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Abstract 

The use of in silico tools for the interventional planning of complex vascular conditions, such as Aortic 
Dissections has been often limited by high computational cost, involving long timescales for accurate results to 
be produced and low numbers of patients, precluding the use of statistical analyses to inform individual-level 
models.  In the paper [Theranostics 2018; 8(20):5758-5771. doi:10.7150/thno.28944], Chen et al. proposed a 
novel algorithm to compute patient-specific ‘virtual TEVAR’ that will help clinicians to approach individual 
treatment and decision-making based on objective and quantifiable metrics and validated on a cohort of 66 
patients in real time. This research will significantly impact the field and has the potential to transform the way 
clinical interventions will be approached in the future. 

 

Related article: Theranostics 2018; 8(20):5758-5771. doi:10.7150/thno.28944 

 
Aortic dissection (AD) is a vascular condition 

with high morbidity and mortality rates [2]. AD is 
characterized by the separation of the layers of the 
aortic wall:  a tear in the intima layer allows blood to 
flow within the aortic wall inducing the formation of 
two flow channels, the true (TL) and false lumen (FL), 
separated by an intimal flap (IF) [3]. Diagnosis, 
management and treatment of AD are incredibly 
patient-dependent and difficult; experts claim that 
“difficulty in diagnosis, delayed diagnosis or failure 
to diagnose are so common as to approach the norm 
for this disease, even in the best hands…” [4]. Initial 
management of acute AD focuses on pain control, 
heart rate and blood pressure management, followed 
by surgical intervention, typically involving stenting 
of the entry tear. Although type B dissections (i.e. AD 
involving only the descending aorta) have lower 
initial mortality than type A (i.e. AD of the ascending 
aorta), they carry a poor long-term prognosis, with 
late-term complications reported in 20–50% of cases 
within 5 years [5]. 

Within this context, assessing the risk/benefits 

ratio of any intervention is of paramount importance 
for clinicians and patients alike.  Current clinical 
guidelines are limited by the complexity of the 
pathophysiology, risk factors and co-morbidities, and 
patient heterogeneity [6,7]. Thoracic Endovascular 
Aortic Repair (TEVAR) is the interventional approach 
of choice for most patients with complicated 
dissections and most likely to supplant open surgical 
treatment in the near future [8–10]. However, there is 
a lack of high level evidence in support of TEVAR for 
this clinical condition. Information on late outcomes is 
scant [11]. Challenges in trial design and 
heterogeneity of patient groups often result in patient 
management plans relying on clinical experience. In 
the case of ADs, each patient’s treatment is highly 
individualized, and clear and objective quantifiable 
metrics are often not available.  

The whole process is complicated, subjective and 
cost and time-inefficient. In silico models and virtual 
tools designed to guide the treatment of type B AD 
have been met with considerable clinical interest 
[12–21] and hold significant promise.  However, the 
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simulation community still has important barriers to 
overcome, in order to analyze and represent the 
enormous amount of information needed to timely, 
reliably and accurately capture the condition’s 
complexity and variability.  In particular, there are 
challenges around the time it takes for simulations to 
produce results in clinically meaningful timescales 
(ideally in real time) and around clinical acceptance, 
founded on the premises of high-quality studies in 
comprehensive cohorts of a significant number of 
patients. 

Research published in issue 20 of Theranostics 
reports a transformative approach to in silico tools for 
type-B aortic dissection treatment by proposing a 
“virtual TEVAR” simulation framework, tackling 
both, the time-constraint and accuracy issues that 
have been holding the field back.  In a real 
tour-de-force, the authors have developed an efficient 
and effective methodology to develop a 
computational framework able to compute 
patient-specific ”virtual interventions” that will help 
clinicians to approach individual treatment and make 
decisions based on objective and quantifiable metrics 
meticulously validated on a cohort of 66 patients. The 
research team developed a virtual stenting algorithm 
based on simplex (deformable) meshes and 
mechanical contact analysis, with parameters derived 
from mechanical tests on aortic tissue and 
commonly-used stent-grafts. The testing and 
validation, involved pre- and post-treatment 
computed tomography angiography datasets of 
type-B aortic dissection cases (n = 66), providing fast, 
real-time and accurate predictions of stent-graft 
deployment with luminal deformation tracking.  

This compelling piece of research opens up 
multiple application avenues for this condition and it 
propels the whole field forward, making a clear case 
for the use of virtual tools for patient-specific clinical 
support strategies based on quantifiable metrics of 
individualised outcome and risk assessment in real 
time for aortic dissections and other complex, 
vascular conditions. 
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