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Objectives: In subjects with transmitted thymidine analogue mutations (TAMs), boosted PIs (PI/b) are often
chosen to overcome possible resistance to the NRTI backbone. However, data to guide treatment selection are
limited. Our aim was to obtain firmer guidance for clinical practice using real-world cohort data.

Methods: We analysed 1710 subjects who started a PI/b in combination with tenofovir or abacavir plus emtrici-
tabine or lamivudine, and compared their virological outcomes with those of 4889 patients who started an
NNRTI (predominantly efavirenz), according to the presence of �1 TAM as the sole form of transmitted drug
resistance.

Results: Participants with �1 TAM comprised predominantly MSM (213 of 269, 79.2%), subjects of white ethni-
city (206 of 269, 76.6%) and HIV-1 subtype B infections (234 of 269, 87.0%). Most (203 of 269, 75.5%) had single-
ton TAMs, commonly a revertant of T215Y or T215F (112 of 269, 41.6%). Over a median of 2.5 years of follow-up,
834 of 6599 (12.6%) subjects experienced viraemia (HIV-1 RNA .50 copies/mL). The adjusted HR for viraemia
was 2.17 with PI/b versus NNRTI-based therapy (95% CI 1.88–2.51; P , 0.001). Other independent predictors of
viraemia included injecting drug use, black ethnicity, higher viral load and lower CD4 cell count at baseline, and
receiving abacavir instead of tenofovir. Resistance showed no overall impact (adjusted HR 0.77 with�1 TAM ver-
sus no resistance; 95% CI 0.54–1.10; P"0.15).

Conclusions: In this cohort, patients harbouring�1 TAM as the sole form of transmitted drug resistance gained
no apparent virological advantage from starting first-line ART with a PI/b.

Introduction

In Europe and North America, .80% of ART-naive patients receive a
baseline genotypic resistance test to inform treatment selection.1–4

In these regions, �10% of patients show evidence of transmitted
drug resistance (TDR),1 although prevalence rates and temporal
trends vary by region, population and testing method.1,5–9 The most
common TDR mutations are those affecting the NRTIs and the
NNRTIs; resistance to protease and integrase inhibitors is less com-
mon, and multi-class resistance is rare. Thymidine analogue muta-
tions (TAMs), particularly those at codon 215 of RT, remain one of

the most frequent forms of TDR.1 Ongoing transmission of TAM-
containing strains in Europe and North America is discordant with
the diminished therapeutic role of thymidine analogues and the
NRTI resistance patterns detected at treatment failure.10 It is pro-
posed that a high proportion of cases of TDR in these regions origin-
ate from ART-naive patients with TDR.11–15

It has traditionally been recommended that subjects with
transmitted NRTI resistance receive a boosted PI (PI/b) as the third
agent of triple combination regimens. In a previous study, the viro-
logical outcomes of various tenofovir-based first-line regimens
were similar when comparing 17 patients with M41L and 248
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subjects with WT virus.16 More recently, investigators at Gilead
Sciences merged data from a variety of clinical trials and reported
that virological responses to 48 weeks of tenofovir-based first-line
regimens were not diminished among 205 patients harbouring�1
TAM, including 76 subjects with revertants of T215Y or T215F
(T215rev, e.g. T215C/D/E/L/S).17

Using nationwide observational data, this study investigated
the occurrence of viraemia in patients who started first-line ART
with either a PI/b or an NNRTI in combination with tenofovir or aba-
cavir plus emtricitabine or lamivudine according to the presence of
�1 TAM as the sole form of TDR.

Methods

Study population

Patients considered for inclusion started first-line ART with a PI/b or an
NNRTI in combination with tenofovir disoproxil fumarate (henceforth
referred to as tenofovir) or abacavir plus emtricitabine or lamivudine, had a
genotypic drug resistance test prior to treatment initiation and underwent
�2 viral load measurements after the first 12 months of ART. Eligible PI/b
comprised atazanavir, darunavir, fosamprenavir and lopinavir, all combined
with ritonavir; eligible NNRTIs comprised efavirenz, nevirapine and rilpivirine
(Table S1, available as Supplementary data at JAC Online). Sanger RT and
protease sequences were retrieved from the HIV Drug Resistance
Database;18 clinical data were retrieved from the Collaborative HIV Cohort
(CHIC) Study database.19

Definitions of resistance
TAMs comprised the RT mutations M41L, D67N/G/E, K70R, L210W, T215Y/F/rev
and K219Q/E/N/R; T215rev comprised any change from T215 other than
T215Y and T215F. TDR mutations were defined according to the WHO 2009
surveillance list,20 with the addition of any unlisted change at position T215
and the non-polymorphic RT mutation E138K. Genotypic susceptibility scores
(GSSs) were calculated using the Stanford Drug Resistance algorithm (version
8.2), assigning to each drug a score of 1 for susceptible/potential low-level re-
sistance, 0.5 for low-level/intermediate-level resistance and 0 for high-level
resistance.

Baseline resistance profiles
Among 6910 subjects initially considered for inclusion, those showing one
of two baseline profiles were considered eligible. The reference group
(n"6330, 91.6%) had no TDR mutations and started a first-line regimen
with a GSS of 3. The group with �1 TAM as the sole form of TDR (n"269,
3.9%) showed �1 TAM in the absence of other TDR mutations and any
other mutation that would reduce the GSS of the first-line regimen. The
remaining 311 (4.5%) subjects were excluded owing to the presence of
other forms of TDR, most commonly the NNRTI mutation K103N.

Virological responses
Virological suppression was defined as two consecutive viral load measure-
ments �50 copies/mL. Viraemia was defined as: (i) two consecutive viral
load measurements .50 copies/mL after �6 months of ART; or (ii) a single
viral load measurement .50 copies/mL followed by a significant treatment
change. A separate analysis used a viral load cut-off of .200 copies/mL. A
significant treatment change was from NNRTI to PI/b or vice versa, or the
use of a non-eligible regimen as defined above.

Statistical analysis
The baseline characteristics of subjects with �1 TAM were compared with
those of subjects with no resistance using v2 tests for categorical variables

and rank-sum tests for continuous variables. Virological responses were
analysed using Kaplan–Meier plots and Cox regression models, with time to
event calculated as the interval between ART initiation and the date of the
first viral load measurement that fell above the predefined cut-off.
The multivariable analysis included the baseline resistance profile, whether
the first-line regimen was PI/b- or NNRTI-based and whether it included
tenofovir or abacavir, age at the start of ART, exposure group, ethnicity,
baseline viral load and CD4 cell count (measured in the 6 months prior to
starting ART). Gender was categorized within the exposure groups in the
main model and modelled separately. HIV-1 subtype was not included
owing to the strong association with ethnicity, gender and exposure group.
In the analysis of time to virological suppression, follow-up was censored at
the occurrence of a significant treatment change (see above). In the ana-
lysis of time to viraemia, follow-up was censored at the occurrence of a sig-
nificant treatment change if the viral load was �50 copies/mL. An ITT
analysis of time to viraemia was conducted that ignored censoring owing
to a significant treatment change. Additional analyses restricted the study
population to subjects initiating efavirenz, ritonavir-boosted atazanavir or
ritonavir-boosted darunavir, and evaluated responses according to
whether singleton or multiple TAMs were detected.

Results

Study population at the start of first-line ART

The baseline characteristics of the study population according to
the resistance profile are summarized in Table 1. The resistance
patterns observed in the 269 participants harbouring �1 TAM are
summarized in Table 2. There were 203 of 269 (75.5%) subjects
with singleton TAMs, most commonly T215rev (112 of 269,
41.6%); a smaller subset harboured two (n"52, 19.3%) or three
(n"14, 5.2%) TAMs. Relative to subjects without resistance, the
group with �1 TAM was more likely to include MSM, subjects of
white ethnicity and patients with HIV-1 subtype B infections
(Table 1). Among the 6599 participants, 1710 (25.9%) started a PI/b
and 4889 (74.1%) started an NNRTI in combination with tenofovir
(n"5338, 80.9%) or abacavir (n"1261, 19.1%) plus emtricitabine
or lamivudine. Subjects with �1 TAM were more likely to initiate a
PI/b than those without resistance (Table 1), particularly if multiple
TAMs were detected: 89 of 203 (43.8%) subjects with singleton
TAMs versus 40 of 66 (60.6%) subjects with multiple TAMs started a
PI/b (P"0.02) (Table S1). Use of tenofovir rather than abacavir did
not differ among subjects with�1 TAM versus those with no resist-
ance (Table 1), and among subjects with singleton TAMs versus
those with multiple TAMs (165 of 203, 81.3% versus 56 of 66,
84.8%; P"0.51) (Table S1).

Virological suppression

The Kaplan–Meier analysis of time to virological suppression is
shown in Figure 1(a). By week 24, suppression rates were 62.1%
(95% CI 59.7%–64.6%) versus 73.8% (95% CI 72.5%–75.1%) for
PI/b- versus NNRTI-based ART, respectively. With NNRTI-based
ART, suppression rates by week 24 were 75.2% (95% CI 67.4%–
82.4%) with�1 TAM versus 73.8% (95% CI 72.4%–75.1%) without
resistance. The respective rates with PI/b-based ART were 69.4%
(95% CI 61.2%–77.3%) versus 61.4% (95% CI 58.8%–64.1%). The
multivariable analysis confirmed that the presence of �1 TAM did
not reduce the likelihood of virological suppression (Table 3). After
adjustment, factors independently associated with a reduced like-
lihood of suppression comprised receiving PI/b-based ART and
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showing a higher baseline viral load. In addition, there was an in-
dependent effect of exposure group and ethnicity, including a
reduced likelihood of suppression in heterosexual males and
injecting drug users.

Viraemia

In the primary analysis, which used a viral load cut-off of .50 cop-
ies/mL, 834 of 6599 (12.6%) subjects experienced viraemia over a
median follow-up of 2.5 years (IQR 1.1–4.3). This comprised 359
(43.0%) subjects who did not achieve virological suppression and
475 (57.0%) who experienced virological rebound after initial sup-
pression. The Kaplan–Meier analysis of time to viraemia is shown in
Figure 1(b). Viraemia rates were 7.3% (95% CI 6.7%–8.1%) by
1 year, 15.1% (95% CI 14.1%–16.2%) by 3 years, and 19.0% (95%
CI 17.8%–20.4%) by 5 years. The predicted probability of viraemia
by 5 years was 31.8% (95% CI 28.5%–35.3%) with PI/b-based ART
and 15.3% (95% CI 14.0%–16.7%) with NNRTI-based ART. Among
subjects on an NNRTI, viraemia rates did not differ according to the
presence of �1 TAM; among subjects on a PI/b, viraemia rates

were lower in subjects with �1 TAM than in those with no resist-
ance. The multivariable analysis confirmed that the presence of
�1 TAM did not increase the likelihood of viraemia (Table 4). After
adjustment, factors associated with an increased risk of viraemia
comprised use of PI/b-based ART, higher viral load and lower CD4
cell count at baseline, and receiving abacavir rather than tenofovir.
There was again an effect of exposure group and ethnicity, with
injecting drug users and subjects of black ethnicity showing an
increased risk of viraemia. A test for interaction between drug class
and the presence of �1 TAM showed P = 0.43, indicating that the
more favourable outcomes of NNRTI-based ART occurred regard-
less of the presence of�1 TAM.

Using a cut-off of .200 copies/mL reduced the cumulative risk
of viraemia in all groups (Figure 1c). Rates of viraemia did not
differ based on the use of a PI/b or an NNRTI among subjects with
�1 TAM, indicating that excess viraemia on a PI/b occurred at levels
between 50 and 200 copies/mL. Viraemia rates remained higher with
PI/b- versus NNRTI-based ART among subjects with no resistance.

A sensitivity analysis restricted to subjects starting efavirenz,
ritonavir-boosted atazanavir or ritonavir-boosted darunavir

Table 1. Characteristics of the study population at the start of first-line ART

Characteristic

Resistance profile

P valueno resistance (N"6330) �1 TAM (N"269)

Total number (%) 6330 (100) 269 (100) —

Age at start of ART, years, median (IQR) 38 (32–44) 38 (32–43) 0.78

Gender, n (%)

male 5064 (80.0) 242 (90.0) ,0.001

female 1266 (20.0) 27 (10.0)

Exposure group, n (%)

MSM 3797 (60.0) 213 (79.2) ,0.001

FSM 1162 (18.4) 25 (9.3)

MSF 873 (13.8) 17 (6.3)

IDU 123 (1.9) 0 (0.0)

othera 302 (4.8) 10 (3.7)

unknown 73 (1.2) 4 (1.5)

Ethnicity, n (%)

white 3878 (61.3) 206 (76.6) ,0.001

black 1783 (28.2) 27 (10.0)

Asian 215 (3.4) 14 (5.2)

other 387 (6.1) 18 (6.7)

unknown 67 (1.1) 4 (1.5)

HIV-1 subtype, n (%)

B 4003 (63.2) 234 (87.0) ,0.001

C 957 (15.1) 11 (4.1)

non-B/non-C 1370 (21.6) 24 (8.9)

HIV-1 RNA, log10 copies/mL, median (IQR) 4.8 (4.3–5.3) 4.9 (4.3–5.3) 0.37

CD4 cell count, cells/mm3, median (IQR) 230 (142–310) 234 (150–310) 0.57

ART regimen, n (%)

NNRTI 4749 (75.0) 140 (52.0) ,0.001

PI/b 1581 (25.0) 129 (48.0) ,0.001

tenofovir 5117 (80.8) 221 (82.2) 0.59

abacavir 1213 (19.2) 48 (17.8) 0.59

FSM, females who have sex with males; MSF, males who have sex with females; IDU, injecting drug users.
aOther exposure groups comprised a history of receiving blood or blood products and vertical transmission.
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showed similar patterns of viraemia as seen in the total population
(Figure S1a). The ITT analysis did not affect between-group com-
parisons (Figure S1b). Kaplan–Meier and Cox regression analyses
were also applied to compare subjects with singleton or multiple
TAMs. Higher rates of viraemia were observed in subjects with mul-
tiple TAMs who received either PI/b or NNRTI (Figure 1d); possibly
owing to the small numbers, the difference did not achieve statis-
tical significance (unadjusted HR 1.56 for multiple versus singleton
TAMs; 95% CI 0.75–3.25; P"0.23).

Discussion

This study determined that patients with�1 TAM were more likely
to initiate ART with a PI/b than patients without resistance, reflect-
ing the understanding that a third agent with a high barrier to re-
sistance should be preferred to compensate for a less active NRTI
backbone. However, patients with �1 TAM did not gain virological
benefit from starting a PI/b rather than an NNRTI.

The preference for PI/b-based ART in the presence of transmit-
ted TAMs has been called into question.17 Our findings provide evi-
dence from a real-world setting, although it is important to place
them into context. Most subjects with�1 TAM had singleton muta-
tions, with T215rev accounting for a large proportion of cases. It
cannot be excluded, and the data directly suggest, that co-
occurrence of multiple TAMs, although less common, may have a
more appreciable impact on virological responses in which the
third agent has a low barrier to resistance. This remains a research
need, particularly in the case of NRTI backbones containing abaca-
vir plus lamivudine, for which published evidence is scarce and a
greater impact of TAMs may be anticipated relative to tenofovir
plus emtricitabine. Whether the findings also extend to

combinations of two NRTIs with an integrase inhibitor remains to
be conclusively demonstrated, and this may differ with first-wave
versus second-wave integrase inhibitors and again by NRTI back-
bone. Although our clinical dataset on integrase inhibitors is grow-
ing, analyses are impacted by the limited use of integrase
sequencing at baseline.

Other predictive factors for viraemia included exposure group
and ethnicity, which correlate with socio-economic status, a key
determinant of HIV treatment outcomes in the UK.21 There was
also an effect of baseline viral load and CD4 cell count, and a mar-
ginal but significant effect of starting abacavir rather than tenofo-
vir. In previous studies, a high baseline viral load predicted reduced
responses to abacavir/lamivudine (versus tenofovir/emtricitabine)
when used in combination with efavirenz or ritonavir-boosted ata-
zanavir.22,23 In our study, among 1261 abacavir recipients, 65%
received efavirenz, 13% nevirapine and 15% ritonavir-boosted
lopinavir; the effect of starting abacavir persisted after adjusting
for the baseline viral load, suggesting that additional factors may
contribute to a modest reduction in activity.

In the accepted model of HIV transmission, infection with a
drug-resistant virus is followed by expansion of the founder strain
in the absence of outcompeting WT virus, leading to long-term
persistence of TDR variants despite the absence of drug-selective
pressure.24–26 Over time, the founder strain may undergo genetic
evolution, with some resistance-associated mutations becoming
undetectable, whereas others are replaced by fitter mutants. In
this model, the full resistance spectrum may persist at low fre-
quency in plasma and be archived in cellular HIV-1 DNA, retaining
a potential impact on treatment outcomes. Emergence of T215Y
and T215F from the WT virus (i.e. threonine to be replaced by tyro-
sine or phenylalanine) requires two nucleotide substitutions in RT.
T215rev variants are molecular intermediates in reverse transition
between T215Y or T215F and WT, and are generally taken to signal
persistence of progenitor T215Y/T215F. However, in the UK as in
other regions of Europe, various T215rev variants have become
established as subtype B lineages circulating among MSM, and are
often detected in linked transmission clusters.10–15 In our national
database, 55% of HIV-1 subtype B sequences harbouring TDR
mutations including T215rev form transmission clusters.12 In this
epidemiological context, T215rev variants do not necessarily indi-
cate the transmission of T215Y/T215F, thus diminishing clinical sig-
nificance. Extrapolation to other epidemiological contexts is not
warranted in the absence of supportive evidence.

Conventional (Sanger) sequencing has low sensitivity for var-
iants that represent a minority (,20%) of strains within a patient’s
sample. It is possible to detect additional TDR mutations using
ultrasensitive testing methods, although the enhancement varies
by setting and is becoming less common in recent cohorts.5 The
question therefore remains as to the extent of undetected TDR in
subjects with �1 TAM. In our population, additional, undetected
mutations were either not present or had no appreciable clinical
impact. In support of the former hypothesis, deep sequencing in
an ART-naive Belgian population with T215rev failed to identify
T215Y, T215F or other NRTI mutations.27 Thus, in an epidemio-
logical context in which the main source of TDR is ART-naive sub-
jects harbouring TAM-containing subtype B lineages, the virus
detected at diagnosis by population sequencing most likely repre-
sents the original infecting variant and ultrasensitive testing is un-
likely to reveal hidden resistance.

Table 2. Resistance patterns of subjects showing �1 TAM as the sole
form of TDR

Pattern N %

Any TAM 269 100.0

Singleton TAMs 203 75.5

T215rev 112 41.6

K219Q/E/N/R 58 21.6

M41L 21 7.8

D67N/G/E 6 2.2

L210W 4 1.5

K70R 1 0.4

T215Y 1 0.4

Two TAMs 52 19.3

M41L T215rev 40 14.9

D67N K219Q/E 5 1.9

L210W T215rev 3 1.1

D67N/E T215rev 2 0.7

M41L T215Y/rev 1 0.4

K70R T215rev 1 0.4

Three TAMs 14 5.2

D67N T215rev K219Q/E 7 2.6

M41L L210W T215rev 6 2.2

D67N T215F K219E 1 0.4
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There are limitations to this study. Cohort analyses are subject
to potential confounding. Furthermore, one downside of pursuing
large numbers is that available data repositories typically contain a
limited number of more recent treatment regimens. The use of efa-
virenz and ritonavir-boosted lopinavir is becoming less common in
Europe and North America, although it is still preferred in specific
circumstances2 and highly prevalent on the global scale. Patients
starting a PI/b in our study comprised subjects both with and with-
out TDR, and the risk of viraemia differed between the two. In the
UK, for many years NNRTIs were preferred in first-line ART, whereas
PI/b-based regimens were reserved for selected circumstances,
including presence of TDR but also a perceived increased risk of vir-
aemia and treatment-emergent drug resistance, e.g. owing to sub-
optimal adherence. Thus, it may be proposed that patients who
started PI/b-based ART in the absence of TDR had been pre-
identified as being at risk of suboptimal responses. We lacked ad-
herence data to confirm these assumptions.

Conclusions

Our study provides reassurance that in an epidemiological setting
where singleton TAMs (predominantly T215rev) occur in MSM likely
to have acquired HIV-1 subtype B infection from ART-naive
patients, there is no virological benefit to starting ART with a PI/b
rather than a third agent with a low barrier to resistance.
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Figure 1. Kaplan–Meier analysis of virological responses to first-line ART by baseline resistance profile and treatment regimen. (a) Time to virological sup-
pression (two consecutive viral load measurements�50 copies/mL). (b) Time to viraemia (two consecutive viral load measurements .50 copies/mL or a
single measurement followed by a significant treatment change). (c) Time to viraemia using an HIV-1 RNA cut-off of .200 copies/mL. (d) Time to vir-
aemia (.50 copies/mL) according to the presence of singleton TAMs or multiple TAMs. Number at risk in (a), (b) and (c) at the start of ART: group 1"4749;
group 2"1581; group 3"140; and group 4"129. Number at risk in (d) at the start of ART: group 1"114; group 2"89; group 3"26; and group 4"40.
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Table 3. Predictors of virological suppression (HIV-1 RNA �50 copies/mL)
after starting first-line ART

Variable N HR Adjusted HR 95% CI P value

Resistance profile

no resistance 6330 1.00 1.00 — 0.62

�1 TAM 269 1.00 1.03 0.91–1.18

Agea (per 10 years older) 6599 0.97 1.01 0.98–1.04 0.44

Exposure groupb

MSM 4010 1.00 1.00 — ,0.001

FSM 1187 0.92 0.92 0.83–1.01

MSF 890 0.78 0.78 0.71–0.87

IDU 123 0.56 0.60 0.48–0.74

other 312 1.11 0.99 0.87–1.12

Ethnicityb

white 4084 1.00 1.00 — 0.004

black 1810 0.95 1.03 0.94–1.12

Asian 229 1.14 1.17 1.00–1.36

other 405 1.20 1.20 1.07–1.34

HIV-1 RNA (log10 copies/mL)

,4.0 1055 1.58 1.64 1.52–1.77 ,0.001

4.0–5.0 2627 1.00 1.00 —

.5.0 2572 0.58 0.59 0.55–0.63

CD4 cell count (cells/mm3)

,200 2447 0.77 0.94 0.88–1.00 0.08

200–349 2800 1.00 1.00 —

350–499 763 1.05 1.03 0.94–1.12

�500 259 0.95 0.91 0.79–1.05

ART regimen

NNRTI 4889 1.00 1.00 — ,0.001

PI/b 1710 0.69 0.70 0.65–0.74

tenofovir 5338 1.00 1.00 — 0.07

abacavir 1261 0.97 0.94 0.87–1.01

FSM, females who have sex with males; MSF, males who have sex with
females; IDU, injecting drug users.
aAge at start of ART.
bUnknown categories were included in the model but not in the global P
values.
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