM scheme is described in
Algorithm 4.2. The crucial difference to the PDHG schemes is that the update of

Algorithm 4.2 Alternating Direction Method of Multipliers (ADMM)

Given ρ > 0, y0, w0, iterate for k = 1, 2, . . .:

xk+1 = argmin
x∈X

{
G(x) +

ρ

2
‖Kx− yk + wk‖22

}
(4.12)

yk+1 = argmin
y∈Y

{
F(y) +

ρ

2
‖Kxk+1 − y + wk‖22

}
(4.13)

wk+1 = wk +Kxk+1 − yk+1(4.14)

x, (4.12), is now implicit, and we will choose the split y = Kx such that it will be
given as the solution of a least-squares problem involving all linear operators1. This
can be advantageous in cases where K suffers from bad conditioning, but only leads
to a computationally efficient scheme if the corresponding normal equations can be
solved fast. Fortunately, ADMM still converges if the sub-problems (4.12) and (4.13)
are solved approximately but with accuracy increasing with k (see [25] and references
therein for a precise statement). Therefore, warm-started iterative linear solvers with
carefully chosen stop conditions can be used. For problem (4.5a), i.e., x = p, we

1ADMM and PDHG schemes are actually very closely related, although most introductions of
the two methods do not immediately imply this, and our short overview here cannot cover it. See
[11, 14] for an extensive discussion.
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realize the ADMM iteration by

Kp =

[
∇+

IN

]
p ⇒ K∗

[
y1
y2

]
= −∇+ · y1 + y2 ,(4.15a)

G(p) =

T∑
t

1

2
‖pt − p̃t‖22 +

γ̃

2
‖pt+1 − pt + vjt · (∇pt)‖22(4.15b)

=
1

2
‖
[

IN√
γ̃Dvj

]
p−

[
p̃
0

]
‖22 ,

F(y) = F
([
y1
y2

])
= α̃‖y1‖1 + χ+(y2) ,(4.15c)

where y1 ∈ RNTd represents a d-dimensional spatio-temporal vector field resulting
from applying ∇+ to a d-dimensional dynamic image p and y2 ∈ RNT accounts for
the non-negativity constraints. We will denote the corresponding parts of w by w1

and w2 as well. For these choices, the update (4.12) is given by

(4.16) pk+1 = argmin
p


1

2
‖


IN√
γ̃ Dvj√
ρ ∇+

√
ρ IN

 p−


p̃
0√

ρ
(
yk1 − wk1

)
√
ρ
(
yk2 − wk2

)
 ‖22


=
(
(1 + ρ)IN + γ̃D∗vjDvj + ρ∆+

)−1 (
p̃+ ρ∇+ ·

(
yk1 − wk1

)
+ ρ

(
yk2 − wk2

))
.

All the linear operators can easily be implemented in a matrix-free way and so (4.16)
can be solved with a standard conjugate gradient (CG) implementation. As in the
PDHG schemes, update (4.13) can be solved explicitly using proximal operators (Ap-
pendix A).
For solving (4.5b), i.e., x = v, choose exactly the same split as in the corresponding
PDHG scheme, i.e., (4.10a)-(4.10c) and make use of the fact that the optimization
can be solved for each t separately: For each t, the update (4.12) is given by

(4.17) vk+1
t =

(
γ̃E∗E + ρId ⊗∆+

)−1 (
γ̃E∗

(
−pj+1

t+1 + pj+1
t

)
+ ρK∗

(
yk − wk

))
,

where E = E(pj+1
t ) is an N × dN matrix implementing the point-wise multiplication

and summation of the components of a vector field with the spatial gradients of pj+1
t ,

i.e., Ev =
∑d
i vxi∂

±
xip

j+1
t as

(4.18) E =
[
diag

(
∂±x1

pj+1
t

)
. . . diag

(
∂±xdpt

)]
.

For d = 2, we take a closer look at the structure of the matrix to invert in (4.17):

(4.19)
(
γ̃E∗E + ρId ⊗∆+

)
= γ̃

[
T11 T12
T11 T22

]
+ ρ

[
∆+ 0
0 ∆+

]
,

where Tkl := diag
(
∂±xkp

j+1
t · ∂±xlp

j+1
t

)
. While one can easily implement matrix-free

iterative solvers for this system, we chose to explicitly build this very sparse matrix
to be able to use efficient pre-conditioning techniques. Within the ADMM iteration,
this comes with little overhead as only the right hand side in system (4.17) changes
during the iteration. We will examine different combinations of pre-conditioners and
iterative solvers in the numerical studies [53]: As pre-conditioners, we consider
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• IC(0): incomplete Cholesky pre-conditioner with zero-fill as implemented in
Matlab (R2016a).

• ICT: incomplete Cholesky pre-conditioner with threshold dropping (thresh-
old: 1e-3) as implemented in Matlab (R2016a).

• AMG: Algebraic Multigrid W-cycle pre-conditioner based on the implementa-
tion in [43], which uses a modification of Ruge-Stuben coarsening, two-points
interpolation (use at most two connected coarse nodes) and a direct solver on
the coarsest level.

As iterative solvers, we examine the standard CG method and the Minimum Residual
Method (MINRES ). Further details will be discussed in the next section. The iterative
solvers are warm-started with the previous solution pk or vkt , perform at least 3
iterations and stop when the relative residual norm is below tol(k) = 10−3/k3/2, i.e.,
we progressively increase the precision to which we solve sub-problem (4.12). Update
(4.13) can be solved as for the corresponding PDHG scheme (Appendix A).
While ADMM converges for all ρ > 0, its choice has a crucial impact on the speed of
convergence and other properties of the iterates, e.g., the monotonicity of the energy
E
(
xk
)
, which is important for using ADMM inside of an ASC (cf. Section 4.2). For

using ADMM on the p update (4.5a), we use the adaptation strategy described in
Section 3.4.1 of [7] during the steps k = 1, . . . , 25 and fix it thereafter. For the first p
update (4.5a) within ASC we initialize ρ = 1 and then always warm-start the following
p update with the adapted ρ. In the ADMM scheme for the v update (4.5b), we fix
ρ = 10−1 for d = 2 and 102 for d = 3, firstly to avoid a re-computation of the matrices
and their pre-conditioners (see above) and secondly to enforce a fast transition to
the regime of monotonous energy decay. As with any alternating optimization, the
ADMM scheme can benefit from over-relaxation. We use the technique discussed in
Section 3.4.3 of [7], which consists of replacing the quantity Kxk+1 in Algorithm 4.2
by sKxk+1 + (1− s)yk. Throughout the experiments, we use s = 1.8.
Although we limited our presentation here to the most important features, it already
became apparent that compared to PDHG, ADMM schemes are more difficult to
design and parametrize. Also note that ADMM with the specific type of split that we
used here is equivalent to the split Bregman method [29, 25], which derives Algorithm
4.2 from a different perspective.

5. Results. In this section, we first demonstrate the main features of the pro-
posed methods on a simple numerical phantom in 2D before we discuss their real-
ization for experimental data in 3D. As we can only show snapshots for a few time
frames of the reconstructions here, movies of all reconstructions can be found in the
supplementary material. For computing the results presented, we used ADMM in
both the p update (4.5a) and the v update (4.5b) as described in the previous section.
In the v update, AMG-CG was used as a least squares solver. In Section 5.3, we
compare this choice to possible alternatives in more detail.
All routines have been implemented as part of a Matlab toolbox for PAT image re-
construction which will be made available in near future. The toolbox relies on the
k-Wave toolbox (see [58], http://www.k-wave.org/) to implement A and A∗, which
allows to use highly optimized C++ and CUDA code to compute the 3D wave prop-
agation on parallel CPU or GPU architectures.

5.1. Numerical 2D Phantom. The computational domain is a square of length
20mm which is divided into N = 100×100 pixels. Its acoustic properties are assumed
homogeneous with c = 1500 m s−1. The conventionally scanned (fully sampled) mea-
surement data (referred to as “cnv”) is acquired at M = 100 sensors sampled at

http://www.k-wave.org/
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(a) (b)

Fig. 3. The 2D numerical phantom. (a): A snapshot at t = 13 and the corresponding color
bar. The sensor locations are shown as pink pixels (left and top edge). (b) A visualization of all
T = 25 frames as a color-coded RGB overlay. The color bar displays which colors are assigned to
which time frame, the sensor pixels are shown as black pixels.

Mτ = 472 time steps with δτ = 40 ns. The sensors are arranged in two orthogonal
lines, which corresponds to a 2D version of a scanning system using two orthogonal
Fabry-Pérot sensors [24, 27]. This way, reconstructions from the fully sampled sensor
array will not suffer from severe limited view artefacts and we can concentrate on the
effects of sub-sampling.
The dynamical phantom consists of three tubes that change center position, orienta-
tion and size smoothly over T = 25 frames and should loosely resemble the dynamics
of the X-slices of the experimental phantom in Figure 2. Figure 3 shows different
visualizations of the phantom. White Gaussian noise with a standard deviation of
σ = 5 · 10−3 was added to the simulated pressure time series leading to an average
SNR of 20.65 dB. To sub-sample the data, we now assume that in each frame, we can
acquire data at a sub-set of 4 out of the 100 original sensor locations that have been
chosen random but disjoint, such that after T = 25 frames, each location has been
scanned once. This means that the sub-sampling factor Msub = M/Mc (cf. Section
2.1) equals T , i.e., we acquire all 25 frames with the same scanning time as a single
frame in the full data set-up. The operators Ct can thus be written as Ct = IMτ

⊗ C̃t
with C̃t being a binary 4× 100 matrix with 4 ones on the main diagonal and all zero
otherwise and

(5.1) C̄ =

C1

...
CT


is a row-permutation of IM . We will denote this sub-sampling strategy by rSP-25.
First, we compute fbf reconstructions (2.5) without any regularizer J (p), i.e., non-
negative least squares (NNLS ), and then using a TV functional (denoted as TV-fbf ).
For this, we use 100 iterations of the accelerated proximal gradient descend introduced
in Section 4.1. The proximal step (4.2b) is simply a projection onto the positive
orthant for NNLS, while it amounts to solving a TV-regularized denoising problem
in the case of TV (for details, see [1]). The results are shown in Figure 4 and again
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(a) phantom p (ground truth) (b) NNLS, cnv (c) TV-fbf, α = 2 · 10−3 cvn

(d) (e) NNLS, rSP-25 (f) TV-fbf, α = 3.2·10−4 rSP-25

Fig. 4. Snapshots at t = 13 of the results of frame-by-frame image reconstruction methods (2.5)
for full (cvn) and sub-sampled (rSP-25) data.

demonstrate that while we can obtain a good reconstruction with fbf methods for full
data, they fail for severely sub-sampled data, similar to the motivating example shown
in Figure 2. Next we compute reconstructions with the TVTVL2 model (3.5): An
apparent challenge of this more sophisticated spatio-temporal model that we did not
discuss up to now is that it relies on three regularization parameters α, β and γ. For
TV-fbf, it is easy to fix the single parameter αmanually: We computed reconstructions
for different α for a single frame, and then used the smallest α that visually removed
most noise for all frames, which we will denote as α̂. For the TVTVL2 model, we start
with simply setting α = β = α̂ and γ = 1. Figures 5b and 5e show the results of this
naive parameter choice. Although the reconstructions for the sub-sampled data still
suffer from some blurring and artefacts, one can clearly see a significant improvement
compared to the fbf reconstructions in Figure 4. We then varied (α, β, γ) around this
first guess. Figures 5c and 5f show the effect of decreasing γ to 0.1 which has by far the
biggest positive impact. Figure 6 illustrate the effects of also varying α and β, which
leads to trade-offs between over-smoothing and artefact reduction. We leave a more
detailed parameter study for future work and instead investigate the estimated motion
fields. Figure 7 shows that main features of the motion fields can be re-constructed
even from sub-sampled data. In particular, the motion fields facilitate the distinction
and tracking of different moving objects.

5.2. Experimental 3D Phantom. Now, we examine the performance of the
methods on high resolution 3D reconstructions from dynamic experimental phantom
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(a) phantom p (ground truth) (b) TVTVL2, γ = 1, cnv (c) TVTVL2, γ = 0.1, cnv

(d) (e) TVTVL2, γ = 1, rSP25 (f) TVTVL2, γ = 0.1, rSP-25

Fig. 5. Snapshots at t = 13 of the results of the TVTVL2 image reconstruction (3.5) for full
(cvn) and sub-sampled (rSP-25) data. The parameters α and β were set to the corresponding value
of the α used for the TV-fbf reconstructions in Figure 4 and γ was set to 1 or 0.1.

data. As outlined in the motivation in Section 2.2, we use the same data as in [1], to
investigate if the methods described here can improve upon the fbf reconstructions
for Msub = 16 (cf. Figure 2). However, for this article to be self-contained, we first
briefly recap the set-up and pre-processing used.

5.2.1. Setup and Pre-processing. The phantom consists of two polythene
tubes filled with 100% and 10% ink immersed in a 1% Intralipid solution with de-
ionised water. The tubes were interleaved to form a knot with 4 open ends. As shown
in Figure 8, while three of the ends are fixated, one is tied to a motor shaft. We then
acquired PA data using a FP scanner in a stop-motion style: With the whole arrange-
ment at rest, a full, conventional scan was performed. Then, the motor shaft was
turned by a fixed angle which caused the knot to both move towards the motor and
tighten, and the new arrangement is scanned again. In total, T = 45 frames were ac-
quired. The excitation laser pulses were delivered at a rate of 20Hz, had a wavelength
of 1064nm and an energy of around 20mJ. For a full, conventional scan, pressure time
courses at 134× 133 locations on a spatial grid with grid size 150µm were measured
for Mt = 625 time points with a temporal resolution of 12ns. For preprocessing, the
data was first clipped to 132×132 locations. Then, we preformed baseline-correction,
band-pass filtering (0.5-20MHz), noisy-channel exclusion and clipped the time courses
to the time points 10 − 400. More details can be found in [1]. Note that the signal
recorded by the FP sensor is only proportional to the acoustic pressure. To obtain
absolute pressure values, one would need to calibrate it with an ultrasound transducer
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(a) (α̂, α̂, 1) (b) (α̂, α̂/4, 1) (c) (α̂/4, α̂/4, 1) (d) (α̂/4, α̂/16, 1)

(e) (α̂, α̂, 0.1) (f) (α̂, α̂/4, 0.1) (g) (α̂/4, α̂/4, 0.1) (h) (α̂/4, α̂/16, 0.1)

Fig. 6. Snapshots at t = 13 of the results of the TVTVL2 image reconstruction (3.5) for sub-
sampled (rSP-25) data for different combinations of (α, β, γ). Here, α̂ corresponds to the value of
the regularization parameter used for the TV-fbf reconstructions in Figure 4.

prior to the measurement. While this is necessary to perform quantitative, spectro-
scopic inference in a second analysis step [17, 27], we did not do it here and all images
shown can be considered in arbitrary units.
For the inversion, we assume a homogenous sound speed of 1540 m s−1 and use a 3D
spatial grid of dimensions 44× 264× 264 with grid size 75µm (the reason for this up-
sampling in space is the over-sampling in time and explained in [1]). Reconstructions
from the full, conventional data will again be denoted by ”cnv” and will be used to
provide a ground truth. The sub-sampled data is generated using the same scheme
(5.1) as for the simulated data, except that Msub = 16. The sub-sampling operators
are repeated periodically, i.e., CMsub+i = Ci.

5.2.2. Experimental Results. We used the same strategy to choose the reg-
ularization parameters as before: For the TVTVL2 model, we choose α = β = α̂,
γ = 0.1, where α̂ is the regularization parameter for TV-fbf that yields a good com-
promise between removing noise, sub-sampling and image features (cf. Figure 2).
Figure 9 shows the results after 20 iterations (index i) of the accelerated proximal
gradient descend. Again, we can see a significant improvement of using the simulta-
neous motion estimation introduced by TVTVL2 compared to TV-fbf. The motion of
our phantom has two dominant components: a translation component resulting from
pulling the whole knot towards the motor shaft by one tube end, and a component
describing the contraction resulting from the three other tube ends being fixed. To
examine the later component, we suppress the translation by subtracting the mean
motion vector in every frame v̄t = N−1

∑
i (vt)i. Figure 10 shows the remaining parts

of the motion. Both the fields reconstructed from full and from sub-sampled data ac-
curately describe the contraction. The coloring indicates that the tubes move towards
each other, i.e., the knot contracts.
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(a) phantom p (reference) (b) TVTVL2, γ = 1, cnv (c) TVTVL2, γ = 0.1, cnv

(d) color scheme for 2D vectors (e) TVTVL2, γ = 1, rSP25 (f) TVTVL2, γ = 0.1, rSP25

Fig. 7. Illustration of the reconstructed motion fields v for the results shown in Figure 5. First,
each vector field is rescaled such that maxi ‖vi‖2 = 1. Then, each pixel i is coloured by mapping
direction and norm of vi to the color scheme displayed in (d). To further ease the visualization,
a coloured frame was added to each motion image to depict the colors corresponding to a vector
pointing from the middle of the image to the pixels of the frame. The motion field for the phantom
(a) was computed by solving (4.5b) with the true p as input and γ = 1, β = 10−6.

5.3. Optimization. As noted earlier, the results we showed up to now were
computed using ADMM in both the p update (4.5a) and the v update (4.5b) in the
TVTVL2-regularized denoising problem (4.4). In the v update, AMG-CG was used
as a least squares solver. In this section, we justify this choice retrospectively. Due to
the large number of different parameters ACS, PDHG, and ADMM have, this is not
an exhaustive comparison. We tuned all parameters we do not explicitly mention to
best performance and made sure that all methods make best use of the computational
platform we used (Intel Xeon CPU with 12 cores at 2.70 GHz, 256GB RAM). Another
problem is caused by the non-convexity of (4.4) which adds an arbitrary element
to such a comparison: In principle, one would need to test all methods on a large
number of inputs and initilizations and compare average performances. Again, we
restrict ourselves here to the two concrete examples we presented in the previous two
sections and in each of those, we only examine the computation of the TVTVL2-
regularized denoising problem (4.4) arising from the first iteration, i = 1, of the
forward-backward splitting (4.2a)-(4.2b). As p0 = 0, this means we examine p̃t =
νATCT f ct as an input in (4.4). All other variables are initialized to 0. Figure 11
compares the decay of the denoising energy Ẽ(p, v) over computation time for the four
different combinations of using PDHG and ADMM for each of the sub-steps. In 2D
(Figure 11a), the convergence speed of the different combinations is quite similar and
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Fig. 8. Experimental setup for dynamic, stop-motion phantom: The two polythene tubes are
immersed in a bath of intralipid solution placed on the FP sensor plane (green arrow). Three of the
tube ends are fixated (blue arrows) while one is tied to a motor shaft (red arrows). The excitation
laser (yellow arrow) is illuminating from the top.

the different energy levels they reach corresponds to the different local minima they
end up in. In 3D, the situation is quite different: Figure 11b shows that using PDHG
for the v update (4.5b) leads to prohibitively long computations times. While PDHG
performs well for the p update (4.5a) in this study, we also encountered scenarios
where this is not the case. This observation was the main reason we considered using
the more complicated ADMM methods in the first place: We started off by using
PDHG for both sub-problems like in [10] based on the corresponding code available
on github2. While this worked for 2D scenarios, we encountered severe difficulties
for 3D scenarios which we were only able to overcome by implementing the tailored
ADMM implementations presented here.
The main difficulty in both ADMM methods is to solve the least squares problems
(4.16) and (4.17) by a fast iterative method. As explained in Section 4.4, the v update
(4.17) can be solved frame-by-frame, which allows one to explicitly set up the system
matrix and use efficient pre-conditioning techniques. To compare them, we set pj+1

t+1

and pj+1
t in (4.17) to the TV-fbf solutions shown in Figure 2 (note that E = E(pj+1

t )).
Figure 12 shows the results which demonstrate that for linear systems arising from
regularized 3D optical flow estimation, AMG-CG is a powerful solver. Note, however,
that this comes with increased memory costs: the system matrix is 1.24 GB large and
the corresponding AMG pre-conditioner we chose here is 6.75 GB large (there is also
a little computational overhead in computing them, but as they do not change over
the whole ADMM scheme, this is typically negligible).

2https://github.com/HendrikMuenster/JointMotionEstimationAndImageReconstruction

https://github.com/HendrikMuenster/JointMotionEstimationAndImageReconstruction
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6. Discussion, Outlook and Conclusion.

6.1. Discussion and Outlook. The results for both simulated and experimen-
tal data clearly demonstrate that a significant improvement of image quality over fbf
reconstructions (2.5) that only use spatial sparsity constraints can be obtained when
using a generic spatio-temporal approach based on simultaneous, sparsity-constrained
motion estimation (3.2). Furthermore, the reconstructed motion fields provide addi-
tional information on the dynamics that can be useful for subsequent analysis. While
these dynamic parameters look qualitatively correct, even from sub-sampled data,
further investigations have to examine whether they are also quantitatively correct.
For this first proof-of-concept study, we used very generic regularization functionals in
space (TV) and a generic motion model based on a simple continuity equation (3.3).
As we already obtained promising results with this rather unspecific model, we want
to investigate the use of tailored motion models that better reflect the real physics of
the underlying motion for a concrete application. In addition, we chose to measure
the misfit to the discretized motion PDE in the squared L2-norm, cf. (3.4). While
this is computationally advantageous, studies generalizing this to Lp-norms, e.g., for
p = 1, have shown promising results and directions for future research [20, 10, 9].
The main drawback of the concrete TVTVL2 model we used here (3.5) is that it leads
to a challenging, large-scale bi-convex optimization problem. Even with the tailored
ADMM schemes we developed (cf. Section 4.4), computing the 3D reconstructions
presented in Section 5.2 took 4 days and 6 hours on a powerful work station (Intel
Xeon CPU with 12 cores at 2.70 GHz, 256GB RAM, Tesla K40 GPU) compared to
6h 34m for the TV-fbf reconstruction. There are several possibilities to close this gap:

• As a simple block alternation, the ACS scheme can be modified by introducing
techniques like over-relaxation, inertia methods or line-search.

• For solving sub-step (4.5b), developing an ADMM scheme that uses an al-
gebraic multigrid pre-conditioner was crucial. However, the high memory
demand of this approach limits the number of frames which can be computed
in parallel. Using geometric multigrid pre-conditioning instead could keep
the fast convergence (cf. Figure 12) while requiring much less memory [8].

• If the non-smooth sparsity constraints are approximated by smooth function-
als such as the Huber functional, fast, monotone solvers can be used to solve
(4.5a) and (4.5b), see, e.g. [61].

Another potential problem is that the ACS scheme presented in Section 4.2 will only
converge to a local minimum of the bi-convex variational energy (3.5). Figure 11
showed that already the choice of the convex optimization scheme to solve (4.5a) and
(4.5b) can influence which local minimum is found. Other parameters like the accu-
racy with which these problems are solved, how the schemes are initialized, whether
the scenario is 2D or 3D, etc., have an often non-trivial influence as well. In future
work, we plan to examine these issues in a systematic way.
From a modelling perspective, the simple optical flow discretization (3.4) we chose
here can only resolve small motions: If the support of pt+1 − pt and ∇±pt do not
overlap, vt cannot minimize ‖pt+1 − pt + (∇pt) · vt‖22. An extension of the framework
to estimate large-scale motions is described in [21].
This article focused on the mathematical and computational aspects of 4D PAT. We
therefore assumed here that there is a generic binning of the sequence of acoustic mea-
surements (2.2) into temporal bins during which the target can be considered static
(and used phantoms for which this holds true) and only compared image quality for
a fixed sub-sampling factor. However, in reality, sequential scanners measure a single
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time pressure course for every pulse of the excitation laser. The temporal binning of
this stream of acquisitions leads to a more complicated interplay between artefacts
arising from sub-sampling, motion-blur and the spatio-temporal continuity imposed
by the variational model. We will examine this issue more closely in forthcoming work
that will focus on the technical and practical aspects of 4D PAT with novel acoustic
scanners [41, 40]. For the application to in-vivo imaging, additional challenges need
to be addressed, such as heterogeneous tissue properties.

6.2. Conclusion. In this work, we extended our earlier results on using com-
pressed sensing techniques to accelerate high resolution 3D PAT acquisition with se-
quential scanners [1]. We demonstrated that in the context of dynamic PAT, another
substantial increase of image quality can be obtained by using a generic variational
framework that couples sparsity-constrained image reconstruction and simultaneous,
sparsity-constrained motion estimation. In particular, we considered a motion model
based on the popular optical flow equation and used the total variation functional as
sparsity constraints. For this, promising results for simulated and experimental data
were obtained in a proof-of-concept study that justifies further research in this field.
A major challenge for using these variational approaches for large scale 4D inverse
problems with complicated forward operators are the computational demands of the
corresponding optimization routines. We described and examined a set of related
methods that can be used as a starting point to implement similar strategies for other
applications.
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(a) TV cnv, X mIP (b) TVTVL2 cnv, X mIP

(c) TV cnv, Y mIP (d) TVTVL2 cnv, Y mIP

(e) TV cnv, Z mIP (f) TVTVL2 cnv, Z mIP

(g) TV rSP16, X mIP (h) TVTVL2 rSP16, X mIP

(i) TV rSP16, Y mIP (j) TVTVL2 rSP16, Y mIP

(k) TV rSP16, Z mIP (l) TVTVL2 rSP16, Z mIP

Fig. 9. Snapshots at t = 23 of the reconstructed pressure p for full (cvn) and sub-sampled
(rSP-16) experimental data.
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(a) cnv, slice x = 19 (b) rSP-16, slice x = 19

(c) cnv, slice z = 132 (d) rSP-16, slice z = 132

Fig. 10. Snapshots of the non-translational part of the motion field vNT = v − N−1
∑

i vi
reconstructed by the TVTVL2 method for full (cvn) and sub-sampled (rSP-16) experimental data
between frames t = 22 and t = 23. For each image, a single slice along a particular dimension was
extracted and only the components of the vector field in the remaining two dimensions is depicted
here. The resulting 2D vector field is color-coded in the same way as in Figure 7.
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Fig. 11. Comparison of different methods to solve the bi-convex optimization problem (4.4) via
ACS for (a) the 2D example described in Section 5.1 and (b) T = 10 frames of the 3D scenario
described in Section 5.2. The plots display the decay in energy Ẽ(p, v) relative to the initialization
with p = 0, v = 0 vs computational time in seconds (in logarithmic scale in (b)). Solid parts of the
line plots correspond to the p update (4.5a) and dashed parts to the v update (4.5b). A total of 4
ACS alternations is displayed. ”ADMM-PDHG” refers to using ADMM for p update and PDHG
for the v update.
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Fig. 12. (a) Comparison between different iterative methods and pre-conditioners to solve (4.17)
(see Section 5.3 for the details of the set-up). The vertical axis shows the relative residual while the
horizontal axis shows the computation time on a single CPU core averaged over 10 repetitions. (b)
The same plot with only a subset of the solvers and expanded axis.
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Appendix A. Proximal Operators.
An extensive overview on how to use and compute proximal operators (4.1) is

given in [16]. The splits we use in this work have been introduced such that the func-
tionals for which we have to compute the proximal operators decouple over space and
time into the sum of 1 or d dimensional functionals φ(x) or φ(x1, . . . , xd). As such, all
proximal operators can be computed explicitly and point-wise in space and time, i.e.,
for an image/vector field sequence x ∈ RNT /x ∈ RdNT , the proximal operators can
be computed by solving NT sub-problems of dimension 1/d using explicit formulae.
For G(x) in (4.9b) this leads to

(A.1) φ(x) = χ+(x) + (x− z)2 , proxαφ(x̃) = max

(
0, αz +

x̃

α+ 1

)
.

The proximal operator for the functional G(x) in (4.10b) is a d-dimensional quadratic
problem:

φ(x) =
1

2
(z + c1x1 + . . .+ cdxd)

2(A.2)

proxαφ(x̃) = argmax
x∈Rd

α2
(
z +

d∑
i

cixi

)2

+
1

2

d∑
i

(xi − x̃i)2
(A.3)

Its optimality condition leads to a d-dim linear system, which we show here for d = 3:

(A.4)

(1 + αc21) αc1c2 αc1c3
αc2c1 (1 + αc22) αc2c3
αc3c1 αc3c2 (1 + αc23)

x1x2
x3

 =

x̃1 − αc1zx̃2 − αc2z
x̃3 − αc3z


It can be solved explicitly for d = 2, 3 and for its use within the PDHG scheme, most
relevant terms can be precomputed.
The `1-norms involved in the isotropic TV terms are actually global `1 norms of the
local `2 norms of the gradient vectors. For a gradient field of image z represented as
y ∈ RdN indexed as yxi,j for derivative direction and location index, respectively, we
have

‖∇+z‖1 =

N∑
j

√√√√ d∑
i

y2xi,j , =⇒ φ(x) =
√
x1 + . . .+ xd ,(A.5)

proxαφ(x̃) =

{
max(φ(x̃)− α, 0) x̃/φ(x̃) if φ(x̃) > 0

0 else
.(A.6)

With this, one can easily build the proximal operator for (4.10c) and (4.15c).
Next we need the convex conjugates F∗(y) and their proximal mappings in some
places. For the isotropic TV term, we have

(A.7) F(y) = α‖y‖1 = α

N∑
j

√√√√ d∑
i

y2xi,j , F∗(y) =

N∑
j

αχ[0,1]

 1

α

√√√√ d∑
i

y2xi,j

 ,

which means that F∗(y) is 0 if all gradient vectors have an amplitude that is smaller
than α and ∞ else, see, e.g., [13]. As such, the proximal operator is just a projection:

(A.8) φ(y) = χ[0,1]

 1

α

√√√√ d∑
i

y2xi

 =⇒ proxβφ(ỹ) =
ỹ

max

(
1, 1

α

√∑d
i ỹ

2
xi

)
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The second part of F(y) in (4.10b) is γ̃
2 ‖y2‖

2
2. Its convex conjugate is given by 1

2γ̃ ‖y2‖
2
2

and the proximal mapping can be computed using

(A.9) φ(y) =
y2

2γ̃
=⇒ proxαφ(ỹ) =

γ̃

γ̃ + α
ỹ .
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