
Optical Switching and Networking 32 (2019) 51–60

Contents lists available at ScienceDirect

Optical Switching and Networking

journal homepage: www.elsevier.com/locate/osn

Experimental demonstration of an ultra-low latency control plane for
optical packet switching in data center networks

Paris Andreades a,∗, Kari Clark a, Philip M. Watts a,b, Georgios Zervas a

a Optical Networks Group, Department of Electronic and Electrical Engineering, University College London (UCL), London, WC1E 7JE, UK
b ARM Ltd., Cambridge, CB1 9NJ, UK

A R T I C L E I N F O

Keywords:
Physical-layer control plane design
Optical crossbar switch scheduling
Optical packet switching
Optical interconnects

A B S T R A C T

Optical interconnection networks have the potential to reduce latency and power consumption while increasing
the bisection bandwidth of data center networks compared to electrical network architectures. Optical circuit-
switched networking has been proposed but it is reconfigurable in milliseconds. Although switches operating on
nanosecond timescales have been demonstrated, centrally scheduling such switching architectures is considered
to be of high complexity, incurring significant delay penalties on the total switching latency. In this paper we
present a high-speed control plane design based on a central switch scheduler for nanosecond optical switching
which significantly reduces the end-to-end latency in the network compared to using the best electronic switches.
We discuss the implementation of our control plane on field-programmable gate array (FPGA) boards and quan-
tify its delay components. We focus on the output-port allocation circuit design which limits the scheduling delay
and the end-to-end latency. Using our FPGA-implemented control plane, for a 32×32 switch, we experimentally
demonstrate rack-scale optical packet switching with a minimum end-to-end head-to-tail latency of 71.0 ns, out-
performing current state-of-the-art electronic switches. The effect of asynchronous control plane operation on
the switch performance is evaluated experimentally. Finally, a new parallel allocation circuit design is presented
decreasing the scheduling delay by 42.7% and the minimum end-to-end latency to 54.6 ns. More importantly,
it enables scaling to a switch double the size (64×64) with a minimum end-to-end latency less than 71.0 ns. In
a developed cycle-accurate network emulator we demonstrate nanosecond switching up to 60% of port capac-
ity and average end-to-end latency less than 10μs at full capacity while maintaining zero packet loss across all
traffic loads.

1. Introduction

Annual global data center traffic has been increasing by 27% every
year since 2015 and it is projected that it will continue to do so reaching
15.3 zettabytes by the end of 2020, out of which 77% will be due to traf-
fic within the data centers [1]. The traffic exchanged between servers
within a data center is known as east-west traffic and it is driven by a
number of technological trends. For example, the growth of cloud com-
puting and virtualization led to servers running multiple virtual work-
loads which are commonly migrated from one server to another. Fur-
thermore, storage replication and new applications that rely on multiple
parallel workloads distributed across many servers, generate significant
inter-server traffic [1,2]. The increasing volume of east-west traffic calls
for lower latency interconnection fabrics in future data centers; tradi-
tional multi-tiered topologies with a high degree of oversubscription are

∗ Corresponding author.
E-mail address: paris.andreades.09@ucl.ac.uk (P. Andreades).

now replaced by flatter full-bisection bandwidth architectures [3], such
as the leaf-spine shown in Fig. 1. This topology enables scaling to high
port counts while delivering full bisection bandwidth and it features
low and predictable inter-rack latency as all paths are equidistant and
also the shortest in length [4,5]. However, further bandwidth scaling
is limited by the number of high-speed signal pins on electronic chips
[6]. Optically switched networks exploiting wavelength-division multi-
plexing (WDM) enable increasing the transmission capacity by orders
of magnitude effectively breaking the bisection bandwidth bottleneck.

Optical circuit switching has been proposed to increase the bisec-
tion bandwidth of the data center network and reduce its cost and com-
plexity through prototypes such as c-Through [7], Helios [8], Mordia
[9] and Proteus [10]. However, because the optical switches used are
micro-electro-mechanical systems (MEMS), their reconfiguration time
ranges from microseconds to tens of milliseconds. Hence, they are

https://doi.org/10.1016/j.osn.2018.11.005
Received 15 August 2018; Received in revised form 14 November 2018; Accepted 18 November 2018
Available online 21 November 2018
1573-4277/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.osn.2018.11.005
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/osn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.osn.2018.11.005&domain=pdf
mailto:paris.andreades.09@ucl.ac.uk
https://doi.org/10.1016/j.osn.2018.11.005
http://creativecommons.org/licenses/by/4.0/


P. Andreades et al. Optical Switching and Networking 32 (2019) 51–60

Fig. 1. Leaf-spine data center network and proposed optical switch architec-
ture. In this example the optical switch is an input-buffered crossbar built using
optical gate elements. Semiconductor optical amplifier (SOA) technology could
be used to implement an optical gate.

best used when the traffic exhibits high stability [7–9] and thus are
applied at the top layers of the network hierarchy. Control plane-wise,
complex scheduling algorithms are used to estimate traffic demand to
improve circuit utilization, incurring high latency in addition to arbitra-
tion delay and the round-trip and processing overheads due to switch
path/circuit acknowledgement signaling.

Optical switches with nanosecond reconfiguration times have been
demonstrated for packet switching. They can be built using micro-ring
resonators [11,12], semiconductor optical amplifiers (SOAs) [13,14],
Mach-Zehnder Interferometers (MZIs) [15] or by using a combination
of technologies [16–19]. They can handle rapidly-changing bursty traf-
fic as well and could be widely deployed in the network at different
layers. Also packets are forwarded to the switch without waiting for
acknowledgement signaling, effectively speculating on switch paths.
The challenge, however, is building a control plane that can oper-
ate on packet timescales. The optical shared memory supercomputer
interconnect system (OSMOSIS) demonstrator [20] and the optical cut-
through (OpCut) switch [21] use centralized control and an iterative
matching algorithm to offer high maximum throughput, at the cost of
high scheduler complexity. On the other hand, switching systems such
as the Data Vortex [22] and the scalable photonic integrated network
(SPINet) [23] distribute control to the switch building blocks to simplify
scheduling and improve scalability, at the expense of reduced global
fairness and port throughput. Yet another approach is to build an opti-
cal network architecture which uses wavelength routing to avoid the
need for global scheduling, for example [24,25]. This approach tends
to increase optical component counts and, in particular, requires the use
of costly wavelength conversion. In previous work [26] we experimen-
tally demonstrated an FPGA-implemented centralized control plane for
a 32-port SOA-based crossbar switch, enabling optical packet switch-
ing with a 75 ns end-to-end latency. At this size, the switch is suit-
able for top-of-rack (ToR) application at the leaf layer, as shown in
Fig. 1, however scaling to larger sizes it could be used at the spine layer
too. The proposed optical switch architecture uses electronic buffers at
the input ports to reduce the minimum latency while avoiding packet
loss.

The main focus of this paper is to present our high-speed control
plane design. We implement it on FPGA boards, identify the end-to-
end latency components including control plane contributions and dis-
cuss challenges on the minimum scheduling delay. We demonstrate
experimentally nanosecond switching by means of high speed schedul-

Fig. 2. The system concept. Server-side “send and forget” network interfaces
and optical top-of-rack (ToR) switch with input electronic buffers to avoid
packet loss. Every transmitted packet is divided into k wavelengths to further
reduce latency. The ToR scheduler reconfigures the switch in nanoseconds.

ing and speculative transmission of packets delivered across parallel
WDM channels. We evaluate the minimum end-to-end latency and dis-
cuss the significance of control plane synchronization. Furthermore, we
present a new highly-parallel output-port allocation circuit design for
our switch scheduler and implement it on the same FPGA board as
the experimental scheduler to quantify the improvement in scheduler
delay and scalability. Finally, a cycle-accurate network emulator has
been developed to perform an extensive latency analysis and compari-
son between the two scheduler allocation circuits. In this work, control
plane demonstrations are for a 32×32 optical crossbar switch.

2. System concept

The system concept is shown in Fig. 2. It is based on a nanosecond-
reconfigurable N × N optical switch with electronic buffers, imple-
mented as first-in first-out (FIFO) queues, at the input ports. An elec-
tronic scheduler is co-located with the switch and it is responsible for
the switch configuration. Implementing buffers at the switch inputs
reduces the end-to-end latency and avoids packet loss, as discussed
below.

Every new packet is first stored in a FIFO queue in the network
interface at the server. When the queue is not empty, the request control
reads the destination of the head-of-line (HOL) packet and issues an
output port request to the scheduler. Next, once the guard time has
expired, the packet control releases the packet speculatively; it does
not wait for an output port grant from the scheduler. This eliminates the
transport delay of a grant back to the server and also the overheads for
grant synchronization and processing, effectively reducing the control
overhead which in turn reduces the total latency [27]. Therefore, the
network interfaces “send and forget” packets as opposed to storing them
for possible re-transmission. The guard time ensures that packets will
reach the switch as soon as it has been configured.

The transmitted packets are divided into segments each serialized
onto a different wavelength using for example a dedicated silicon pho-
tonic transceiver [28], integrated on the server chip. The segments
are multiplexed onto a WDM link and the entire wavelength-parallel
structure is transported as one unit, as illustrated in Fig. 2. This pro-
cess, known as wavelength striping, increases the input port capac-
ity (number of wavelengths×wavelength bit rate) and reduces the
packet (de)serialization latency (packet size ÷ port capacity), compared
to related work [21,29] where packets are transmitted on a single
serial channel. Also, for a given bit rate, the number of parallel wave-
length channels bonded could be dynamically reconfigured to support
variable-size packets at low serialization latencies.

In case of output port contention, the packet is stored at the switch
buffer, instead of being dropped, and then recirculated to the output
port in a subsequent switch configuration cycle. The scheduler always
gives priority to packets buffered at the switch over new ones at the

52



P. Andreades et al. Optical Switching and Networking 32 (2019) 51–60

server network interfaces to maintain the packet ordering. Storing pack-
ets at the switch allows for shorter transport overheads of those packets
to the switch output and the corresponding control signals between the
buffers and the scheduler. The switch buffers are electronic and there-
fore optical to electrical (O/E) and electrical to optical (E/O) conver-
sions are required. Although fiber delay line buffers could have been
used at the switch inputs for all-optical switching, using fast dense
electronic memory and emerging integrated silicon photonic WDM
transceiver technology [28] is more compatible with the trend towards
electronic and photonic integration. There is a one-to-one matching
between the server network interfaces and switch recirculation buffers
to simplify the scheduling algorithm and also the switch architecture,
compared to [21,29] where packets at an input port may be stored in
many different buffers.

A FIFO full signal is asserted when a switch buffer queue is almost
full and the corresponding server network interface pauses transmis-
sion. This is the only control signal from the switch to a server and it is
a single bit asserted when there is one free slot in the buffer, to account
for a packet possibly in transit. This backpressure mechanism avoids
buffer overflowing and packet loss.

In summary, ultra-low latency is achieved through a) high speed
switch scheduling, b) speculative packet transmission (enabled by elec-
tronic buffering at the switch) and c) wavelength-striped packets.

3. Experimental demonstration

The purpose of the experiment is to present the high-speed control
plane design which enables ultra-low latency optical switching for the
system concept described above. We start by identifying the control
plane latency components before describing the overall experimental
setup.

3.1. Control plane design

The setup used for the control plane demonstration includes two
FPGA boards and a 2 × 2 optical crossbar built out of discrete opti-
cal components, as shown in Fig. 3. FPGA#1 represents the server-side
network interfaces and runs at a clock period Ttx while FPGA#2 rep-

resents the scheduler located at the switch, running at a clock period
Tscheduler . The control plane extends across both FPGA boards; it includes
the request and packet controllers in the network interfaces and the
scheduler circuit. Its delay is therefore given by the sum of the individ-
ual control processes taking place in both the network interfaces and
the scheduler:

1. Request generation: The request controller reads the destination of
the HOL packet and generates a request. This takes one network
interface clock cycle, Ttx.

2. Cable propagation delay: The request is transported to the scheduler
out-of-band taking tcable, given by the cable delay between server
and switch. The request consists of only the destination output port
and a valid bit and hence can be efficiently transmitted using paral-
lel electronic connections, similar to how PCI-e networks are com-
monly used for control and management.

3. Request synchronization: In this demonstration, we assumed that
the network interfaces and scheduler are asynchronous as is the case
in today’s commercial systems. The request synchronizer has a worst
case delay of two Tscheduler when the request arrives slightly after the
scheduler clock edge. Synchronization latency is discussed further
in the experimental results section.

4. Allocation: The optimum switch configuration given the existing
switch paths and new requests is determined. In this demonstra-
tion allocation takes one Tscheduler but forms the critical path in the
scheduler design and is discussed in more detail below.

5. Switch configuration control: New grants made by the allocation cir-
cuit are added and expired grants are removed. The new grants are
used to generate the switch configuration, including the read-enable
signals for the switch buffers. Any requests not granted translate into
write-enable signals for packet buffering at the switch. This takes
one Tscheduler plus the switch reconfiguration time, tswitch, which is
the time needed to turn on a single SOA.

Transporting requests out-of-band in digital format eliminates the
control overhead for in-band header/label detection. The label proces-
sor demonstrated in Ref. [30] incurs 100s of nanoseconds delay due
to sampling frequency limitations imposed by analog-to-digital conver-
sion, when implemented entirely on an FPGA board.

Fig. 3. The experimental setup. Control path and data path latency contributions and the minimum end-to-end latency are marked on the figure. Oscilloscope probes
D0-D7 are placed along the data path. Xilinx Integrated Logic Analyzer (ILA) probes C0-C6 are implemented onto the scheduler FPGA board.

53



P. Andreades et al. Optical Switching and Networking 32 (2019) 51–60

Having presented the components of the control plane design and
quantified their respective delay contributions, it is understood that the
total control latency is a function of the network interface and scheduler
clock periods, Ttx and Tscheduler. The minimum control plane latency is
deterministic and occurs for the minimum Ttx and Tscheduler and under
no contention when a packet is granted the requested switch output
port:

tcontrol(min) = Ttx(min) + tcable + 4Tscheduler(min) + tswitch (1)

The minimum end-to-end latency, tend−to−end(min) , is also deterministic.
As shown in Fig. 3, it is the sum of tcontrol(min) plus the fiber transport
delay (tfiber) from the switch to the receiver and the (de)serialization
latency (tserial) of the wavelength-striped packet at the receiver, which
is effectively its head-to-tail latency:

tend−to−end(min)
= tcontrol(min)

+ tfiber + tserial (2)

The minimum end-to-end latency does not include any packet buffering
delay at the switch, since it occurs under no contention. It is dominated
by tcontrol(min) ; while the control plane processes a request, the corre-
sponding packet in the data path is held by the packet controller at the
network interface. When this guard time expires, the packet controller
releases the packet for transmission so that it reaches the switch as soon
as that has been configured.

The factor 4Tscheduler(min) is the scheduling delay; 2Tscheduler(min) for
request synchronization (worst case) and 2Tscheduler(min) for allocation
and switch configuration. It dominates tcontrol(min)

which in turn accounts
for the majority of tend−to−end(min)

. The scheduler critical path is in the
(output-port) allocation circuit, which means Tscheduler(min)

is determined
by the minimum clock period of the allocation circuit. We achieve a low
minimum clock period by having combinational logic blocks a) running
in parallel and b) placed between registers dividing allocation in stages
(pipelining).

Fig. 4 shows a simplified block diagram for the output-port allo-
cation circuit used in the demonstration. Allocation is performed based
on the well-known round-robin arbitration principle; a currently granted
request gets the lowest priority in the next round of arbitration. The cir-
cuit has 2 pipeline stages, resulting in a 2-clock cycle allocation (includ-
ing switch configuration). In the first pipeline stage two request matri-
ces, one for new server requests and one for switch buffer requests, are
read in and registered. Requests are initially arranged per input port
and each is log2(N)-wide to address the destination output port. The
size of each request matrix is therefore Nlog2(N). In the second pipeline
stage, output-port arbitration and new grants generation takes place,
known as allocation. First, a request generator rotates each request
matrix to arrange requests per output port, so that they can be read
by the arbiters, and then multiplexes the two matrices into a sin-
gle N × N matrix, R. It gives priority into the R matrix to requests
from the switch buffers to maintain packet ordering and reduce packet

Fig. 4. Single-stage output-port allocation circuit block diagram.

delay. Also it removes any granted requests, using a feedback from
the current grant matrix. Next, the R matrix is divided and fed to
N N-bit round-robin arbiters to create the new N × N grant matrix G.
Finally, G is de-rotated to rearrange grants per input port and then
de-multiplexed into two output N-bit vectors, one for the new packets
and one for the those buffered at the switch. The two grant vectors
are registered and will be used next by the switch configuration con-
troller.

In the allocation circuit, the feedback from the grant register to the
request generator logic forms the critical path. It extends from the grant
register, through one of the arbiters and back to the grant register itself,
as marked in Fig. 4. Each N-bit arbiter is composed by N bit slices
chained together [31]. It is implemented as a programmable priority
encoder using carry-look-ahead to speed up propagation through the
slice chain, as proposed by Ref. [32].

The entire scheduler, including the synchronization, allocation and
switch configuration circuits, was designed in SystemVerilog and imple-
mented onto the Xilinx Kintex-7 XC7K325T FPGA board, using the Xil-
inx Vivado tools. In this demonstration a 32×32 crossbar switch was
assumed for which Tscheduler(min) = 9.6 ns.

The constraints on the minimum network interface clock period,
Ttx(min)

, are due to the bit rate per lane on the wavelength-striped
data path and the width of the parallel bus driving the serializer.
For this demonstration, 10 Gb/s per lane and a 32-bit parallel bus
gave Ttx(min) = 32 bits∕(10 Gb∕s) = 3.2 ns. The network interface cir-
cuits were implemented onto the Xilinx Virtex-7 XC7VX690T FPGA
board with this clock constraint.

For a 2-meter distance between the switch and the transmit and
receive ends, emulating server to top-of-rack connections, tcable = 10
ns may be assumed. Also, for the SOAs used in the demonstration,
tswitch = 3 ns. Therefore, using equation (1) above, the minimum con-
trol plane latency is tcontrol(min) = 54.6 ns. The scheduler clock period
dominates this value as 4Tscheduler(min)

= 38.4 ns or 70.3% of the total
control plane latency. The penalty for asynchronous operation is
2Tscheduler(min)

= 19.2 ns or 35.2% of the total control plane latency.
For wavelength-striped 64-Byte (min. Ethernet size) packets in a

WDM system using 8 wavelengths and each modulated/demodulated
at 10 Gb/s, tserial = 6.4 ns. Hence, assuming tfiber = 10 ns, the expected
tend−to−end(min)

is 71.0 ns, according to equation (2).

3.2. Experimental setup

The experimental setup is shown in Fig. 3. In order to avoid clock
distribution, the two FPGA boards are asynchronous, running from
independent crystal oscillators. As discussed in the previous section,
the control plane logic on FPGA#1 and FPGA#2 ran at clock periods
of Ttx(min)

= 3.2 ns and Tscheduler(min)
= 9.6 ns respectively. The request

structure consisted of a 5-bit destination field and a valid bit and par-
allel electronic connections were used to transfer requests between the
two boards. Since the control plane latency is the main focus of this
work, the data plane was simplified in the following ways:

1. Although the scheduler was implemented for a 32×32 crossbar
switch, only a 2×2 switch was implemented in the setup.

2. Since the minimum end-to-end latency occurs when a packet expe-
riences no contention, no recirculation buffers were connected to
the switch inputs. However, the scheduler still generates the buffer
control signals and input SOA control signals.

3. Although in practice data would be striped onto multiple wave-
lengths, only a single 10 Gb/s enhanced small form-factor pluggable
(SFP+) optical transceiver per port was used and only 64 bits per
packet were transmitted, effectively emulating a packet serialization
latency of 6.4 ns. This is equivalent to transmitting 64 B packets at
80 Gb/s.

Two network interfaces together with a packet generator and two
optical transceivers (SFP+) were implemented onto FPGA#1 (Xilinx

54



P. Andreades et al. Optical Switching and Networking 32 (2019) 51–60

XC7VX690T). The generator periodically constructs 64-Byte packets
including a valid-bit and source, destination and payload fields. We
chose this packet size to represent minimum Ethernet packets for
which the minimum end-to-end latency occurs. In practice, variable-
size packets may be transmitted and the number of wavelengths may
be changed dynamically to maintain a low tserial. A linear feedback
shift register is used to assign a pseudo-random payload to the pack-
ets. Because the two FPGA boards are asynchronous, the request con-
troller extends the duration of requests by a configurable number of
clock cycles so that the slower scheduler can detect them. In this
experiment the duration of each request was set to 4Ttx(min)

. Also
configurable is the guard time during which the packet controller
holds onto a packet. It was set to 10Ttx(min) to account for tcontrol(min)
and additional fiber delays in the switch itself because it was imple-
mented with off-the-shelf discrete components (splitters/combiners,
SOAs).

The scheduler circuit was implemented onto FPGA#2 (Xilinx
XC7K325T). The width of the switch configuration signals was set to
2Tscheduler(min) to accommodate both the packet length and the tswitch
overhead, while also accounting for the uncertainty in the request
arrival at FPGA#2 with respect to the scheduler clock. This is discussed
in more detail in the next section. A Xilinx Integrated Logic Analyzer
(ILA) core was also implemented onto FPGA#2 for real-time monitoring
of the scheduler signals, using probes C0-C6 as marked in Fig. 3.

The packet timings are captured on a high-speed oscilloscope at sev-
eral points along the data paths by placing probes D0-D7 as indicated
in Fig. 3 and using optical receivers where necessary.

4. Experimental results

As depicted in Fig. 5, the control plane demonstration consists of
two scenarios: a) switching packets from a single network interface to
either of the two output ports of the switch and b) switching packets
from both network interfaces to a single output port.

4.1. Scenario A

The packet generator injects packets periodically, once every 48 ns,
with their destination alternating between the two possible output ports
of the switch. The purpose of this exercise is to verify successfully
packet switching and also measure the minimum end-to-end latency.

4.1.1. Control path signals
Fig. 6 shows the timing of the control processes at the sched-

uler, captured using ILA probes as illustrated in Fig. 3. First, the
input requests (probe C0) are successfully detected (only valid bits are

Fig. 5. Experimental scenarios: a) switching packets from an input port to two
output ports and b) switching packets from two input ports to an output port.

Fig. 6. Scheduler shown granting the same network interface to two switch
output ports in turn, one at a time. Traces are labeled according to the probe
placement shown in Fig. 3. Each subdivision is 1 Tscheduler(min)

.

shown). It then takes two clock cycles to go through the synchroniza-
tion stage before they are detected by the allocation circuit (probe C2).
Finally, it takes two more clock cycles to complete allocation and pro-
duce the switch configuration signals for the two output SOAs (probes
C4 and C6). The width of the configuration pulses is two clock cycles.
As shown in the figure, only one output SOA is active at a time and
hence packets are switched to the corresponding output port. The pack-
ets appear at the same output port on every other scheduling round, as
expected.

4.1.2. Data path signals
Fig. 7 shows the packet timings at different points along the data

paths from the server interface to the two output ports, as captured
on the oscilloscope. The falling edge of a packet’s valid bit enter-
ing the network interface marks the starting point for the end-to-end
latency measurement. It takes 36 ns for the packets to leave the FPGA
and 12 ns more to arrive at the switch SOA. It then takes 28 ns to
reach the receivers and 6.4 ns more to deserialize the packet at the
receiver. This brings the end-to-end latency to 82.4 ns compared with
the expected value of 71.0 ns. This is due to additional PCB tracks in
the control path and fiber pigtails in discrete components in the data
path, such as the 2:1 combiners at the switch output ports and off-the-

Fig. 7. Data paths from a network interface to the 2 output ports of the switch.
Traces are labeled according to the probe placement shown in Fig. 3. The min-
imum end-to-end latency measurement is marked on the figure.

55



P. Andreades et al. Optical Switching and Networking 32 (2019) 51–60

Fig. 8. Request arrival uncertainty due to asynchronous operation and its effect
on the switch configuration signals, captured on the oscilloscope using 5-second
persistence.

shelf optical receivers, which increase tcable and tfiber to more than 10
ns each. The amplification effect of the SOAs is exhibited as a volt-
age offset every time an SOA is switched ON. Although this could
have been removed with an optical filter, none was applied in order
to show the packet arrival relative to the scheduler SOA configuration
pulses.

The control plane is asynchronous, since the two FPGA boards run
from different clock sources, thus it is uncertain when exactly a request
arrives at the scheduler board with respect to the scheduler clock edge.
The offset can lie anywhere from 0 ns up to a maximum of 1 Tscheduler,
which is the case when the request falls just after the clock rising edge.
Hence the total delay for request synchronization can be up to 2Tscheduler
in the worst case. The 10Ttx(min)

= 32 ns guard time accounts for the
worst case request synchronization delay. The effect of the uncertainty
in the request arrival time on the scheduler output configuration signals
was captured on the oscilloscope using a 5-second persistence, as shown
in Fig. 8. The configuration pulses need to be broadened by at least one
extra clock cycle depending on the length of Tscheduler(min)

. In this case,
Tscheduler(min)

= 9.6 ns is long enough to accommodate both the packet
duration and the SOA switch-ON time (tswitch). As a result, a window of
3Tscheduler(min) = 28.8 ns is defined during which a switch configuration
may occur. The packet is shown here arriving at the switch/SOA at a
time well aligned with the configuration pulse, indicating correct guard
time calculation.

4.2. Scenario B

In this scenario all packets generated are destined to the same out-
put port but fed to the two network interfaces with a constant time
difference. Staggering the packets enables investigating the minimum
time spacing between packets of different network interfaces, in order
to measure the switch throughput.

4.2.1. Control path signals
Requests from the two network interfaces (probes C0 and C1) are

shown in Fig. 9 arriving at the scheduler with a fixed time difference,
reflecting the packet staggering applied. Because the requests generated
at each network interface are 12.8 ns wide, some of them are registered
twice depending on when they arrive relative to the scheduler clock
edge. The scheduler is shown here granting the output port (probes
C4 and C5) to the network interface that requested it first and then,
in the next scheduling round, granting to the other one. The requests
from the two network interfaces can be as close as 10Ttx(min) = 32 ns
to one another. This is due to the window of 28.8 ns over which a
switch configuration could occur due to the asynchronous operation, as
discussed above. On the ILA, which runs at the scheduler clock period,
the minimum request spacing appears as 3Tscheduler(min)

= 28.8 ns.

Fig. 9. Scheduler shown granting the same switch output port to two network
interfaces in turn, one at a time. Traces are labeled according to the probe
placement shown in Fig. 3. Each subdivision is 1 Tscheduler(min)

.

4.2.2. Data path signals
Fig. 10 shows the minimum time spacing between packets from

different network interfaces. That is 32 ns and it is mainly due to
the control plane being asynchronous. As a result, in this particular
demonstration setup, the throughput is (6.4∕32) × 100 = 20%. With
a synchronous control plane, packets from different sources could be

Fig. 10. Data paths from the 2 network interfaces to an output port of the
switch. Traces are labeled according to the probe placement shown in Fig. 3.
The minimum end-to-end latency and the minimum packet separation measure-
ments are marked on the figure.

56



P. Andreades et al. Optical Switching and Networking 32 (2019) 51–60

spaced by Tscheduler, which would bring the maximum throughput to
(Tscheduler − tswitch)∕Tscheduler × 100 = 69%. Nonetheless, the focus here
is to demonstrate the latency rather than the throughput of our switch
system concept and the implementation of a synchronous control plane
is outside the scope of this work. The delay characteristics along each
data path are the same as in the previous section. The packets coming
from the two different inputs are all successfully received at the output
port.

4.3. Asynchronous control plane considerations

Asynchronous control plane communication increases the end-to-
end latency because a request synchronization stage needs to be
included in the scheduler circuit. In our experimental demonstration,
this stage contributes 27% of the total latency. It also increases the
switch configuration duration (to two scheduler clock cycles in the
case of this demonstration for 64 B packets) to take into account the
uncertainty in the request arrival time at the scheduler. This acts to
decrease the switch throughput as no new packets may traverse the
switch during that time. Synchronous operation would significantly
reduce latency at the expense of additional wiring to distribute a clock
signal. In practice, synchronization would also be necessary for data
recovery on the receiving end, which could incur a significant latency
penalty if implemented using conventional clock recovery circuits on
a per packet basis. While full frequency and phase synchronization at
the bit level has not been demonstrated on the scale of data centers,
techniques such as injection clock recovery, either electronic [33,34]
or optical [35], and wavelength-striped source-synchronous operation
[36,37] are potential low-latency solutions to the receiver synchroniza-
tion problem. These techniques still involve delay due to clock domain
crossings. However, the proposed leaf-spine network with optical leaf
switches, avoids any clock domain crossings at this level of the hierar-
chy.

5. Two-stage allocation circuit

The minimum allocation circuit clock period is crucial on the achiev-
able lower bound of the end-to-end latency in our switch system con-
cept. In the scheduler used in the experimental demonstration, although
the allocation circuit (Fig. 4) is a two-stage pipeline, it performs the
functions of arbitration and new grants generation in a single pipeline
stage, thus resulting in a long critical path. In Ref. [38] we briefly intro-
duced a faster allocation circuit, shown in Fig. 11. Here we discuss in
detail the circuit implementation, evaluate reductions in control and
end-to-end latencies and investigate scheduling scalability compared to
single-stage allocation.

The new allocation circuit design reduces the critical path in the
following ways:

Fig. 11. Two-stage output-port allocation circuit block diagram.

1. Arbitration and new grants generation are divided in the two
pipeline stages.

2. Arbitration is performed separately and in parallel for new server
requests and for requests coming from the switch buffers. This
enables removing the logic for multiplexing and prioritizing requests
when generating the requests for the arbiters. The priority logic is
moved to the 2nd pipeline stage.

3. Feedback from the current grant matrix is moved to the 2nd pipeline
stage and applies to the logic for multiplexing and prioritizing the
new grants. This means that instead of dropping already resolved
requests, new grants are filtered out.

As a result, the critical path falls in the arbitration stage, from the
input request register through one of the arbiters to the arbiter out-
put register, as illustrated in Fig. 11. Each of the two input Nlog2(N)
request matrices is fed to a request generator logic for translation into
an arbiter readable format; the request matrix is expanded to N × N and
then rotated so that requests are grouped per output port. The resulting
request matrices R and R′ are each divided and fed to N N-bit arbiters.
Arbitration is performed in parallel for R and R′. The two output grant
matrices, G and G′, are registered and in the next pipeline stage are
multiplexed into a single N × N matrix, giving priority to requests from
the switch buffers. Feedback from the current grant matrices is used to
filtered out any grants already issued. Finally parallel logic blocks are
used to de-rotate the multiplexed matrix, arranging the grants per input
port, and then produce N-bit grant vectors for the server requests and
requests from the switch buffers.

The scheduler for both allocation circuit designs is implemented on
the Xilinx Kintex-7 XC7K325T FPGA board for different N × N switch
sizes and the timing results are shown in Fig. 12. In both designs, the
arbiter module is in the critical path and is composed as a cascade of
N arbiter bit slices. Therefore, Tscheduler(min)

increases with the switch
size. The single-stage allocation circuit hinders scheduling scalability
beyond a switch size of 32 × 32. However, for the same switch size,
the two-stage allocation circuit reduces Tscheduler(min) by 42.7% giving
Tscheduler(min) = 5.5 ns. At this clock period, the two-stage allocation cir-
cuit quadruples the switch size compared to the single-stage allocation
circuit. More importantly, for Tscheduler = 9.6 ns it enables doubling the
switch size to 64 × 64.

For our control plane experimental demonstration setup shown
in Fig. 3, using the new two-stage allocation circuit and running
it at Tscheduler(min)

= 5.5 ns would bring the expected tcontrol(min)
and

tend−to−end(min)
down to 38.2 ns and 54.6 ns respectively, according to

equations (1) and (2). Compared to using single-stage allocation, the
reduction in the expected tend−to−end(min)

is 23.1%.

Fig. 12. Timing results for scheduler implementation onto the Xilinx Kintex-7
325T FPGA board using either of the two allocation circuits.

57



P. Andreades et al. Optical Switching and Networking 32 (2019) 51–60

Table 1
Network model parameters.

Parameter Value

Switch size (N) 32
Ttx 3.2 ns
Tscheduler 9.6 ns, 5.5 ns
tserial 6.4 ns
tcable 10 ns
tfiber 10 ns
tswitch 3 ns
Request synchronization delay 19.2 ns, 11 ns
Configuration pulse width 19.2 ns, 16.5 ns
Measurement time 10 μs

Implementing our work on CMOS application-specific integrated cir-
cuit (ASIC) technology would reduce latency even further, for either
allocation circuit being used in the scheduler. For comparison, an
electronic 10 Gb/s 48-port cut-through packet switch has a minimum
latency of 170 ns [39]. Including the same cable and packet serialization
delays as in our experimental setup, its minimum end-to-end latency
comes to 196.4 ns, without taking into account any control overheads
on the transmit side.

6. Network emulation

In this section we do a further investigation of the end-to-end
latency in our switch system concept, based on a network model devel-
oped in SystemVerilog. The latency performance is evaluated for both
output-port allocation circuits presented above.

A full-size rack-scale network is emulated for a 32×32 optical top-
of-rack (leaf) switch, including 32 network interfaces and 32 switch
buffers. The depth of each buffer is set to 1024 packet entries to avoid
packet loss at 100% load. We assume a 2 m fiber length from the rack
to the switch and another 2 m fiber length from the switch back to
the same rack or to the spine switch. We also assume wavelength-
striped packets with tserial = 6.4 ns. This means that for a fixed bit
rate, for example 400 Gb/s, the number of wavelengths used may be
changed dynamically according to the packet size to preserve tserial.
The model captures the latency characteristics of our control plane and
adds the total fiber transport delay and packet deserialization delay at
the receiver to calculate the end-to-end latency in the data plane. It
includes the buffering latency contributions to both the control plane
and data plane.

The latency performance is measured under a synthetic workload. A
set of 32 independent packet sources are instantiated each generating
packets randomly following a uniform inter-arrival time distribution.
A universal load parameter is used to set the probability of a packet
being generated in a clock cycle, thus controlling the capacity percent-
age the sources run at. A 100% load represents packets generated on
every clock cycle, i.e. with no time gaps. The packet output port des-
tinations are uniform random. Each packet source feeds a dedicated
network interface module. Table 1 lists the parameter values used in
the network emulation.

Fig. 13, shows how the average end-to-end latency varies as a func-
tion of the load for either allocation circuit being used. The two-stage
allocation design performs better across all port loads. At low loads,
both curves converge to their expected minimum end-to-end latencies
as given by equation (2). As the load is increased the probability of
contention gets higher and more packets are buffered at the switch,
increasing the average end-to-end latency. At high loads, beyond 50%,
the latency rapidly increases due to a greater number of packets experi-
encing head-of-line (HOL) blocking. With either allocation circuit being
used the average latency at 100% load is 10 μs or less, under uniform
random traffic. Nonetheless, the focus of this work is ultra-low latency
switching at low loads which is verified by these results. Speculative

Fig. 13. Average end-to-end latency vs. port load under uniform random traf-
fic. Network model assumes a 32×32 optical top-of-rack switch and 2 m fiber
connections to the input and output ports. Packets are wavelength-striped with
a 6.4 ns duration.

Fig. 14. Cumulative distribution of the received packet end-to-end latency, at
50% load under uniform random traffic. Network model assumes a 32×32
optical top-of-rack switch and 2 m fiber connections to the input and output
ports. Packets are wavelength-striped with a 6.4 ns duration.

transmission is one of the main enablers in achieving this at the cost
of increased buffering at high loads. The switch buffers are assumed to
be deep enough (1024 packet entries in this emulation) to avoid packet
loss at all loads.

The average latency at high loads could be reduced by changing the
buffer placement at the switch; at every input port one virtual queue
per output port may be implemented to store packets per destination,
significantly reducing the HOL blocking and thus the buffering time and
average latency [40]. The depth requirement of each queue would also
be much smaller. Implementing virtual output queues (VOQs) however
not only increases the complexity of the switch but also that of the
scheduling algorithm, incurring additional delay. For instance, for VOQ
switches, FPGA-implementations of parallel iterative round-robin-based
(iSLIP) or weighted (ipLQF) arbitration have been recently reported
[41] with hundreds of nanoseconds delay for scheduling alone and that
for only a 16-port switch.

In Fig. 14 the cumulative distributions of the packet end-to-end
latency for the two allocation circuits at 50% load are shown. Over
the measurement window of 10 μs, more than 10% of the packets
were received with the minimum end-to-end latency, for both alloca-
tion circuits. According to Fig. 13, the average end-to-end latency for
the single-stage allocation circuit is 172.5 ns. At this value, the two-
stage allocation circuit enabled switching 27% more packets. Further-

58



P. Andreades et al. Optical Switching and Networking 32 (2019) 51–60

more, 95% of the packets were received with a latency in the range
71.0 ns–378.2 ns for the single-stage allocation circuit design against
54.6 ns–219.6 ns for the two-stage allocation design. Thus, for 95% of
the packets, the longest possible latency was reduced by 158.6 ns. More-
over, two-stage allocation results in a shorter distribution tail; from 95%
to 100% of the received packets, the increase in the longest possible
end-to-end latency is 85.2% compared to 134.5% for single-stage allo-
cation.

7. Conclusion

We have presented the implementation details of our low-latency
control plane and demonstrated it experimentally for a 32×32 optical
crossbar switch. For this switch size, in a data center top-of-rack appli-
cation, the switch scheduling accounts for 70.3% of the minimum con-
trol plane delay which in turn accounts for 76.9% of the minimum end-
to-end head-to-tail latency, for wavelength-striped 6.4 ns long packets.
The output-port allocation circuit determines the minimum schedul-
ing delay and therefore we presented here a new circuit design which
divides allocation into two stages to reduce the critical path in the
design. As a result the minimum clock period is reduced from 9.6 ns
to 5.5 ns, decreasing the scheduling contribution to the minimum con-
trol plane latency to 57.6%. Apart from fast scheduling, the control
plane delay is also reduced using speculative transmission and storing
packets at the switch inputs. By speculating on output-port grants the
control path is reduced as otherwise grant synchronization and pro-
cessing would be required at the transmit side. Buffering packets at the
switch keeps them close to the scheduler and hence reduces the trans-
port overhead of requests and grants between the scheduler and the
buffers at the switch.

Overall, in our FPGA-based control plane demonstration a minimum
end-to-end latency of 82.4 ns was achieved, of which 11.4 ns was due
to additional fiber/cable delays. For 2-meter fiber connections to the
switch ports, the minimum latency is 71.0 ns or 54.6 ns when two-
stage allocation is used and further reduction is expected when our
work is implemented on CMOS ASIC technologies. For comparison,
equivalent state-of-the-art electronic switch systems have a minimum
latency around 200 ns. More importantly, the two-stage allocation cir-
cuit improves scheduler scalability. Indeed, for the same clock period
it enables scaling from a 32×32 to a 64×64 switch size, considerably
increasing the number of hosts in the leaf-spine data center network.

A rack-scale 32×32 network emulation was used to measure the
packet end-to-end latency in our optical switch system concept, under
uniform random traffic. The scheduler based on two-stage allocation
showed a lower average latency at all port loads. Moreover, for the
average latency at 50% port capacity, it allowed switching 27% more
packets, over a measurement period of 10 μs.

Synchronous control plane operation would improve both the
latency and throughput in our optical switch system, at the cost of
extra wiring to distribute the clock signal. Practical systems also require
receiver synchronization for data recovery, but techniques such as injec-
tion clock recovery and wavelength-striped source-synchronous opera-
tion could be used to keep the latency penalty small.

Acknowledgement

The authors would like to thank Yujia Wang, Shiyun Liu and Jef-
frey Shen for their contributions towards designing and implementing
the control plane. The work was supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) TRANSNET program grant
EP/R035342/1 and the Fellowship grant to Philip Watts. It was also
partly supported by the EU H2020 project dRedBox under grant agree-
ment no. 687632. The FPGA evaluation boards used in our experimental
demonstration were provided by Xilinx.

References

[1] Cisco Systems, Inc, Cisco Global Cloud Index: Forecast and Methodology, 2015 -
2020, White Paper, Cisco Systems, Inc., 2016.

[2] G. Lee, Cloud Networking: Understanding Cloud-based Data Center Networks,
Morgan Kaufmann, 2014.

[3] N. Chrysos, F. Neeser, M. Gusat, C. Minkenberg, W. Denzel, C. Basso, M. Rudquist,
K.M. Valk, B. Vanderpool, Large switches or blocking multi-stage networks? An
evaluation of routing strategies for datacenter fabrics, Comput. Network. 91
(2015) 316–328. https://doi.org/10.1016/j.comnet.2015.08.029.

[4] M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network
architecture, Comput. Commun. Rev. 38 (4) (2008) 63–74, https://doi.org/10.
1145/1402946.1402967.

[5] M. Alizadeh, T. Edsall, On the data path performance of leaf-spine datacenter
fabrics, in: IEEE Hot Interconnects (HOTI), 2013, pp. 71–74, https://doi.org/10.
1109/HOTI.2013.23.

[6] N. Zilberman, P.M. Watts, C. Rotsos, A.W. Moore, Reconfigurable network systems
and software-defined networking, Proc. IEEE 103 (7) (2015) 1102–1124, https://
doi.org/10.1109/JPROC.2015.2435732.

[7] G. Wang, D.G. Andersen, M. Kaminsky, K. Papagiannaki, T.E. Ng, M. Kozuch, M.
Ryan, c-Through: Part-time optics in data centers, in: Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM ’10, ACM, New York, NY, USA, 2010, pp.
327–338, https://doi.org/10.1145/1851182.1851222.

[8] N. Farrington, G. Porter, S. Radhakrishnan, H.H. Bazzaz, V. Subramanya, Y.
Fainman, G. Papen, A. Vahdat, Helios: a hybrid electrical/optical switch
architecture for modular data centers, in: Proceedings of the ACM SIGCOMM 2010
Conference, SIGCOMM ’10, ACM, New York, NY, USA, 2010, pp. 339–350,
https://doi.org/10.1145/1851182.1851223.

[9] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y.
Fainman, G. Papen, A. Vahdat, Integrating microsecond circuit switching into the
data center, in: Proceedings of the ACM SIGCOMM 2013 Conference, SIGCOMM
’13, ACM, New York, NY, USA, 2013, pp. 447–458, https://doi.org/10.1145/
2486001.2486007.

[10] A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, Proteus: a topology
malleable data center network, in: ACM SIGCOMM Workshop on Hot Topics in
Networks (HotNets), HotNets-IX, ACM, New York, NY, USA, 2010, pp. 1–6,
https://doi.org/10.1145/1868447.1868455.

[11] A. Biberman, G. Hendry, J. Chan, H. Wang, K. Bergman, K. Preston, N.
Sherwood-Droz, J.S. Levy, M. Lipson, CMOS-compatible scalable photonic switch
architecture using 3D-integrated deposited silicon materials for high-performance
data center networks, in: Optical Fiber Communication Conference and Exposition
(OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, 2011,
https://doi.org/10.1364/OFC.2011.OMM2.

[12] A.W. Poon, L. Xianshu, X. Fang, C. Hui, Cascaded microresonator-based matrix
switch for silicon on-chip optical interconnection, Proc. IEEE 97 (7) (2009)
1216–1238, https://doi.org/10.1109/JPROC.2009.2014884.

[13] I.H. White, E.T. Aw, K.A. Williams, H. Wang, A. Wonfor, R.V. Penty, Scalable
optical switches for computing applications, [Invited], J. Opt. Netw. 8 (2) (2009)
215–224, https://doi.org/10.1364/JON.8.000215.

[14] O. Liboiron-Ladouceur, B.A. Small, K. Bergman, Physical layer scalability of WDM
optical packet interconnection networks, J. Lightwave Technol. 24 (1) (2006)
262–270, https://doi.org/10.1109/JLT.2005.859852.

[15] B.G. Lee, A.V. Rylyakov, W.M.J. Green, S. Assefa, C.W. Baks, R. Rimolo-Donadio,
D.M. Kuchta, M.H. Khater, T. Barwicz, C. Reinholm, E. Kiewra, S.M. Shank, C.L.
Schow, Y.A. Vlasov, Monolithic silicon integration of scaled photonic switch
fabrics, CMOS logic, and device driver circuits, J. Lightwave Technol. 32 (4)
(2014) 743–751, https://doi.org/10.1109/JLT.2013.2280400.

[16] Q. Cheng, A. Wonfor, R.V. Penty, I.H. White, Scalable, low-energy hybrid photonic
space switch, J. Lightwave Technol. 31 (18) (2013) 3077–3084, https://doi.org/
10.1109/JLT.2013.2278708.

[17] Q. Cheng, A. Wonfor, J. Wei, R.V. Penty, I.H. White, Modular hybrid dilated
Mach-Zehnder switch with integrated SOAs for large port count switches, in:
Optical Fiber Communications Conference and Exhibition (OFC), 2014, https://
doi.org/10.1364/OFC.2014.W4C.6.

[18] N. Calabretta, W. Miao, K. Mekonnen, K. Prifti, K. Williams, Monolithically
integrated WDM cross-connect switch for high-performance optical data center
networks, in: Optical Fiber Communications Conference and Exhibition (OFC),
2017, https://doi.org/10.1364/OFC.2017.Tu3F.1.

[19] W. Miao, H. d. Waardt, R. v. d. Linden, N. Calabretta, Assessment of scalable and
fast 1310-nm optical switch for high-capacity data center networks, IEEE Photon.
Technol. Lett. 29 (1) (2017) 98–101, https://doi.org/10.1109/LPT.2016.2629087.

[20] R. Luijten, C. Minkenberg, R. Hemenway, M. Sauer, R. Grzybowski, Viable
opto-electronic HPC interconnect fabrics, in: ACM/IEEE Supercomputing
Conference, 2005, https://doi.org/10.1109/SC.2005.78.

[21] L. Liu, Z. Zhang, Y. Yang, Packet scheduling in a low-latency optical interconnect
with electronic buffers, J. Lightwave Technol. 30 (12) (2012) 1869–1881, https://
doi.org/10.1109/JLT.2012.2190971.

[22] Q. Yang, K. Bergman, Performances of the Data Vortex switch architecture under
nonuniform and bursty traffic, J. Lightwave Technol. 20 (8) (2002) 1242–1247,
https://doi.org/10.1109/JLT.2002.800330.

[23] A. Shacham, K. Bergman, Building ultralow-latency interconnection networks
using photonic integration, IEEE Micro 27 (4) (2007) 6–20, https://doi.org/10.
1109/MM.2007.64.

59

http://refhub.elsevier.com/S1573-4277(18)30157-7/sref1
http://refhub.elsevier.com/S1573-4277(18)30157-7/sref2
https://doi.org/10.1016/j.comnet.2015.08.029
https://doi.org/10.1145/1402946.1402967
https://doi.org/10.1145/1402946.1402967
https://doi.org/10.1109/HOTI.2013.23
https://doi.org/10.1109/HOTI.2013.23
https://doi.org/10.1109/JPROC.2015.2435732
https://doi.org/10.1109/JPROC.2015.2435732
https://doi.org/10.1145/1851182.1851222
https://doi.org/10.1145/1851182.1851223
https://doi.org/10.1145/2486001.2486007
https://doi.org/10.1145/2486001.2486007
https://doi.org/10.1145/1868447.1868455
https://doi.org/10.1364/OFC.2011.OMM2
https://doi.org/10.1109/JPROC.2009.2014884
https://doi.org/10.1364/JON.8.000215
https://doi.org/10.1109/JLT.2005.859852
https://doi.org/10.1109/JLT.2013.2280400
https://doi.org/10.1109/JLT.2013.2278708
https://doi.org/10.1109/JLT.2013.2278708
https://doi.org/10.1364/OFC.2014.W4C.6
https://doi.org/10.1364/OFC.2014.W4C.6
https://doi.org/10.1364/OFC.2017.Tu3F.1
https://doi.org/10.1109/LPT.2016.2629087
https://doi.org/10.1109/SC.2005.78
https://doi.org/10.1109/JLT.2012.2190971
https://doi.org/10.1109/JLT.2012.2190971
https://doi.org/10.1109/JLT.2002.800330
https://doi.org/10.1109/MM.2007.64
https://doi.org/10.1109/MM.2007.64


P. Andreades et al. Optical Switching and Networking 32 (2019) 51–60

[24] J. Luo, S. Di Lucente, J. Ramirez, H.J.S. Dorren, N. Calabretta, Low latency and
large port count optical packet switch with highly distributed control, in: Optical
Fiber Communication Conference and Exposition (OFC/NFOEC) and the National
Fiber Optic Engineers Conference, 2012, https://doi.org/10.1364/OFC.2012.
OW3J.2.

[25] P. Grani, R. Proietti, S. Cheung, S.J.B. Yoo, Flat-topology high-throughput
compute node with AWGR-based optical-interconnects, J. Lightwave Technol. 34
(12) (2016) 2959–2968, https://doi.org/10.1109/JLT.2015.2510656.

[26] P. Andreades, Y. Wang, J. Shen, S. Liu, P.M. Watts, Experimental demonstration of
75 ns end-to-end latency in an optical top-of-rack switch, in: Optical Fiber
Communications Conference and Exhibition (OFC), 2015, https://doi.org/10.
1364/OFC.2015.W3D.5.

[27] P.M. Watts, S.W. Moore, A.W. Moore, Energy implications of photonic networks
with speculative transmission, J. Opt. Commun. Netw. 4 (6) (2012) 503–513,
https://doi.org/10.1364/JOCN.4.000503.

[28] X. Zheng, D. Patil, J. Lexau, F. Liu, G. Li, H. Thacker, Y. Luo, I. Shubin, J. Li, J.
Yao, P. Dong, D. Feng, M. Asghari, T. Pinguet, A. Mekis, P. Amberg, M. Dayringer,
J. Gainsley, H.F. Moghadam, E. Alon, K. Raj, R. Ho, J.E. Cunningham, A.V.
Krishnamoorthy, Ultra-efficient 10Gb/s hybrid integrated silicon photonic
transmitter and receiver, Optic Express 19 (6) (2011) 5172–5186, https://doi.org/
10.1364/OE.19.005172.

[29] X. Ye, Y. Yin, S. Yoo, P. Mejia, R. Proietti, V. Akella, DOS - a scalable optical
switch for datacenters, in: ACM/IEEE Architectures for Networking and
Communications Systems (ANCS), 2010, pp. 1–12.

[30] N. Calabretta, FPGA-based label processor for low latency and large port count
optical packet switches, J. Lightwave Technol. 30 (19) (2012) 3173–3181, https://
doi.org/10.1109/JLT.2012.2215840.

[31] W.J. Dally, B.P. Towles, Principles and Practices of Interconnection Networks,
Elsevier, 2004.

[32] P. Gupta, N. McKeown, Designing and implementing a fast crossbar scheduler,
IEEE Micro 19 (1) (1999) 20–28, https://doi.org/10.1109/40.748793.

[33] B. Li, L.S. Tamil, D. Wolfe, J. Plessa, 10 Gbps burst-mode optical receiver based on
active phase injection and dynamic threshold level setting, Commun. Lett. IEEE 10
(10) (2006) 722–724, https://doi.org/10.1109/LCOMM.2006.060099.

[34] J. Lee, M. Liu, A 20-Gb/s burst-mode clock and data recovery circuit using
injection-locking technique, J. Solid-State Circ. 43 (3) (2008) 619–630, https://
doi.org/10.1109/JSSC.2007.916598.

[35] J. Luo, J. Parra-Cetina, P. Landais, H.J. Dorren, N. Calabretta, Performance
assessment of 40 Gb/s burst optical clock recovery based on quantum dash laser,
Photon. Technol. Lett. IEEE 25 (22) (2013) 2221–2224, https://doi.org/10.1109/
LPT.2013.2284529.

[36] C.E. Gray, O. Liboiron-Ladouceur, D.C. Keezer, K. Bergman, Multi-gigahertz source
synchronous testing of an optical packet switching network, in: International
Mixed-signals Test Workshop, Edinburgh, Scotland, 2006.

[37] M. De Wilde, O. Rits, R. Baets, J.V. Campenhout, Synchronous parallel optical I/O
on CMOS: a case study of the uniformity issue, J. Lightwave Technol. 26 (2)
(2008) 257–275, https://doi.org/10.1109/JLT.2007.909849.

[38] P. Andreades, P.M. Watts, Low latency parallel schedulers for photonic integrated
optical switch architectures in data centre networks, in: European Conference on
Optical Communication (ECOC), 2017, https://doi.org/10.1109/ECOC.2017.
8345961.

[39] Cisco Systems, Inc, Cisco Nexus 3548 Switch Performance Validation, White
Paper, Cisco Systems, Inc., December, 2012.

[40] P. Andreades, G. Zervas, Parallel distributed schedulers for scalable photonic
integrated packet switching, in: Photonics in Switching and Computing (PSC),
2018.

[41] I. Cerutti, J.A. Corvera, S.M. Dumlao, R. Reyes, P. Castoldi, N. Andriolli,
Simulation and fpga-based implementation of iterative parallel schedulers for
optical interconnection networks, IEEE/OSA J. Optic. Commun. Network. 9 (4)
(2017) C76–C87, https://doi.org/10.1364/JOCN.9.000C76.

60

https://doi.org/10.1364/OFC.2012.OW3J.2
https://doi.org/10.1364/OFC.2012.OW3J.2
https://doi.org/10.1109/JLT.2015.2510656
https://doi.org/10.1364/OFC.2015.W3D.5
https://doi.org/10.1364/OFC.2015.W3D.5
https://doi.org/10.1364/JOCN.4.000503
https://doi.org/10.1364/OE.19.005172
https://doi.org/10.1364/OE.19.005172
http://refhub.elsevier.com/S1573-4277(18)30157-7/sref29
https://doi.org/10.1109/JLT.2012.2215840
https://doi.org/10.1109/JLT.2012.2215840
http://refhub.elsevier.com/S1573-4277(18)30157-7/sref31
https://doi.org/10.1109/40.748793
https://doi.org/10.1109/LCOMM.2006.060099
https://doi.org/10.1109/JSSC.2007.916598
https://doi.org/10.1109/JSSC.2007.916598
https://doi.org/10.1109/LPT.2013.2284529
https://doi.org/10.1109/LPT.2013.2284529
http://refhub.elsevier.com/S1573-4277(18)30157-7/sref36
https://doi.org/10.1109/JLT.2007.909849
https://doi.org/10.1109/ECOC.2017.8345961
https://doi.org/10.1109/ECOC.2017.8345961
http://refhub.elsevier.com/S1573-4277(18)30157-7/sref39
http://refhub.elsevier.com/S1573-4277(18)30157-7/sref40
https://doi.org/10.1364/JOCN.9.000C76

	Experimental demonstration of an ultra-low latency control plane for optical packet switching in data center networks
	1. Introduction
	Acknowledgement
	References


