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Abstract—This paper describes a novel multi-task allocation 

method for the autonomous navigation to improve the efficiency 

for executing mission considering an Unmanned Surface Vehicle 

(USV) developed by the Pontificia Universidad Catolica del Peru 

(PUCP). The new method is developed based upon the self-

organizing map (SOM) algorithm, with the consideration of the 

priorities of the sample stations that USV need to visit, as well as 

the lattice distances from the sample stations to the start point. 

Using this new method, an optimized order of visiting sequence can 

be calculated according to the battery energy limit of the USV. The 

new multi-task allocation method has been verified in simulation 

environments with results proving the effectiveness and 

capabilities of the system.  
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I. INTRODUCTION 

It is well known that Unmanned Surface Vehicles (USVs) 
offer benefits by reducing human resource costs and operating 
as ‘force multipliers’ with enlarged exploration range, especially 
in research applications such as hydrographic survey and water 
quality monitoring. With the increasing interests in the 
development of USVs to concur complex tasks in constrained 
environments, it has become important to manufacture USVs so 
they are able to carry out the tasks in an energy-efficient way. 

Regardless of the autonomy level of USVs, most of the 
existing platforms are powered by batteries [1, 2]. In [3], a 
remote controlled USV has been developed by the Pontificia 
Universidad Catolica del Peru (PUCP), and used as a scientific 
platform to undertake the water quality measurement task at 
Peruvian highland lakes. The main feature of this USV is that it 
can be easily assembled and disassembled, which facilitates ease 
of transporting the vehicle to different locations to undertake 
missions. However, this transportability limits the size of the 
USV as well as its battery capacity. Therefore, it is important to 
improve the efficiency for executing missions to reduce the 
power consumption and consequently save energy.  

Previous research applied path planning algorithms [4-6] to 
generate an optimized path with the shortest distance for the 

USV to follow thereby reducing the energy cost. Most of these 
algorithms address the problem with only one mission (end) 
point. However, for most data collection applications, like water 
monitoring and pollution tracking, where more than one mission 
measuring points are needed, a multi-task allocation method is 
required to assist with generating the most efficient task 
execution strategy. This kind of applications can be regarded as 
the classic Traveling Salesman Problem (TSP) that aims to find 
a shortest travel sequence connecting all the cities (mission 
points). Note that in the TSP, each mission point will be visited 
only once and return to the start point when the travel is 
terminated. To solve the TSP, a two-layered heuristic algorithm, 
the self-organizing map (SOM) based neural network has been 
applied and modified by some researchers with advantages of 
relative simplicity, high computational speed and promising 
performance. 

In [7], a dynamic ring structure has been proposed to add or 
delete the neurons on the ring adaptively according to the 
specific training situation. [8] further improved the SOM by 
generating repulsive force field around obstacle areas. In such a 
case, the neurons are expelled away from obstacles during 
updating process to ensure the safety. Moreover, a new adaptive 
strategy was designed by [9], called the prize-collecting 
traveling salesman problem, with additional penalties given to 
certain mission points, which locations will be skipped during 
the travel.  

However, all these algorithms do not consider the energy 
constraint during adaption. The USV may still run out of power 
during the journey and needs to transit back to the start point 
with some mission points neglected. In addition, in [8], it has 
been noticed that although the obstacle avoidance can be 
achieved by integrating a repulsive force field in the SOM, the 
influence area of the repulsive force field should be constrained 
in a certain level, otherwise, the convergence of the algorithm 
will be limited. To solve these problems, in this paper, a new 
penalty is given to each mission point as selecting criteria so that 
mission points can be adaptively chosen to meet the energy 
requirement. Moreover, a propagation scale limit [10] is 



introduced to constrain the dimension of the repulsive force 
field.  

This paper is organized as follows. Section II describes 
autonomous navigation system of the USV developed by PUCP. 
Section III explains the proposed new multi-task allocation 
method in detail. Results are shown in Section IV with 
discussions. This paper is concluded in Section V.  

II. AUTONOMOUS NAVIGATION SYSTEM 

A new autonomous navigation system has been developed in 
this paper as shown in Fig. 1. It includes an additional power 
monitoring unit in order to record the real-time battery 
consumption and the requested power for actuation. Using this 
battery information along with the data received from on-board 
navigational sensors, a multi-task as well as a path planning 
algorithm are integrated with the main controller to guide the 
USV to accomplish missions effectively. 

 

Fig. 1. System diagram of the new autonomous navigation system for the 

PUCP’s USV. 

Before the integration, the USV’s dynamic model is obtained 
using the MATLAB built in System Identification (SI) toolbox, 
and analysing the data obtained from several pre-done field tests 
(Circle and Zig-Zag movements). The field tests of the USV 
were performed at lake Languilayo in Cuzco. Fig. 2 is a picture 
when the PUCP USV is in operation. For data acquisition, 
several inputs including a pseudorandom binary sequence are 
applied to the thrusters and the heading response is recorded. The 
input to the SI is the differential mode thruster velocity nd, which 
causes the vehicle to manoeuvre as required (nc is maintained to 
conserve the operating regime). The acquired data is processed 
and down-sampled to 1 Hz since this frequency is deemed to be 
adequate for controller design noting that the dynamic model for 
the USV changes with the environment. 

 

Fig. 2. Field testing at Lake Langui Layo, Languilayo Peru at 3955 MASL. 

III. MULTI-TASK ALLOCATION METHOD 

A. Problem Statement 

In practical missions, such as the water quality monitoring 
mission considered in this paper, due to the spatial distribution 
of the mission points, the measurements retrieved from one point 
could also be included in the information provided by other 
nearby points [9] making it not obligatory for the USV to transit 
through all points to complete the mission. Therefore, in such a 
case, differing from the conventional multi-task allocation 
problem, where the complete visiting of all mission points is 
compulsory, the problem to address the energy-efficient 
autonomous navigation should consider: 1) selecting the 
appropriate mission points according to mission requirements; 
2) finding a mission execution sequence to complete the selected 
mission points; 3) visiting the mission points while avoiding 
obstacles en route; 4) re-planning the execution sequence by 
considering the energy constraints. To simultaneously address 
these problems together they can be formulated as a modified 
TSP problem as: 

There are n possible mission points G = [g1,…,gn], where 

g
i
 ∈ R2. Each gi  has an assigned priority P(g

i
) ≥ 0, and a distance 

penalty ζ(g
i
) ≥ 0. The distance between two mission points gi 

and gj is c(g
i
, g

j
) ≥ 0. As shown in Fig. 3, the problem is therefore 

to find a travel tour T and visiting a subset of the mission points 
GT ⊆ G. T contains a sequence of the selected visited mission 

points, namely, T = [g
s1

,…,  g
sk

]. Note that, g
si
∈ GT  and 1 ≤ 

si ≤ n . The total cost of completing the tour (C(T)) is then 
calculated as: 

C(T) =  

∑  c(g
si

, g
si+1

)(gsi
,gsi+1

) ∈ T + ∑  P(g)g∈G\GT
+ ∑  ζ(g)g∈G\GT

. (1) 

In this paper, C(T) is governed by the battery limit β, namely, 
C(T) ≤ β * F, where F is full battery allowance. Note that, T 

herein is a closed tour, which means that g
s1

= g
sk

. 

 For simplicity, g
s1

 is set as the USV start point. The travel 

cost between two mission points is computed as the Euclidean 

distance c(g
si

, g
si+1

) = |(g
si

, g
si+1

)| in a planar environment. 

 

      

(a)                        (b) 

Fig. 3. (a) Pre-deployed water sample stations in a maritime environment. (b) 

Multiple tasks visited by the USV, with some stations, marked in blue being 

discarded. 

Mission points



B. SOM Algorithm 

The SOM [11] is a two-layered artificial neural network as 
shown in Fig. 4, and it implements the unsupervised learning 
strategy to train the neurons in the output layer according to the 
input information. Neurons in the output layer are normally 
connected using certain topology such as rectangular and 
hexagonal grid, and due to the nature of the TSP problem, where 
a closed visiting loop is requested, a ring form topology is 
therefore applied in this paper. During the training process, 
neurons are competitively adapted according to the mission 
points contained in the input layer. As mentioned previously, 
such a ring form make the USV capable of starting and finishing 
the whole mission from the same point, which facilitates the 
launch and recovery of the USV. 

  

 
Fig. 4. The SOM scheme, where xi is the task point (source: [12]). 

When applying the SOM for multi-task allocation, each 
mission point gi in the input layer is associated with a Cartesian 
coordinate (gx, gy) representing its location. The weights of the 
neurons on the output space are in the same dimension and 
indicates the locations of neurons. Throughout the training 
process, neurons compete to become the winner. 

 The unsupervised learning strategy consists of two different 
steps: 

1) Winner selection: A mission point (gi) is selected from 

the input layer. The Euclidean distance between this mission 

point and each neuron in the ouput space is calculated by: 

 dgv = |g
i
-vj| =√(g

xi
-vxj)

2
+ (g

yi
-vyj)

2

, (2) 

where vj is the location of the jth neurons. Note that the start point 
is set as the first selected mission point. The winner neuron is 
then selected as the one having the minimum value of dgv, 
namely: 

 vwin = argmin
v
(dgv). (3) 

2) Neighbourhood updating: After the winner neuron vwin 

has been determined, the neighbourhood updating step will 

move the vwin as well as its neighbour neurons towards new 

positions with different scales. In the conventional SOM 

algorithm, such a updating step is calculated without 

considering obstacle avoidance making it unsuitable to be 

directly implemeted onto USV applications. Therefore, in this 

paper, the improved SOM algorithm proposed in [8] has been 

adopted, and to succssfully address the collision avoidance 

problem,  the new updating step is calculated as: 

 vj= {
vj+μ*f(d, σ)* (

(gi-vj)

‖gi-vj‖
+Frep) ,     if dobs≤dmin

vj+μ*f(d, σ)*
(gi-vj)

‖gi-vj‖
,                   otherwise

, (4) 

where  is the learning rate that determines the computational 

time. f(d, ) is the neighbouring function that identifying the size 

of the neighbourhood of the winner neuron. According to [8], f(d, 

) herein is defined as: 

 f(d, σ) = e(-d
2
/σ2), (5) 

where d is the lattice distance on the ring topology, and   is the 

neighbouring function variance (or the gain parameter).  

Note that as the SOM is an iterative adaption process, during 

each iteration,  should be monotonically decreasing as time 
increases. This is due to the reason that during the initial stages, 
neurons stay far away from the mission points. A relative large 

  value is preferred to move the neurons fast towards selected 
mission point. While at the latter epoch, neurons will be close to 
mission points and formed a relative stable situation. The 
competition between neurons become less, and a small value of 

should be used. In such a case,  is defined as: 

 σ = (1-0.0005t)σ. (6) 

The novelty of the method proposed in [8] is the repulsive 
force field Frep included in (4). Such a force field is added in the 
neurons updating process to assist with the collision avoidance. 
It should be noted that in the maritime environment, obstacle 
areas can be varied in different times, i.e. rising tide makes 
obstacle area shrink; whereas, decaying tide enlarges the 
obstacle dimension. Therefore, the influence area of the force 
field in [8] can be adaptively changed, and such an adaption 
method will be explained in the next subsections together with 
other important modifications to the SOM approach introduced 
in this paper. 

C. Modifications of the SOM algorithm 

1) Constraint Frep: The adaptive repulsive force field is 

constructed by running the fast marhing (FM) method with the 

introduction of a constraint factor  as: 

 
Drep(x, y)←FM(p⃗ 

obs
, α)

Frep=∇(Drep)
,  (7) 

where 𝑝 𝑜𝑏𝑠 is the obstacles’ locations relative to the coordinate 

of map. FM(•,  ) represents the procedure of running the FM 

method [13] constrained by factor . In this process, after 

running the FM method, potential values of all points D(x, y) in 

the domain of interest will be compared with , and any values 

higher than  will be reset to , which has been mainly 

introduced to control the influence area of obstacles. For 

example, as shown in Fig. 5, when  decreases, the influence 



area of obstacle also decreases. Also, the higher the potential, 

the safer the position is. 

 
             (a)                         (b) 

 
                               (c)                                            (d) 

Fig. 5. Changes of potential field with different  values on a map of 500*500 
grids. (a) Grid map with one obstacle. (b), (c) and (d) are the potential fields 

when   = 1, 0.6 and 0.2, respectively. The colour from blue to yellow 

represents the influence strength of the obstacle, where blue indicates the 

highest influence and yellow means there is no influence. 

2) Measurement priority P(gi): Due to the limited energy 

onboard, mission points should be prioritised such that points 

containing important measurements data should be assigned 

with high priority and visited by the USV in the first place. In 

this paper, the updating process proposed in [14] has been 

empoyed to allocate the missions according to different 

priorities. Considering the predefined priorities of 

measurements at different mission point, the winner neuron 

selected in the aforementioned step is first chosen as a winner 

candidate. The candidate vs for the current mission point gi will 

become the winner only if its Euclidean distance to gi is shorter 

than P(gi), namely |(vs, gi)| ≤ P(gi). Otherwise, vs will be 

discarded. 

3) Distance penalty ζ(g
i
): To govern the total travel cost 

compliant with the battery limit, mission points to be visited 

need further refinement while the USV is navigating. With the 

continuous energy comsuption, initially allocated mission 

points could be possibily discarded as the USV may run out of 

battery to reach them. Such a mission points selection process 

can be summerised as: during current epoch t, if the governing 

criteria 𝐶𝑡(T) ≤ 𝛽𝑡  * F is not satisfied, then the gi with lower 

priority and higher ζ will be discarded first. The mission point 

will be removed from the input layer until the governing criteria 

is satisfied. 

The pseudo-code of the modified SOM algorithm is 
described in Algorithm 1. 

 

Algorithm 1 Modified Self-organising Map Algorithm 

Input: set of mission points G, parameters (, d, , , dmin, errormin) 

1: Initialise N neurons of SOM with a ring topology as v = (v1,…,vN), iter ←1 

2: while error ≠ errormin do 

3:      Select gi from G, i start from 1 to n 

4:      Find vwin: if iter ==1 then  

5: choose vwin according to (2) and (3) 

6: else choose vwin according to (2) and (3) such that  

|(vs, gi)| ≤ P(gi) 

7: end if 

8:      for each neighbourhood neurons vj of the winning neuron vi 

9:      do neighbourhood updating according to (4) 

10:      end for 

11:      iter←iter+1 

12: end while 

13: if Ct(T) > β
t
 * F then 

14:     resort ζ(g) in descending order 

15:     discard gi from G where ζ(g
i
) =ζ(1) 

16: end if 

17: return to step 2. 

Output： v 

IV. SIMULATION RESULTS 

In order to test the proposed modified SOM multi-task 
allocation method, three simulations are carried out in an 
environment containing 18 islands regarded as the obstacles. 
Such a simulation environment map with the size of 500 × 500 
m is shown in Fig. 6. A total number of 30 mission points marked 
in blue have been predefined and randomly located in the map. 
To run the simulations, this environment map is further 
rasterised into a binary grid map with the size of 500 × 500 
pixels, where 1 pixel = 1 m. 

 

Fig. 6. Simulation environment map with the size of 500 ×  500 m. The 

obstacles are represented in black. Blue dots are the mission points (water 

monitoring stations). The USV start point is marked in shaded red star. 



The three tests are: 

1) Test the ability of saving travel distance cost: In this test, 

the modified SOM method is run in a situation, where all the 

mission points are required to be visited with the total travel 

distance cost marked as dtotal(SOM). dtotal(SOM) is compared 

with the total travel distance cost of another 100 randomly 

generated sequence of mission points. The total distance 

comparison result is shown in Fig. 7. It can be seen that using 

the modified SOM method, the total distance cost can be largely 

reduced.  

 

Fig. 7. Total travel distance cost comparison result. 

2) Test of mission points being assigned with different 

priorities constrained by battery limit: four different levels of 

priorities are defined and listed in TABLE I with level 4 

representing the highest priority and level 1 representing the 

lowest. Priority for each mission point is randomly assigned and 

visualised shown in Fig. 8(a). The simulation is first run when 

the battery limit  = 0.9. Fig. 8 shows the neurons updating 

process at different epoch, when iter =  1, 4, 66, 121, 129, 130, 

132, 134, 135 and 140. As shown in Fig. 8(a), the algoroithm 

starts with 30 neurons, which are the same number as the 

mission points and their locations are close to the USV start 

point. However, the number of the neurons is adaptively 

changed during the updating process with more neurons being 

added in the initial stages to provide an optimised result. For 

example, at iteration 4 shown in Fig. 8(b), the number of neuros 

is increased; while in Fig. 8(c), the number of neurons reduced 

as the updating process is approaching a stable state. Details of 

the neurons adding and deleting procedures are explained in [8]. 

Fig. 8(d) and (e) show that the number of neuorns stays at 30 

with the majority of the neuros staying close to their allocated 

mission points’ positions with the exception of two mission 

points: the upper left one with priority level of 1, and the upper 

middle one with priority level of 3. However, in Fig. 8(f) the 

priority level of the mission point pointed by an arrow becomes 

red, which means that at iteration 130, the total travel distance 

cost C(T130) is beyond the battery limit, if the USV continues to 

follow the current neurons sequence (v130). Therefore, 

according to the mission selection criterion in Section III, the 

mission point with the lowest priority level (1 at iteration 130) 

and the longest lattice distance from the mission start point (5 

at iteration 130) is first discarded. As the updating process 

progresses, it can be seen from Fig. 8(g), (h) and (i), more 

mission points are discarded as displayed in red numbers. 

Because of the reduction of the mission points, the neurons 

number is also decreased accordingly with the final result 

shown in Fig. 8(j). 

 
TABLE I. RISK WEIGHTINGS IN DIFFERENT SCENARIOS  

Priority level Priority range 

1, low priority 0≤P(gi) ≤5 

2, middle priority 0≤P(gi) ≤25 

3, high priority 0≤P(gi) ≤250 

4, very high priority 0≤P(gi) ≤2500 

 

 
(a)                       (b) 

 
(c)                       (d) 

 
(e)                       (f) 

Fig. 8. Neurons updating process when the battery limit  = 0.9. Blue dots are 
the mission points, and the start point is marked as shaded red star. The priority 

level is marked beside each mission point in black number. If the mission point 

is discarded, the priority level will change to red. Neurons are marked as red 

circle, and ‘ring’ means the number of neurons 



 
(g)                       (h) 

 
(i)                       (j) 

Fig. 8. (Continued) 

 

The modified SOM algorithm is then applied under the same 

battery limit, namely  = 0.9, but with different priority levels 
assigned to mission points. Different settings of the priority 
levels as well as their corresponding results are shown in Fig. 9. 
It can be seen that under different priority settings, the algorithm 
can always generate a sequence of v under the battery constraint, 
which proves the robustness of the algorithm. 

 
(a)                       (b) 

 
(c)                       (d) 

Fig. 9. Modified SOM simulation results under battery limit  = 0.9. (a), (b), 
(c) and (d) are the same environment, but with different settings of priority 

levels.  

3) Test of mission points being assigned with same 

priorities under different battery limits: To further validate the 

robustness of the modified SOM algorithm, different battery 

limit are tested from  = 1, 0.95, 0.85, 0.75, 0.65 to 0.6. When 

 = 1, the equipped battery storage is able to support the full 

operation of the USV, therefore all mission points can be 

successfully visited as shown in Fig. 10(a). Also, when is 

higher than 0.6, the algorithm can generated the sequence 

successfully by appropriatly selecting the mission points to 

visit. However, when = 0.6, the algorithm shows a warning of 

‘battery is too low’ as shown in Fig. 10(f) meaning = 0.6 is 

the minimum battery allowance. Therefore, even though all the 

mission points with priority level 1-3 have been neglected, the 

C(T=0.6) is still high and the USV could not complete the 

mission within the present energy storage.   

 

 
(a)                       (b) 

 
(c)                       (d) 

 
(e)                       (f) 

Fig. 10. Modified SOM simulation results with same priority level settings, but 

different battery limit, when (a)  = 1, (b) = 0.95, (c) = 0.85, (d)  = 0.75 

(e)  = 0.65 and (f)  = 0.6.  

V. CONCLUSIONS 

A multi-task allocation method based on the SOM algorithm 
has been developed for the energy-saving purpose in the 
application of water quality monitoring and pollution detection 



using an USV. In the proposed method, the mission points, 
where the USV need to visit have been selected based on the 
predefined measurement priority as well as the distance penalties 
that are related to the energy constraint of the USV. During the 
updating process, a constraint factor has been considered to limit 
the influence area of the obstacles. 

The simulations results show that under different priority 
settings and battery limit, the modified SOM method can 
robustly generate the sequence of mission points for the USV to 
follow. Also, when the total cost governing criteria cannot be 
satisfied, the algorithm is able to provide an alert for the USV to 
recharge the battery. It should be noted that only a conceptual 
design has been proposed in this paper to address the problem of 
energy-efficient autonomous navigation, further improvements 
are still needed: by considering the alternative USV velocities 
against consumption; and by taking into account of environment 
factors as well as combining the path planning and controllers to 
achieve a fully autonomous guidance, navigation and control 
(GNC) for USV.   
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