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ABSTRACT
Radio weak lensing, while a highly promising complementary probe to optical weak lensing,
will require incredible precision in the measurement of galaxy shape parameters. In this
paper, we extend the Bayesian Inference for Radio Observations model fitting approach to
measure galaxy shapes directly from visibility data of radio continuum surveys, instead of
from image data. We apply a Hamiltonian Monte Carlo (HMC) technique for sampling the
posterior, which is more efficient than the standard Monte Carlo Markov Chain method when
dealing with a large dimensional parameter space. Adopting the exponential profile for galaxy
model fitting allows us to analytically calculate the likelihood gradient required by HMC,
allowing a faster and more accurate sampling. The method is tested on SKA1-MID simulated
observations at 1.4 GHz of a field containing up to 1000 star-forming galaxies. It is also
applied to a simulated observation of the weak lensing precursor survey SuperCLASS. In both
cases we obtain reliable measurements of the galaxies’ ellipticity and size for all sources with
signal-to-noise ratio ≥10, and we also find relationships between the convergence properties
of the HMC technique and some source parameters. Direct shape measurement in the visibility
domain achieves high accuracy at the expected source number densities of the current and
next SKA precursor continuum surveys. The proposed method can be easily extended for the
fitting of other galaxy and scientific parameters, as well as simultaneously marginalizing over
systematic and instrumental effects.

Key words: methods: statistical – techniques: interferometric – cosmology: observations –
radio continuum: galaxies.

1 IN T RO D U C T I O N

The next generation of radio telescopes, such as the Square Kilo-
metre Array (SKA),1 will reach high enough sensitivity to provide
a density of detected galaxies sufficient for weak lensing measure-
ments in the radio band, with the advantage of reaching higher
redshifts compared with optical surveys (Brown et al. 2015; Har-
rison et al. 2016). Standard techniques for the measurement of
cosmic shear are based on the observation of the shapes of faint
star-forming (SF) galaxies, as it quantifies their coherent distortion
by a large-scale foreground matter distribution. Such methods have

� E-mail: m.rivi@ucl.ac.uk (MR); dr.michelle.lochner@gmail.com (ML);
ian.harrison-2@manchester.ac.uk (IH)
1https://www.skatelescope.org/

been developed for optical surveys so far and require source shapes
be measured accurately in order for errors to be dominated by statis-
tics, rather than systematics (Mandelbaum et al. 2015). Therefore,
they assume stringent and specific requirements on image fidelity.
Radio instruments do not detect images of the observed sky; they
provide its Fourier Transform at a finite number of points instead
(visibilities). The image reconstruction from these data using it-
erative deconvolution methods such as CLEAN (Högbom 1974;
Schwarz 1978) is a highly non-linear process that does not nec-
essarily converge in a well-defined manner when dealing with ex-
tended sources resolved by high-resolution telescopes. Moreover,
the Fourier Transform of visibilities makes the noise in radio im-
ages highly correlated. SKA simulations have shown that even on
high signal-to-noise ratio (SNR) objects, this process produces im-
ages with structures in the residuals that dominate the cosmological
signal, confirming that this bias may be induced by the procedure
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Radio galaxy shape measurement with HMC 1097

adopted for turning the visibility data into images (Patel et al. 2015).
Cross-correlation of real data images shows that there is no evidence
of high levels of correlation between the optical and radio intrinsic
shape of the matched objects (Patel et al. 2010; Tunbridge, Har-
rison & Brown 2016), possibly due to systematics of the imaging
pipeline. However, a significant percentage of contaminating ac-
tive galactic nuclei (AGNs) sources (as they carry a much higher
shape noise) and the astrophysical scatter between optical and ra-
dio position angle due to the different emission mechanisms may
also be the reasons for such results. A more natural approach to
adopt with radio data is to work directly in the visibility domain,
where the noise is purely Gaussian and the data not yet affected by
the systematics introduced by the imaging process, with the advan-
tage of an exact modelling of the sampling function. However, this
approach faces difficult statistical and computational challenges be-
cause sources are no longer localized in the Fourier domain and a
telescope like SKA generates a large number of visibilities. Nev-
ertheless, the advantages of being able to reduce, as well as holis-
tically incorporate systematic effects coupled with Gaussian noise
properties make modelling in the visibility domain a compelling
option.

Bayesian Inference for Radio Observations (BIRO) (Lochner
et al. 2015) combines simulation tools, such as MeqTrees (No-
ordam & Smirnov 2010), capable of predicting visibilities from a
given sky model and observational set-up, with Bayesian inference
samplers, like Markov-Chain Monte Carlo (MCMC) (Metropolis
et al. 1953; Hastings 1970) or Nested Sampling (Skilling 2004).
This allows full forward modelling of scientific properties, such as
the flux and positions of sources, as well as instrumental effects
like pointing errors in telescopes that can have strong effects on
the scientific parameters. In addition, by making full use of the
visibility information (instead of gridding as imagers do), BIRO
can dramatically increase the resolving power of a telescope. BIRO
could thus potentially be a useful tool for radio weak lensing, if the
galaxies in the survey can be correctly modelled. Other available
tools for source fitting in the visibility domain have been developed
for general purposes (Martı́-Vidal et al. 2014). They provide a vari-
ety of galaxy shape models, but they are not sufficiently accurate or
capable on wide fields of large numbers of sources for weak lensing
measurements.

Currently, two analytical galaxy models have been considered
for shear measurement in the visibility domain. The first one uses
shapelets (Refregier 2003; Refregier & Bacon 2003), where galaxy
images are decomposed through an orthonormal basis of func-
tions corresponding to perturbations around a circular Gaussian.
Shapelets are invariant under Fourier Transform (up to a rescal-
ing) allowing the adoption in the visibility domain of the same
approaches used with images. Finding the best-fitting shape via
minimizing the chi-squared is nominally linear in the coefficients
and therefore can be performed simultaneously for all sources by
simple matrix multiplications. However, this is only the case once
a size scale β and number of shapelet coefficients to include have
been chosen, which can in itself be a highly non-linear and time-
consuming problem. Chang & Refregier (2002) successfully ap-
plied this technique to data from the Faint Images of the Radio Sky
at Twenty cm (FIRST) survey (Becker, White & Helfand 1995),
conducted with the NRAO Very Large Array (VLA). They were
also able to detect cosmic shear with a significance of 3.6σ after
an accurate treatment of systematic effects (Chang, Refregier &
Helfand 2004). However, shapelets introduce a shear bias as they
cannot accurately model steep brightness profiles and highly ellip-
tical galaxy shapes (Melchior et al. 2010). For this reason, Sérsic

models are commonly used in optical weak lensing surveys analysis
(Mandelbaum et al. 2015), where the disc component is described
by the exponential brightness profile (Sérsic index n = 1) and the
bulge is approximated by the deVacouleur’s profile (Sérsic index
n = 4). A reasonable assumption is to use a single optical disc-like
component in the radio band because the radio-emitting plasma
should follow the distribution of stars in galaxy discs, as it is due to
the synchrotron radiation of the interstellar medium. The possible
bias arising for this model has been discussed for the optical domain
in Voigt & Bridle (2010), Miller et al. (2013), and Kacprzak et al.
(2014). A similar model bias should be expected in the visibility
domain.

In Rivi et al. (2016b) the exponential profile has been Fourier
transformed analytically and used to extend the optical semi-
Bayesian lensfit method (Miller et al. 2013) to radio data in the
visibility domain. This method, called RadioLensfit, fits the visibil-
ities of a single source at a time and applies a Bayesian marginaliza-
tion of the likelihood over uninteresting parameters. Visibilities of
each galaxy are isolated by a source extraction algorithm described
in Rivi & Miller (2018). This approach is very fast computationally
but may be limited by the source number density in the field of
view, because of nearby galaxies residuals in the extraction proce-
dure (‘neighbour bias’).

We investigate in this paper a different approach for galaxy shape
measurement in Fourier space to perform a joint model fitting of
all the sources in the field of view. We adopt the same analyti-
cal galaxy model used in RadioLensfit and introduce it into the
BIRO formalism. Unlike in Lochner et al. (2015), we now have
a large number of parameters to cope with so we use a Hamilto-
nian Monte Carlo (HMC) sampler (Neal 2011). We first test the
method on two SKA1-MID simulated data, investigating also the
potentiality of fitting a large number of sources. Then we apply
the method on the simulation of a real observation: SuperCLASS
(Battye et al., in preparation), whose UV coverage is quite com-
plex as it is composed of the baselines of two different SKA pre-
cursor radio telescopes (e-MERLIN and JVLA). Finally, we dis-
cuss the convergence of individual parameters depending on source
properties.

Our paper is organized as follows. In Section 2, we outline the
method and its implementation. In Sections 3 and 4, we describe data
simulation and results for SKA1 and SuperCLASS, respectively. In
Section 5, we discuss HMC convergence. We also discuss how
to handle AGN contamination in real observations in Section 6.
Finally, conclusions are presented in Sections 7.

2 TH E M E T H O D

In this work, we propose to measure radio galaxy shapes directly
from the raw visibilities (i.e. in the Fourier space) by sampling
the joint posterior distribution of the shape parameters of all the
detected galaxies in the field of view. Since the number of galax-
ies in a single pointing may be very large, conventional MCMC
methods using random walk samplers (e.g. Metropolis–Hastings)
are not suitable because they require a prohibitive number of sam-
ples to explore high-dimensional parameter spaces. We use the
HMC approach that reduces random walk behaviour by apply-
ing the Hamiltonian dynamics of particles in potential wells (Sec-
tion 2.1). It requires the computation of the likelihood gradient that
we can compute analytically for our purpose, avoiding numerical
differentiation (Section 2.2). Mean and standard deviation of the
sampled chain provide the measure and related error of the model
parameters.
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1098 M. Rivi et al.

2.1 HMC algorithm

HMC (Neal 2011; Betancourt 2017) is an MCMC method that
adopts physical system dynamics to explore a target distribution
efficiently, resulting in faster convergence and maintaining a rea-
sonable efficiency even for high-dimensional problems (Hanson
2001; Taylor, Ashdown & Hobson 2008).

The basic idea is to sample a distribution P (x) of n parame-
ters x according to the Hamiltonian of a 2n-dimensional dynamical
system, where the parameters correspond to the positions of n par-
ticles and P (x) is the canonical distribution of the potential energy
function U (x). Momentum variables p are introduced to be cou-
pled with positions x to allow Hamiltonian dynamics to operate
according to a kinetic energy function K(p) whose canonical distri-
bution is the zero-mean Gaussian with a diagonal covariance matrix
M = diag(m1, . . . , mn), where mi represents the mass of particle i.
This means:

U (x) = − log[P (x)], K(p) = 1

2
pT M−1p. (1)

Samples from the parameters distribution are obtained by marginal-
izing the canonical distribution of the corresponding Hamiltonian
function H(x, p) = U(x) + K(p):

exp[−H (x, p)] = P (x) exp

[
− 1

2
pT M−1p

]
(2)

over p.
In practice, at each iteration of HMC a new sample x′ is gener-

ated from the previous one x0 as follows. First a proposal p0 for
the momentum variables is generated randomly according to the
canonical distribution of the kinetic energy, i.e. an n-dimensional
uncorrelated Gaussian. Then, a deterministic proposal for positions
x is computed by allowing the system to evolve for a fixed time τ

from the starting point (x0, p0) according to Hamilton’s equations:

dxi

dt
= ∂H

∂pi
= [M−1p]i (3)

dpi

dt
= −∂H

∂xi
= −∂U (x)

∂xi
. (4)

These equations are usually solved numerically by applying the
leapfrog method, where Hamilton’s equations are discretized with
a time step of small size ε as follows:

pi

(
t + ε

2

)
= pi(t) − ε

2
∂U
∂xi

∣∣∣
x(t)

(5)

xi(t + ε) = xi(t) + ε
mi

pi

(
t + ε

2

)
(6)

pi(t + ε) = pi

(
t + ε

2

)
− ε

2
∂U
∂xi

∣∣∣
x(t+ε)

. (7)

The new proposal for x is obtained after k steps as x
′ = x(τ ), with τ =

kε. It is accepted with Metropolis criterion, i.e. with probability:

min{1, exp(−δH )}, (8)

where

δH = H (x′, p′) − H (x0, p0).

This way the rate of acceptance is close to unity when numerical
solutions of Hamilton’s equations are very close to the exact ones
because along such a trajectory energy is conserved. Neal (2011)
shows that ε < 2 must be required in order to have stable trajectories

computed with the leapfrog method. Our C++ implementation of
the HMC algorithm will soon be available within a BIRO repository.

2.2 Likelihood and gradient computation

In order to sample the posterior of the parameters, we need to define
the likelihood function obtained by comparing data visibilities Ṽi

with the model visibilities Vi dependent on parameters x:

L(x) =
(

N∏
i

1√
2πσ 2

i

)
exp

[
−
∑

i

|Ṽi − Vi(x)|2
2σ 2

i

]
, (9)

where σ i is the standard deviation of the Gaussian noise on the i-th
data visibility.

Visibilities are evaluated at the interferometer baseline vectors,
whose coordinates (u, v, w) are measured in wavelengths at the
centre frequency of the signal band with respect to a coordinate
system where w points towards the phase tracking centre (Thomp-
son, Moran & Swenson 1986). For a sky containing N galaxies with
exponential profile, we adopt the RadioLensfit analytical visibility
model (Rivi & Miller 2018):

V (u, v, w) =
(λref

λ

)β
N∑

s=1

Ss,λref e
2π i

(
uls+vms+w

√
1−l2s −m2

s

)
(
1 + 4π2α2

s |A−T
s k|2)3/2 , (10)

where β = −0.7 is the spectral index for the synchrotron radia-
tion emitted by the galaxy disc, k = (u, v), and for s = 1, . . . , N
we have the following source s parameters: position coordinates
(ls, ms), flux Ss,λref at reference wavelength λref, scale length αs,
and ellipticity components e1, s, e2, s. The ellipticity parameters are
contained in the matrix As that transforms the circular exponential
profile2 in elliptical

As =
(

1 − e1,s −e2,s

−e2,s 1 + e1,s

)
. (11)

We assume the following ellipticity definition:

e = e1 + ie2 = a − b

a + b
e2iθ , (12)

where a and b are the galaxy major and minor axes, respectively,
and θ is the galaxy orientation. Note that in case future radio obser-
vations show that a two-component galaxy model is also required
in the radio domain, a similar analytical model for the bulge in the
Fourier domain approximating the deVacouleur’s profile is provided
in Spergel (2010).

A preliminary data analysis for measuring flux and position of
each source may allow the reduction of the number of parameters
to 3N. This can be achieved either in the image domain3 or, if nec-
essary, in the visibility domain by a multimodal nested sampling
approach adopting a single source model (Malyali et al., in prepa-
ration). On the other hand, including these parameters in the full
HMC analysis will require a tight prior on the positions in order to
have a small additional computational complexity. In this work we
assume them well known.

Since the visibility model is defined analytically we can com-
pute the exact likelihood gradient with respect to the parameters of
our interest: scale length and ellipticity components of each source
in the primary beam. The computation of the galaxy exponential

2I(r) = I0exp (− r/α)
3Based on SKA1 level 0 science requirements, SKA1-MID shall provide
astrometric accuracy of at least 1 per cent.
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Radio galaxy shape measurement with HMC 1099

model and the corresponding likelihood gradient (see Appendix A)
has been added to the open-source software MONTBLANC4 (Perkins
et al. 2015) that is a GPU-accelerated implementation of the Radio
Interferometric Measurement Equation (RIME) (Hamaker, Breg-
man & Sault 1996; Smirnov 2011a,b) in support of BIRO. The
RIME is a powerful framework to easily describe what happens to
a signal as it travels from source to the interferometer in terms of
Jones matrices, where multiple effects along the signal propagation
path correspond to multiplication of matrices describing each effect.
For example, equation (10) can be rearranged as follows:

Vtpqλ =
N∑

s=1

Vtpqλs =
N∑

s=1

KtpsλBsλK
H
tqsλ, (13)

where uvw points are identified by the baseline formed by antennas
p and q at time step t and channel with centre wavelength λ. Ktpsλ and
Bsλ are, respectively, the phase and brightness matrices for source s
(H denotes matrix hermitian transpose). We use a brightness matrix
defined by the exponential model of an extended source5:

Bsλ =
(λref

λ

)β Ss,λref(
1 + 4π2α2

s |A−T
s k|2)3/2 . (14)

Given the general formalism of the RIME, any instrumental effects
that can be modelled, such as primary beam shape, pointing errors
and instrumental noise, can be incorporated and marginalized over
with our formalism.

2.3 Priors

As source scale length and ellipticity priors we use the distributions
presented in Rivi & Miller (2018), whose parameters are estimated
from VLA observations:

(i) p(α) is a lognormal function with mean μ = ln (αmed) and
variance σ ∼ 0.3, where αmed is given by equation (16);

(ii) for the modulus e of the intrinsic galaxy ellipticity

p(e) = Ne
(
1 − exp

[
e−emax

c

])
(1 + e)(e2 + e2

0)1/2
, (15)

with c = 0.2298, e0 = 0.0732, and emax = 0.804.

These distributions are used for both the galaxy catalogue simu-
lation and the prior in the HMC sampling.

2.4 HMC tuning

Selecting suitable values of the step size ε and the number of steps k
for the leapfrog method is crucial as discussed in Neal (2011). After
preliminary runs, we choose ε = 0.05 and k = 10 as a trade-off
between the accuracy of the Hamilton’s equations solutions (i.e.
high acceptance rate) and the computational time due to a too long
trajectory.

Since most of galaxy ellipticities should be close to zero, accord-
ing to the ellipticity modulus distribution, we choose as starting
points for the ellipticity components random numbers uniformly
distributed between −0.1 and 0.1. For scale length parameters we
choose as starting points the median values depending on the source

4https://github.com/ska-sa/montblanc/tree/chi sqrd gradient
5Other galaxy models available in Montblanc are Gaussian and point
sources. For Gaussians a simpler computation of the likelihood gradient
can be added.

flux density according to the relation estimated in Rivi et al. (2016a)
from the VLA 20 cm continuum radio source catalogue in the
SWIRE6 field (Owen & Morrison 2008):

ln [αmed/arcsec] = −0.93 + 0.33 ln [S/μJy]. (16)

For the convergence of HMC chains, it is very important to choose
good ‘step sizes’ of the momentum samples. They are defined by the
inverse mass in the kinetic energy function and are typically given
by the variance of the parameters. In this application parameter
variance is dependent on the source SNR, and therefore integrated
source flux. We estimate a relation between the standard deviation
for source scale length and ellipticity components as a function of
its flux density by fitting the error bars measured from a simulated
observation of 100 sources (as described in Section 3). For both
ellipticity components and scale length we obtain a power-law rela-
tion between source flux (in μJy) and measured standard deviation.
For example, for SKA1-MID observations we obtain the following
relations (see Fig. 1):

σe1 , σe2 = −0.0022 + 1.77S−0.92, (17)

σα[arcsec] = −0.0914 + 0.61S−0.31. (18)

3 SK A 1 - M I D SI M U L AT I O N S

We simulate SKA1-MID 8 h observations pointing close to the
zenith (δ ∼ −30◦). Visibilities are sampled every 60 s at the fre-
quency 1.4 GHz (the corresponding UV coverage is plotted in Fig. 2)
and we choose a single large channel with bandwidth 240 MHz, as
no smearing effects are added. Visibilities are simulated using equa-
tion (10) and adding an uncorrelated Gaussian noise whose variance
is dependent on the antenna system equivalent flux density of SKA1
dishes, the frequency channel bandwidth, and the time sampling ac-
cording to the formula given in Wrobel & Walker (1999).

3.1 Source catalogues

The source catalogues are simulated as in Rivi & Miller (2018),
where positions are generated randomly according to a uniform
distribution over a circular field of view, the flux distribution is
p(S) ∝ S−1.34, scale length and ellipticity follow the prior distribu-
tions listed in Section 2.3.

The minimum integrated source flux detectable at a SNRvis
7 =10

is 10 μJy, and the source density expected in the current planned
SKA1 radio weak lensing survey (2.7 gal arcmin−2, Brown et al.
2015) is obtained at the maximum flux of 200 μJy. We choose a
field of view of 400 arcmin2 to test the method at such density for
1000 galaxies (‘SKA1 1000’). To compare measurement accuracy
and the speed of convergence as a function of the number of sources
to fit, we also test the case of 100 sources with the same flux range
and field of view (‘SKA1 100’).

3.2 Results

In Fig. 3, we show the one-dimensional marginalized posterior
for a few example parameters of ‘SKA1 100’ showing they are

6http://heasarc.gsfc.nasa.gov/W3Browse/radio-catalog/vlasdf20cm.html
7We compute the signal-to-noise ratio in the visibility domain as SNRvis =√∑nvis

i=1 |Vi |2/σ 2
i , where Vi are the simulated visibilities without noise.
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1100 M. Rivi et al.

Figure 1. Power-law function fitting the standard deviation of the parameters versus integrated source flux from the SKA1-MID measurements of 100 sources
with SNRvis ≥ 10.

Figure 2. UV coverage of SKA1 observations.

well constrained and accurately recover input parameters. We show
the difference between the measured and input parameters (which
should be close to zero) for both SKA1 cases in Fig. 4. As expected,
brighter objects have much lower uncertainty in the parameters.
We find that the shape parameters are largely uncorrelated although
they could be highly correlated with instrumental effects that we do
not model here (Lochner et al. 2015).

Table 1 contains the values of the best-fitting lines coefficients for
the scale length and the ellipticity components obtained by fitting
the simulated observations of 100 and 1000 sources in the field of
view, respectively. They are almost the same for both test cases,
where only the uncertainty is obviously larger for a smaller number
of sources. The goodness of fit for all shape parameters, estimated
as a straight line fit of measured versus true parameters, shows that
the measurements are very precise.

Comparing the best-fitting slope of ellipticities for 1000 sources,
i.e. at the source density of the proposed SKA1 weak lensing sur-
vey, with the one obtained at the same density with RadioLensfit
we see a significant improvement. In fact, in Rivi & Miller (2018)
the best-fitting slopes of the ellipticity components, measured from
a similar source population and SKA1 UV coverage, were found
to be a1 = 0.9365 ± 0.0017 and a2 = 0.9262 ± 0.0017, respec-
tively. This improvement is expected because joint fitting avoids the

source extraction bias of the RadioLensfit method, but with a large
computational cost (see Table 3). We also observe that ellipticity
error bars of our approach are larger, but correctly measured, mainly
for two reasons: (i) RadioLensfit may underestimate the parameters
uncertainty by sampling the likelihood only in a neighbourhood of
the maximum point (see section 3.3 of Rivi et al. 2016b), while we
marginalize the posterior instead; (ii) in this work, we have a larger
number of free parameters as we are measuring both ellipticity and
scale length of all sources simultaneously. Thus, the larger error bars
are actually an indication of the technique correctly incorporating
additional sources of uncertainty.

4 A PPLI CATI ON TO SUPERCLASS

We also investigate the ability of the method to infer shear using
current-generation data, from the SuperCLASS survey. This allows
us to both assess the possibilities in near-term data, and also under-
stand the effect of realistic UV coverages, which are not typically
observed as a single long track, rather multiple interleaved point-
ings. We emphasize that the results we generate here should not
be used as a measure of the relative shape measurement ability of
SuperCLASS and an SKA survey; shape measurement ability will
be a strong function of UV coverage and we use a very realistic cov-
erage for SuperCLASS and a highly simplified (and much smaller
in volume) coverage for SKA.

4.1 The survey

The SuperCLASS (Super CLuster Assisted Shear Survey)8 (Battye
et al, in preparation) is a legacy survey on the UK’s e-MERLIN radio
telescope, with the express goal of making a convincing detection
of a weak lensing signal in radio data. For the field, containing four
massive galaxy clusters at z ∼ 0.2, observations are taken at L band
(around 1.4 GHz) using both e-MERLIN and the Jansky Very Large
Array (JVLA). This gives coverage of a wide range of spatial scales,
with sensitivity to angular scales between 1 and 10 arcsec principally
coming from the JVLA, and smaller scales from the longer baselines
available to e-MERLIN. The field has also been observed at multiple
lower radio frequencies (to assist in Rotation Measure synthesis and
source classification), sub-mm, and optical and near-IR wavelengths
(to obtain photometric redshifts and optical shear measurements).
The full data release of the survey is expected to contain thousands
of galaxies at a density of ∼1 gal arcmin−2 over 1 deg2. Shape

8http://www.e-merlin.ac.uk/legacy/projects/superclass.html
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Radio galaxy shape measurement with HMC 1101

Figure 3. Example 1D marginalized posterior plots for the SKA1 100 source case, for the brightest (top panel) and the faintest (bottom panel) sources in the
catalogue. The input value for each parameter is shown by a solid line, illustrating the ability of our approach to accurately recover both the parameter value
and its uncertainty.

measurement for the survey is being performed using both calibrated
image-plane and hybrid image/visibility-plane techniques.

4.2 Data simulation

We create simulated UV coverages that closely match the true ones
in the SuperCLASS survey. This provides us with an idealized but
realistic version of the experiment; though we do not include effects
from calibration errors and missing data from telescope outages or
Radio Frequency Interference (RFI, an appreciable problem for e-
MERLIN, Peck & Fenech 2013), we do recreate the real shape of
the UV coverage (corresponding to the shape of the PSF). The UV
coverages for both telescopes are simulated as measurement sets
using the CASA simulator tool (McMullin et al. 2007).

4.2.1 e-MERLIN

For e-MERLIN, we simulate eight IFs of 512 channels of width
125 kHz, covering a bandwidth of 512 MHz upwards from a starting
frequency of 1.25 GHz. The UV coverage is then generated as it is
for a real observation: during a single 8 h observing run (one epoch),
seven different pointing centres are observed, along with amplitude

and phase calibration sources. Observations cycle around the seven
pointing centres, spending alternately 12.5 min observing the source
and 2.5 min observing calibrators. An individual pointing centre is
observed over four epochs, giving a total amount of time on source
of just over 8 h per pointing centre. This gives an image plane noise
level of ∼14μJy beam−1 before different pointings are mosaiced
together, a process which reduces the noise by a factor of 2. The
UV coverage resulting from this procedure is shown in the left-hand
panel of Fig. 5.

4.2.2 JVLA

For the JVLA telescope observations of the SuperCLASS field, we
simulate the full 16 IFs of 256 channels each, with channel widths
of 250 kHz, covering a bandwidth of 1024 MHz upwards from
a starting frequency of 1.01 GHz. For the JVLA, each individual
pointing is observed over six epochs, with a total time of 11 min 6
s on source. The greater filling of the Fourier plane on the sample
scales by the JVLA when compared to e-MERLIN means that a
similar image-plane depth of ∼14μJy beam−1 is reached in this
time. The UV coverage resulting from this procedure is shown in
the right-hand panel of Fig. 5.
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1102 M. Rivi et al.

Figure 4. The measured minus true value of each parameter as a function of integrated flux for the ellipticity parameters (e1 and e2) and the scale length
parameter (αs), for SKA1 100 sources (top panel) and SKA1 1000 sources (bottom panel). The error bar is estimated from the 1D marginalized posterior for
that parameter. It is clear that brighter sources have lower uncertainty on the parameters.

Table 1. Multiplicative (a) and additive (c) coefficients of the best-fitting lines for galaxy shape measurements with SKA1 at SNRvis ≥ 10.

Observation e1 e2 scale length
a c a c a c

SKA1 100 0.9559 ± 0.0116 − 0.0018 ± 0.0032 0.9780 ± 0.0118 −0.0014 ± 0.0031 1.0015 ± 0.0091 −0.0019 ± 0.0161
SKA1 1000 0.9704 ± 0.0043 0.0001 ± 0.0010 0.9718 ± 0.0040 −0.0002 ± 0.0010 1.0048 ± 0.0030 −0.0090 ± 0.0051

4.2.3 Visibilities

Because of restrictions on available memory we sample visibilities
every 10 s instead of the real sampling time of 1 s. No time or band-
width smearing effects are accounted for in the forward modelling.
As in Section 3, we simulate visibilities observed in a single point-
ing according to equation (10) and add uncorrelated Gaussian noise
with variance dependent on the telescope configuration. In order
to have the source SNR distribution expected for the real data, we
artificially decrease this noise by a factor of 2 (as the real data will
benefit from the mosaicing effect of overlapping pointings), consid-
ering only the pointing inner region of 100 arcmin2 as field of view.
The source number density of 1 gal arcmin−2 at 10σ in the image
domain9 is obtained for a minimum input integrated source flux
Smin ∼ 500 μJy and, according to our flux prior, a maximum flux

9Usually the source signal-to-noise in the image domain is given by the ratio
between the source peak intensity and the image noise standard deviation.
Since we are dealing with extended sources, this SNR tends to be lower than
what measured in the visibility domain.

density of 400 mJy. Note that the corresponding minimum source
SNR in the visibility domain is about 18.

4.3 Shape measurements

We are able to recover with a good accuracy the shape parameters of
all sources. Fig. 6 shows the difference between the measured and
input galaxy shape parameters, and Table 2 contains the best-fitting
lines coefficients of the measured parameter values. The goodness
of fit is better than for SKA1 simulations mainly because in this
case the SNR is higher (SNRvis ≥ 18), but also because the UV
coverage is much larger (see Table 3).

5 C O N V E R G E N C E A NA LY S I S

5.1 Tests for convergence

Any Bayesian inference sampler, such as HMC, is only guaran-
teed to converge to the true posterior with an infinite number of
steps. Given that we obviously can only run a chain for a finite
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Radio galaxy shape measurement with HMC 1103

Figure 5. SuperCLASS UV coverage. Left: e-MERLIN. Right: JVLA (note the difference in scales).

Figure 6. The measured minus true value of each parameter as a function of integrated flux for the ellipticity parameters (e1 and e2) and the scale length
parameter (αs) for SuperCLASS with 100 sources.

Table 2. Multiplicative (a) and additive (c) coefficients of the best-fitting lines for galaxy shape measurements with SuperCLASS at SNRvis ≥ 18 (the lowest
SNR in the SuperCLASS sample).

Observation e1 e2 scale length
a c a c a c

SuperCLASS-100 1.0001 ± 0.0010 0.0006 ± 0.0002 1.0011 ± 0.0020 0.0004 ± 0.0002 1.0002 ± 0.0005 −0.0047 ± 0.0079

time, convergence must be tested for. We test for convergence of
the HMC chains using two different metrics: the commonly-used
Gelman–Rubin (GR) statistic (Gelman & Rubin 1992) and the au-
tocorrelation function (Sokal 1997).

5.1.1 The Gelman–Rubin statistic

The GR is a measure of how similar a set of HMC chains are:
it compares the variance within a chain to the variance between
chains and should be close to one for a converged set of chains.
Ideally, one would run several independent chains, starting from

different starting points. However, as we are computation limited in
this work, we settle for running one chain that we split up into three
separate chains and compare.

For the SKA1 100 source chain and the SuperCLASS 100 source
chain, we find GR ≈1.1 for all parameters. However, for the SKA1
1000 source chain, the parameters converge more slowly and for
a few parameters, GR ≈2. While we still use this chain in our
analysis, because we observe no strong bias with respect to the true
parameters and find the effective sample size to be sufficient (see
below), if used on real data a longer chain should ideally be run and
convergence ensured.
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1104 M. Rivi et al.

Figure 7. Autocorrelation curves for two example parameters of the SKA1
100 sources chain. When the autocorrelation is close to zero, steps separated
by the corresponding lag are uncorrelated, independent samples. A short
autocorrelation length corresponds to a well-mixed chain. Plotted here are
the autocorrelation functions for the scale length of a bright, round source
(solid, blue line) and faint, highly elliptical source (dashed, orange line), for
which the steps of the chain are still highly correlated indicating a difficulty
to converge.

5.1.2 Auto-correlation function

An additional test for convergence is the lag-k autocorrelation func-
tion that computes the autocorrelation between posterior samples
separated by k steps. The autocorrelation function for parameter θ ,
with mean θ̄ , sampled by a length-N chain is given by:

ρk =
∑N−k

i (θi − θ̄ )(θi+k − θ̄ )∑N−k

i (θi − θ̄ )2
. (19)

ρk = 0 indicates samples separated by k are independent. Fig. 7
shows examples lag-k autocorrelation functions for some parame-
ters of the ‘SKA1 100’ chain. Samples in a chain from HMC are,
in general, not statistically independent. The autocorrelation func-
tion is a measure of over what ‘time-scale’ steps are correlated.
The faster the autocorrelation function drops to zero, the more in-
dependent samples can be drawn and the shorter the chain can be
to achieve precision on parameter estimates. For a chain of a given
length, this has direct impact on the error with which a parameter
is measured.

If the uncertainty on a given parameter as measured from the
posterior is σ , then the sampling uncertainty σ samp is given by
(Sokal 1997):

σ 2
samp = σ 2tint

N
, (20)

where N is the length of the chain. tint is the integrated autocorre-
lation time and is defined as:

tint = 1 + 2
N∑

k=0

ρ̂k, (21)

where ρ̂k is the normalized autocorrelation function ρk/ρ0. σ 2
samp is

the variance on the estimate of a given parameter which is due to
finite sampling and is also sometimes referred to as the Monte Carlo
standard error.

The integrated autcorrelation time is thus a key metric for
analysing the convergence of a chain in an intuitive way: tint dic-

Figure 8. The Gelman–Rubin statistic as a function of peak flux of the
source for all three parameters for the SKA1 100 sources chain. This indi-
cates the chain is sufficiently converged and also that there may be a loose
relationship between how easily a chain converges (i.e. a lower GR value)
and peak flux. This relationship is further investigated using the integrated
autocorrelation time in Fig. 9.

tates the number of steps required before a chain will reach a given
level of precision in the estimate of a parameter, since it defines
the number of independent samples that are there in a chain. For
instance, an effective sample size (N/tint) of 100 would contribute
an additional ∼10 per cent to the uncertainty on a given parameter.
As the effective sample size increases, the contribution to the error
budget from sampling becomes negligible when compared with the
intrinsic posterior uncertainty.

In an ideal world, an HMC chain would always be run long
enough for the sampling uncertainty to be too small to be concerned
with. However, in reality computational resources are limited and
the sampling uncertainty must be taken into account. The required
level of precision depends on the final analysis to be done with the
sample. MCMC analyses have been done in the context of shear es-
timation in the case of the Dark Energy Survey (Jarvis et al. 2016)
where chains of a few thousand steps were found to be sufficient.
Estimates of the required sampling uncertainty needed would crit-
ically depend on the design and cosmological requirements of that
survey, which is beyond the scope of this paper. So, rather than
enforcing a particular precision, in this work we use tint and σ samp

to investigate which parameters are difficult to constrain and gain
some physical insight in the problem.

5.2 Convergence of individual parameters

Given that some parameters converge more quickly than others,
it is natural to ask what properties about a source make it easy
or difficult to constrain its parameters. We investigate this here
using the integrated autocorrelation time (see equation 21) and the
sampling uncertainty (equation 20).

We first test the hypothesis that brighter sources should be eas-
ier to constrain. Fig. 8 shows the relationship between the GR
statistic and the peak flux for the SKA1 100 sources case. There
appears to be some relationship that brighter sources tend to have
‘more converged’ parameters but it’s difficult to be certain. We in-
vestigate this further with the integrated autocorrelation time. As
seen in Fig. 9, the integrated autocorrelation time only correlates
strongly with flux in the SuperCLASS case where the sources are at a
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Radio galaxy shape measurement with HMC 1105

Figure 9. The integrated autocorrelation time as a function of peak flux of the galaxy for all three parameters, for SKA1 100 sources (top panel), SKA1
1000 sources (middle panel), and SuperCLASS 100 sources (bottom panel). The smaller this value, the more statistically independent samples can be obtained
from a chain. In each plot, lines are added to guide the eye that indicate the mean (dashed line) and minimum/ maximum (shaded envelope) in broad bins,
interpolated with a cubic spline. For each case, it is clear that the scale length of brighter sources is easier to constrain, while the effect on ellipticity is more
subtle. The SuperCLASS results indicate that very high SNR sources are significantly easier to constrain.

significantly higher signal-to-noise range. For the SKA1 case, there
is a clear indication that the scale length is easier to constrain for
brighter sources, but interestingly there does not seem to be a strong
relationship between tint and peak flux for the ellipticity parameters.
This is not to say the uncertainty on the measured ellipticity param-
eters does not decrease with flux (see Figs 4 and 6) but the ellipticity

parameters of sources with a higher peak flux are not more easy to
measure than faint ones. We do, however, see a strong correlation
with source size in Fig. 10.

We also consider the sampling uncertainty, which is the uncer-
tainty on the estimate of the mean of a parameter, due to having a
finite number of samples in the posterior. Fig. 10 shows the plots for
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1106 M. Rivi et al.

Figure 10. The sampling uncertainty (that is the contribution to the error on a parameter measurement due to having a chain of finite independent samples)
on each of the parameters as a function of different quantities. Top left: All parameters as a function of flux. Top right: The ellipticity parameters as a function
of the amplitude of e. Middle left: The scale length as a function of the amplitude of e. Middle right: The ellipticity parameters as a function of scale length.
Bottom left: The scale length as a function of the distance of the source from phase centre. Bottom right: The ellipticity parameters as a function of the distance
of the source from phase centre. In each plot, lines are added to guide the eye that indicate the mean (dashed line) and minimum/ maximum (shaded envelope)
in broad bins, interpolated with a cubic spline. All plots use the SKA1 100 sources chain, although the results are similar for the others. The conclusion from
this analysis is that the easiest sources to constrain the parameters tend to be sources that are bright and large. The scale length is more precisely estimated
for round sources, although the corresponding ellipticity uncertainty may be a bit larger. The maximum sampling uncertainty increases with distance from the
phase centre, although there is significant scatter.
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Radio galaxy shape measurement with HMC 1107

Table 3. A summary of the description of each experiment and the corresponding computational cost to reach convergence (i.e. GR ≈1 for all parameters) in
terms of likelihood samples and computational time using 1 CPU core and 2 NVIDIA Tesla K40. ‘Burn-in’ refers to the number of samples removed in the
initial part of the chain as it finds its way to the best-fitting parameter values. ‘n. samples total’ refers to the total length of the chain before burn-in is removed.

Observation n. visibilities field of view n. sources n.samples n. samples CPU time
[arcmin2] burn-in total per sample [min]

SKA1 9266 880 400 100 250 15 100 0.36
SKA1 9266 880 400 1000 1000 20 900 4.64
SuperCLASS 345 907 200 100 100 250 7800 8.47

‘SKA1 100’. As expected, the uncertainty decreases with increased
flux, even though there is only a subtle relationship between the
effective number of samples and flux as shown in Fig. 9. We also
find that the sampling error on the ellipticity parameters only has
a weak dependence on the actual value of the ellipticity. What is
interesting, however, is the relationship between the ellipticity and
the scale length as shown in the middle two panels of Fig. 10. The
sampling uncertainty of the scale length increases as the ellipticity
does, while the sampling uncertainty for the ellipticity is lower for
larger scale length. For highly elliptical sources, both e1 and e2 need
to be determined precisely to get an accurate measure of αs, whereas
for more circular sources, this is less important. The middle right-
hand panel suggests that for larger sources, the ellipticity is simply
easier to measure, as expected since these sources are both easier to
resolve and, for a similar peak flux, have a higher integrated flux.
The bottom panel indicates an increase in the maximum value of the
sampling uncertainty for sources far from the phase centre, which
is likely related to a decrease in sensitivity in the beam at the edges
of the field of view.

Finally, within these interesting trends there is a great deal of
scatter, implying that the properties of a source alone do not deter-
mine how quickly its parameters can be constrained. Because each
source interacts with every other source due to the complicated
beam pattern of the telescope, it is likely that the exact position of a
source relative to the others will also influence constraining power.

5.3 Computational cost

Table 3 shows, for all the tests presented in the paper, the number of
samples taken before a chain is converged that naturally increases
as more sources are added to the problem. It also shows the aver-
age CPU time for computing a chain sample on a single core of
Intel Xeon E5-2650 exploiting 2 NVIDIA Tesla K40 GPUs. Ob-
viously, the computational time increases both with the number of
sources and visibilities. Note that most of the computational time
may be wasted in data transfer between CPU and GPU. Since GPU
memory size is much smaller compared to the CPU one, large data
sets as the ones produced by radio observations must be split in
chunks to be sent through PCIe connection to the available GPUs.
MONTBLANC implements this trying to overlap GPU computation
with data transfer, however the current serial version of the code is
not scalable with the number of GPUs used because of the many
data chunks and transfer bandwidth bottleneck. The new genera-
tion of NVIDIA Tesla Pascal GPUs should overcome this issue by
exploiting the new NVLink10 interconnection that maximizes the
throughput of multi-GPUs and GPU/CPU system configurations
through a larger bandwidth, more links, and a better scalability.

10https://www.nvidia.com/en-us/data-center/nvlink/

Moreover, a parallel version of the code is in preparation, imple-
menting the Message Passing Interface paradigm (MPI11) that will
also allow the distribution of data and computation among more
CPUs of hybrid multinode architectures. This implementation will
be required when dealing with full SKA size data sets although their
size may be reduced by working with gridded visibilities, as long as
they had been gridded with an appropriate set of gridding kernels
(Harrison & Brown 2015).

6 D I S C U S S I O N O N AG N C O N TA M I NAT I O N

The continuum faint radio sky observed at 1–2 GHz for weak lens-
ing surveys is dominated by SF galaxy populations, however, a
non-negligible fraction of sources is expected to be associated with
AGNs (Jarvis et al. 2015; Smolcic et al. 2017; Bonaldi et al. 2019;
Owen 2018). Therefore, an investigation about AGN classification
and visibility shape modelling should be performed in order to
handle their contamination. In deep radio fields two AGN popula-
tions are detected: radio-loud (RL), where synchrotron emission is
dominated by large-scale relativistic jets and the lobes that the jets
inflate, and radio-quiet (RQ), not showing jet-related emission and
featuring much weaker radio emission. RL AGNs are well known
to dominate the bright portion of the radio counts above 0.5 mJy
at 1.4 GHz, but moving towards fluxes below few hundreds μJy
this population should be progressively outnumbered by RQ AGN
(Mancuso et al. 2017).

In Chang et al. (2004), a first attempt to model the shape of
AGN components in the visibility domain is applied to the VLA
FIRST survey where the dominating AGN population is RL due
to the low sensitivity of the radio survey. They used shapelets to
fit simultaneously all sources in a given pointing, including AGN
lobes, thus not contaminating fainter sources in the primary beam
and enabling cosmic shear measurement. However, while AGN
will indeed be lensed along with SF galaxies, their complicated
morphologies mean noise due to intrinsic shape dispersion will be
large, and fitting simple parametrized profiles will lead to large
model biases. Hence, we expect to remove RL AGN to get more
accurate results. Several classification methods, mainly based on the
comparison with other wave-bands catalogues of the same observed
area, are already available and/or under further investigation (e.g.
Padovani 2016; Barger et al. 2017). Such classification schemes
will never be completely perfect, and leakage of RL AGN into the
weak lensing sample will potentially create residual model biases
and increase in shape noise. Initial studies indicate that successful
classification rates of ∼90 per cent should be sufficient (McCallum
2016).

11http://www.mpi-forum.org/
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Deep SKA precursor surveys such as e-MERGE12 highlight that
in the weak lensing regime a sizeable fraction (20–30 per cent) of
SF galaxies may host RQ AGN (Bonzini et al. 2013; Delvecchio
et al. 2017; Owen 2018), and thus particular interest should be given
to these systems. Observed data, e.g. Guidetti et al. (2017), suggest
that radio emission from RQ AGN is compact. Therefore, they may
be modelled by a combination of exponential discs and Gaussians.

7 C O N C L U S I O N S

We have presented a new Bayesian method for measuring SF galaxy
shape parameters from visibility data of radio observations. The
method extends the BIRO technique by implementing a joint model
fitting of the ellipticity and scale length of all exponential sources
in the field of view. It applies an HMC technique, and can be easily
extended for the measurement of other galaxy parameters such as
position, flux, and in-band spectral index. Since we follow the RIME
approach (see Section 2.2) for computing the model visibilities, it
can also be extended for a simultaneous inference of scientific and
instrumental parameters (Lochner et al. 2015).

We tested the method on simulated observations of up to 1000
galaxies adopting the SKA-MID Phase 1 UV coverage at 1.4 GHz.
We were able to recover with a good accuracy the original galaxy
shape parameters (see Table 1) at the source density of the proposed
SKA1 radio weak lensing survey (2.7 gal arcim−2) with SNRvis ≥
10. As expected, the joint fitting approach improves measurements
of galaxy ellipticies obtained with the RadioLensfit method at the
same source density because it removes the neighbour bias intro-
duced by the source extraction procedure. On the other hand, HMC
has a long computation time, as shown in Table 3, which can be
reduced with the new GPUs architectures and a higher level of code
parallelization exploiting a hybrid multinode HPC system.

We also applied this method to the simulation of a fraction
(100 arcmin2) of SuperCLASS, a precursor radio weak lensing sur-
vey performed combining observations of e-MERLIN and JVLA
radio telescopes (although again we caution not to directly compare
results from the simplified SKA simulation and realistic Super-
CLASS simulation). Since the assumed minimum 10σ detection in
the image domain corresponds to an SNRvis ≥ 18, we obtained a
faster convergence of the chains and better fitting than with SKA1
experiments. In fact, the convergence analysis showed that the pa-
rameters of bright sources are easier to constrain. It also showed
that ellipticity sampling uncertainty is strongly correlated with the
source size and it is lower for large sources.

These results show that working with visibilities may provide a
more accurate source characterization, and more reliable and com-
plete source catalogues, potentially offering a novel measurement
approach for future SKA surveys. In this case, more computing re-
sources may be required in order to deal with the large volume of
data that will be produced by the future surveys and the complexity
of the data analysis algorithms. Moreover, further investigation on
AGN shape modelling should be performed as real observations
will also contain a non-negligible fraction of AGN population.
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A P P E N D I X A : L I K E L I H O O D G R A D I E N T

The MONTBLANC code returns the chi-squared value computed com-
paring data visibilities Ṽi with the sky model visibilities Vi(x):

χ2(x) =
∑

i

|Ṽi − Vi(x)|2
σ 2

i

. (A1)

From it the likelihood can be easily obtained as L(x) ∝
exp

[−χ2(x)/2
]
. Similarly we can compute the likelihood gradient

with respect to a set of parameters p1, . . . , pM by adding to MONT-
BLANC the computation of the corresponding chi-squared partial

derivatives:

∂χ2(x)

∂pj

= −2
∑

i


Ṽi − 
Vi(x)

σ 2
i

· ∂
Vi(x)

∂pj

+

−2
∑

i

�Ṽi − �Vi(x)

σ 2
i

· ∂�Vi(x)

∂pj

, (A2)

where R and � denote the real and imaginary part of the com-
plex visibilities. Adopting visibility formulation as in equation (13),
galaxy shape parameters ps, k are contained only in the brightness
matrix of source s, therefore

∂Vtpqλ

∂ps,k

= ∂Vtpqλs

∂ps,k

= Ktpsλ

∂Bsλ

∂ps,k

KH
tqsλ. (A3)

From equation (14), we have the following partial derivatives of the
model visibilities with respect to Sérsic shape parameters αs, es =
(e1, s, e2, s) of each galaxy s = 1, . . . , N in the field of view:

∂Vtpqλ

∂αs

= − 12π2αs |A−T
s k|2

1 + 4π2α2
s |A−T

s k|2 · Vtpqλs, (A4)

∂Vtpqλ

∂e1,s

= − 12π2α2
s f1(es)

1 + 4π2α2
s |A−T

s k|2 · Vtpqλs, (A5)

∂Vtpqλ

∂e2,s

= − 12π2α2
s f2(es)

1 + 4π2α2
s |A−T

s k|2 · Vtpqλs, (A6)

with

f1(es) =
[
(1 + e1,s)u + e2,sv

]
u

(1 − e2
1,s − e2

2,s)2
+ 2e1,s

[
(1 + e1,s)u + e2,sv

]2

(1 − e2
1,s − e2

2,s)3

−
[
e2,su + (1 − e1,s)v

]
v

(1 − e2
1,s − e2

2,s)2
+ 2e1,s

[
e2,su + (1 − e1,s)v

]2

(1 − e2
1,s − e2

2,s)3

and

f2(es) =
[
(1 + e1,s)u + e2,sv

]
v

(1 − e2
1,s − e2

2,s)2
+ 2e2,s

[
(1 + e1,s)u + e2,sv

]2

(1 − e2
1,s − e2

2,s)3

+
[
e2,su + (1 − e1,s)v

]
u

(1 − e2
1,s − e2

2,s)2
+ 2e2,s

[
e2,su + (1 − e1,s)v

]2

(1 − e2
1,s − e2

2,s)3
.
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