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Introduction

During the past three decades research has progressively 
shown a new and fascinating world behind the century-old 
history of the pressoric renin–angiotensin system (RAS), 
discovered in several seminal steps between 18981 and 
1941.2–7 The new world is that of shorter peptides originat-
ing from both the decapeptide angiotensin I (Ang I) and 
the octapeptide angiotensin II (Ang II),8 with Ang-(1−7) 
being the best known in terms of physiological effects and 
intracellular signaling pathways (reviewed in Alenina and 
Santos).9 Interestingly, this early representative of the Ang 
I/Ang II-derived peptides soon emerged as a potent coun-
terbalance to the vasoconstrictive actions of RAS.

In parallel with the discovery of the structure and actions 
of the shorter Ang I/Ang II-derived peptides, the simple 
and earlier view of RAS as a classic endocrine system 
shifted to a dual concept involving the coexistence of the 
systemic RAS – mainly regarding cardiovascular actions – 
with the so-called organ-based RAS.10 In this system 
described in heart,11 kidney,12 brain13 and liver,14 among 
other organs, the main event is the local formation of Ang 

II.15 Interestingly, crosstalk between different local RAS 
systems has physiological and pathological relevance for 
heart and kidney.16 Even though the ‘organ uptake theory’ 
dominated this new view of RAS because it could explain 
the significant amounts of Ang II found in several organs/
tissues,17 the concept was soon expanded to include genes 
involved in the synthesis of renin,18,19 precursors such as 
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angiotensinogen11,20 and enzymes (from renin to the angio-
tensin II-converting enzymes, ACE and ACE2).8,21,22 These 
components were encountered in many different organs, 
together with local Ang II concentrations significantly 
higher than those of the circulating peptide.23

Angiotensin-(3−4)

Moving on beyond Ang-(1–7) to the myriad of very short 
Ang I/Ang II-derived peptides, their formation and their 
potential functional role were first described in animal and 
plant tissues and their effects were demonstrated using 
extracts of these tissues.24,25 One of the shorter peptides that 
was soon identified for its important physiological relevance 
was the dipeptide angiotensin-(3–4) (Ang-(3–4) or Val-Tyr). 
Ang-(3−4) was first purified from rice extracts (sake)25 and 
promptly assayed for cardiovascular actions.26,27 Earlier 
work on isolated luminal proximal tubule membranes and 
Ang II provided evidence that Ang-(3−4) was a metabolite 
of local renal RAS.8 In plasma, Ang-(3−4) can be formed 
from angiotensin III (Ang III),27 thus making it a component 
of both the local and systemic RAS.

A few reports indicated that Ang-(3−4) had significant 
physiological effects in cardiovascular homeostasis. As 
well as its clear inhibitory effect of ACE in vitro,27 Ang-
(3–4) was antiproliferative in cultured smooth muscle 
cells28 (Figure 1), and had vasodilatory effects on the aorta 
in hypertensive and non-hypertensive rats.29,30 These vas-
cular antagonistic actions with Ang II could also be helped 
by its free radical reducing and scavenging ability,30 which 

can be related to the very hydrophobic nature of its molecu-
lar moiety.31 Interestingly, Ang-(3−4) is effective when 
administered orally,26,32,33 a property associated with its 
resistance to hydrolysis and its high capacity to permeate 
intestinal cells.34 One mechanism proposed to explain these 
effects involves l-type Ca2+ channels, independently of 
Ang II receptors.28 In phase 1 clinical trials, Ang-(3–4) 
purified from sardine extracts administered orally depressed 
Ang II and aldosterone plasma levels (Figure 2(a)) and had 
clear antihypertensive effects in mildly hypertensive adults 
(Figure 2(b)).32 Increased Ang I plasma levels indicated 
that the inhibition of ACE in vivo also occurred.32 
Interestingly, the plasma levels of Ang-(3–4) are markedly 
lower in hypertensive than in healthy individuals, levels 
negatively correlated with systolic pressure.35

Basal renal levels of Ang-(3–4) are higher than in other 
tissues and plasma, and renal accumulation was also 
observed after a single oral administration (Figure 3).36 
This raises the question as to whether this renal accumula-
tion of Ang-(3–4) was the result of uptake from the circu-
lating plasma or arose from local synthesis, thus being a 
component of the renal local RAS? From combined use of 
fluorescent substrates for proteolytic enzymes, specific 
inhibitors, high performance chromatographic analyses 
and a family of synthetic peptides derived from Ang I and 
Ang II, it was found that successive conversion, i.e. of Ang 
II → Ang-(1–7) → Ang-(1–5) → Ang-(1–4) → Ang-(3–4), 
is the main route for the formation of Ang-(3–4) in basolat-
eral membranes of proximal kidney tubule cells (Figure 
4).21 This compartmentalisation of synthesis in basolateral 
membranes was indicative of a role in the important and 
varied transport processes − some mediated by ATPases − 
that carry ions across these membranes towards the renal 
interstitium. These processes are mostly linked to the 
homeostasis of body fluid compartments and the regula-
tion of arterial blood pressure.37,38

Ang-(3−4) and Ca2+ and Na+ 
transporters in kidney: interaction 
with Ang II receptors?

Plasma membrane Ca2+-ATPase (PMCA) is considered to 
be the primary active transporter responsible for fine-tuning 
of Ca2+ extrusion from the cytosol.39 In kidney proximal 
tubule cells, Ca2+ stimulates the Ang II-regulated reabsorp-
tion of fluid38 and, therefore, small fluctuations of the cation 
within the cells are significant in homeostasis in body fluid 
compartments. Ang-(3–4), with a very high affinity, is a 
potent counteracting agent (A1/2 in the femtomolar range) 
inhibiting PMCA exerted by Ang II in physiological con-
centrations in tissues (Figure 5(a)).40 Mechanistically, Ang-
(3–4) acts through a signaling pathway that starts with Ang 
II-type 2 receptors (AT2R) and includes regulatory phospho-
rylation mediated by cAMP-activated protein kinase (PKA), 
which is upregulated by Ang-(3–4)-induced dissociation of 

Figure 1. Proliferation of angiotensin II (Ang II)-stimulated 
vascular smooth muscle cells is inhibited by angiotensin-(3−4) 
(Ang-(3–4)) (represented by VY) in a dose-dependent manner. 
This figure shows WST-8 reduction by nicotinamide adenine 
dinucleotide (NADH) in the presence of 1 μmol/L Ang II 
and increasing concentrations of Ang-(3–4). The inset shows 
that antiproliferative action of Ang-(3–4) has a 50% inhibitory 
concentration (IC50) in the micromolar range. Reproduced 
from Matsui et al.,28 with permission.
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Figure 2. Oral treatment of mild hypertensive individuals with 3 mg angiotensin-(3−4) (Ang-(3–4)) (represented by VY), twice 
daily. (a) Plasma concentration of Ang-(3–4), angiotensin II (Ang II) and aldosterone before and after a 4-week experimental period. 
Increased levels of circulating Ang-(3–4) are seen in parallel with reduced plasma Ang II and aldosterone, supporting the idea that 
the dipeptide acts as a systemic angiotensin-converting enzyme inhibitor. (b) Systolic and diastolic blood pressure of hypertensive 
individuals were reduced during treatment with Ang-(3–4), which persisted for up to 7 weeks after the treatment was interrupted. 
Modified from Kawasaki et al.,32 with permission.

Figure 3. Plasma and kidney levels of angiotensin-(3−4) (Ang-(3–4)) after a single oral dose (10 mg/kg) in 18-week old 
spontaneously hypertensive rats. Although circulating concentrations of the dipeptide return to base levels 6 hours after 
administration, its level remains higher in the kidney, indicating the existence of a mechanism of tissue concentration or local 
production of Ang-(3–4). Modified from Matsui et al.,36 with permission.
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AT1R/AT2R heterodimers.40,41 Using a transfected renal cell 
line overexpressing AT2R, Ang-(3–4) acts as an ‘allosteric 
enhancer’ and generates very high-affinity Ang II binding 
sites in this family of receptors (Figure 5(b)).41 This seems 
to be the first step by which Ang-(3–4) switches on an AT2R-
mediated signaling pathway that counteracts the inhibition 
of PMCA through the AT1R-mediated pathway.

The antihypertensive effects of Ang-(3–4) in spontane-
ously hypertensive rats (SHRs)26,27 can also be explained 

by the specific targeting of Ang-(3–4) on Na+ transport in 
renal proximal tubules, in a local tissular environment 
pathologically modified due to hypertension. Ang-(3–4) 
strongly inhibits basolateral ouabain-resistant Na+-
ATPase of SHRs, without any effect on the ouabain-sensi-
tive (Na++K+)ATPase or the ouabain-resistant Na+-ATPase 
of healthy rats.33 Orally administrated, it promotes a 
hypertonic natriuresis only in SHRs. Again, and probably 
as an indicator of the common mechanism exerted in the 
basolateral membranes: (a) the physiological effects of 
Ang-(3−4) requires dissociation of AT1R/AT2R heterodi-
mers in normal rats (Figure 6(a)); and (b) inhibition of 
SHR Na+-ATPase is due to AT2R upregulating PKA 
(Figure 6(b)).33 The idea of a common cell signaling mech-
anism receives further support because the counteracting 
effects of Ang-(3−4) are exerted against AT1R-mediated 
protein kinase C (PKC), one of the most important Ang 
II-stimulated modulators of transepithelial Na+ fluxes in 
the kidney.10,37,38,42,43 Although the actions of Ang-(3−4) 
in renal ion-transporting ATPases are significant when 
intrarenal Ang II levels are high, we should note the hier-
archy in these effects: at very low (femtomolar) concen-
trations range, Ang-(3−4) reactivates the basolateral 
plasma membrane Ca2+-ATPase (Figure 5(a)), whereas 
nanomolar concentrations can inhibit Ang II-stimulated 
Na+-ATPase.33 The resulting effect, requiring a continu-
ous increase in Ang-(3−4) levels (formed from Ang II; 
Figure 4), would first lead in vivo to depressed intracel-
lular Ca2+, diminished Ca2+-dependent PKC activity, 
recovery of lower basal Na+-pumping activity, and 
depressed active Na+ flux towards the peritubular space. 
Further inhibition of the Na+ pump itself – also by down-
regulating PKC activity and upregulating PKA41−43 will 
occur as Ang-(3−4) increases in concentration.

Figure 4. Enzymes and pathways responsible for 
angiotensin-(3−4) (Ang-(3–4)) formation in basolateral 
membranes from sheep kidney proximal tubule cells. 
Aminopeptidases and neprilysin are key enzymes required 
for at least one step of each pathway. AP: aminopeptidase; 
NEP: neprilysin; EP: endopeptidase; APA: aminopeptidase 
A; PsCP: Plummer’s sensitive carboxypeptidase; PCP: 
prolylcarboxypeptidase; ACE: angiotensin-converting enzyme; 
APN: aminopeptidase N; DPP: dipeptidylpeptidase. Reproduced 
from Axelband et al.,21 with permission.

Figure 5. (a) Angiotensin-(3−4) (Ang-(3–4)) reactivates, with a very high affinity (pA1/2 ~15.5), the angiotensin II (Ang II)-inhibited 
basolateral plasma membrane Ca2+-ATPase. Ca2+ pump activity was assayed with 10-10 mol/L Ang II and increasing concentrations 
of Ang-(3–4). Modified from Axelband et al.,40 with permission. (b) Ang-(3−4) creates a probable high affinity site for Ang II at Ang 
II-type 2 receptors at ~10-12 mol/L, i.e. with an affinity ~5 orders of magnitude higher than in the absence of Ang-(3−4) (10-7 mol/L). 
The competition binding assay was carried out in HEK 293T cells overexpressing AT2R in 10-10 mol/L Ang-(3–4). Modified from 
Axelband et al.,41 with permission.
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Even though interaction with AT2R seems to play a 
pivotal role in Ang-(3−4) actions in renal tissue, little is 
known about its effects and related signaling mechanisms 
in other organs and tissues. As AT2Rs are associated with 
a myriad of physiological actions in many different 
organs, and seem to be a common target of small peptides 
derived from natural proteins,44 Ang-(3−4) actions might 
have much broader targets than initially thought. Thus it 
can be speculated that the AT2R-mediated effects of Ang-
(3−4) might include – beyond blood pressure control, 
natriuresis and vasorelaxation – neural and gastrointesti-
nal actions, as demonstrated for other small peptides that 
bind to AT2R.44–47 Furthermore, AT2R-independent mech-
anisms might also mediate Ang-(3−4) actions in other tis-
sues. The antiproliferative actions of this dipeptide in rat 
aorta were demonstrated to be independent of angioten-
sin receptors, but influenced by Ca2+-mediated path-
ways.28 As the Ang-(3−4) influence on Ca2+ homeostasis 
seems to be a critical event in kidney cells,21,40,41 Ca2+ 
would be a signaling intermediate of the dipeptide actions 
in different tissues.

Conclusion

In summary, Ang-(3–4) can be considered one of the most 
potent counter-regulators of systemic and local RAS, with 
an important impact on body-fluid homeostasis through 
common mechanisms that target renal active transporters 
of Ca2+ and Na+, showing natriuretic and antihypertensive 
effects. As Ang-(3–4) permeates intestinal cells34 and is 
effective when given orally,26,32,33 it is a potential antago-
nist of local and systemic Ang II effects for therapeutic 
purposes.
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