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Abstract

We present a tensorial theory for the microstructure and the stress in shear rate invariant particle

suspensions, that includes hydrodynamic and normal but not tangential hard sphere interaction

forces. The theory predicts, that hydrodynamic forces produce a negligible first normal stress

difference, while contact forces produce a positive first normal stress difference. The theory thereby

provides a rationale for seemingly contradicting experimental observations in the literature. In

addition, the theory captures experimentally observed time dependence of the shear stress after

shear reversal.
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I. INTRODUCTION8

Particle suspensions occur ubiquitously in nature, and their mechanical stress Σ is gov-9

erned by the particle interaction forces, which can be classified into hydrodynamic, and non-10

hydrodynamic. The nature of the hydrodynamic forces depends on the particle Reynolds11

number Rep = γ̇a2/ν, where a is the particle radius, ν = η/ρ is the solvent kinematic vis-12

cosity, η is the solvent dynamic viscosity, ρ is the solvent mass density, and γ̇ is the shear13

rate. When: Rep � 1, flow inertia is negligible, and the hydrodynamic forces are governed14

by the linear Stokes equations.15

The Stokes equations predict that particles make no physical contacts in a fluid, since16

the lubrication force diverges at contact [1]. With increasing volume fraction φ however,17

the lubrication films become progressively thinner, and when their thickness approaches the18

atomic length scale, the films disintegrate, resulting in physical contacts.19

This work addresses the effect of hard and frictionless contact forces on the particle stress.20

Hard contacts do not introduce a force scale F into the system, and the non-dimensional21

suspension viscosity: Σ12/ηγ̇, depends therefore only on the particle volume fraction φ and22

not on the shear rate γ̇, as this can not be non-dimensionalised into a2ηγ̇/F , due to the23

absence of F . This study is therefore restricted to shear rate invariant suspensions.24

Experimental data on the suspension stress Σ are mainly concerned with shear flow,25

where: L = ∇UT = γ̇δ1δ2 is the velocity gradient tensor, γ̇ =
√

2E : E is the shear rate,26

E = 1
2

(
L+LT

)
is the strain rate tensor, U is the velocity vector, and 1, 2 and 3 are the27

flow direction, the gradient direction and the vorticity direction, respectively28

Fig. 1 summarises experimental data on the relative, first and second normal stress29

differences in shear rate invariant suspensions. These quantities are defined as: ζ1 = (Σ11 −30

Σ22)/Σ12, and: ζ2 = (Σ22 − Σ33)/Σ12, respectively. While ζ2 has always been observed to31

be negative, ζ1 has been observed to be both negative and small (compared to ζ2) [5–7],32

as well as positive [2, 4]. It is noted that a positive ζ1 has also been observed in shear33

thickening suspensions [8–10], which supports the hypothesis that particle contact forces are34

responsible for ζ1 > 0 [11].35

In addition to normal stresses, effects of contact forces are also reflected by a stress dis-36

continuity upon the reversal of shear flow. In the absence of contacts, the Stokes equation37

dictates, that the stress is linear in the velocity. This means, that, when the flow velocity38
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FIG. 1. Measured, steady, relative, first and second normal stress differences: ζ1 = (Σ11−Σ22)/Σ12

(open markers), and: ζ2 = (Σ22−Σ33)/Σ12 (filled markers), under shear rate invariant conditions,

and as functions of the particle volume fraction φ. 4: a = 20 µm, O: a = 70 µm polystyrene in

water, UCON oil and zinc bromide [2]; �: a = 35 µm, ♦: a = 70 µm polystyrene in poly(ethylene

glycol-ran-propylene glycol) monobutylether [3]; C: a = 5 µm poly (methyl methacrylate) (PMMA)

in Triton X-100, anhydrous zinc chloride, and water (TZW) [4]; ⊕ a = 98 µm PMMA in TZW

[5]; ©: a = 22 µm glass in corn syrup and glycerin [6]; 9 a = 20 µm polystyrene in silicone fluid

[7]. The lines are drawn to guide the eye, and the lower line represents the empirical relation [Eq.

(16)].

is instantaneously reversed, the stress is instantaneously reversed too, as observed experi-39

mentally for small φ [12]. For large φ, particles may experience contacts, and since contact40

forces are not reversed upon flow reversal, there is a discontinuity in the (absolute value of41

the) particle stress upon flow reversal [12–14].42

In this work we provide a micro-structural explanation for the above mentioned experi-43

mental observations, regarding normal stresses in steady shear flow, and stress discontinuity44

after shear reversal. To this end we include hard and frictionless contact forces into a45

previously proposed tensorial theory for the suspension microstructure and stress [15].46

3



II. DERIVATION OF THE THEORY47

A. Hydrodynamic Forces48

First we summarise the theory in the absence of contact forces. For a full derivation, the49

reader is referred to Ref. [15]. In the two-body approximation the stress is given by [16–19]:50

Σ = − 1

V

∑
α>β

Fα,βrα,β = −n〈Fr〉. (1)

Here: n = N/V , is the particle number density, N is the number of particles inside the51

averaging volume V , Fα,β is the interaction force F between particles α and β, and rα,β52

is the corresponding particle pair separation vector r = pr, where p is the particle pair53

orientation unit vector, and r = |r| is the particle pair separation. The stress is dominated54

by particles with small gaps:55

r = 2ap. (2)

The interaction force F :56

F = Fh + Fc, (3)

is the sum of the hydrodynamic force Fh, and the contact force Fc, which is assumed zero,57

for the moment. The pair separation vector evolves as:58

ṙ = c1L : rpp+L · r · (δ − pp) , (4)

and the corresponding lubrication force is to leading order:59

Fh = −a2ηc2E : ppp. (5)

Here c1 and c2 are non-dimensional functions of r/a and φ. Combining Eqs. (1, 2, 3, 5) and60

using that φ ∼ na3 gives the following particle stress tensor:61

Σ = αηE : 〈pppp〉. (6)

Here α = c̃2φ is the lubrication parameter, and c̃2 is the effective c2, which is averaged over62

the distribution of pair configurations, and which diverges when φ approaches maximum63

packing.64
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The average 〈· · · 〉 in Eq. (6) is expressed as an integral over the probability distribution65

function Ψ(r) of the particle pair separation vector r:66

〈· · · 〉 =

∫ |r|=2a+δr

|r|=2a

Ψ (r) · · · d3r, (7)

where the integration is restricted to the so-called ‘interaction shell’, where particle pairs67

have small gaps: 0 < r − 2a < δr. The evolution of Ψ(r) is governed by the Smoluchowski68

equation:69

∂tΨ + ∂k (ṙkΨ) = 0. (8)

Since computing Ψ(r) is costly, we compute instead its second order orientation moment

a = 〈pp〉, referred to as the microstructure. The evolution equation for a is derived, by

inserting Eq. (4) into Eq. (8), multiplying the result by pp, and integrating the result from

r = 2a to r = 2a+ δr; see Ref. [15]:

∂t〈pp〉 = L · 〈pp〉+ 〈pp〉 ·LT − 2L : 〈pppp〉

− β
[
Ee : 〈pppp〉+

1

15
(2Ec + Tr(Ec)δ)

]
. (9)

The first line of Eq. (9) described rotation of rigid dumbbells, i.e. fixed pair separations. The70

second line accounts for changes in the separation, which correspond to an orientation flux71

between the interaction shell and the exterior. This term is interpreted as the association and72

dissociation of interacting particle pairs, by the action of the compressive and the extensional73

parts of the rate of strain tensor: Ec and Ee, respectively, which pushes particles together74

and pulls them apart, respectively. These effects are controlled by the pair association rate75

β, which is an increasing function of φ.76

To close the theory a relation is needed to express the fourth order moment 〈pppp〉 in

terms of the second order moment 〈pp〉. Here we use the linear closure, that was proposed

in Ref. [20], which is accurate when the distribution is close to isotropy, such that Ψ(p)

is well captured by a linear expansion in the anisotropy tensor a − δ/3, i.e.: Ψ(p) =

(4π)−1
[
1 + 15

2
(a− δ/3) : pp

]
.

〈pipjpkpl〉 = − 1
35
〈pmpm〉 (δijδkl + δikδjl + δilδjk)

+ 1
7

(
δij〈pkpl〉+ δik〈pjpl〉+ δil〈pjpk〉+ 〈pipj〉δkl + 〈pipk〉δjl + 〈pipl〉δjk

)
. (10)
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B. Contact Forces77

Here, we extend the theory with hard and frictionless contact forces. We consider a78

limiting member of the class of shear rate invariant suspensions in which the interparticle79

friction coefficient vanishes and tangential friction forces may be ignored; see e.g. Ref. [21],80

and the microstructure equation [Eq. (9)] is unaffected by the contact forces. It is noted,81

that under shear thickening conditions, the tangential friction may have an effect on the82

particle motion, involving a transition from sliding to rolling friction, and these effects are83

not captured by the present theory.84

By definition, the normal contact force Fc is directed along p, i.e. Fc = |Fc|p when a85

particle pair is under compression, while it is zero, when a pair is under extension. The86

contact force magnitude |Fc| is therefore assumed to be proportional to the compressive87

part Ec of E projected onto p, i.e. |Fc| = −c3a2ηEc : pp, where c3 is a non-dimensional88

function of p, and a2η is added to make the expression dimensionally correct.89

Fc = −c3a2ηEc : ppp. (11)

Combining Eqs. (1, 2, 3, 5, 11) and using that φ ∼ na3 we arrive at the following particle90

stress tensor:91

Σ = η (αE + χEc) : 〈pppp〉, (12)

where χ = c̃3φ is the contact parameter, and c̃3 is the effective c3, which is averaged over92

the distribution of pair configurations, and which diverges when φ approaches maximum93

packing.94

III. THEORETICAL PREDICTIONS95

A. Steady Shear96

In shear flow Eqs. (9, 10) predict that particle pairs associate in the compressive quad-

rants: a12 < 0, rotate towards x2, and dissociate in the extensional quadrants a12 > 0. For:

β > 3, the association and dissociation dominate the rotation. The resulting distribution

aligns in the compressive quadrant: a12 < 0, with a slight tilt towards x2, i.e.: a22 > a11.

For: β < 3, on the other hand, the pair rotation dominates the association and dissociation.

Starting from isotropy, the resulting distribution oscillates and dampens towards a preferred
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FIG. 2. (a) Modelled [Eqs. (9, 10)] microstructure a as a function of the pair association rate β.

(b) Volume fraction φ dependence of the planar microstructure a2D, measured in Ref. [22] [Eq.

(14), markers] and modelled [Eqs. (13, 15, 16), lines].

alignment in the x1 direction, corresponding to a11 > a22 and a12 > 0. As these oscillations

have not been observed in experiments, we restrict the following analysis to β > 3. The

corresponding analytical solution to Eqs. (9, 10):

a =
(
6240 + 810β + 135β2

)−1
×


3256− 374β + 129β2 −252β + 84β2 0

−252β + 84β2 904 + 410β + 129β2 0

0 0 820 + 564β + 87β2

 , (13)

is plotted as a function of β in Fig. 2a.97

In Fig. 2b, we compare the modelled microstructure to experimental data from Ref. [22],98

reporting the planar, pair distribution function Ψ2D in the (r1, r2) - plane. In Fig. 2b the99

markers indicate the corresponding, measured, planar moments a2D:100

a2D =

∫ |r|=2.3a

|r|=1.7a

Ψ2D (r)ppd2r. (14)

These measurement data show a weak departure from isotropy over the entire φ-range, which101

supports the validity of the linear closure [Eq. (10)]. To compare our theory [Eq. (13)] to102
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FIG. 3. Modelled [Eqs. (9, 10, 12)] relative, first normal stress difference: ζ1 = (Σ11 − Σ22)/Σ12

(dashed lines), and second normal stress difference: ζ2 = (Σ22−Σ33)/Σ12 (solid lines), as functions

of the pair association rate β for systems dominated by (a) hydrodynamic forces: (α, χ) = (1, 0)

and (b) contact forces (α, χ) = (0, 1).

these experimental data, we convert the volumetric moments a into the planar moments103

a2D using:104

a2D =
a

a11 + a22
, (15)

and we convert β to φ by using the modelled relation between β and ζ2 [see Eq. (17) below,105

assuming χ = 0], and the empirical relation:106

ζ2 = −4φ3, (16)

which captures the experimental data shown in Fig. 1. In Fig. 2b the resulting modelled107

a2D are plotted with the lines. Both experimental data and theory predict that: a2D12 < 0,108

and: a2D22 > a2D11 .109

The relative, first and second normal stress differences are obtained by inserting Eq. (13)110

into Eqs. (10, 12), giving:111  ζ1

ζ2

 =

 336(β−3)χ
α(54β2−24β+904)+(63β2−120β+452)χ

− 48α(β−3)β+(57β2+6β+128)χ
α(54β2−24β+904)+(63β2−120β+452)χ

 , (17)
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which are plotted as functions of β for contactless systems: (α, χ) = (1, 0), in Fig. 3a, and112

for contact dominated systems: (α, χ) = (0, 1), in Fig. 3b. For systems without contact113

forces, we find: ζ1 = 0 and ζ2 < 0 (Fig. 3a), and for systems with contact forces we find:114

ζ1 > 0 and ζ2 < 0 (Fig. 3b). These results may rationalise the data shown in Fig. 1,115

and suggest, that the stress in Refs. [5–7] is dominated by hydrodynamic forces, while116

that in Refs. [2, 4] is dominated by contact forces. It is further noted that, the positive117

effect of contact forces on the first normal stress difference in shear invariant suspensions, is118

supported by two dimensional Stokesian Dynamics simulations in Ref. [23].119

The transition from negligible to significantly positive ζ1 is explained as follows. The120

hydrodynamic part of the particle stress [Eq. (12)] produces a first normal stress difference:121

Σ11 − Σ22 = αηγ̇ (〈p1p1p1p2〉 − 〈p2p2p2p1〉) , (18a)

which is quadratic in the microstructure anisotropy, and is therefore ignored by the linear122

closure [Eq. (10)], which predicts ζ1 = 0. The contact part of the particle stress, on the123

other hand, produces a first normal stress difference:124

Σ11 − Σ22 = χηγ̇
[
1
2
〈p1p1p1p2〉 − 1

2
〈p2p2p2p1〉+ 1

4
〈p2p2p2p2〉 − 1

4
〈p1p1p1p1〉

]
, (18b)

which is first order in the microstructure anisotropy, and according to the linear closure [Eq.125

(10)]:126

Σ11 − Σ22 =
3

14
χηγ̇ (a22 − a11) , (18c)

which is positive, since a22 > a11; see Fig. 2b.127

B. Shear Reversal128

Finally we consider the case of shear reversal. We use the Euler forward integration129

scheme with a time step of: ∆t = 0.01/γ̇, to compute the time dependent microstructure130

and stress after shear reversal, using various values for β, α and χ. In the computation,131

the initially isotropic suspension: a = δ/3, is sheared until a steady state is reached, after132

which the flow direction is reversed from negative to positive, at which instant we define:133

t = 0. The reversal induces a reorganisation of the microstructure and the attainment of a134

new steady state.135
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FIG. 4. (a) Modelled [Eqs. (9, 10, 12)] suspension shear stress, scaled with the steady value:

Σ12/Σ12,∞, as a function of the strain γ̇t, after shear reversal, using various β, α, χ. (b) Measured

Σ12/Σ12,∞ as a function of γ̇t, after shear reversal, using various volume fractions φ [12].

The modelled shear stress, scaled with the steady value Σ12/Σ12,∞ is plotted as a function136

of the strain γ̇t in Fig. 4a. As expected, the stress in the contactless theory: (α, χ) = (1, 0),137

is conserved, upon shear reversal, followed by a decrease and subsequent recovery to the138

steady value. In the contact dominated theory: (α, χ) = (0, 1), on the other hand, the shear139

stress is not conserved upon shear reversal, i.e., there is a discontinuous drop, followed by140

a recovery, in qualitative agreement with experimental data from literature [12], which are141

plotted in Fig. 4b. The qualitatively correct prediction of the stress discontinuity, which142

is related to the contact forces, further validates the physical significance of the proposed143

constitutive equations [Eqs. (9, 10, 12)].144

IV. CONCLUSION145

We propose a tensorial theory for suspension microstructure and stress, that includes146

both hydrodynamic and hard sphere interaction forces.147

The theory assumes hard and frictionless contact forces, which is a reasonable assumption148

for shear rate invariant suspensions, but may not be valid for shear thickening suspensions.149

The theory furthermore assumes a linear relationship between the stress and the microstruc-150

10



ture anisotropy [Eq. (10)], which is supported by experimental data in the literature [22],151

as illustrated in Fig. 2b.152

The theory predicts that hydrodynamic forces produce a negligible first normal stress153

difference ζ1, while contact forces produce a positive ζ1. These results may provide a rationale154

for seemingly contradicting experimental observations in the literature, as illustrated in Fig.155

1.156
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