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Extracting individual trees from lidar point clouds using treeseg
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tation of tree-level point clouds from larger-area point clouds, an effort that is
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3. We demonstrate the treeseg algorithm here on data acquired from both a struc-
turally simple open forest and a complex tropical forest. Across these data, we
successfully automatically extract 96% and 70% of trees, respectively, with the
remainder requiring some straightforward manual segmentation.

4. treeseg allows ready and quick access to tree-scale information contained in lidar
point clouds. treeseg should help contribute to more wide-scale uptake of lidar-
derived methods to applications ranging from the estimation of carbon stocks
through to descriptions of plant form and function.
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1 | INTRODUCTION

Recently, new shape-fitting methods have been proposed to
utilise such point clouds to construct models that describe the 3D

Advances in high-precision laser scanning have led to its application in
a wide and growing range of fields across the environmental sciences.
Current off-the-shelf terrestrial and UAV-mounted lidar instruments are
now routinely used to capture high-density, millimeter accurate 3D point
clouds in forest scenes. Applications range from retrieval of traditional
parameters of forest structure such as stem diameter and tree height
(Maas, Bienert, Scheller & Keane, 2008), through to quantitative descrip-

tions of plant material distribution and leaf area index (Jupp et al., 2009).

woody structure of individual trees (Raumonen etal., 2013). So
far, these so-called quantitative structure models (QSMs) have pri-
marily been used for the estimation of above-ground biomass and
carbon stocks via volume estimation (Calders et al., 2015; Gonzalez
de Tanago Menaca et al., 2018). Other, new applications of QSMs
include species identification (Akerblom, Raumonen, Mikipii &
Kaasalainen, 2017), calibration and validation of remote sensing

instrumentation (Armston et al., 2016), development of allometric
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models (Burt, 2017), and empirical testing of plant form and function
hypotheses (Lau Sarmiento et al., 2015).

Limiting the adoption of these new lidar-derived methods is the
difficulty associated with accessing the information content of point
clouds. To retrieve tree-scale metrics from these data, individual
tree-level point clouds must be extracted from the larger-area point
cloud. This generally involves laborious and time-consuming manual
segmentation, a task that is impracticable for many trees or plots.
The more complex the scene, the more difficult and time-consuming
this becomes.

Several methods have looked to automate this process using a
variety of techniques; the approaches of Raumonen et al. (2015)
and Trochta, Kracek, Vrska and Kral (2017) organised the larger-area
point clouds into clusters, from which tree-level point clouds were
grown through fixed inter-cluster assumptions of distance and ori-
entation to infer connectivity. A variant of this approach by Zhong
et al. (2017) employed graph theory for this organisation, while the
methods of Tao et al. (2015) introduced ecological theory via met-
abolic scaling theory (West, Brown & Enquist, 1997), to determine
belonging on a point-by-point basis. Limiting these methods were
their exclusive application to TLS data from structurally simple and
sparse forest types, with large distances and minimal interaction be-
tween crowns, such that transferability of these methods and their
underlying assumptions of tree architecture and/or data quality to
more complex forest types, is likely difficult.

Here, we present treeseg, an open-source software for the near-au-
tomatic extraction of tree-level point clouds from larger-area point
clouds. The method has been designed around the principles of being
both independent of forest type and instrument, and is demonstrated
here through application to lidar data acquired from both simple open
forest and complex tropical forest. The method is driven by the data
themselves, free from fixed assumptions of tree architecture and data
quality, and unique in its attempt to organise the larger-area point

cloud into each separate underlying surface comprising the scene.

2 | OVERVIEW OF TREESEG
The treeseg method has been developed to near-automatically
extract tree-level point clouds from larger-area point clouds.
The source code, released under the MIT license, is hosted at
https://github.com/apburt/treeseg/. The method is implemented in
C++, and makes extensive use of the Point Cloud Library (Rusu &
Cousins, 2011). Figure 1 illustrates treeseg, where it has been applied
to a small section of TLS data acquired in tropical forest. Broadly,
the method consists of: (i) identification of individual stems, (ii) seg-
mentation of each stem up to first branching, and (iii) isolation of
each crown from the canopy. Here, first, we outline the generic point
cloud processing techniques underpinning treeseg; and the subse-
quent sections then describe these three main steps of the method.
These steps are illustrated using TLS data collected from 1 ha
of tropical forest (moist, Terra Firma, lowland, mixed species, old-
growth) in Nouragues Nature Reserve, French Guiana (designation:

FIGURE 1 Using treeseg to extract a tree-level point cloud (red)
from a larger-area point cloud (black) (35 x 25 x 47 m L x W x H)
acquired from terrestrial laser scanning in tropical forest in
Nouragues Nature Reserve, French Guiana

NOU-11, loc: 4.08°N 52.68°W); and from 0.25 ha of Eucalyptus
spp. open forest in Karawatha Forest Park, Australia (designation:
KARA-001, loc: 27.32°S 153.07°E) (Armston, 2013). These two
plots, respectively, comprise 425 and 40 stems with DBH < 0.1 m,
basal areas of 33.13 m2/ha and 10.43 m2/ha, and approximate can-
opy heights of 45 and 25 m. Lidar data were collected from both
plots using a RIEGL VZ-400 from 121 and 5 scan positions, provid-
ing larger-area point clouds containing c. 4 billion and c. 50 million

points respectively.

3 | POINT CLOUD PROCESSING

This section describes the generic point cloud processing techniques

used in the treeseg method.

3.1 | Nearest neighbour distance

The Euclidean distance, d, between two points, p; and p,, denoted in

the usual Cartesian coordinate system, is defined as:

dip1,p2) =065, =%,)2+ (v, =, 2+ (2, = 2,,)? (1)

2

The distance between the point p; and its nearest neighbour,

dyn(py), in the point cloud, P, p; € P, is defined as:

duv(p)=  min

dip,,p;)
{pi € P:pi#p1} PLPi (2)

Across P, the mean nearest neighbour distance, m is defined as:
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Further, this can be vertically resolved, M(z), using bins of
width, dz, as:

N(P)

- e, <rran

i=1

dn(2)

3.2 | Downsampling

Point cloud downsampling can manage the distribution of %(z)
across P, or reduce computational complexity. This is typically un-
dertaken by partitioning the bounding volume of P into voxels with
an edge-length of I,.. The points inside each voxel, p, eV, are aggre-

gated into a single point, p,.

3.3 | Euclidean clustering

Clustering is a tool used to order an unorganised point cloud (e.g., P)
into an organised set of point clouds, {C}, {C} c P, based on Euclidean
distances. The cluster C is formed when enough constituent points
=N
segmented from P and the set is added to {C}, and iterated until

have an intra-dyy less than or equal to d, e€C are then

min) max- Pi

remaining p; € P are exhausted.

3.4 | Principal component analysis

Principal component analysis is used to describe the arrangement
of points in a point cloud (e.g., p; € P) through eigen decomposition:

(Z-Al)v=0 (5)

where, 4 and v are the eigenvectors and eigenvalues respectively; %,

the covariance matrix, is defined as:

cov(x,y) cov(x,z)
var(y,y)

cov(z,y)

var(x, x)
T =| cov(y,x) cov(y,2)

(6)

cov(z,x) var(z,z)

where, for example, cov(x,y), is defined as:
N(P)

covix,y) = Z

i=1

05, =%, )V, =¥p)

N(P)—1 @)

Obtained from the resultant X, the cubic polynomial can be
solved for A through factorisation, from which v can be solved from
each respective resultant linear equation. The principal axes of P are
then described by 1 (eigenvectors), alongside their associated mag-

nitudes v (eigenvalues).

3.5 | Surface normals

One extension to PCA is surface normal estimation. Across an or-
ganised point cloud, C, representing a common underlying surface
such as a leaf, the normal to this surface is the vector perpendicular
to a plane fitted through C. By definition, 4, across C, derived via
PCA, is the vector of this plane. As each eigenvector is orthogonal
to the next, 15 defines the normal of this plane (i.e., an estimate of
the surface normal). Across unorganised point clouds, each point is
attributed a surface normal estimate by fitting such a plane to ei-
ther the nearest N neighbours, or those neighbours whose distance

is less than d,,.

3.6 | Region-based segmentation

A further extension to PCA and surface normal estimation is region
growing segmentation. This partitions P into a set of regional point
clouds, {R}, {R} c P, based on neighbourhood point commonality,
such that it is inferred p; € R share some common underlying surface.
Here, the metric used to determine commonality between points is

the angle between surface normals:
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B A-B
6(A,B) =arccos ( IAIIBI> (8)

where A and B represent A; of two arbitrary points. Each region
cloud, R, is grown from a random seed point in P by incorporating
neighbours provided the angle between surface normals is below
some threshold, 6,,,,, until exhaustion of the neighbourhood. R is
then segmented from P and added to {R}, and the process is iterated

until all seeds are considered.

3.7 | Shape fitting

The final method used in treeseg is shape fitting via random consen-
sus model fitting (RANSAC). The only geometric primitive consid-
ered here is a cylinder, defined by: a centreline with the vector, v, a
point on the centreline, py, and a radius, r. If R is an organised point
cloud whose underlying surface belongs to a cylindrical section of
stem, v can be equated to 44. That is, a plane described as:

A1,0X+ A Y + A2+ = A10%p, ~ AV, ~ 4122, =0 ©)

where pycan be described as the centroid point, p,, of R. Subsequently,
ris defined as the mean distance between p € R and the plane. This
shortest distance between some arbitrarily selected point, p,, and
the plane, d, is defined as:

g Xo, + AV, AaaZp, ~ Ao, ~ HanYe ~ uaZ |

2 2 2 (10)
Ao T Aan A

For the cylinder to be finite, then the length, I, must be character-
ised. To determine | from R using Euclidean distance, it is necessary
to transform 4, such that the centreline z-axis will be rotated into
(0,0,1):

X cosf singd O] x
y' |=| —=sind cosd O||y (11)
4 0 0 11|z

where 0, the angle between 1, and (0,0,1) is calculated through
Equation 8. This reduces the estimate of | down to:

I= p, —P; (12)

‘max ‘min

This cylinder fitting can then be applied in a RANSAC frame-
work, a brute force approach permitting the removal of outliers from
noisy data.

4 | THE LARGER-AREA POINT CLOUD

treeseg ingests a point cloud (with each point attributed an x, y, z-
coordinate) such as the one illustrated in Figure 1. The two expecta-
tions of these data are: first, the point cloud provides a contiguous

sample of the scene from which structural elements of individual
trees, down to the highest-order branching, are clearly discernible.
That is, the sampling protocol employed to acquire the larger-area
point should minimise occlusion effects, with no significant gaps

(iv) b I L

FIGURE 3 Identifying stems in the NOU-11 larger-area point
cloud: (i) a slice in the z-axis is segmented from the plot-level
point cloud, as driven by the underlying DTM, (ii) the slice is
organised via Euclidean clustering, (iii) each of these clusters are
further organised into their underlying surfaces via region-based
segmentation, and (iv) stems are identified from each region
through RANSAC cylinder fitting



BURT ET AL.

Methods in Ecology and Evolution I 5

present in the data. Second, for data requiring co-registration (e.g.,
multiple scans from various locations using a tripod-mounted TLS),
error in this registration should be similar to the ranging accuracy of
the instrument.

Due to beam divergence, increasing angular distance between
sequentially fired pulses at a given range, and general occlusion,
there is likely to be strong variation in M(Z) across the larger-area
point cloud. Because many of the aforementioned point cloud pro-
cessing techniques are ill-suited to such variations, downsampling
via voxel grid aggregate downsampling can somewhat homogenise
the larger-area point cloud. Figure 2 illustrates ﬁ(z) across the
NOU-11 larger-area point cloud, both pre- and post-downsam-

pling, where [, = 0.04 m. Noticeably, between a height of 0-30 m,

W is steeper in the downsampled data, while the range of ﬂ(z)

values across the height has reduced by an order of magnitude.

5 | TREE IDENTIFICATION

The initial stage of treeseg is to identify individual trees from the

larger-area point cloud, P. lllustrated in Figure 3, this stage comprises:

1. The generation of a digital terrain model (DTM) across P, from
which a point cloud slice, S, in the z-axis, is generated from
P (Figure 3i).

2. Euclidean clustering is applied across S to order the slice into the
set of point clouds, {C}, {C} c S (Figure 3ii).

FIGURE 4 Segmenting the stem: (i)
the cylinder fit for each identified tree
(red) acts as a pass-through filter (black),
(ii) points from the ground are removed
through RANSAC plane fitting, (iii), (iv),

(v) Euclidean clustering and region-

based segmentation are used to remove
neighbouring vegetation, and (vi) RANSAC
cylinder fitting is used to determine the
location of first branching

3. For C €{C}, region-based segmentation is used to order {C} into
the set of point clouds {R}, {R} c {C}, based on common underlying
surfaces (Figure 3iii).

4. Finally, for R € {R}, RANSsAC cylinder fitting is applied to seg-
ment cylinders. These cylinders are assumed to be stems based
on: (i) the residual error of the fitting and (ii) the angle between
the vector of the cylinder centreline and the vector perpendicu-

lar to underlying DTM tile plane (Figure 3iv).

6 | STEM SEGMENTATION
The second stage of treeseg is, for each identified tree, to extract the
stem up to the position of first branching. The approach, consisting

of the four following steps, is illustrated in Figure 4:

1. The cylinder belonging to each identified tree acts as a pass-
through filter across the larger-area point cloud to extract the
point cloud, V, V c P, containing: the stem of the tree in ques-
tion, neighbouring vegetation, and returns from the ground
(Figure 4i).

2. A plane is fitted through the lower section of V via the RANSAC
framework, with the inliers, considered to represent the ground,
segmented from V (Figure 4ii).

3. Euclidean clustering and region-based segmentation is applied
across V to order the cloud into its underlying surfaces, from

which neighbouring vegetation is removed (Figure 4,iii,iv,v).

(vi)
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4. From the base of the stem, variation in the goodness of RANSAC

cylinder fits through the stem are assessed to determine the posi-

tion of first branching (Figure 4vi).

7 | CROWN SEGMENTATION

The final stage of treeseg is to extract the crown associated with

each segmented stem, as illustrated in Figure 5.

FIGURE 5 Segmenting the crown from the canopy: (i) a section
of point cloud containing the crown is extracted from the larger-
area point cloud using allometric relationships, (ii) this volume is
organised into underlying surfaces via region-based segmentation,
and (i) the crown is grown via connectivity testing driven by %(z)
(black); occasionally manual segmentation may be required to
remove neighbouring vegetation (red)

1. The volume of canopy containing the crown of each stem is
determined using allometric relationships relating stem diameter
to tree height and crown extent. These dimensions, further
extended by a user-modifiable fixed distance to ensure com-
plete capture of the crown, are used to segment the point
cloud, V, V c P (Figure 5i).

2. Region-based segmentation is used to order Vinto the set of point
clouds {R}, {R} c V, based on common underlying surfaces (Figure
5ii).

3. Commencing from the isolated stem, the crown is grown
through appendage of R; via connectivity testing, provided
that: (i) the distance between each R is approaching ﬁ(z) and
(i) that R is smaller than its parent (Figure 5iii); where the length
of R is determined through transformation about the principal
eigenvector.

4. Finally, due to the conservative nature of 3) tending towards com-
mission error, if necessary, manual segmentation is used to re-
move any erroneously segmented neighbouring vegetation
(Figure 5iii). This can be undertaken using software such as
CloudCompare (2018).

8 | CONCLUSIONS

In this applications paper, we have presented a method for the near-
automatic extraction of tree-level point clouds from larger-area
point clouds. We have applied the method to the KARA-001 and
NOU-11 downsampled point clouds of 17 million points (197 MB)
and 338 million points (3:8 GB), to segment 28 and 155 trees with
DBH greater than 0:2 m (this is an arbitrary user-defined threshold,
and not a limitation of the method). Automatic segmentation took 2
days and 1 week respectively using a 24-core 2.40 GHz Intel Xeon
E5-2620v3 (15 MB L3 cache) node with 72 GB DDR4 RAM and me-
chanical hard drive. In its current form, each of the three steps of

FIGURE 6 The 28 tree-level point clouds extracted from the
KARA-001 (Eucalyptus spp. open forest) larger-area point cloud via
treeseg
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FIGURE 7 The 155 tree-level point clouds extracted from the NOU-11 (moist, Terra Firma, lowland, mixed-species, old-growth tropical

forest) larger-area point cloud via treeseg

treeseg are single-threaded and parallelisation would reduce these
timings.

Of the trees inside tropical forest plot NOU-11, approximately
30% required further manual segmentation, taking two days using
the segment feature of CloudCompare (2018). One tree inside open
forest plot KARA-001 also required manual segmentation, rep-
resenting a 96% success rate. With our data-driven approach free
from fixed assumptions of tree architecture and data quality, our
conservative connectivity testing ensured this manual segmentation
was straightforward and intuitive as it required only removal of small
sections of neighbouring vegetation.

Figures 6 and 7 present both sets of extracted tree-level point
clouds. treeseg provides a significant advance in accessing tree-level
point clouds in a timely and consistent way from larger-area point
clouds, and can be used with any high density lidar point cloud providing

a contiguous (gapless) sample of the scene, whether from UAV or TLS.
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