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Abstract

360° media experiences have existed for centuries. Viewing painted panoramas, such

as those displayed in the 18th-century rotunda in Leicester Square, was a popular Geor-

gian pastime. Recent advances in capture, processing and display technology have cre-

ated a surge of interest in the medium, with millions of people now viewing captured

360° media immersively. Despite the popularity of 360° media experiences, there are

still substantial technical issues associated with production and distribution, and little

research has been done that explores the end-user experience. As these experiences

become commonplace, understanding the impact of such media becomes critical.

In this work, two user studies were conducted that investigated the effects of 360°

media of different forms. The first study looked at the impact of the display type when

viewing cinematic virtual reality captured as 360° video. The study used three display

types: a head-mounted display (HMD); a standard 16:9 TV; and a focus-plus-context

display. Several metrics were explored, including spatial awareness, memory and nar-

rative engagement. The second study investigated the impact of different transition

types when exploring static scenes captured as multi-view 360° images in a HMD.

The three transitions investigated were a linear movement through a 3D model of the

scene, an instantaneous teleportation, and an image-based warp using Möbius trans-

formations. Metrics investigated included spatial awareness, preference, and several

subjective qualities such as the feeling of moving through the space.

Additionally, an enabling technology for such experiences was investigated. Ob-

ject removal in 360° images was explored in detail, with extensions for video described

for simple cases. Taken together, these three projects further our current understanding

of how 360° media can be implemented, and examine some of the most critical aspects

of how users engage with these experiences.
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Chapter 1

Introduction

Panoramic imagery has existed for centuries. Illusionism – an artistic technique in

which a painting gives the illusion of a real scene – was frequently used in murals to

give the impression the viewer had been transported to a different physical space [6].

Examples of such techniques being used to create sweeping views date back thousands

of years. During the 19th century, a popular pastime was to view painted panoramas.

By displaying these panoramas in purpose-built rotundas, the imagery surrounded the

viewer, transporting them virtually to distant places [7].

A subcategory of panoramic media is 360° media. The term indicates that the

horizontal field-of-view is a full 360°, surrounding the viewer horizontally. While the

vertical field-of-view is not defined, it is often 180°, meaning the media covers a full

sphere around the viewer. While it has been possible to paint 360° images for centuries,

360° photography and film are comparatively recent developments. Due to the phys-

ical limitations of pin-hole and lens-based cameras, it is not possible to capture fully

spherical views using a single camera. Soon after the birth of photography, however,

it was realised that by taking multiple images side by side, a single image could be

cut together that captured a much wider field of view than was possible with a single

camera alone. The Daguerreotype, an early form of photography, was introduced in the

1830s [8]. Examples of panoramas being created by combining multiple contiguous

Daguerreotype images appeared around 10 years later [9].

Advances in computational photography now provide a mechanism called stitch-

ing, in which multiple views can be plausibly blended together into a single cohesive

panorama in software. While digitally stitching views together to create panoramic

media has existed since the 1990s [10], a recent convergence of technologies has cre-
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ated a surge of interest in the medium. The high volumes of data required have bene-

fited from advances in storage and transfer technologies, while the falling cost of high-

quality cameras has reduced the barriers to entry for producers. Support for spherical

video has been integrated into most popular video sharing sites, including YouTube,

Facebook and Vimeo. Data released by these sites give an indication of the scale of

consumption. In March 2017, more than one million 360° videos were available on the

Facebook platform [11], while 2017 also saw the first 360° video on YouTube pass 10

million views [12].

The recent proliferation of virtual reality (VR) displays has also played a role in

the rise of 360° media, as these devices allow the content to be consumed immersively.

Orientation tracking provided by head-mounted displays (HMDs) allows the wearer to

look around naturally inside a panorama. These affordances can illicit a powerful sen-

sation of being in the space depicted in the panorama. Evidence suggests that substan-

tial numbers of people are watching 360° videos immersively using HMDs. In January

2017, Samsung said 5 million Gear VR HMDs were in consumer hands globally, and

that 10 million hours of video had been watched on these devices [13].

1.1 Research problem
Although 360° media has become extremely popular in a number of contexts, content

production still presents substantial challenges. This includes all stages of the produc-

tion pipeline. Planning for 360° videos is complicated by a lack of visual grammar for

storytelling in this new medium. Capture of all forms of 360° media is complicated

by the limitations of the current generation of camera hardware. Editing and post-

production are hampered by a lack of tooling suitable for 360° media, while display is

complicated by the wide variety of hardware and physical setups that consumers have.

Additionally, there is little academic work that looks at the evaluation of 360°

media experiences. As a result, there are no agreed metrics by which these experiences

can be investigated, and little data about the end-user experience.

The aims of this work are to:

1. Improve the production pipeline for 360° media.

2. Establish suitable evaluation techniques for 360° media experiences.
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3. Use these techniques to evaluate 360° media in a number of contexts.

1.2 Scope
The production pipeline for 360° media is complex, involving many hardware and soft-

ware components. Over the course of this project, the 360° media industry has seen

substantial progress on a number of fronts, from the launch of a wide range of cameras

purpose built for capturing of 360° video, to the integration of 360° media tools into

popular post-production software. During this period, work was done to improve the

content production pipeline. Specifically, an investigation of object removal in 360°

media was performed, as this was an area lacking rigorous academic investigation at

the time.

As popular video sharing websites began to support 360° video, acquisition of

high-quality content became substantially easier. As a result, later work was able to

focus on experience evaluation rather than content creation. There are a huge number

of different types of 360° media. This includes both images and video. 360° videos

come in a vast array of genres, such as comedy and mystery, but also journalism, travel

and training videos. The work presented in this thesis focuses on broadly applicable

evaluation techniques, with an emphasis on areas in which 360° media is likely to offer

an improved experience or be at a disadvantage over traditional format media.

The work presented in this thesis looks specifically at 360° media that has been

captured using a single camera or an array of cameras. It is important to note that 360°

media can also be animated or computer generated, and that these mediums may impact

the experience in various ways. Additionally, while 360° media supports only the three

degrees of freedom associated with orientation, computer-generated media may poten-

tially support positional tracking as well, which would likely also have an impact on the

experience. The work presented in this thesis does not cover these scenarios, although

it is hoped that many of the fundamental principles of this work could be applied in

future investigations of the broader spectrum of media experiences.

As well as covering both images and video, 360° media can also be captured

from a single viewpoint or multiple viewpoints. In the case of multi-viewpoint 360°

media (MV360M) in which the user can choose to move from one camera location to

another, a visual effect is required to transition between fixed camera locations. Such
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experiences have been available for some time, from QuickTime VR in the 1990s [14]

to the extremely popular Google Street View [15]. This work also aimed to explore the

impact of the transition type when exploring MV360M in an immersive context. The

work presented in this thesis considers only image and video content captured using a

static camera, which is the most common technique for 360° media that is intended to

be consumed immersively.

1.3 Contributions
1. Methodological contributions

(a) Critique of evaluation techniques for passive, immersive media experiences.

(b) Advice on the impact of the physical setup of 360° media experiences, par-

ticularly the impact of the chair type in use.

2. Substantive contributions

(a) Research findings that address the impact of the display type in video-based

360° media experiences.

(b) Research findings that address the impact of the transition type when ex-

ploring spaces in image-based multi-view 360° media.

3. Technical contributions

(a) Techniques for object removal in 360° images, with extensions for video in

simple cases.

(b) Consideration of Möbius transitions as a mechanism for scene traversal in

multi-view 360° media.

1.4 Publications
The research that forms part of this thesis has led to several publications. These are:

Andrew MacQuarrie and Anthony Steed. Object removal in panoramic media. In

Proceedings of the 12th European Conference on Visual Media Production, pages 2–

11. ACM, 2015. [16]
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Andrew MacQuarrie and Anthony Steed. Cinematic virtual reality: Evaluating the

effect of display type on the viewing experience for panoramic video. In Virtual Real-

ity (VR), 2017 IEEE, pages 45–54. IEEE, 2017. [17]

Andrew MacQuarrie and Anthony Steed. The effect of transition type in multi-view

360° media. IEEE Transactions on Visualization and Computer Graphics, 24(4):1564–

1573, 2018. [18]

1.5 Structure
Chapter 2 provides an overview of the current status of the 360° media pipeline, and

contextualises this in the broader area of immersive content. Existing techniques for

editing standard format media are discussed, as well as the challenges of extending

these techniques to work for panoramic media. Immersive displays are introduced and

critiqued. A survey is then presented of work relevant to the evaluation of immersive

360° media experiences.

The remainder of the thesis is divided into two sections. This reflects the changing

landscape of the 360° media field over the last four years. At the beginning of this

project, high-quality 360° content was difficult to source. In order to investigate the

evaluation of 360° media experiences, it was necessary to create suitable content. As

a result, content was created in collaboration with BBC R&D. This effort is discussed

in Chapter 3. During this content creation, work was done to improve the production

pipeline. Specifically, object removal in 360° images was investigated, and extensions

for video demonstrated in simple cases. Work on object removal in panoramic media

is presented in Chapter 4.

Over the duration of the project, an explosion of interest in 360° media occurred.

In tandem with this, the tools for the production and distribution of content radically

improved. High-quality content became readily available from numerous sources. As

a result of this shift in the field, we were able to turn our attention to the evaluation

of 360° media experiences, without needing to further develop our own content or the

production pipeline. Content acquisition via these other sources is also discussed in

Chapter 3.
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In the second half of this thesis, evaluation of 360° media experiences is consid-

ered. Evaluation of single-view 360° video is discussed in Chapter 5. A between-group

experiment with 63 participants was conducted. Participants watched several pieces

of 360° video content in one of three different displays: a HMD, a projection-based

focus-plus-context display, and a standard 16:9 TV. Multiple metrics were investigated,

including spatial awareness, memory, narrative engagement, a viewer’s concern about

missing something, enjoyment, and the display’s ability to guide attention. The results

indicated that the HMD offered a significant benefit in terms of enjoyment and spatial

awareness, while the focus-plus-context display offered a significant improvement in

enjoyment over traditional TV. Drawing attention and a viewer’s concern about miss-

ing something were also not significantly different between display conditions; these

results were unexpected, and may indicate that using a fixed chair in a HMD experience

places a soft limit on the field of regard.

Evaluation of image-based multi-view 360° media experiences is discussed in

Chapter 6. A between-subject experiment with 31 participants is described, in which

the effect of the transition type used to move users between camera locations in the

media was investigated. Three transition types were examined: teleport, a linear move

through a 3D model of the scene, and an image-based transition using a Möbius trans-

formation. The metrics investigated included spatial awareness, users’ movement pro-

files, transition preference and the subjective feeling of moving through the space. The

results, which are discussed fully in Chapter 6, indicate that trade-offs between transi-

tions will require content creators to think carefully about what aspects they consider

to be most important when producing such experiences.

Chapter 7 concludes, and proposes future research based on the findings presented

throughout the thesis. Chapter 7 also takes a broader look at the future of captured

virtual reality content, and discusses how the work presented here is likely to apply in

this rapidly changing field.



Chapter 2

Background

There are three main stages in the pipeline for filmed 360° content. First, the material

must be captured using a single camera or array of cameras. Next, the material is

manipulated and edited in such a way as to make it suitable for display. Finally, the

content is displayed using a playback mechanism. In this chapter, literature relevant

to these stages is reviewed, as well as previous work relevant to the evaluation of 360°

media experiences.

In section 2.1, the capture of 360° media is discussed. Additionally, state-of-

the-art techniques in traditional format media editing are examined, and issues with

applying these techniques to 360° media identified.

The immersive display of panoramic media is presented in section 2.2. A range of

immersive technologies have been developed over time. These different technologies

have resulted in a range of VR displays, each with different affordances and limitations.

These technologies are described, along with the resulting displays and their respective

properties.

Section 2.3 contains a discussion of how to evaluate immersive display systems.

When considering 360° video, the focus of this discussion is on areas where immersive

displays are likely to offer some benefit over, or be at a disadvantage to, traditional

format displays. When considering MV360M, the focus is on the likely impact of

different transition types when exploring scenes captured in this medium. Issues related

to comfort – in particular simulator sickness – are examined for both media formats.
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2.1 Panoramic media

2.1.1 Panoramic media capture

Panoramic media refers to images and video that have a large field of view (FOV),

covering up to a full-sphere around the viewer of 360° horizontally and 180° vertically.

This is often referred to as the viewing sphere. While panoramic media is not a new

concept, the field has seen a rapid increase in interest over the last few years. This

rise has been driven by the falling cost and rising quality of capture and playback de-

vices. Mass-produced, wide-angle “action cameras”, such as the GoPro HERO, have

brought the cost of building a 360° camera rig down significantly, while an array of

purpose-build devices are also entering the market [19]. Playback support has been

integrated into YouTube, allowing easy viewing in browsers and phones [20]. Mean-

while, head-mounted displays such as the Oculus Rift and Google Cardboard have

brought immersive, panoramic media playback into the mainstream.

Creating panoramas by combining several overlapping views is a technique that

has been used in computational photography for around 20 years [21, 22]. The pro-

cess involves finding a 3x3 homographic transformation matrix for each image. These

matrices can be used to warp the images into alignment. Corresponding feature points

between images are used to find these homographies, and improvements in the methods

of identifying these correspondences has produced automatic tools that are effective and

simple to use [23]. Each view is then corrected for lens distortion and blended together

using image processing [24]. Playback is then achieved using software or specialised

hardware. Software viewers are available for desktops and mobile phones. For immer-

sive viewing experiences, head-mounted displays can be used that allow the viewer to

look in any direction by turning their head naturally.

2.1.2 Cinematic virtual reality

Cinematic virtual reality (CVR) is a broad term that could be considered to encom-

pass a growing range of concepts, from passive 360° videos, to interactive narrative

videos that allow the viewer to affect the story. Work in lightfield playback [25] and

free-viewpoint video [26] means that soon viewers will be able to move around in-

side captured or pre-rendered media with six degrees of freedom. Real-time rendered,

story-led experiences also straddle the boundary between film and virtual reality.
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By far the majority of CVR experiences are currently passive 360° videos. In

January 2017, Samsung said five million Gear VR HMDs were in consumer hands

globally, and that 10 million hours of video had been watched on these devices [13]. In

March 2017, more than one million 360° videos were available on the Facebook plat-

form [11]. These videos span a broad spectrum of genres, from news and journalism to

comedy and horror. In this thesis, the term CVR is used to mean monoscopic, passive,

fixed-viewpoint 360° videos, as these are by far the most commonly available type of

video for virtual reality.

2.1.3 Multi-view panoramic media

Panoramic media increases affordances over traditional formats by allowing the user

to view a larger FOV. Such experiences are typically fixed-position, however, meaning

that while the user can look around from a single location, they are unable to control

the movement to another location. Multi-view 360° media (MV360M) can help to fa-

cilitate the exploration of a captured scene, by allowing users to actively view the space

from multiple locations through their own control. This increase in agency could be

considered to make a system more immersive, and may lead to more engaging expe-

riences. Such systems can use 360° images or video. Various VR experiences have

made use of these content types in different ways. QuickTime VR allowed the user to

explore a scene by navigating between 360° images captured from different locations

[14]. This type of content has become commonplace, for example in systems such as

Google Street View [15].

Image-based MV360M benefits from requiring only one camera that can be moved

between locations, as well as minimal data processing. Video-based MV360M has

historically been less popular, as such productions typically require a camera at each

location in order to capture an event. Additionally, stitching high-resolution video from

multiple locations requires large amounts of data processing and bandwidth. The falling

cost of cameras, and improvements in stitching technology [27], mean that video-based

MV360M is becoming more common. Video-based MV360M has been live streamed

from events including award shows [28] and concerts [29], allowing users to choose

between views in real-time.
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2.1.4 Panoramic media editing

Although it remains a practical challenge for filmographers, the capture of 360° media

is now well understood. Editing panoramic media, however, brings new challenges.

Due to the fact that filming without the need for post-production is often prohibitively

difficult, the editing of standard format images and video has been studied extensively.

This research has resulted in the development of many algorithms that produce excel-

lent results in areas such as object removal, hole filling, retargeting and reshuffling.

However, it is not yet clear what must be done to allow these algorithms to produce

equally good results on panoramic media. Key differences – such as the projection that

spherical content must undergo in order to be edited and stored effectively – strongly

indicate that these algorithms cannot be applied without alteration. Additionally, there

are likely improvements which can be made by adapting these techniques to make use

of the properties of panoramic media, such as the wealth of additional information that

is captured over and above that of a regular camera.

In this section the properties of various projections are discussed. Additionally,

some of the above mentioned algorithms for media editing are introduced. Later, in

Chapter 4, these components will be combined to perform editing of panoramic media.

Specifically, object removal in 360° media will be explored.

2.1.4.1 Projections

While image processing operations could be done on the sphere, it is often simpler for

the editing and storage of panoramic media to project this sphere onto a plane. The

problem of projecting a sphere onto a plane has been extensively studied for thousands

of years, due to the need to create 2D maps of the earth [30]. Through the study of

cartography, a large number of different types of map projection have been designed.

The projection of a sphere onto a plane inherently introduces distortion. As a

result, each type of map projection seeks to preserve some aspect of the original con-

tent. The simplest projection is the equirectangular projection. This projection maps

the lines of longitude to vertical straight lines and the lines of latitude to horizontal

straight lines [31]. A special case of the equirectangular projection is the plate carrée

projection, in which the equator is the undistorted latitude. As the plate carrée is very

common, it is usually referred to simply as “equirectangular” – a convention also fol-
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lowed in this document. In this projection, the x coordinate of the image maps directly

to the longitude and the y coordinate maps directly to the latitude. As a full-sphere

panorama has a horizontal FOV (HFOV) of 360° and a vertical FOV (VFOV) of 180°,

the equirectangular projection results in a rectangular image with a 2:1 aspect ratio.

Due to the nature of the equirectangular projection, there is very little distortion

around the equator but substantial distortion at the poles. Equirectangular projections

are not often used in cartography because of this large pole distortion. However, due

to their simplicity and the ease with which scenes can be understood, equirectangular

is probably the most commonly used projection in panoramic media. Other notable

projections include: Mercator, which preserves shapes locally; Sinusodal, which pre-

serves relative areas; and rectilinear (perspective), which preserves straight lines but

introduces stretching distortions at the edge of the image when covering a FOV above

40° [32].

2.1.4.2 Graphcut Textures

In Chapter 4 it will become necessary to cut two images together in a way that disguises

a join. Combining two images together in a plausible way can be achieved using a

technique known as Graphcut Textures [33]. Two images are overlaid at their desired

positions. A cut between them is then identified with the intention of disguising the

join. This cut is found using a min-cut/max-flow optimisation.

To perform the min-cut/max-flow optimisation, a graph is constructed. Each pixel

is connected to its neighbours, with weights favouring cuts at areas in the original

images that appear similar. The weight for the arc between adjacent pixels s and t is

defined by examining the surrounding pixels in the two images, using the formula:

M (s, t,A,B) = ‖A (s)−B (s)‖+ ‖A (t)−B (t)‖

where A (s) is the patch from image A at pixel s, B (t) is the patch from image B at

pixel t, and ‖·‖ denotes an appropriate norm. Arcs with infinite weight (“constraint

arcs”) are used to ensure certain pixels are taken from a specific image. For example,

for images A and B placed side by side and being joined by a vertical cut, pixels at

the left hand side and right hand side of the overlapping area are taken from image A

and B respectively. Min-cut/max-flow is then used to find an optimal seam. This seam

identifies which image each of the unconstrained pixels should be copied from. Pixels
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to the left of the cut are taken from image A while pixels to the right of the cut are taken

from image B. This algorithm can produce compelling results, particularly in scenes

with similar areas in both images that allow a good cut.

2.1.4.3 Retargeting

As will be shown in Chapter 4, it can be useful to alter the FOV of a displayed

panorama. This can be different from the FOV a panorama captures. For example,

a panorama that captures 360° HFOV could be warped to be displayed over only 180°.

This can be achieved by altering the height and width of some projections, including

equirectangular. Altering the width and height of media is referred to here as retarget-

ing.

Due to the heterogeneous nature of display devices, retargeting media is a well

studied area. The simplest method is to resize the content equally using a scaling

algorithm such as bicubic interpolation [34]. Algorithms that aim to improve on this

generally attempt to minimise noticeable distortion to salient content.

Seam carving is a method to retarget images. It does this by removing or adding

vertical or horizontal connected pixel-wide cuts in areas where the change will be least

noticed. For example to reduce the size of the image on the horizontal axis, vertical

seams are removed in areas with little energy as defined by some energy function [35].

The energy function could encode different saliency measures, from pixel gradients

to facial detection. Seams are removed iteratively in a greedy way until the image

conforms to the desired dimension, an example of which can be seen in Figure 2.1.

The results can be very impressive, especially in images where mild deformations are

not jarring, such as mountain ranges. In images such as crowds of people, that have

few low-energy areas and features such as faces that cannot be deformed, the results

can be poor.

The position of the seam is based on an energy function. One method is to look

at the areas of the image that have small amounts of energy. This is called “backward

energy”. Another method called “Forward Energy” was proposed by Rubinstein et al. in

their paper “Improved seam carving for video retargeting” [36]. Instead of choosing

an existing area with little energy to create a seam, they instead look at the energy

introduced by adding or removing a seam. It is claimed that forward energy produces
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(a) Original image with one vertical and one horizontal seam
shown in red

(b) Aspect ratio changed using traditional scaling

(c) Aspect ratio changed using seam carving

Figure 2.1: Use of seam carving to change an image’s aspect ratio while avoiding distortion of
important content. Figure from [35].

better results than backwards energy.

Seam carving has also been extended to video in a variety of ways. Rubinstein et

al. proposed that a 2D seam manifold be found that cuts through the 3D space-time

volume of the video [36]. As the dynamic programming approach used in image seam

carving is not suitable for this 3D problem, it is replaced with graph cuts. As the seam

is continuous throughout the space-time volume a coherent video can be produced.

This comes at the expensive of speed, as the graph cuts solution is computationally

expensive to find. Additionally, a cut through the entire video must be found at once.

An alternative approach was suggested Grundmann et al. in “Discontinuous seam-

carving for video retargeting” [37]. Each frame is constrained to be similar to the

previous frame, but the seams can be temporally discontinuous. Capable of working at

two fps for 400x300 video, this algorithm is around four times faster than that proposed
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by Rubinstein et al. [36]. As the algorithm considers frames sequentially it can also

work on streaming video.

Other retargeting methods include non-homogeneous warping [38], and shift-

maps which discretize the problem into the rearrangement of pixel positions [39].

2.1.4.4 Inpainting

In Chapter 4, we will investigate inpainting in panoramic content. Inpainting is the fill-

ing of holes in a plausible way. It is a powerful technique that has gained extensive pop-

ularity. While other forms of inpainting such as Shift-maps have been proposed [39],

the technique most generally used is a patch-based method derived from previous work

on texture synthesis [40, 41]. Holes are filled from the outside in, propagating structure

and texture by copying suitable content from elsewhere in the image or video, using a

patch-based similarity measure to find a nearest-neighbour field (NNF).

The construction of the NNF presents complexity issues if approached in a brute

force fashion. However, several excellent improvements have been proposed that cal-

culate approximate nearest-neighbour fields (ANNF) at a fraction of the complexity.

PatchMatch was a seminal work in this area [42]. It uses the coherence of images to

propagate good matches, found via random sampling, to a pixel’s neighbours.

An excellent inpainting implementation is Adobe Photoshop’s content-aware fill

tool. For the inpainting step, content-aware fill uses a patch-based hole filling method

based on Space-time Video Completion, originally proposed by Wexler et al. [43, 44].

PatchMatch is used to create the ANNF, which allows interactive speeds to be achieved.

2.1.4.5 Working with panoramic media

Sacht et al. have done work in panoramic media in the context of straight line and

face detection [45]. They reached the conclusion that working in panoramas requires

finding a suitable projection for the job at hand. They discovered that the local shape

preservation properties of the Mercator projection facilitates the identification of faces,

while the perspective projection is required for line detection.

Inpainting in 360° images was considered in work parallel to our own by Zhu et

al. [46]. They proposed a structure-rectifying warp to support image completion. In

contrast to their work, in Chapter 4 we consider scenarios in which simple projections

are sufficient for object removal, and discuss when more complex strategies are re-
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quired. Additionally, we propose a further technique for object removal, and consider

extensions for video in simple cases.

2.2 Immersive displays

2.2.1 Head-mounted displays

There are several different types of head-mounted display (HMD). While there are a

growing number of HMDs that support augmented reality, the vast majority of HMDs

are currently virtual reality devices in which the real-world is entirely occluded. The

current generation of popular VR HMDs all follow a similar fundamental design. A

video screen, or pair of screens, is fixed directly in front of the eyes by some form of

head-worn mount. This screen is typically only centimetres away from the eyes. As the

human eye would struggle to focus on such a close surface, lenses are used to project

the screen to a more comfortable accommodation distance. For example, the optics in

the Oculus Rift CV1 “are equivalent to looking at a screen approximately 1.3 meters

away” [47].

2.2.1.1 Commercialisation

HMDs have been in use in academia for decades. A recent convergence in display,

tracking and processing technologies mean that HMDs are now reaching a quality and

form factor that consumers find acceptable. As the displays and sensors used in many

modern HMDs are mass produced components originally designed for mobile phones,

the cost to create a HMD is orders of magnitude smaller than it would have been even

a decade ago. As a result, the price of HMDs is now entering a range suitable for the

consumer market.

Consumer HMDs cover a broad spectrum of cost and quality. Some lower-end

HMDs allow users to slot in their mobile phone, utilising its screen and processing

capabilities. At the lowest end of the spectrum is the Google Cardboard, shown in

Figure 2.2a1. Costing around £3, these devices are composed of two small lenses,

held inside a cardboard mount. Any modern smartphone can be placed inside. The

phone’s inertial measurement unit (IMU) is used to provide orientation tracking. While

cheap, the quality of such experiences is relatively poor. This is due to poor build

1Creative Commons image by othree, available from https://commons.wikimedia.org/
wiki/File:Assembled_Google_Cardboard_VR_mount.jpg

https://commons.wikimedia.org/wiki/File:Assembled_Google_Cardboard_VR_mount.jpg
https://commons.wikimedia.org/wiki/File:Assembled_Google_Cardboard_VR_mount.jpg
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(a) Google Cardboard (b) Gear VR (c) Oculus Rift CV1

Figure 2.2: Commercial HMDs

and lens quality, the restricted processing capabilities, as well as the limitations of IMU

tracking, which are discussed in section 2.2.1.2 below. Additionally, these devices have

limited input mechanisms.

A step up from the Cardboard is the Gear VR HMD, shown in Figure 2.2b. This

device makes use of the display and processing power of a Samsung phone that is

slotted into it. In comparison to the Cardboard, the Gear VR is more sturdily built

using moulded plastic, more comfortable to wear, has increased input options via a

built-in touchpad, has higher quality lens optics, and contains its own gyroscope for

improved tracking [48]. As a result of these characteristics, the Gear VR has become

extremely popular, shipping five million headsets by January 2017 [49]. Similarly to

the Cardboard, however, they only provide orientation tracking.

At the higher end of commercial HMDs are devices like the Oculus Rift CV1,

shown in Figure 2.2c, and the HTC Vive. These tethered HMDs require high-end PCs

with modern graphics cards. Although they differ in their optical tracking technology,

both provide tracking that allows users to walk around with high accuracy and low

latency. Both also can be used with tracked input controllers held in each hand, opening

up a wealth of possible interaction techniques.

2.2.1.2 Tracking

When a viewer moves their head, the virtual world depicted in the HMD must update

accordingly in order for the illusion of reality to be maintained. To allow this, HMDs

must be tracked.

Tracking the three axes of rotation that constitute the direction the viewer is look-

ing, known as orientation tracking, is a basic requirement for a HMD. Each of these

three axes of rotation are considered a degree of freedom (DoF) that the HMD af-



28 Chapter 2. Background

fords, and as a result HMDs that provide only orientation tracking are considered 3DoF

HMDs. Orientation tracking can be performed using IMUs [50]. IMUs are composed

of accelerometers, which measure proper acceleration, and gyroscopes, which mea-

sure orientation. IMUs are very low latency, so are ideal for updating the screens of

HMDs operating at high frequency rates. It has been shown that the delay for a HMD

to respond to head motion is a contributing factor to simulator sickness [51], and in-

deed Oculus CTO John Carmack has stated this latency is “one of the primary causes

of simulator sickness” [52]. As a result, IMUs have become commonplace in HMDs.

IMUs suffer from accumulated errors, however, which lead to drift over time. For 3DoF

HMDs tracked purely through IMUs, this would present itself as the virtual world ro-

tating slowly over time on the horizontal axis.

In order to correct for drift, and accurately provide positional data, an additional

type of tracking is required [50]. In popular commercial HMDs, this is achieved using

some form of optical tracking, with the two tracking methods used in tandem through

sensor fusion. Optical tracking can be outside-in, in which the device is tracked by an

external sensor facing the HMD, or inside-out, in which the HMD tracks itself through

outward facing sensors [50]. For example, the Oculus Rift CV1 uses outside-in track-

ing, with an infrared USB camera being used to detect infrared LEDs places inside the

case of the HMD unit. While effective, this method has limitations on the size of the

tracking volume defined by the line-of-sight of the tracking sensor. Inside-out tracking,

for example using RGB cameras on the HMD itself, is an increasingly popular form of

tracking that is not bound to a tracking volume, and a number of new HMDs are adopt-

ing this technique [53]. HMDs that provide both orientation and positional tracking are

said to have 6 degrees of freedom (6DoF).

2.2.1.3 HMD characteristics

There are a number of characteristics that define how “good” a HMD is. The resolution

of the device is defined by the screen and optical system. The current generation of

HMDs, while improving, still do not come close to rendering at a resolution in which

individual pixels are not clearly perceptible to the fovea of the human eye [54]. This

is partially a factor of the resolution of the screen in use, but is also compounded by

the proximity of the screen to the eye, and the magnifying effect of the lenses. This
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impacts the experience in a number of ways, and creates issues around interface design,

e.g. small text may not be legible.

Another factor is the field-of-view (FOV) supported by the device. Again this is

a factor of the size of the screen, and the optical array in use. Humans have a hor-

izontal FOV of around 180° without moving the eyes, and about 290° including eye

rotation [55]. Despite this, the biggest selling devices in the current generation of com-

mercial HMDs, such as the Oculus Rift CV1 and the HTC Vive, provide a horizontal

FOV of approximately 90°.

The processing power available may or may not be a characteristic of the HMD

itself, depending on the type of device in question. HMDs are either stand-alone, mean-

ing the processing is done on the HMD itself, or tethered, meaning they are connected

to a PC on which the processing takes place. Generally speaking, modern tethered

HMDs are far more powerful than stand-alone HMDs, as they can make use of fully

fledged graphics cards that require large amounts of power and ventilation to run.

2.2.2 Projection-based displays

Another way to create immersive visual experiences is to use projection. This allows

the creation of displays that can be larger than would be practical using fixed screen-

based technologies, and do not fully occlude the real world as is the case for VR HMDs.

A projection-based display was used in the experiment described in Chapter 5. One of

the simplest such system is the CAVE™-like display.

2.2.2.1 CAVE™-like displays

One way to create almost perfect wide-field-of-view projected visuals is to use a

CAVE™-like display [56]. Such displays use flat white walls arranged in a cube around

the viewer. The even colour of the walls means that the surface has ideal radiometric

qualities for projection, while the planar shape of the surfaces mean complex computa-

tions are not required to establish the correct projection needed to achieve the desired

result. To provide perspective-correct rendering, head tracking can be used.

One important property that CAVE™-like displays often possess is that their field-

of-view can match that of human vision. While it is possible to have all six sides of

the cube available, practical limitations mean these displays generally have fewer sides.

Assuming a cube with three walls, with a user positioned centrally within the space and
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looking away from the missing wall, the entire horizontal field-of-view of the user can

be covered.

2.2.2.2 Focus+Context displays

In Chapter 5, a projection-based Focus+Context display will be used. In this section,

these displays are introduced and the details of creating such systems examined.

Surround Video

The BBC’s Surround Video was created in 2010 as an experiment in producing a more

immersive experience while watching video content [1]. The field of view was in-

creased by projecting content around a standard HD TV onto the walls and furniture of

the room, as can be seen in Figure 2.3a. While the surround content was aligned with

the TV content, no projection mapping or radiometric compensation was employed.

The test room contained little furniture, and it was assumed that the room had rea-

sonable radiometic and geometric properties for projection, i.e., white in colour and

reasonably flat.

To produce video for this setup, content was filmed simultaneously using a stan-

dard lens and a wide-angle lens, as shown in Figure 2.3b. During playback, footage

shot using the wide-angle lens was projected off of a curved mirror to create an ex-

tremely large field of view. This setup is shown in Figure 2.3c. While the field of view

was large, the resolution, brightness and focus of the images suffered as a result of

this projection method. As it was expected that the surround content would be viewed

almost exclusively in peripheral vision, it was hoped the reduced resolution of the hu-

man eye away from the fovea would mitigate these issues. However, during tests, it

was discovered that users often looked directly at the peripherally projected content. In

fact, the director of “Broken”, the short film commissioned to showcase the Surround

Video’s potential, at times put important visual content in the surrounding projections,

thereby encouraging users to look directly at it.

Infinity-by-nine

Producing content for the BBC’s Surround Video presented many technical chal-

lenges [1]. A possible alternative to capturing surround content was considered by

the MIT Media Lab in their Infinity-by-Nine system [2]. This system analysed stan-

dard video content to generate surround visuals, which were projected onto flat white
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(a) System in use in a living-
room setup

(b) Standard and wide-angle
lens camera rig

(c) Curved mirror used to in-
crease the projector’s field of
view

Figure 2.3: The BBC’s Surround Video. Figure from [1].

screens placed to either side a TV as shown in Figure 2.4. The projected visuals at-

tempted to capture the general impression of the content on screen, for example by

matching the colours or extending the horizon. Although the peripherally projected

content was not as context-specific or detailed as that of the Surround Video, the fact

that the experience could be created using pre-existing content was a major benefit.

This concept was commercialised to some extent by Philips in their Ambilight

TV [3]. This TV analyses the displayed content and projects light onto the surface

behind and around the TV, as shown in Figure 2.5. The colour and intensity of the pro-

jected light is designed to enhance the viewing experience and increase the immersive

properties of the display. However, the light projected onto the surrouding area had

very limited resolution as it was produced by a single strip of LEDs around the edge

of the TV’s rear casing. The concept was expanded in a research project by Philips,

in which several LED strips were placed around the room allowing a more immersive

experience to be created [57].

IllumiRoom

In 2013 Microsoft Research produced the IllumiRoom [4]. This system consisted of

peripheral projections centred around an HD TV in a setup similar to the BBC’s Sur-

round Video, as shown in Figure 2.6. The peripheral projections relied heavily on

projection mapping techniques, which are discussed in section 2.2.2.3. The major dif-

ference between the concepts of IllumiRoom and Surround Video is that, while Sur-

round Video used purely filmed content, the IllumiRoom’s projections were rendered

on the fly as an extension of the video game content that was being rendered for the

TV. By aligning the projections to the geometry of the room, compelling visual effects
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Figure 2.4: MIT’s Infinity-by-Nine. Figure from [2].

Figure 2.5: Philips Ambilight TV. Figure from [3].

can be produced. These projection mapping techniques are discussed further in section

2.2.2.3. The Microsoft team demonstrated effects such as: altering the tone of the room

to match the content better; relighting the room using dynamic shadows to give the ap-

pearance of street lights rushing by during a racing game; and altering the geometry

of the room slightly to give the illusion of recoil during a first-person shooter game,

shown in Figure 2.6c.

In 2014 Microsoft Research extended the IllumiRoom concept further to create a

system called RoomAlive [58]. RoomAlive used six projectors – each paired with a

Microsoft Kinect – to spatially augment an entire room. In this system, the HD TV

around which the IllumiRoom system had centred was removed. Users were tracked

in the space using the Kinect sensors, allowing the user to interact in interesting ways.

For example, a game of whack-a-mole was created in which moles appeared anywhere
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(a) Original appearance without projections (b) Full projection

(c) “Radial wobble” effect, in which the geometry of the room is altered to produce
the illusion of recoil

Figure 2.6: Microsoft Research’s IllumiRoom. Figure from [4].

in the room, requiring the user to hit them with their hands or feet. Additionally, head

tracking provided by the Kinects allowed for perspective correct rendering, providing

a CAVE™-like experience [56]. While RoomAlive provides a significant contribution

in terms of calibrating multiple projector/camera units, the visual impact of displayed

content was hampered by a lack of radiometric compensation and blending between

multiple projectors.

2.2.2.3 Projection mapping

Spatial augmented reality (SAR) – otherwise known as ‘projection mapping’ – has been

in use for decades. The concept involves projecting onto a non-planar surface, often

aligned such that the non-planarity enhances the visuals. The concept originated in the

entertainment industry, when in 1969 Disneyland used the technique in their Haunted

Mansion ride [59]. On this ride, white busts were animated with projected videos of

faces, aligned in such a way as to give the illusion that the bust itself was in motion. The



34 Chapter 2. Background

(a) Original white object (b) Object appears textured due to projections

Figure 2.7: Shader lamps used to alter the perceived reflectance properties and create the illu-
sion of shadows on a white model. Figure from [5].

three dimensionality of the display surface created a more compelling illusion than a

flat display surface, as the viewer experienced some 3D cues such as binocular disparity

and motion parallax. This technique was described in academic work for the first time

in 1998, when Raskar et al. presented their vision for “The Office of the Future” [60].

Since then projection mapping has steadily gained popularity [59]. Some of the

most impressive results have come from promotional material, such as a viral cam-

paign built by Marshmallow Laser Feast for the launch of the Sony PlayStation Video

store [61] and Bot and Dolly’s “Box” [62]. A large part of what makes these projects

so impressive, however, is that they rely in part on projected visuals that will work only

when viewed from a specific viewpoint.

One technique to project onto complex geometries is to build a 3D model of the

space and calculate automatically what needs to be projected to augment the real-world

objects. This approach was considered by Raskar et al. in their paper “Shader lamps:

Animating real objects with image-based illumination” [5]. The idea is to recreate the

appearance of a textured object by replacing it with a neutral object of the same shape

and using projected images to produce a similar reflectance, as shown in Figure 2.7.

Many elements affect the achievable results in a projector setup. There have been

a number of good investigations into these issues [5, 63, 4]. One of the most critical

aspects that will affect the final result is the attributes of the projector in use, such as

brightness, resolution etc., and the reflectance properties of the projection surface.

In some cases the true geometry and reflectance properties of a surface can be

overcome to produce the desired result, completely negating the real world object. This
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process is called radiometric compensation and involves projecting light that, when re-

flected off of the object, will produce the desired colour and intensity [64]. This is

achieved by capturing the surface geometry and reflectance properties, as well as other

light present in the physical scene, by using a projector-camera setup. The results

achieved by these techniques can be impressive. Radiometric compensation, however,

can only alter the appearance of a surface so far. For example, it is not possible to make

a red surface appear blue, as the surface itself will absorb the required light wave-

lengths [4].

2.3 Evaluation
Evaluating a system can help researchers to understand the underlying psychological

processes involved when that system is in use. The focus of this discussion is on the

evaluation of VR systems in the context of experiences based on panoramic media. A

number of evaluation techniques are discussed, highlighting their appropriateness for

evaluating immersive display systems in relevant contexts.

2.3.1 Evaluation of cinematic virtual reality experiences

In Chapter 5, a user study will be described that investigates CVR. Evaluation of CVR

experiences presents several issues. While immersive displays have been evaluated for

many years, elements inherent in CVR make adapting existing techniques challenging.

Evaluation of virtual environment (VE) displays generally focuses on task completion

(for a survey, see Bowman et at. [65]). This presents a particular problem for CVR

evaluation, as these experiences are generally passive and therefore do not support the

types of task that are purely observational in practice. Likewise, evaluation techniques

common for standard format passive displays may lack the ability to assess the impact

of highly immersive experiences. Although CVR experiences are considered “passive”,

the viewer can look around and is still engaging in multiple cognitive activities. These

activities may or may not be supported by the display configuration, such as the field

of view (FOV), light levels, etc.

2.3.1.1 Evaluating passive experiences in immersive displays

Philips evaluated an early version of the Ambilight TV [66]. This repeated-measure ex-

periment, in which participants rated criteria such as presence and naturalness on a five-
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point numeric scale, was informed by the International Telecommunication Union’s

BT500 methodology [67]. While the BT500 is a common tool for measuring subjec-

tive perception of image quality, it is not clear that it can be extended to immersive

experiences and concepts such as presence. While significant results were found, the

repeated-measure design may be susceptible to demand characteristics, as participants

can easily guess the hypotheses under test.

Further research by Philips for an Advanced Ambilight system included objec-

tive measures via physiological monitoring, such as heart rate, skin conductance and

respiration [57]. Using physiological monitoring can be challenging, however, and sig-

nificant results between conditions were not obtained for these measures. Heart rate

and skin conductance responses were used successfully by Reeves et al. in their in-

vestigation of the effects of screen size on arousal and attention [68]. Their technique

for attention requires content with frequent cuts in order to trigger orienting responses,

however, and their technique for arousal is best suited for arousing content (e.g. videos

containing violence and sex).

A review of literature relevant to immersive display evaluation was completed by

Schnall et al. in their investigation of fulldomes, the immersive dome-based projection

displays most known for their use in planetariums [69]. With a focus on the educational

benefits of fulldome displays, their review included research on immersion, presence,

attention, memory and social factors. They presented several suggestions, including

ensuring as much consistency as possible between display conditions to reduce the risk

of confounding factors. They did not propose a framework for evaluating such displays,

however, and did not conduct any experiments.

Fonseca and Kraus explored how the level of immersion of a display impacts the

viewing experience when viewing 360° videos [70]. In a between-groups experiment,

participants watched an emotional 360° video about the meat industry. Twenty-one

participants watched the video in an Oculus Rift DK2 HMD, while 21 participants

watched the same video on a 10.1-inch tablet. The results indicated that the more

immersive condition significantly enhanced pro-environmental attitude, and increased

participants’ level of sympathy for the characters in the video.
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2.3.1.2 Presence

Immersive displays have often been measured by the sense of presence they create. This

document follows the convention of using the term “immersion” to mean an inherent

characteristic of the display system in use, while “presence” denotes the viewer’s sen-

sation of “being there” [71]. There have been many techniques suggested for the mea-

surement of presence. These include subjective self-assessment questionnaires such as

that proposed by Witmer and Singer [72], physiological monitoring [73], and realistic

physical responses to situations (“response-as-if-real”) [74].

While often used, questionnaire-based methods of presence measurement have

been criticised [75, 76]. Physiological monitoring has also been criticised as a measure

for presence, and has shown limited ability to produce significant results outside of

stressful experiences [77]. Additionally, it is unclear if a response-as-if-real measure

could be used in a passive display context, as viewers are likely to be aware that any

action taken would have no impact.

2.3.1.3 Spatial awareness

While many measures previously used for assessing VEs cannot easily be adapted to

CVR due to their focus on task completion, some measures that use a post-experience

task are viable. One such technique is the measurement of spatial awareness (SA) using

a map placement task. In this technique, following a VE experience, participants are

asked to mark the locations of objects that were visible in the VE on a map of the

environment. The SA metric can be taken as the summed Euclidean distance of these

objects from a ground truth. This technique has been used to compare different non-

immersive representations of 360° video [78]. A related concept, spatial orientation,

was used by Bowman et al. in their comparison of HMD and CAVE™ displays [79].

They found that HMD users were more likely than CAVE™ users to favour natural

turning over manual turning using a joystick. Participants were therefore more likely

to maintain spatial orientation in an HMD than a CAVE™ display.

2.3.1.4 Memory

Another objective metric that can be measured after an experience is memory. This can

be achieved by asking questions following the stimulus that require the viewer to re-

member elements of the video. There are several different kinds of memory. Memories
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can be “incidental” [80], i.e. memories made naturally during an experience, or inten-

tional, where participants consciously try to retain memories during an experience. The

popular model of memories proposed by Atkinson and Shiffrin has two memory stores:

short-term memory, which lasts in the order of seconds, and long-term memory, which

may be held indefinitely [81].

Measuring memory can be achieved in a number of ways, three of which are used

in the Wechsler Memory Scale [82]. Free recall is a technique were participants are

asked to remember elements without assistance, for example, “List as many character

names as you can remember.” A second technique is cued recall, in which a related

concept to the subject of the question is provided in order to aid memory retrieval. A

third form, recognition, can be assessed using multiple choice questions. Testing mem-

ory immediately following an experience is an indicator of immediate recall, which

relates to short and long-term memory. Evaluating retention of long-term memories

requires a study that spans several days or weeks; participants must be tested after a

break to measure the amount of content that has been retained.

The effect of immersion on memory is not well understood. Regan et al. showed

that procedure memorisation improved with higher immersion, however their metric

focused on physical tasks that relied on the improved spatial cues higher immersion

provides [83]. In terms of CVR, while it might be reasonable to hypothesize that a

more engaged viewer would remember more, and that a more immersive system would

lead to higher engagement, this does not appear to be the case. A memory study was

conducted by Rizzo et al. in their investigation of the use of 360° video for memory

assessment of persons with cognitive and functional impairments [84]. Their results

indicated that participants showed poorer free recall and recognition when a 360° video

was watched in a HMD over a standard 16:9 TV. Explanations for this effect focused

on mental load, in that participants had needed to expend mental processing to handle

the complex visuals, and therefore had less available for storing memories. To ensure

fairness between conditions, Rizzo et al. took all memory questions from the audio

track, so participants in all display conditions received the same information. Therefore

an alternative explanation for the reduced memory performance may be the novelty

effect of immersive displays, as participants were distracted by the visual “wow factor”

and not attending to the audio track. A similar result was found by Mania et al. in their
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investigation on the impact of immersion on memory in virtual environments [85].

In their study, a 15-minute seminar was consumed in one of four conditions: audio-

only, desktop, HMD, and the real world. They found that immersion level was not

positively correlated with recall, however participants did remember more in the real-

world condition.

2.3.1.5 Narrative engagement

In their Measuring Narrative Engagement Questionnaire (MNEQ), Busselle et al. pro-

posed a set of 12 questions that measure four aspects of engagement: narrative under-

standing; attentional focus; emotional engagement; and narrative presence [86]. Phys-

iological monitoring has been used to validate this self-reported narrative engagement

scale [87].

The questions in the MNEQ were distilled, through a series of experiments, from

a much larger set of questions that covered an array of media engagement aspects such

as empathy, narrative realism, and transportation. There is overlap between the MNEQ

and questionnaires designed for interactive content, for example the Immersive Expe-

rience Questionnaire (IEQ) [88]. The MNEQ, however, is designed for passive expe-

riences, so inappropriate aspects of the IEQ such as flow are not examined. In this

context, flow is taken to mean “the state in which individuals are so involved in an ac-

tivity that nothing else seems to matter” [89]. While this definition could be considered

to include passive media experiences where viewers become highly engaged, the liter-

ature makes clear that flow has multiple required components, including: clear goals;

direct and immediate feedback; balance between ability level and challenge; sense of

personal control. Watching immersive videos is not very interactive, so arguably does

not fulfil some of these aspects of flow.

An issue with a narrative engagement measure is that the stimulus may need to

portray an interesting narrative story in order for the test to be valid. Due to the limited

amount of 360° content available, as well as their generally short length, it may be a

challenge to find immersive films which adhere to this requirement.

2.3.2 Evaluation of multi-view 360° experiences

In Chapter 6, a user study will be described that investigates transitions in MV360M.

MV360M allows users to explore a space by actively selecting their position in the



40 Chapter 2. Background

scene from a choice of 360° views. By allowing users to navigate through a virtual

space, MV360M is in some ways related to locomotion in VR. The focus of this dis-

cussion is on how drawing this parallel can help identify appropriate metrics to evaluate

such systems, along with a discussion of how transitions in panoramic media have pre-

viously been evaluated in the literature.

2.3.2.1 Locomotion and Spatial Awareness

Exploring virtual worlds inside VR systems requires that the user be able to move

within the virtual space. As there is often not a one-to-one mapping between the phys-

ical and virtual spaces, this requires techniques to be developed beyond simple phys-

ical walking. These methods collectively fall under the umbrella of VR locomotion

techniques. A large number of locomotion techniques have been explored previously.

Teleportation [90] is one of the most commonly used, in which a user can select a new

location – for example by pointing using a hand controller – and is instantaneously

moved to that new position. Another technique is auto-locomotion [91], in which

the user is moved through the space based on some input, for example via a joystick.

Walking-in-place is a technique in which auto-locomotion is controlled through tracked

movements of the user’s body, specifically the user walking in place, and was found to

create a stronger feeling of subjective presence than auto-locomotion alone [92]. Other

techniques include redirected walking [93], in which physical motions are scaled to

increase or decrease their effect in the virtual world, and the use of a visual metaphor

such as a portal [94].

Similarly to VR locomotion, MV360M allows users to explore virtual spaces. This

is a useful parallel to draw, as the VR locomotion literature has established several

metrics to evaluate different techniques.

While transitions through MV360M can be framed as a VR locomotion task, there

are certain differences that are important. Often, locomotion techniques are assessed

on metrics such as accuracy of positioning, speed, number of collisions, and ease-of-

control (e.g. as in [92]). Such metrics are not necessarily appropriate for examining

different transitions. For example, the accuracy of positioning cannot reasonably be

examined, as the only available locations are predetermined by the camera positions,

and it is usually impossible to miss them due to the nature of the interface.
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There are several metrics in the VR locomotion literature, however, that are useful

for exploring the effects of transition types. Aspects such as the transition’s effect on the

user’s spatial awareness is of importance, as content producers may wish to understand

how their choice of transition will affect a user’s understanding of the captured space.

This may be of particular importance in MV360M, as the lack of parallax cues from

head movement may have a detrimental effect on a user’s spatial awareness over the six

degrees of freedom generally associated with HMD experiences. Bowman et al. looked

at the effect of transition types on spatial awareness in their work on viewpoint control

techniques [95]. They concluded that teleportation transitions produced poorer spatial

awareness than moving through the space, as assessed by the time taken to visually find

a previously seen object.

Metrics from the spatial awareness literature have also been employed. Pointing

tasks, in which the user is asked to indicate the direction of a previously seen object

that is no longer visible, have been used in the spatial awareness literature to gauge

participants’ understanding of physical buildings [96] and large outdoor spaces [97].

Pointing tasks similar to these have been used in the VR locomotion literature. In work

by Bowman et al., a pointing task was used to evaluate a user’s ability to maintain

spatial orientation while navigating through virtual corridors [98]. Their results indi-

cated that locomotion techniques in which the user did not physically move their body

still allowed them to maintain spatial orientation. Recently, Sargunam et al. used a

pointing task to evaluate the effect of amplified and guided head rotations on spatial

awareness [99]. Their results indicated that guided head rotations may negatively im-

pact spatial awareness, but only found the effect to be significant for participants with

significant gaming experience. As well as objective measures, subjective aspects such

as the naturalness of the transition (e.g. as investigated by Usoh et al. [92]) and user

preference (e.g. as investigated by Bozgeyikli et al. [90]) will have an impact on the

user’s experience.

As discussed by Bowman et al. in their work on VR locomotion, there is an im-

portant distinction between locomotion and navigation [95]. Navigation is a complex

area that incorporates many cognitive processes. While navigation is undeniably an

important concept when exploring a space in VR, like Bowman et al. we do not attempt

to address the underlying processes involved, although work has previously been done
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in this area [100].

2.3.2.2 Transitions

Transitions between panoramic images has been studied for some time. McMillan and

Bishop first proposed techniques for creating novel views by interpolating between

panoramic images captured from cameras with a small baseline of around 1.5m be-

tween camera locations [101]. Morvan and O’Sullivan continued this work to extend

the required baseline [102]. In their work, parallax was faked using occluder masks,

using a technique similar to Tour into the Picture [103]. Morvan and O’Sullivan also

used laser scanners to create accurate models of scenes; however producing such mod-

els required expensive specialist hardware and was labour intensive, so this technique

was not used in their final user evaluations. Morvan and O’Sullivan also conducted

a user study to establish transition preference between faked parallax, a dip to black

(fade) and a cross dissolve (blend). They concluded that blending was always preferred

over fading, and that fake parallax was generally preferred over blending.

These works, however, relate to panoramic media exploration in a desktop setting.

Viewing panoramic media in an immersive display such as a HMD is substantially dif-

ferent. For example, the user study by Morvan and O’Sullivan did not explore “cutting”

(an instantaneous transition) as it was not considered to be “well suited to continuous

navigation”. In an immersive context, instantaneous transitions are frequently used

for navigation, largely due to the effect of vection on simulator sickness [104]. Ad-

ditionally, in the work by Morvan and O’Sullivan, the orientation of the view during

transitions was predetermined, which is not conducive to a HMD experience where the

view is usually determined by the orientation of the HMD.

2.3.3 Simulator sickness

A known issue of immersive displays is the risk of simulator sickness. While the ex-

act mechanism is not fully understood, it is believed that a mismatch between optical

flow detected by the eyes and physical acceleration as detected by the inner ear can

cause nausea (for a review of the literature, see [105]). In certain cases, the effects

of simulator sickness can be severe. There is evidence that peripheral vision plays a

central role in detecting vection, and therefore a display with a very wide field-of-view

may produce a stronger effect [106]. This is of particular concern for CAVE™-like
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environments, which can match the horizontal field-of-view of human vision.

Simulator sickness is also of particular concern when dealing with auto-

locomotion in a HMD. This is due to the fact that simulator sickness can be induced

through vection in a VR display [104], and vection is a necessary component of some

forms of auto-locomotion. There have been studies that indicate that a user is less

likely to experience simulator sickness if they can control or anticipate the motion [91].

Additionally, there is evidence that most users become less susceptible to particular

movements with repeated exposure [107].

As a result of these factors, measuring simulator sickness is of particular impor-

tance in the experiments discussed in Chapters 5 and 6. The Simulator Sickness Ques-

tionnaire (SSQ) is the gold standard for measuring these effects, and is used extensively

in the field [108].
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Chapter 3

Media acquisition

In order to perform studies on the evaluation of 360° media, it was first necessary to

obtain 360° media content with which to perform these experiments. As the landscape

of the 360° media industry has changed substantially over the last four years, this may

now appear to be an almost trivial issue for CVR content. Four years ago, however,

high-quality 360° videos were not readily available. As a result, a focus at the be-

ginning of the project was on creating high-quality content that could be used in future

experiments. In this chapter, we briefly discuss this process, performed in collaboration

with BBC R&D.

In the latter stages of this project, high-quality 360° content became readily avail-

able online. As a result, our focus shifted from creating 360° media to selecting appro-

priate content from the large amount available. YouTube began to support 360° video

in 2015 [109]. This, coupled with an explosion of interest in the medium, led to the

availability of a plethora of content. In the second half of this chapter, we discuss the

selection process used to determine which videos would be most useful for evaluating

immersive viewing experiences. The complexities of producing MV360M are also dis-

cussed, as well as the decision to use third-party content for the study performed in this

area.

3.1 BBC in collaboration with UCL

3.1.1 Test documentary

A short test documentary was filmed by the BBC in collaboration with UCL. The video

capture hardware, operation and stitching was provided by UCL, while audio capture

was provided by the BBC. The writer and director was Peter Boyd Maclean. Maclean
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Figure 3.1: Filming with the Point Grey Ladybug3 on the roof of OnEustonSquare

has worked extensively with Nonny de la Peña, who is widely recognised for her work

in immersive VR journalism. An image of the camera being set up can be seen in

Figure 3.1.

3.1.1.1 Equipment

The filming was conducting using UCL’s Point Grey LadyBug3 camera in February

2015. The Ladybug3 uses 6 cameras with wide angle lenses to capture panoramic

content. It comes complete with stitching software that can output 360° images or

video. The lack of a camera facing downwards means that the base of the sphere is not

captured – this is seen as a black hole below the camera.

To capture content outdoors the Ladybug3 was connected to a 17-inch MacBook

Pro with a FireWire 800 port, as shown in Figure 3.2. The Ladybug software is Win-

dows only, and VMWare Fusion cannot virtualise FireWire ports, so the laptop was

booted into Windows. The MacBook itself was capable of supplying enough power to

the camera even when not plugged in to the mains. Without an external power supply,

approximately 30 minutes of filming could be performed on a single charge.

The Ladybug3 was set to 15 frame per second (fps) using JPEG 12-bit compres-

sion and full resolution of 5400x2700 pixels. The Ladybug3 is capable of capturing at

up to 32fps, but only if half vertical resolution is used. At full resolution, 16fps is the

maximum frame rate.
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Figure 3.2: Point Grey’s Ladybug3 connected to 17-inch MacBook Pro via Firewire 800

3.1.1.2 Software

Following advice from the BBC’s Richard Taylor, stitching was performed using the

Point Grey software into a sequence of PNG images. These images were then turned

into a video file using ffmpeg. At high resolution and using a good colour mode, the

stitching process can be quite lengthy. Stitching was performed on a Mid-2010, 17-inch

MacBook Pro with an Intel Core i7 running at 2.66GHz, with 8GB RAM and using

a TS256B Apple SSD hard drive. Stitching on this device using the “High Quality

Linear” colour interpolation mode, one minute of video took around two hours to stitch

at a resolution of 5400x2700.

When synchronising the audio with the output from the Ladybug, it became ap-

parent that the frame rate was inconsistent, varying across the duration of the video. As

ffmpeg assumes a constant frame rate, this resulted in erratic playback speed. Settings

can be chosen that reduce the Ladybug’s data production rate, and the MacBook had

an internal SSD. Despite this, occasionally frames were still dropped. When syncing

audio even a single dropped frame was noticeable.

It was possible to test for dropped frames in a recording using the LadybugCapPro

software provided by Point Grey. This provided a report of how many frames were

dropped and where. This information was used to correct for the missing frames. A

Ruby script was created that parsed out the missing frame details from the report pro-

duced by the LadybugCapPro software, and used that data to copy neighbouring frames

to fill the gaps. While this works, it adds an additional step to the post-production pro-

cess.
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Figure 3.3: Frame from test documentary shot with Point Grey’s Ladybug3 camera.

3.1.1.3 Results

Filming with the Ladybug3 presented many challenges. The short filming time pro-

vided by a single charge presented practical issues for filming outdoors. The tethered

laptop presented issues of form factor. The dropped frames required additional work in

post production to ensure a consistent frame rate. Additionally, the low frame rate of 15

frames per second would be considered unacceptable for most viewers and is dramati-

cally below the current standard for video production. A frame from the documentary

can be seen in Figure 3.3. Frames from this video were used in the investigation of

object removal in panoramic media, discussed in Chapter 4.

3.1.2 The Resistance of Honey

The next piece BBC R&D worked on was “The Resistance of Honey”, a 360° docu-

mentary video about a beekeeper filmed in September 2015. A frame from this video

is shown in Figure 3.4. Due to the limitations of filming with the Ladybug3 described

above, it was decided to use different camera hardware. An array of GoPro HERO4

cameras held using a Freedom360 mount, similar to that shown in Figure 3.5, was

made available by Middlesex University. Sound equipment was provided by the BBC.

As a result of Middlesex University’s involvement, UCL played a smaller role in this

production. The piece was written and directed by Peter Boyd Maclean, with UCL per-

forming equipment preparation and on-set operation. Stitching and editing was done

by Dr Peter Passmore of Middlesex University, and Peter Boyd Maclean. This piece

would go on to be the first 360° video by BBC R&D that was publicly released. An
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Figure 3.4: Frame from The Resistance of Honey.

Figure 3.5: GoPro array using a Freedom360 mount.

edited version of this video was used in the study described in Chapter 5.

3.2 BBC and external companies
Many other pieces of 360° footage filmed by the BBC and external companies were

made available for use in the work undertaken in this thesis. This included several test

shots by the film maker Peter Boyd Maclean, which featured outdoor scenes such as

parks, and a further short documentary shot by the BBC. The BBC also made available

some high-quality footage shot in Broadcasting House, which included footage from

the BBC newsroom. Frames from some of these video files can be seen in Figure 3.6.

Frames and video from this content were used in the investigation of object removal in

panoramic media, discussed in Chapter 4.
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(a) Frame of a London park. Video courtesy of Peter Boyd Maclean

(b) Frame of Westminster. Video courtesy of BBC R&D

(c) Frame from BBC newsroom. Video courtesy of BBC R&D

Figure 3.6: Examples of 360° video made available by the BBC and Peter Boyd Maclean.
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3.3 YouTube and the growth of 360° video
YouTube added the ability to share 360° content via its platform in March 2015 [109],

with Facebook following suit a few months later [110]. Improvements in the production

pipeline, as well as growing interest in the medium, meant that around this time an

enormous amount of high-quality, diverse content was becoming available. As a result

of this, content creation was no longer an essential component of experience evaluation.

Additional CVR content was found, via YouTube, that conformed to the require-

ments necessary to measure various aspects of the end-user experience. This included

aspects such as how frequently the video cut between different locations, character

placements, and the strength of the narrative arc. These requirements are discussed

fully in Chapter 5. A complete list of all content used can be found in Appendix B.

3.4 Multi-view 360° media
In Chapter 6, a user study is discussed in which MV360M was investigated. This re-

quired the use of MV360M, which is currently much less common and harder to access

than single-view 360° media. Additionally, as will be discussed further in Chapter 6, it

was important for the study that a 3D model be available of the scenes depicted in the

media.

At first it was attempted to create geometry proxies from existing MV360M. BBC

R&D provided a MV360M piece they had recently captured. Manually creating geom-

etry proxies using this media, however, proved to be extremely labour intensive, with

unsatisfactory results. Automatic camera calibration seemed unlikely to work, due to

the extremely wide baselines involved, and the fact that the equirectangular images in

question were in fact multiple images blended together, each with its own extrinsic and

intrinsic camera matrices. Recent tooling improvements in interactive geometry proxy

construction from panoramas may make this process easier in the future, however these

systems are currently limited to single-view 360° media [111].

As a result of these issues, it was decided to approach a third-party source to

obtain MV360M for which 3D models were already available. Matterport, a California-

based property technology company, have created a camera that captures 360° RGB-D

images. This camera, shown in Figure 3.7, can be used to scan indoor scenes, taking

4K panoramic images from specific locations, while also building a 3D model of the
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Figure 3.7: Matterport’s 360° RGB-D camera

Figure 3.8: An example 3D model from Matterport

scene. This camera is only capable of capturing static scenes. Matterport were able

to supply us with data for three scenes, an example of which is shown in Figure 3.8.

These scenes were used in the MV360M user study, discussed in Chapter 6.

3.5 Conclusion

In this chapter, the process by which 360° media was acquired for all stages of the

project was discussed. Initial experiments in capture using the Ladybug3 camera were

covered, and issues connected with this technology highlighted. Collaborative effects
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between BBC R&D, Middlesex University and UCL to create the publicly released

“The Resistance of Honey” documentary were also detailed. Additionally, the resourc-

ing of single-view 360° media from YouTube and multi-view 360° media from Matter-

port were also described. A complete list of all 360° media used throughout this work

is available in Appendix B.



Chapter 4

Object removal in panoramic media

A project was undertaken that explored object removal in 360° images. This chapter

describes that project, and is reproduced from sections 4–7 of a paper that was pub-

lished in the 2015 Proceedings of the European Conference on Visual Media Produc-

tion (CVMP) [16]. First, a method of object removal in 360° images is described, in

which field-of-view expansion is combined with Graphcut Textures to remove objects.

Secondly, inpainting in 360° images is examined. Finally, the latter technique is shown

to work for video in certain situations.

4.1 FOV expansion and graph cuts
In many cases, object removal in a 360° panorama can be formulated as FOV expan-

sion. By expanding the HFOV beyond 360°, an area of overlap is introduced to the

viewing sphere. If the overlap is positioned at the point of the unwanted object, a cut

between these ends can be done in such a way as to remove the object.

4.1.1 Algorithm formulation

This algorithm can be formulated using an equirectangular projection [31]. This pro-

jection has the useful property that increasing the HFOV can be achieved by simply

increasing the image width.

An example of this method is shown in Figure 4.1. The section of the equirect-

angular image containing the object is removed. As equirectangular images have a

distortion pattern that is constant horizontally but varies vertically, the removal is per-

formed vertically to ensure content maintains the correct variation of vertical distortion.

At this stage, the image could be stretched to restore the 2:1 aspect ratio and considered
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(a) Equirectangular with object to be removed in
red.

(b) Section A is removed, while sections B and C
are overlapped and a good transition found us-
ing Graphcut Textures.

“Sherbrooke Forest” by Peter Gawthrop, used under CC BY-NC 2.0

Figure 4.1: FOV expansion and Graphcut Textures

a 360° panoramic image. However, the introduced cut would be highly noticeable and

jarring. To disguise the cut, Graphcut Textures can be used [33].

To create a plausible join, the left hand side and right hand side of the join are

overlapped as shown in Figure 4.1b. A larger overlapping region provides more scope

for a good cut to be found, however it also removes more of the original panorama.

This is a parameter that can be altered depending on the context. Graphcut Textures

is then used to find a good join between these overlapping sections, formulating the

problem as a min-cut/max-flow optimisation that favours cuts at areas of similarity.

4.1.2 Results

We tested the above technique on equirectangular images. As can be seen in Figure

4.1a, we digitally added an object to the scene that presented a substantial challenge to

remove. We performed the technique as described in section 4.1.1, the results of which

can be seen in Figure 4.2.

The results are fairly compelling. The offending object is completely removed,

and the cut is well disguised as can be seen in Figure 4.2c. Some artifacts can be seen,

for example the branch at the centre top of image 4.2c ends abruptly where the cut has

taken place. We have also needed to remove more of the original panorama than in the

copped version seen in Figure 4.2b to allow an overlapping region for graph cuts to

take place.

Two further examples can be seen in Figure 4.3. Here, frames from two videos are

processed to remove crew and equipment. The removal in Figure 4.3c is challenging

as the object is fairly wide in the scene, and the background change is nontrivial. To
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(a) Rectilinear view with object to be removed in
red.

(b) A simple straight cut: the cut appears as a no-
ticeable sharp edge.

(c) The proposed graph cuts method: using Graphcut Textures, the cut is
well disguised. In the closeup the cut is shown in yellow.

“Sherbrooke Forest” by Peter Gawthrop, used under CC BY-NC 2.0

Figure 4.2: Rectilinear views of image 4.1a following HFOV expansion and region removal.
As a large FOV has been used to display more of the scene, stretching distortion
can be seen at edges.

produce this cut, the section marked to be removed included the crew and most of the

bag – the remainder of the bag was removed automatically during the graph cut phase.

Importantly, these cuts took place in non-salient areas of 360° panoramas. This means

that the viewer is most likely not focusing their attending in this direction, and therefore

some minor artifacts may go unnoticed.

4.1.3 Limitations

By removing a section of the panorama and stretching the remaining content to restore

the 2:1 aspect ratio, a circular distortion centred around the poles has been introduced.

This circular distortion is noticeable even in natural scenes, as shown in Figure 4.4. The

amount of the panorama removed will affect the results, with smaller cuts introducing
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(a) Before cut: the director is visible and should be
removed.

(b) After cut: the seam is not obvious, but minor
artifacts in shadows.

Frame courtesy of Peter Boyd Maclean

(c) Before cut: some crew and equipment are visi-
ble.

(d) After cut: minor artifacts are noticeable in the
sky

Frame courtesy of the BBC

Figure 4.3: Rectilinear views of equirectangular video frames, showing object removal using
the proposed graph cuts method.

less distortion. The distortion effect in Figure 4.4 is quite pronounced as 25% of the

HFOV of the original panorama has been removed.

This distortion effect alters the content in such a way that straight lines are no

longer guaranteed to be straight. This is particularly pronounced near the poles. This

effect may or may not be noticeable depending on the content; natural scenes such as

that of Figure 4.1a may appear plausible, while artificial structures with straight lines

will make this effect more obvious, as shown in Figure 4.5. As we will discuss further

in section 4.2.1, this effect can be reduced by scaling the content in a non-homogeneous

fashion.
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(a) Before cut: the south pole appears normal. (b) After cut: a circular distortion has been intro-
duced, centred on the pole.

“Sherbrooke Forest” by Peter Gawthrop, used under CC BY-NC 2.0

Figure 4.4: Rectilinear views of the circular distortion introduced by the proposed graph cuts
method at the south pole.

(a) Before cut: straight lines near the north pole ap-
pear straight.

(b) After cut: straight lines near the north pole ap-
pear curved.

Figure 4.5: Rectilinear views of the tops of buildings, showing distortion introduced at the
north pole by the proposed graph cuts method. Note that the removed section is
behind the viewer, so cannot be seen in these images.

Marking the region to be removed is very easy. Only the x-axis start and end posi-

tions of the region to be removed, as well as the overlap size, need to be specified. This

makes the process quick compared to the creation of even a rough mask. However, this

speed comes at the expense of control. The entire marked region will be removed and

the overlap searched for a good cut – the user cannot specify regions in the overlapping

area they would like to keep. As the system takes only a few seconds to create the new

panorama, a trial and error approach can be used to identify good settings for an image

interactively.

The graph cut method used suffers the same limitations as Graphcut Textures.
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(a) Before cut: the person in the red coat should be
removed.

(b) After cut: background structures are noticeably
incorrect.

(c) Before cut: the teleprompter should be re-
moved.

(d) After cut: a good cut cannot be found.

Frame courtesy of the BBC

Figure 4.6: Failure cases of the graph cuts method: rectilinear views before and after cuts.
The objects are successfully removed, however surrounding structures are incorrect
resulting in unrealistic images.

Sometimes no decent cut is available, and the two sides cannot be realistically com-

bined. This can happen when a significant change happens in the background across

the object to be removed. Additionally, artificial structures and buildings are difficult

to cut plausibly as they tend to have a regular shape with many straight lines, which are

challenging to join realistically. An example of this can be seen in Figure 4.6. For this

reason outdoor, natural scenes are likely to produce better results.
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A cut alters the physical layout of the space. In situations where the viewer does

not have a strong mental model of this layout, this is usually not an issue. In some

cases, however, such as a square room that is no longer square following the cut, the

alteration is quite pronounced and slightly disconcerting. In scenes with very regular

surrounding structure, the technique of section 4.3 may well be applicable.

4.2 Extensions & refinements

4.2.1 Retargeting techniques

The method described in section 4.1 performs homogeneous stretching of content to

restore the 2:1 aspect ratio of the equirectangular image following a cut. While this can

produce good results, it can also cause noticeable distortion. For example, following the

removal of a large object, people are visibly more stretched in the horizontal axis, and

buildings with straight lines close to the poles no longer appear straight. Retargeting

techniques can be used to reduce these distortions.

Seam-carving can be applied to prevent the distortion of important sections. These

sections, for example people or straight lines near the poles, could be detected automati-

cally in panoramic images using the methods proposed by Sacht et al. [45]. However for

simplicity, the example presented here was produced using a manually created saliency

mask. As shown in Figure 4.7, additive seam carving was used to increase the width of

an image while preserving the salient element, in this case a person who is expected to

be the focal point.

Seam carving in panoramic content may be even more effective than in standard

format media due to the large amount of non-salient areas. Standard media has a com-

paratively small FOV, so often the entire screen is filled with salient content. Panoramic

media, in contrast, generally has a large amount of non-salient content. However, seam

carving is a computationally expensive process in this context due to the extremely

large size of panoramic images. Carving 600 seams in the moderately sized 2400x1500

frame shown in Figure 4.7a took 15 minutes, despite the use of a well known, fast

implementation [36]. Additionally, seam carving can introduce noticeable distortions

in some scenes, particularly regular structures and straight lines. Instead, a simpler

method can be used.

By performing stretching of the non-salient content only, good results can be
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(a) Equirectangular undergoing seam carving to restore 2:1 aspect ratio following large object
removal. Saliency mask is highlighted in red, carved seams are shown in yellow.

(b) Rectilinear view: before
the cut.

(c) After cut: homogeneous
image stretch.

(d) Seam carved: person pre-
served by mask.

Figure 4.7: Seam carving can be used to preserve salient content during FOV expansion. Note
that the removed section is behind the viewer, so cannot be seen in images b–d.

achieved at interactive speeds. After manually determining the salient areas, non-

salient content is stretched horizontally to restore the 2:1 aspect ratio following a cut, as

can be seen in Figure 4.8. As we are only stretching along the x-axis and a large amount

of non-salient content is available to perform the operation easily, a very simply method

can be used. The sections to the left and right of the salient area are stretched, while the

central region containing the salient content retains its original size. If a more complex

scaling was required, for example in scenes with many disconnected salient areas, the

work of Wolf et al. may facilitate a more appropriate non-homogeneous stretch [38].

Similar results to those of Figure 4.7 are achieved, in less time and with less introduced

distortions in areas with regular structure.
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(a) Equirectangular following large cut.

(b) Equirectangular is non-homogeneously stretched in the x axis to restore
2:1 aspect ratio. Middle area is not stretched to preserve central figure.

Figure 4.8: Grid shows non-homogeneous stretching used to preserve salient content. In these
images, the stretched sections have been darkened to highlight areas that were al-
tered.

4.2.2 Tripod removal

The method outlined in section 4.1 can remove objects near the equator of the image.

To remove objects above or below the camera, such as the tripod, an adaptation must be

made. Removing the tripod is achieved by rotating the panorama so the object appears

near the equator, removing the object as in section 4.1, and then reversing the rotation to

return the panorama to its original orientation. Rotating the panorama can be thought of

as choosing different poles on the viewing sphere before projecting to equirectangular,

as shown in Figures 4.9a and 4.9b. However, some issues are introduced by this method

of performing cuts.

As indicated in section 4.1.3, a circular distortion is introduced at the poles during

the cut. If the poles during the cut are in fact from the equator of the original panorama,

these distortions become highly noticeable. As can be seen in Figure 4.9e and 4.9f, the



4.3. Inpainting 65

horizon becomes bent. There are a number of ways to mitigate this effect. The first is

to remove an equally sized cut from the opposite side of the sphere. This means the

horizon stays in place. This can produced plausible results in some cases. However in

some cases this will only increase the perceived distortion, particularly when there are

straight lines such as buildings, such as in Figure 4.9g.

An alternative approach is to stretch the content in a non-homogeneous way as

described in section 4.2.1, specifically, stretching only the content below the horizon to

return the 2:1 aspect ratio following a cut. This allows the horizon to remain flat, and

preserves the content above the equator at the expense of some additional stretching

below the equator. An example of this can be seen in Figure 4.9h.

It is important to note that this method of tripod removal requires two rotations

of the sphere to be stored as equirectangular images – the first to move the pole to the

equator, and the second to move it back after editing. Each of these rotations uses a

filter that distorts content at the poles, resulting in reduced clarity of the image. A way

to mitigate this is to work in a higher resolution than required for the final image before

scaling down, although this will also increase computation time.

4.3 Inpainting
The method described in section 4.1 changes the FOV of the image, resulting in warp-

ing of the content. Additionally, to perform tripod removal, the poles must be moved

twice, each using a filter that increases blurring. Instead, inpainting could be used to

remove unwanted objects or fill holes. To perform inpainting, the object or hole to be

removed is masked to identify the area to be inpainted. Content from the rest of the im-

age is then used to fill this area in a way that appears plausible. In all of the examples

in this document, the mask was created manually, and the inpainting performed using

Adobe Photoshop’s content-aware fill [43].

4.3.1 Inpainting in equirectangular

The most simple method to inpaint objects in panoramic images is to inpaint directly

in equirectangular. In many cases, this will produce excellent results and no further

work is required. Examples of this can be seen in Figure 4.10. However there are

many situations in which this method will not work. Inpainting the tripod, for example,
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(a) Original equirectangular – tripod is stretched
across the south pole.

(b) The sphere is rotated so the tripod is at the equa-
tor.

(c) Before the cut: looking down, the tripod is vis-
ible.

(d) After cut: tripod removed using FOV expansion
and graph cuts.

(e) Before the cut: the horizon is straight. (f) After cut: circular distortion at the pole has
warped the horizon.

(g) Straightening the horizon: taking an equal sized
cut from the opposite side of the sphere.

(h) Straightening the horizon: non-homogeneous
stretching of content preserves buildings better.

Frame courtesy of the BBC

Figure 4.9: Tripod removal using FOV expansion and graph cuts.
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(a) Closeup of object to be re-
moved.

(b) Inpainted in equirectangu-
lar.

Frame courtesy of Peter Boyd Maclean

(c) Closeup of object to be re-
moved.

(d) Inpainted in equirectangu-
lar.

Frame courtesy of the BBC

Figure 4.10: Inpainting directly in equirectangular.

is infeasible using this method as the tripod is normally at the south pole – an area

so distorted in an equirectangular projection that inpainting cannot produce plausible

results. Indeed, even masking the tripod for inpainting is a challenge as the distortion

is so strong that it is difficult to identify it definitely.

One method to combat these issues is to rotate the tripod to the centre of the

equirectangular image, perform inpainting, and then rotate the panorama back to its

original orientation. These rotations can be performed in a similar fashion to section

4.2.2. In this case, however, the effects of the filter used during rotation can be undone

at the end of the process. This is achieved by rotating the mask created during the

inpainting step through an identical rotation as that of the image. This mask is then

used to copy the inpainted material from the final image into the original, unrotated

image. To prevent noticeable discontinuities the copied section can be feathered in. As

can be seen in Figure 4.11, this method is capable of producing excellent results.

An issue with inpainting in an equirectangular image is that it can produce poor
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(a) Closeup of the tripod. (b) Tripod is inpainted.
Frame courtesy of the BBC

Figure 4.11: Inpainting in equirectangular following rotation of south pole to the equator, as in
Figures 4.9a and 4.9b.

results in some situations. Content can be used for inpainting that does not match

the distortion of the hole being filled. This is particularly noticeable when inpaiting

geometric textures. To highlight this, a challenging issue was considered. Some 360°

cameras do not capture a full sphere. Point Grey’s Ladybug3, for example, does not

have a downward facing camera. This results in a black hole covering the south pole.

Removing this black hole follows a similar process as removing an unwanted object – a

section of the media must be removed or replaced while maintaining a plausible visual

result. As can be seen in Figure 4.12, inpainting this large hole with geometric content

causes issues. In Figure 4.12d, brickwork from elsewhere in the equirectangular image

is used, resulting in an image that is noticeably incorrect.

4.3.2 Straight line preserving projections

A possible solution to the problems seen in Figure 4.12d is to inpaint in a projection

that preserves straight lines. A cubic projection is one in which the sphere is projected

onto the six sides of a cube. Each cube face is a rectilinear image with a HFOV and

VFOV of 90°. While this projection has issues in terms of storage and display – being

somewhat complicated to understand when viewed in flat form – it has the advantage

of having little distortion on any of the cube’s faces. Importantly, straight lines appear

straight in each tile. By inpainting using only the bottom tile of a cubic projection, the

hole shown in Figure 4.13a can be removed with fairly good results, as shown in Figure

4.13b. However, using only the bottom tile of the cube means that less of the panorama

is available for matches to be located. For many cases this would not be an issue as the
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(a) Original equirectangular. (b) Hole rotated to equator.

(c) Closeup of hole to be filled. (d) Inpainted in equirectangular.

Figure 4.12: Failure case of inpainting in equirectangular: large hole at south pole inpainted
with geometric texture.

best content to inpaint with will likely be near the hole. For complex inpainting tasks

requiring more information, another approach may improve results.

The inpainting of geometrically complicated surfaces is an example of a case

where improvements may be possible over a cubic projection. This can be seen in

Figure 4.13d, where the 130° VFOV rectilinear image centred on the hole shown in

Figure 4.13c is inpainted. At 130° VFOV, content at the edges of the rectilinear im-

age undergo substantial stretching distortion. In the cubic version in Figure 4.13b, the

results are crisp but there is noticeable repetition. In Figure 4.13d, repetitions are less

obvious, although this comes at the expense of clarity as the results are more blurred.

This makes sense – the rectilinear version in Figure 4.13c has more choice as it covers

a larger area, however stretching distortions at the edges of the rectilinear mean blurred

content is available for use by the inpainting algorithm.

Whether or not a cubic projection is sufficient will depend on the size of the hole

and the type of content being inpainted. Inpainting could be performed on rectilin-
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(a) Bottom cubic tile with hole. (b) Inpainted in cubic.

(c) 130° VFOV rectilinear with hole. (d) Closeup of inpainted rectilinear.

Figure 4.13: Inpainting of large hole at south pole.

ear views with differing FOVs, allowing the best result to be found. Inpainting the 90°

HFOV/VFOV rectilinear tile of the cubic projection has the advantage that the inpainted

tile can be swapped in for the original tile and no more work is required. For rectilinear

views with other FOVs, the inpainted rectilinear content must be copied back into the

original panorama, adding an additional step to the process. Working in a higher reso-

lution than required for the final panorama may also be useful, as stretched content at

the edges of the rectilinear will be better quality and therefore produce superior results

if used by the inpainting algorithm.

4.3.3 Limitations

Inpainting panoramic content can produce good results in many cases. It suffers similar

limitations, however, to inpainting standard format content. There are times when in-

painting cannot produce a plausible result. Examples of this can be seen in Figure 4.14.
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In Figure 4.14b, the implausible removal of a tree’s trunk mean the resultant image is

unconvincing. In Figure 4.14d, revealed structure cannot be realistically constructed

using content found elsewhere in the image.

In such cases, it may be better to remove the area entirely using the method de-

scribed in section 4.1, as seen in Figure 4.14e. In some cases, however, neither method

will work, as shown in Figure 4.14f where a camera operator cannot be removed while

retaining a plausible image. The substantial change in background and the geometric

structure of the surrounding room prevent the successful application of the graph cuts

method.

The completion of the nadir using inpainting shown in Figure 4.13 is very success-

ful, even in the presence of complex geometric textures. However, this is in part due

to the fact that the content is viewed fronto-parallel, as the camera’s downward vector

is perpendicular to the ground plane. To inpaint geometrically textured content on sur-

faces that are not viewed fronto-parallel, it may be beneficial to correct the perspective

distortion prior to inpainting, as in the work of Pavić et al. [112].

4.4 Video

Extending the technique described in section 4.3 to video is easy in certain situations.

If the camera is fixed, the background is static, and foreground objects do not pass in

front of the inpainted hole, the results of inpainting in one frame can be copied to the

other frames. Small changes in global illumination can be handled by adjusting the

brightness of the inpainted section to match the target frame before transfer.

While these constraints may seem restrictive, tripod removal for a static camera

often fulfils the required criteria. This assumes other foreground objects or shadows

do not cross the inpainted section. This method was used to remove the tripod from a

video sequence, the results of which can be seen in Figure 4.15.

The object removal technique described in section 4.1 could be extended to video

in a similar way, applying the cut found in the first frame to each successive frame in the

video. This method would suffer from similar limitations as well – foreground objects

could not move across the cut area, and dynamic backgrounds would not be supported.
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(a) Closeup of large object to be removed. (b) Revealed tree trunk is not recon-
structed by inpainting.

(c) Camera operator should be removed. (d) Inpainting does not realistically com-
plete the door.

Frame courtesy of the BBC

(e) Graph cuts applied to image 4.14a: the
result is better then 4.14b.

(f) Graph cut applied to image 4.14c: the
result is worse than 4.14d.

Figure 4.14: Failure cases of inpainting method. Inpainting does not always produce plausible
results when the removed object is very large or novel shapes are revealed. The
proposed graph cuts method can improve results in some cases.
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Frame 1 Frame 250 Frame 500
Video courtesy of the BBC

Figure 4.15: 100° FOV rectilinear views of an inpainted video. The inpainted section was
copied between the equirectangular frames. Above, the tripod can be seen at the
bottom of the unedited frames. Below, the tripod has been successfully removed.

4.5 Conclusion
It has been shown that two methods for object removal are viable for use in 360° panora-

mas. Inpainting can produce excellent results in many situations. In many cases where

the object to be removed is not at the poles, it was shown that the standard equirectangu-

lar projection can be used without additional steps. Due to the distortion characteristics

of equirectangular images, however, more needs to be done to inpaint content at the

poles. Tripod removal was shown to work well by adding rotation steps to the pro-

cess, while cubic and rectilinear projections are required for complex inpainting tasks

such as geometric textures. Inpainting failed to produce good results, however, in some

cases where the background being revealed could not be plausibly reconstructed using

content in the image.

In these cases, the FOV expansion and graph cuts method described in section 4.1

could be used. Instead of attempting to reconstruct the background revealed during

object removal, the entire section is removed and the neighbouring content cut together

in a plausible way. This method was shown to produce good results including when the
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object being removed was not at the equator. Methods were also discussed to alleviate

the distortions this method can introduce, such as seam carving and non-homogeneous

warping. However, in some situations such as the presence of very regular surrounding

structure, this method may fail to produce acceptable results.
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Chapter 5

User study: evaluating the effect of

display type on the viewing experience

for panoramic video

This chapter looks at monoscopic, passive, fixed-viewpoint 360° videos, as these are

by far the most commonly available type of video for virtual reality. These videos span

a broad spectrum of genres, from news and journalism to comedy and horror.

There are several issues with HMD-based playback of 360° videos. Arguably the

most detrimental problem is the lack of directorial control over what the viewer sees,

as the director cannot dictate in which direction the viewer is looking at any given

time. This presents issues for narrative understanding, and may lead to the viewer feel-

ing they have missed important elements. In a 2016 user study, “audiences expressed

FOMO (what the kids are calling ‘fear of missing out’)” [113]. Additional issues in-

clude the physical discomfort of wearing the headsets, and the feelings of vulnerability

and unsociability generated by being cut off from the physical world.

The SurroundVideo+ (SV+) display was designed to mitigate some of the issues

associated with HMD playback, while attempting to retain some of the immersive char-

acteristics. SV+ is an immersive display, featuring a TV as a focal point to provide a

directed viewing experience, as well as projection-based peripheral content to provide

immersive visuals. The peripheral projections in our SV+ are provided by a CAVE™-

like display [114]. The use of projection can allow SV+ to provide a social viewing

experience. The use of projection also means viewers do not need to wear any equip-

ment, and that no setup is required following initial calibration. By using projection
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mapping and radiometric compensation techniques, SV+-like systems could be one

model for the living room of the future. The use of a CAVE™-like display can be seen

as an ideal version of SV+ where any furniture or fixings in the room are effectively

imperceptible or irrelevant in the context of the video presentation.

As well as presenting issues, immersive displays may provide new opportunities.

HMDs provide a new way to view media that may provide novelty and additional

enjoyment. For example, it has been suggested that “VR horror experiences can be

much more intense, isolating and terrifying than when played on a standard 2D dis-

play” [115]. While this statement was directed at VR gaming, CVR is likely to be

similar. The complete occlusion of the real world in HMD experiences gives media

producers the opportunity to control many elements of the experience, allowing them

to create highly atmospheric content. Additionally, the isolation and physical vulnera-

bility of viewers would likely increase any sense of fear. While this will likely produce

more powerful horrors, it has been suggested that “jump scares” in VR may be too

intense, prompting Oculus VR to “strongly discourage” content creators from using

them [115].

Evaluation of passive CVR experiences presents several issues. Task completion is

almost always used in HCI evaluation, with metrics such as speed or accuracy forming

the basis of most analyses. As CVR does not involve active tasks, these frameworks are

not suitable. Evaluation techniques used in media psychology, however, do not specifi-

cally address the issues related to VR, such as immersion, presence, spatial awareness,

physical comfort, etc. In this chapter, we present relevant evaluation techniques for

such experiences, and explore these identified measures through a user study.

The user study was designed to evaluate the effect of display type on the viewing

experience. In doing so, we were also able to critique each measure’s ability to differ-

entiate between display systems and to evaluate the CVR experience in general. This

chapter describes that user study, and is reproduced from sections 3–6 of our paper pub-

lished in the 2017 Proceedings of the IEEE Virtual Reality Conference (IEEEVR) [17].

5.1 Study design
A between-groups experiment of 63 participants was conducted, in which participants

watched 360° videos in one of three display conditions. The details of this study are
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Figure 5.1: A 360° video being watched on a head-mounted display (left), a TV (right), and
our SurroundVideo+ system (centre)

described below. The study was approved by the UCL Research Ethics Committee

(project ID 8923/001).

5.1.1 Subjects

Participants were recruited through a university mailing list and two participant pool

websites. A total of 65 participants took part in the study, but data from two was ex-

cluded due to procedural issues. For one this was due to a hardware malfunction, while

one participant decided not to watch one video containing bees for phobia-related rea-

sons. No details were collected on the vision of participants due to an omission in the

subject requirements, however no participants reported any difficulty with eyesight or

completing any of the tasks due to vision related issues. Of the 63 remaining partic-

ipants, 27 were male and 36 were female. Ages ranged from 19 to 76 years (mean:

27.78; standard deviation: 9.27). Participants were randomly assigned to a display

condition until a condition reached 21 participants, at which point participants were

randomly assigned between the remaining conditions. As a result, each display condi-

tion had 21 participants.

5.1.2 Experimental conditions

Each participant watched all videos in one of three display conditions, which are de-

scribed below.

5.1.2.1 Head-mounted display

The HMD used in this condition was the Oculus Rift CV1, driven by a Windows 8.1

desktop PC with an Intel i7-4790 CPU running at 3.6GHz with 8GB of RAM. The

video card in use was a NVIDIA GeForce GTX 1080. The Oculus CV1 has a refresh

rate of 90Hz. Whirligig was used as the video playback software. The videos played
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with no visible lag at their expected frame rate of 30fps. Attempts were made to keep

as many aspects as possible consistent across all three display conditions. To that end,

in all display conditions the viewer was seated in the CAVE™-like display even when

the displays were turned off, as was the case in the HMD condition. Audio across all

three conditions was provided by the same stereo speakers, mounted above the corners

of the walls of the CAVE™-like display. The built-in headphones of the Oculus Rift

CV1 were removed, and the audio volume was the same across all conditions.

5.1.2.2 SurroundVideo+

The SV+ display is intended as a middle ground between the highly immersive visu-

als of a HMD – in that SV+ entirely fills the horizontal FOV of the viewer – and the

directed experience of a TV. In Microsoft’s IllumiRoom display, peripherally projected

content was designed to spatially augment a living room. In our SV+ display, we imag-

ine a future scenario in which projection mapping can be used to visually negate the

appearance of the surrounding room and replace it with the desired peripheral content.

The SV+ system used a three-walled CAVE™-like system to display the periph-

eral content, with a TV placed centrally to provide a focal point, as shown in the centre

image in Figure 5.1. The TV was placed on a 70cm high table. Each wall of the

CAVE™-like display was 3m long and 2.2m high, with each wall having a resolution

of 1400x1050. While the CAVE™-like display in use also had a floor projector avail-

able, this was not utilised. The viewer sat on a fixed chair, positioned slightly back from

the centre of the CAVE™-like display, meaning the peripheral projections covered the

entire horizontal visual field of a viewer looking forward. No head tracking was used,

as the videos do not support parallax, and head turning does not have an effect on the

display.

The TV in use was a 60” LED HD TV made by LG, model number 60LA620V.

The TV and projectors were driven by a Windows 7 desktop PC with an Intel i7-3930K

CPU running at 3.2GHz with 32GB of RAM. The video card in use was a NVIDIA

Quadro K5000. With a viewing distance of just over 2m, the TV subtended a solid

angle of approximately 36° horizontally and 21° vertically for the head position of an

average viewer. This meant the diagonal FOV of the TV was around 41°.

In order to allow 360° videos to be repurposed for use in the SV+ display, in a
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pre-processing step, tracking data was created to ensure the content deemed important

at any given time in the video was displayed centrally on the TV. This data was pro-

duced by manually annotating the videos with directional keyframes. Each keyframe

specified a “forward” direction that indicated what the authors felt was the most im-

portant content in the viewing sphere at that moment. An example of this would be

that, in general, a character was considered to be the most important scene element

when they were speaking. These keyframes were then linearly interpolated to produce

a “forward” direction per frame. This meant that, when played, the viewing sphere

rotated, tilted and cut around the viewer to maintain the important content on the TV as

it moved through the scene. This tracking data produced video playback with a clear

narrative, however the authors are non-expert directors so the visual experience may

not be optimal.

Video playback in the SV+ system was achieved using an adapted version of the

open source OmiPlayer 360° video player written by Omar Mohamed Ali [116]. While

the projectors and TV had high refresh rates of 96Hz and 200Hz respectively, the videos

were only available with a frame rate of 30fps. The system was capable of displaying

the videos at this frame rate with no visible lag.

5.1.2.3 Television

The TV display condition was identical to the SV+ display condition, except that the

peripheral projections were disabled. For ease of swapping conditions, the projectors

were not switched off but instead they projected solid black. For this reason, the walls

of the CAVE™-like display during the TV condition were at the projectors’ black level.

5.1.3 Stimuli

Videos that matched the genre requirements were selected based on several factors. The

videos needed to be suitably engaging, and high in audio and video quality. To ensure

a contiguous image between the projected content and the TV, the FOV of the content

displayed on the TV was fixed at the angle subtended by the physical TV within the

CAVE™-like display. As discussed in section 5.1.2.2, the diagonal FOV of the content

displayed on the TV was 41°. This meant the videos needed to match certain character

placement requirements, and videos in which characters were too close to the camera

had to be discarded.
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Due to the small solid angle subtended by the TV, videos with as high a resolu-

tion as possible were required. Source videos were only available with a maximum

resolution of 4K. Even with a 4096x2048 pixel equirectangular video, the effective res-

olution of the content displayed on the TV was only 409x250 pixels. It is fair to say

that this is a noticeably low resolution for a TV capable of displaying up to 1080p. As

the participant was seated just over 2m from the display, this did not seriously distract

them.

Videos were also selected based on their appropriateness for the designed mea-

sures, which are discussed in full in section 5.1.5. For example, the spatial awareness

task required participants to mark the locations of objects that had been seen in the

video on a floor plan of the scene. This required videos that were staged largely in

a single space, and had objects that could reasonably be remembered. The Measur-

ing Narrative Engagement Questionnaire (MNEQ) required narrative content, which

proved particularly difficult to source. This was due to the limited duration of content,

as well as the fact that difficulties in storytelling mean many 360° videos are experien-

tial in nature rather than narrative based.

It was decided that participants would sit in a fixed chair across all conditions.

During an informal pilot study, participants in the HMD condition failed to observe

any action happening behind them, including a dramatic fight sequence. As a result,

content was reselected in which most action happened in the forward direction, and all

critical action happened within ±100° from “forward”. This may have had unintended

consequences for some of our measures, as will be discussed later in section 5.2.

Four videos were selected. The first, a 2m19s music video called ‘Graffiti’ by Noa

Neal, was used to reduce the novelty effect of the display. The DOCUMENTARY stim-

ulus was a 5m53s documentary piece about a beekeeper by BBC R&D. The HORROR

stimulus, which was of the slasher sub-genre, was ‘Hide and Seek’ by BriaAndChrissy

and was 2m47s long. The final video, the NARRATIVE stimulus, was called ‘Real

Memories’ and was made by MINI. This video told the story of a murder and lasted

4m43s. All of these videos are available online. The URLs for each are shown in

Appendix B.
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5.1.4 Hypotheses

Hypotheses were based on previous work, as discussed in Section 2.3, with an emphasis

on areas in which 360° media is likely to offer an improved experience or be at a

disadvantage over traditional format media. Additionally, some hypotheses were based

on feedback from industrial sources.

The following hypotheses were investigated:

H1 There will be a difference in spatial awareness between conditions

H2 There will be a difference in incidental memory between conditions

H3 There will be a difference in narrative engagement between conditions

H4 There will not be a difference in video enjoyment between conditions

H5 There will be a difference in display enjoyment between conditions

H6 Attention can be guided in TV/SV+ conditions

H7 There will be a difference in participant’s concern about missing something be-

tween conditions

H8 Participants will be more afraid during a horror video in the HMD condition

5.1.5 Measures

There is a vast range of questions that can be asked about immersive media. We selected

a subset of these measures so as not to overwhelm participants, and to keep each trial

to under an hour to prevent fatigue. As CVR is a new field of study, our focus for the

selection of metrics has been based on conversations with the CVR community – such

as concerns that have been raised about the format by producers – as well as areas we

believe are promising and applicable based on previous VR research. While there is

little academic basis so far, open-ended, qualitative studies are emerging that indicate

that these concerns are not just being felt by content producers, but are indeed critical

aspects of the end-user experience [117]. Part of the selection process was determining

what effective measures can be used, and what measures might be generally useful. A

full list of background questionnaire questions, as well as questions for each simulus,

is included in Appendix C.
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Figure 5.2: Object placement task for HORROR stimulus. Participants completed this task on
a laptop computer, dragging the circles using the trackpad.

H1: Spatial awareness To measure spatial awareness, participants were asked to mark

the locations of objects seen in the video on a floor plan of the room featured in the

video. As two of the stimuli were set mostly within a single location per video (HOR-

ROR and NARRATIVE), the spatial awareness test was administered for these videos.

The map placement task for the HORROR stimulus can be seen in Figure 5.2. Objects

were represented as circles to ensure participants did not focus on orientation, and were

labelled to ensure each placed object had a known corresponding object in the ground

truth.

Objects were chosen at varying levels of difficulty, from items that characters in-

teracted with that formed an element of the plot, to more difficult items that would be

easy to miss. For reasons of fairness, all objects were visible in all display conditions.

At least one participant in each condition correctly placed all objects.

The final measure was taken as the summed Euclidean distance of each placed

object from a “ground truth” object placement. As the videos in question were not

filmed by us, the “ground truth” and floor plans were to some extent approximations

based on close inspection of the videos.
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H2: Incidental memory To measure incidental memory, participants were asked ten

questions about content from the DOCUMENTARY stimulus. All memory questions

were taken from the audio track and had no visual reinforcements. While the video

features a visible narrator, his face is masked by a beekeeper’s veil and therefore no

additional information is gained by looking at him. The audio was delivered through

the same speakers and at the same volume across all three display conditions.

The questions varied in difficulty. The easiest was a fact that was said twice

in different wordings, “There are two microphones on the honeycomb. . . I like to

record stereo in the hive”. Memory of this statement was checked with the question,

“How many microphones were on the honeycomb?”. The hardest questions related to

difficult-to-remember concepts that were mentioned in passing, for example the state-

ment “I’m not allergic to stings, which one in every thousand people are” for the ques-

tion “What ratio of people are allergic to bee stings?”.

H3: Narrative engagement Narrative engagement was measured using Busselle et

al.’s Measuring Narrative Engagement Questionnaire (MNEQ) following the two nar-

rative stimuli (HORROR, NARRATIVE). The MNEQ was not applied following the

DOCUMENTARY stimulus, as this piece is non-narrative and many of the MNEQ

questions would not make sense in this context.

H4, H5: Enjoyment Enjoyment was measured using five-point Likert scale indications

of agreement with two statements. We wished to measure enjoyment of the display,

rather than enjoyment of the video. In an attempt to tease apart these enjoyment lev-

els, participants were asked to indicate their level of agreement with two statements:

“Considering the display and the video separately, I enjoyed watching this video” and

“Considering the display and the video separately, I enjoyed using this display”. These

two questions were placed side by side on the questionnaire to ensure participants an-

swered them in tandem.

H6: Attention guided To test how successfully attention could be directed in the

TV/SV+ conditions over the theoretically undirected HMD condition, elements of the

video that could be examined via questionnaire were highlighted in the TV/SV+ con-

ditions by centring them on the TV. For example, this included a lingering shot of the

murder weapon prior to the murder in the NARRATIVE stimulus, and cuts to a tele-

phone call being initiated by a victim in the HORROR stimulus. These were examined
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using the questions “What was the murder weapon? Describe it as specifically as you

can (colour, shape, material)”, and “Who initiated the phone call?” respectively. In total

four such questions were asked. Three questions had pass/fail answers that contributed

zero or one to the total attention score, and one was marked out of three depending

on the level of detail provided of the murder weapon. This gives a total possible score

range of zero to six. To ensure fairness, the answers were marked blind, i.e., the display

condition of the participant was not known when their attention score was tallied.

H7: Concern about missing something Concern about missing something was mea-

sured by five-point Likert scale responses of agreement to the statements, “At times,

I was worried I was missing something”, and, “My concern about missing something

impacted my enjoyment of the video”. These questions were not placed side by side on

the questionnaire. The responses to these two questions were summed together to give

an indication of a participant’s general concern about missing something.

H8: Fear during horror To improve the validity of questionnaire responses, partici-

pant’s fear during the HORROR stimulus was measured using two questions. The ques-

tion, “I felt afraid while watching this video”, was designed to measure fear directly.

The question, “I felt nervous while watching this video”, was designed to measure anx-

iety, a state associated with fear during horror media [118]. Participants responded to

both questions on a five-point Likert scale of agreement. These questions were not

placed side by side on the questionnaire. These answers were summed to give a total

score.

5.1.6 Procedure

Due to the learning effects that would exist in the metrics for memory and spatial aware-

ness, a between-groups design was required. Each participant, therefore, watched all

videos in one of the three display conditions. As many elements as possible outside of

the display device were held constant, including the video order, audio and chair used.

Before arrival, participants were assigned to a display condition using a random

number generator. Upon arrival, participants were given an information sheet to read.

Important aspects of the information sheet were reinforced verbally, such as the proce-

dure and the risk of simulator sickness. Participants then signed a consent form, and

were introduced to the experiment environment.
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The experiment consisted of four videos. The first – a 2m19s music video – was

designed to reduce the novelty effect of the display and was not followed by any ques-

tions. After each of the other three videos, participants were given a laptop to answer

a set of questions immediately after the video’s conclusion. Before beginning the ex-

periment, all participants were given identical advice about the nature of the questions,

specifically that they would relate “to the content and their experience”.

As the DOCUMENTARY stimulus was the video used to measure incidental

memory, it was viewed second. This was to reduce the likelihood that participants’

viewing of the video would be influenced by the questions for other metrics. For exam-

ple, by knowing that questions regarding spatial awareness would be asked, it may have

caused a participant to focus on remembering objects in the video, rather than viewing

the video as naturally as possible in an experimental setup. At the end of the DOC-

UMENTARY stimulus, participants answered questions to test incidental memory, as

well as generic questions about the experience such as their concern about missing

something and enjoyment.

The HORROR stimulus was watched third. Following this video, participants an-

swered questions related to their feelings of fear during the video, and questions that

tested their memory of visual aspects that the TV and SV+ conditions deliberately drew

attention to. Participants also completed the MNEQ. Generic questions such as enjoy-

ment and concern about missing something were also answered. Finally, participants

were asked to place objects from the video on a floor plan of the room to test spatial

awareness.

The forth and final video was the NARRATIVE stimulus. As with the HOR-

ROR stimulus, participants answered questions on attention, narrative engagement, en-

joyment and concern about missing something. Participants also completed a spatial

awareness task. Participants then completed a SSQ. Participants then took part in a

short, unstructured interview to gain insights into their reasoning and opinions.

After the experiment, participants were debriefed about the purpose of the study

and given the opportunity to use the HMD if they were not assigned to the HMD con-

dition during the experiment. Finally, participants were given £10 for taking part and

dismissed.
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Figure 5.3: Object placement task ensemble results.

HORROR stimulus results. NARRATIVE stimulus results.

Figure 5.4: Object placement task results by stimulus.

5.2 Results and discussion

Due to the ordinal nature of the Likert, attention and memory data – and outliers in

the Euclidean error distance data – analysis was conducted using the Kruskal-Wallis H

Test for all hypotheses. Results were not similar for all groups, as assessed by visual

inspection of boxplots of the data. The results of the Kruskal-Wallis H Tests can be

seen in Table 5.1. As eight hypotheses were being testing, Bonferroni correction was

applied where the statistical significance required was p <.00625.

H1: Spatial awareness A boxplot of the ensemble spatial awareness results is shown in

Figure 5.3, while breakdowns of the spatial awareness results by stimulus are shown in

Figure 5.4. There was a statistically significant difference between display conditions

in our measure of spatial awareness, as shown in Table 5.1. Pairwise comparisons were
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Figure 5.5: Boxplot of incidental memory results.

performed using Dunn’s procedure with a Bonferroni correction for multiple compar-

isons [119]. Adjusted p-values are presented. Values are mean ranks unless otherwise

stated. This post hoc analysis revealed statistically significant differences in ensem-

ble Euclidean error scores between the HMD (19.90) and SV+ (36.19) (p = .012), and

HMD and TV (39.90) (p = .001) display conditions, but not between the TV and SV+

display conditions (p = 1.0).

These results indicate that the HMD produced better spatial awareness than SV+

and TV displays. SV+ does not offer a statistically significant improvement to spatial

awareness over the TV. This is somewhat unexpected, as the SV+ provides a horizontal

FOV beyond that of human vision, while the TV offers only a 32° horizontal FOV. We

propose two possible explanations for this. The first is that the key to producing good

spatial awareness is exploration of the space, and the SV+ discourages exploration

by providing a focal point. An alternative explanation is that rotation of the virtual

space played a role. The HMD display was the only condition in which the virtual

world is fixed with regards to the participant. In the SV+ and TV conditions, the world

rotates and tilts to ensure the important content remains centred on the TV. It is possible

that this rotation disoriented viewers, resulting in poorer spatial awareness. Further

investigation is required to clarify these results.

H2: Incidental memory A boxplot of the memory scores is shown in Figure 5.5. No

significant difference in incidental memory was found between conditions, as shown in

Table 5.1. We were unable to recreate the results of [84], which indicated that incidental

memory may be lower in a HMD over a tracked TV experience. Memory is highly
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Figure 5.6: Boxplot of ensemble results from the MNEQ.

HORROR stimulus results. NARRATIVE stimulus results.

Figure 5.7: Results for the MNEQ by stimulus.

variable between individuals, however, and therefore more than 63 participants may be

required to produce a statistically significant result, if such an effect exists.

H3: Narrative engagement A boxplot of the ensemble narrative engagement results

is shown in Figure 5.6, and a breakdown by stimulus is shown in Figure 5.7. While the

order of mean rank scores for ensemble narrative engagement decreased from HMD, to

SV+ and then TV, the results were not statistically significant, as shown in Table 5.1.

The MNEQ can be broken down into four sub-scales: attentional focus; narra-

tive presence, emotional engagement; narrative understanding. Boxplots for these sub-

scales results for the HORROR stimulus are shown in Figure 5.8, while boxplots of

the sub-scale results for the NARRATIVE stimulus are shown in Figure 5.9. Kruskal-

Wallis H tests were used to test for statistically significant differences between display

conditions for the MNEQ sub-scale results. None of the sub-scales revealed a statisti-
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Attentional focus. Narrative presence.

Emotional engagement. Narrative understanding.

Figure 5.8: Boxplots for the four MNEQ sub-scales for the HORROR stimulus.

Table 5.2: Kruskal-Wallis H test results for MNEQ sub-scales for the HORROR stimulus.

MNEQ sub-scale
Mean rank

df χ2 Asymp. Sig.
HMD SV+ TV

Attentional focus 36.33 30.40 29.26 2 1.822 .402
Narrative presence 36.50 30.31 29.19 2 1.957 .376
Emotional engagement 30.00 35.52 30.48 2 1.183 .554
Narrative understanding 31.88 34.26 29.86 2 0.613 .736

cally significant difference for either stimulus, even before the application of Bonfer-

roni correction. The results of these statistical analyses for the HORROR stimulus are

shown in Table 5.2, while results for the NARRATIVE stimulus are shown in Table 5.3.

While this may indicate that narrative engagement is not strongly affected by dis-

play condition, it may also be a result of the short-form content that was used. While

the short films used in the experiment were generally well received by participants,

narrative engagement as measured by the MNEQ may require a more substantial and
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Attentional focus. Narrative presence.

Emotional engagement. Narrative understanding.

Figure 5.9: Boxplots for the four MNEQ sub-scales for the NARRATIVE stimulus.

Table 5.3: Kruskal-Wallis H test results for MNEQ sub-scales for the NARRATIVE stimulus.

MNEQ sub-scale
Mean rank

df χ2 Asymp. Sig.
HMD SV+ TV

Attentional focus 32.26 37.21 26.52 2 3.621 .164
Narrative presence 37.60 31.05 27.36 2 3.379 .185
Emotional engagement 36.21 32.67 27.12 2 2.654 .265
Narrative understanding 33.21 30.74 32.05 2 0.194 .908

engrossing plot than was offered in these clips. For example, questions such as, “Dur-

ing the program, when a main character succeeded, I felt happy, and when they suffered

in some way, I felt sad”, may require a stronger connection with the characters than was

achieved, as well as a more substantial narrative arc.

H4, H5: Enjoyment Boxplots of video enjoyment results are shown in Figure 5.10,

while boxplots of display enjoyment are shown in Figure 5.11. A statistically signifi-

cant difference between display conditions was present for display enjoyment, but not
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Ensemble results. DOCUMENTARY stimulus results.

HORROR stimulus results. NARRATIVE stimulus results.

Figure 5.10: Boxplots for video enjoyment results.

for video enjoyment, as shown in Table 5.1. This indicates that participants were able

to separate these concepts.

Pairwise comparisons of display enjoyment results were performed using Dunn’s

procedure with a Bonferroni correction for multiple comparisons [119]. Adjusted p-

values are presented. Values are mean ranks unless otherwise stated. This post hoc

analysis revealed statistically significant differences in ensemble display enjoyment

scores between the HMD (42.83) and TV (21.167) (p = .000), but not between HMD

and SV+ (32.00) (p = .154) display conditions, or between SV+ and TV display condi-

tions (p = .154).

While the ensemble pairwise comparisons did not produce a statistically signifi-

cant difference between the TV and SV+ conditions, pairwise comparisons do produce

a statistically significant difference between TV and SV+ for the HORROR stimulus
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Ensemble results. DOCUMENTARY stimulus results.

HORROR stimulus results. NARRATIVE stimulus results.

Figure 5.11: Boxplots for display enjoyment results.

(p = .012). While this must be considered a post hoc analysis, the difference in the

level of display enjoyment between stimuli may indicate that certain types of content

are more appropriate for a given display. Further investigation would be required to

determine what may have made the HORROR stimulus particularly well suited for the

SV+ display. Possible aspects that may have contributed include the genre, character

placement, the rapidity of cuts required, and the characteristics of the captured envi-

ronment.

The resolution of the TV may have had an impact on this metric. During the

unstructured interview at the end of the experiment, several participants mentioned that

the low effective resolution of the TV had impacted their enjoyment of the display.

While the central content had an identical resolution in the TV and SV+ conditions,

it is possible that the highly immersive visuals of the CAVE™-like display partially
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Figure 5.12: Boxplot of ensemble attention results.

NARRATIVE stimulus results. HORROR stimulus results.

Figure 5.13: Attention results by stimulus.

compensated for this issue in the SV+ condition, resulting in a stronger enjoyment

result.

H6: Attention guided A boxplot of the ensemble attention results is shown in Figure

5.12, and a breakdown by stimulus is shown in Figure 5.13. No significant difference in

attention was found between conditions, as shown in Table 5.1. This was an unexpected

result, as it seems almost certain that a TV can draw attention to a specific aspect of

the scene more effectively than a HMD. We propose two possible explanations for this.

The first is that the chosen metrics for attention were not suitable, in which case a repeat

of this study using different videos and attention measures may produce a statistically

significant result. Another explanation is that the fixed chair used across all conditions

limited the field of regard (FOR) of the HMD such that the risk of a viewer missing

some aspect was substantially reduced.
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Ensemble results. DOCUMENTARY stimulus results.

HORROR stimulus results. NARRATIVE stimulus results.

Figure 5.14: Boxplots for users’ concern about missing something.

As mentioned earlier, during a pilot study a video featuring a fight scene was

replaced as important material was missed in the HMD condition. This decision was

made to encourage fairness between the conditions. In the removed video, a character

starts in front of the viewer, at roughly 0° from “forward”. This character then walks

through the scene and becomes engaged in a fight directly behind the viewer, at roughly

180° from “forward”. No viewers were willing to crane in their seat to follow this

character, despite his prominence, and became confused by the audio of a fight they

could not locate in the scene. This may indicate that the FOR of a HMD when watched

in the fixed chair is more limited than the available FOV. This may have interesting

practical implications for current 360° content creation, as home viewers will most

likely be seated on a fixed chair or couch.



98 Chapter 5. Evaluating the effect of display type for panoramic video

Figure 5.15: Boxplot of results for fear during horror.

H7: Concern about missing something Boxplots for a user’s concern about missing

something are shown in Figure 5.14. In none of the videos did the HMD receive the

highest mean rank score for concern about missing something, although the difference

between display conditions was not significant as shown in Table 5.1. This result was

unexpected, as there is a prevailing belief that HMD experiences often leave viewers

feeling they have missed something. As discussed in the Attention results section, this

may be because of the partially restricted FOR caused by the non-swivel chair, as well

as the intentional choice of videos in which all action happens within±100° of forward.

Due to this soft limit on the FOR, the HMD condition might also be considered partially

guided.

The SV+ display received the highest mean rank score across all stimuli for this

measure. This result is also unexpected, as the SV+ was intended as a partially guided

experience. This may have been due to the feeling that viewers should be looking at

the TV, but were aware that additional content was available in the periphery that they

were unable to digest. These findings may also be a result of viewers’ subtle awareness

that the content was designed for a 360° viewing experience, and that only a portion of

the FOV was available in the TV and SV+ conditions.

H8: Fear during horror A boxplot of the scores for fear during the HORROR stimulus

is shown in Figure 5.15. Displays with higher immersion produced lower levels of

fear during the horror video, although not significantly as shown in Table 5.1. These

unexpected scores may have been a result of the deliberate decision – due to concern

about upsetting participants – to use a horror video that was extremely mild. One
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Figure 5.16: Boxplot of SSQ total severity score.

participant reported finding the video “lame”, while none answered “Strongly agree”

to the question “During this video, I felt afraid”. The type of horror – the slasher sub-

genre – perhaps does not make best use of the characteristics of the HMD, such as being

isolated, feeling physically vulnerable, and being entirely surrounded by the content.

More psychological horrors, or horrors that rely on jump scares, might prove more

effective in producing stronger differences between the display conditions. Worthy of

note is that a participant in the HMD condition – who appeared visibly shaken by the

video – reported in the post-experiment interview that the audio had played a key role

in eliciting their fear.

Simulator sickness SSQ Total Severity (TS) scores were calculated using the formula

specified by Kennedy et al. [108]. A boxplot of TS scores is shown in Figure 5.16.

A Kruskal-Wallis H test was conducted to determine if there were differences in SSQ

scores between the three display conditions: HMD (n = 21), SV+ (n = 21), and TV (n =

21). Values are mean ranks unless otherwise stated. Distributions of SSQ scores were

not similar for all groups, as assessed by visual inspection of the boxplot. SSQ scores

increased from TV (28.14), to HMD (31.50), to SV+ (36.36) display conditions, but

the differences were not statistically significant, χ2(2) = 2.192, p = .334.

5.3 Limitations
Some issues were encountered when repurposing 360° videos that were designed for

HMD viewing for display in the TV and SV+ conditions. Finding content that worked

in all three display conditions, and also met our genre and quality requirements, meant
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some compromises were required. This meant that some videos were not ideal for

viewing in the SV+ condition. For example, the NARRATIVE stimulus featured con-

versations between two characters who were not standing near each other. To keep

the speaking character on the TV required several cuts in quick succession. This was

not a problem in the TV condition, as this is a standard visual technique used in TV.

Some participants in the SV+ condition – who could see the other character in their

peripheral vision – found this cutting irritating, prompting one to comment the display

seemed to “flit about”. If the content had been filmed specifically for the purpose of

this test or these displays, care could have been taken in character placement to ensure

both characters could be framed centrally on the TV during conversations.

Our measure of spatial awareness may have been susceptible to a confounding

factor, in that rotation of the virtual world with respect to the viewer was only present

in two of the three display conditions (SV+ and TV). To clarify that the significant

benefit in spatial awareness offered by the HMD was not caused by this rotation, an

experiment should be conducted that investigates the relationship between exploration

of the space and spatial awareness, with rotation controlled as an independent variable.

Rotations of the scene were generally well received. Some participants in the SV+

condition, however, did comment that the rotations had felt somewhat intense. This is

to be expected, as the CAVE™-like display entirely filled the horizontal FOV of partic-

ipants. No participants reported feeling unwell, and there was no significant different in

SSQ scores between display conditions. Our videos were all of short duration, however,

so the risk of cumulative effects caused by the increased FOV for longer experiences

has not been addressed.

A number of participants also commented on the low resolution in the TV condi-

tion. This is also to be expected, as the effective resolution of the TV was only 409x250

due to the solid angle subtended by the TV inside the 4k viewing sphere. Interestingly,

participants in the SV+ condition tended not to comment on the resolution of the TV,

despite it being identical to the TV condition. This may indicate that the immersive

visuals provided by the CAVE™-like display compensated for the poor effective reso-

lution of the TV to some degree. This low resolution was again caused by the decision

to repurpose 360° video designed for HMD experiences. If content was to be shot

specifically for the SV+ display, it is likely a similar approach to the original Surround
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Video system would be used: capturing a high-resolution inset using a dedicated cam-

era, while using separate cameras to capture the lower resolution peripheral content.

This again emphasises that immersive video may not be a single type of experience:

producers need to be aware of the type of display viewers will use. There may not be

a single form of immersive video and guidelines for producers will need to recognise

this.

Several participants commented on the audio mix in the DOCUMENTARY stimu-

lus. Background noise and music present in the audio track may have hindered a partic-

ipant’s ability to hear the dialogue. This may have impacted their ability to remember

the content, and therefore affected the memory metric. This was not a confounding

factor, however, as all participants received identical audio across conditions.

Other improvements to the testing method include using longer format content

when measuring narrative engagement. Longer format content may create a stronger

feeling of engagement that may be more readily measured by the MNEQ, and thus

may provide further insight as to if the display has an impact on narrative engagement.

Additionally, using a more appropriate horror stimulus to test fear, for example one that

uses jump scares, might elicit a stronger fear response – although such an investigation

would need to be done with caution. Using content that was specifically filmed to

match the requirements of our displays, for example aspects such as resolution and

character placements, may provide a more accurate indication of the full potential of

each display, as the compromises made to ensure repurposed content worked across all

displays may have negatively impacted the results for certain metrics such as display

enjoyment.

5.4 Conclusion
In this chapter, several metrics for measuring passive CVR experiences were discussed.

These metrics related to areas in which CVR was likely to present an improvement

over traditional film and TV experiences, as well as areas of concern for CVR that

may impact its adoption. While there are many factors that are important to CVR

experiences, such as display comfort, sociability, etc., it was important to limit the

scope of our study to prevent participant fatigue. After careful review of the most

appropriate and generalisable metrics, aspects considered measured spatial awareness,
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narrative engagement, enjoyment, memory, fear, guiding attention, and the feeling of

missing something.

A between-groups experiment was conducted with 63 participants. Three display

conditions were investigated, including the radically different immersive displays of

the HMD and the SV+, and a non-immersive TV condition. Our results indicated

the HMD offered a significant benefit in terms of spatial awareness over both the TV

and SV+ conditions. While it was expected that the TV would perform poorly on the

spatial awareness metric, the SV+ was expected to perform better due to the large FOV

provided. While this may have been caused by a lack of exploration encourage by

the focal point of the TV, more experimentation is required to rule out the possibility

of confounding factors. Significant improvements for enjoyment were present in the

HMD over the TV and SV+, as well as the SV+ over the TV for the HORROR stimulus.

We were unable to confirm the work of a previous study that showed incidental

memory may be lower in a HMD over a TV. We did not find a significant difference

in narrative engagement between conditions, however this may be a result of the short-

form stimuli that were available. The lack of a significant difference between displays

in our measurement of fear during the HORROR stimulus may have been caused by

the choice of an inappropriate video. The stimulus was not scary, and did not make use

of the characteristics of the immersive displays likely to increase fear.

Drawing attention and a viewer’s concern about missing something were also not

significantly different between display conditions. These are unexpected results, as

there is a commonly held belief that the undirected experience of the HMD causes

viewers to miss visual events, as well as to experience a feeling of missing something.

Our results may indicate that using a fixed chair in a HMD experience places a soft

limit on the field of regard. This result would have important consequences for video

production, as at-home viewers will likely be seated on a couch. Further experimen-

tation is required to confirm this result, and to identify the FOR available for use in

videos designed for consumption in the home.

It is clear that passive media viewing consists of a complex interplay of factors that

present many challenges for evaluation. As CVR is becoming a common use for vir-

tual reality hardware, it is essential for the virtual reality community to investigate this

emerging field. Overall, one important steer for future research is the difficulty of find-
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ing content for each display. The affordances of the displays are actually quite different,

and thus content developed for one may not work on another. We have highlighted that

comparing SV+ to HMD is difficult. Even evaluating different types of HMD content

may be challenging, because of assumptions made on whether the participant can turn

freely or not. In future work, we hope to explore further this complex area and cover

a wider range of scenarios, such as videos with camera motion and social viewing of

videos.

One particular area of interest for 360° media is the transportive nature of such

experiences. Despite the fact that there is a prevailing belief that 360° media creates a

form of presence, where the viewer feels transported to the space depicted in the scene

and perhaps even involved in the action, measuring such a response presents many

challenges. While measuring presence remains a challenge for the VR community at

large, it is perhaps particularly difficult in 360° media experiences, where a lack of

agency may disrupt proxies often considered to indicate presence, such as response-as-

if-real [74]. Certainly a more concrete understanding of this phenomenon, as well as

ways of measuring it, would be beneficial for the creation and evaluation of 360° media

experiences.

The work presented in this chapter represents one of the first academic investiga-

tions of how to evaluate CVR content. By looking at the impact of various different

kinds of display when viewing 360° videos, we have also broached the broader ques-

tion of what techniques and tools are most applicable to the evaluation of 360° media

experiences in general. Additionally, we have helped illustrate some of the likely pit-

falls investigators must consider when designing experiments exploring 360° media

experiences.



Chapter 6

User study: The effect of transition

type in multi-view 360◦ media

Currently, captured 360° media is generally fixed viewpoint i.e. only the three degrees

of freedom associated with orientation are available to the user to explore the scene.

While free-viewpoint 360° media is being investigated (e.g. [26, 120]), there are still

many technical challenges to be overcome. Multi-view 360° media (MV360M) – in

which 360° views are captured from multiple locations – may offer a partial solution

to the issues associated with fixed-viewpoint 360° media. This is achieved by allowing

users to view the space from multiple perspectives. Systems have existed for some time

that allow the exploration of spaces by transitioning between 360° images [14, 15], and

video-based MV360M experiences are becoming more common [28, 29].

In MV360M systems, a visual effect is required to transition the user from one

camera location to another. This effect may have a significant impact on user experi-

ence. While multiple transitions are available from standard film production, such as

wipe, dissolve, fade, etc., there are aspects inherent in immersive MV360M that re-

quire special consideration. A fade to black in an immersive display, for example, is

the equivalent of the world suddenly going dark, and with no visual features available,

this transition might result in discomfort or disorientation.

Likewise, while work has been done to explore the impact of transition types in

immersive experiences – particularly in the VR locomotion literature – certain attributes

of MV360M make such systems inherently different from most real-time rendered ex-

periences. For example, as each view in MV360M requires a physical camera to have

been placed at that location, such locations tend to be limited in number. The limited
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number and fixed-position nature of the views available may have a detrimental effect

on a user’s ability to understand the scene. This may mean that additional benefit could

be gained from transition types that provide further information about the spatial layout

of the environment over the same transition in real-time rendered experiences.

In this chapter, the impact of the transition type when viewing image-based

MV360M is explored. This chapter is adapted from a paper published in IEEE Trans-

actions on Visualization and Computer Graphics (TVCG). A repeated-measures ex-

periment was conducted with 31 participants. Wearing a HMD, participants navigated

through four static scenes, initiating transitions using a tracked hand controller. Three

transition types were examined: teleport, model and Möbius. The teleport transition

moves the user instantaneously to their selected location while leaving their orientation

unaltered. The model transition moves the user linearly through a reconstructed 3D

model of the scene. While parallax cues inherent in the model transition are likely to

provide users with the most complete impression of the scene, such models are expen-

sive and labour intensive to produce. The Möbius transition is proposed as a possible

middle ground between the teleport and model transitions. The Möbius transition is an

image-based transformation that gives the impression of movement between panora-

mas using a zoom effect. The motion cues provided by this effect may help to improve

understanding of the scene and the transition, while as an image-based transition there

is no requirement for a 3D reconstruction of the scene to be available.

The metrics investigated were spatial awareness, users’ movement profiles, transi-

tion preference and the subjective feelings of moving through the space, disorientation,

dizziness, and naturalness. Our results indicate that trade-offs between transitions will

require content creators to think carefully about what aspects they consider to be most

important when producing MV360M experiences.

6.1 Experimental Design
We conducted a repeated-measures user study to evaluate the effect of transition type

when exploring a scene captured in 360° from multiple locations. At each location,

participants could look around naturally via a tracked HMD, using the three degrees of

freedom associated with orientation. Participants could move around inside the scenes

by selecting different camera locations using a position-tracked, hand-held input de-
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vice. While there were multiple buttons and triggers on the input device, they all per-

formed the same action and users were free to use whichever button felt most comfort-

able. We did not collect data on which buttons participants used. When a user chose

to move to another location, they were transitioned from their current location to their

selected location via one of three transition types, each of which is described in section

6.1.2. Generally, the transition type was selected randomly by the system. The only

time when the transition type was not randomly selected was before the pointing task

or preference questions; at these times the transition type was counterbalanced. These

tasks and questions are described fully in section 6.1.3, while the counterbalancing

strategy is described in section 6.1.6.

6.1.1 Stimuli

As will be discussed in section 6.1.2, the model transition required a 3D reconstruction

of the scene. As a result of this, the available stimuli was limited to static scenes.

The stimuli was provided by Matterport, a VR capture company whose cameras record

RGB-D data in 360°. Using this data, Matterport construct a textured 3D model of the

scene. This provides 4k 360° images from set locations, as well as a 3D model of the

scene. Matterport kindly provided this data to us for free for academic use. The quality

of these 3D models is consistent with structured light scanning, i.e. they contain some

holes and do not accurately capture fine details. The 3D model for one of our stimuli is

available to view online [121].

In total, three models were used: a gallery, a Buddhist temple, and a house. As the

house was set over two floors, this model was split into two independent scenes. This

provides a total of four stimuli: gallery, temple, house upstairs and house downstairs.

A map of the temple scene is shown in Figure 6.1, while statistics for all stimuli are

shown in Table 6.1.

The stimuli was limited to indoor scenes. In general, scenes were highly occluded,

meaning only a small number of cameras were in the line-of-sight of any other camera.

As our setup only allows transitions to cameras that are in the line-of-sight of the current

camera location, this required participants to navigate around the scene, transitioning

from camera to camera, in order to complete the required tasks. This procedure is

described fully in section 6.1.6. Camera locations were limited to the minimum number
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Figure 6.1: A map of the temple stimulus. Camera locations are shown as red nodes, while
green edges indicate available transitions between locations. Yellow lines show the
locations of targets in this scene.

Table 6.1: Stimuli statistics. Stimuli are listed in the order they were presented to participants.

Stimulus Camera locations Transition edges Targets
Gallery 4 3 2

House upstairs 11 10 6
Temple 12 12 4

House downstairs 11 12 6

possible, such that the scene was covered by a connected graph of transitions.

6.1.2 Transition Types

Three transition types were used: teleport, model and Möbius. The teleport transition

was instantaneous, while both the model and Möbius transitions took six seconds to

complete. A transition duration of six seconds was chosen to ensure transitions felt

comfortable to participants. Each of these transitions is now described in detail.

Teleport: When a participant chose to move to a new location, and the transition

was determined by the system to be a teleport, the participant was moved instanta-

neously from their original location to their selected location. On arrival at this new

location, their orientation in the virtual space was the same as it had been at their start

location. To achieve this, the image the user was seeing was instantaneously swapped

from the panorama captured at their original location to the panorama captured at their

selected location. Then, as in the other transitions, scene elements such as the available
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locations to move to next were updated to be consistent with the new panorama.

Model: In the model transition, the user moves through a 3D model of the scene.

This transition, therefore, requires a reconstructed 3D model of the scene. While move-

ment easing types were explored, simulator sickness appears least severe when there

is minimal changes in velocity [122]. Following advice from Oculus that it is the du-

ration of velocity change that should be minimised, a linear movement with infinite

acceleration and deceleration was used [123]. As the user sees a panoramic image

when not moving between locations, a linear interpolation was used to blend between

the panoramic images and the 3D reconstruction of the scene. The blend was necessary

as the 3D model was not completely consistent with the panoramic images, for exam-

ple the lighting was often noticeably different. This would likely always be the case for

MV360M. Even if all cameras could have matching settings such as exposure, the lo-

cation of the camera impacts aspects such as specular highlights, so the lighting would

not be consistent between 360° cameras capturing the same scene. Blending between

the panorama of the current location and the model lasted 0.5s, the linear movement

from the current location through the 3D model to the new location lasted 5s, and the

blend from the model to the panorama of the new location lasted 0.5s, resulting in a

total transition time of 6s. Frames from this transition type can be seen in Figure 6.2.

Möbius: The Möbius transition is an image-based transition, in which a transfor-

mation is applied to give the impression that the user is moving from the panorama of

the current location to the panorama of the next locations. This is achieved by “zooming

in” to both panoramic images. While zooming in is a common technique in standard

format media production that gives the illusion of getting closer to something, its ap-

plication in panoramic media is complicated by the spherical nature of the imagery. In

order to zoom in to a specific point in a spherical image, the rest of the content cannot

be cropped, but must instead be compacted towards the zoom’s antipodal point.

The Möbius transformation was proposed by eleVR and Henry Segerman as a

technique to allow zooming for panoramic media [124]. The Möbius transformation is

a conformal mapping, in that it preserves local angles (for a review, see [125]). It can be

used to enlarge the image towards the zoom point, while reducing the size of elements

towards the zoom’s antipodal point. This technique can be used to give the impression

of moving towards the zoom point, although deformations to the space mean the effect
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a) Start location panorama b) Fade to 3D model

c) Move through 3D model d) New location panorama

Figure 6.2: The 3D model transition. First, the panoramic image for the original location
(frame a) is faded out, revealing the 3D model (frame b). The user is then moved
linearly through the scene (frame c). Finally, the panoramic image for the new
location is faded in (frame d).

does not appear natural.

There are many possible ways to incorporate the Möbius transformation into a

transition. In our implementation, the user selects a new location to move to. We

call the panoramic image for the current location Lc, and the panoramic image for the

selected next location as Ln. If a ray was cast from the current location to the new

location in 3D space, the point of intersection on the viewing sphere of Lc becomes the

“zooming point” for the Möbius transformation, referred to as Pzc here. Likewise, the

zooming point for Ln is where the same ray would intersect Ln, referred to as Pzn.

First, a “zoomed out” version of Ln expands as a circle at Pzc until it reaches

approximately 38% of the height of Lc when viewed in equirectangular form. A value

of 38% was chosen for aesthetic reasons. The Möbius transformation is then applied

to “zoom into” Lc and the zoomed out version of Ln. Assuming that the viewer is

facing towards the new location, this means Lc collapses behind the viewer, while Ln

expands over them. In our implementation, all transitions were generated as video files

in a preprocessing step. This video file was then played back when a transition was
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initiated, using the PopMovie video plugin for Unity. Due to larger videos causing

unacceptable levels of lag in the rendering, the videos were downscaled and played at

a resolution of 2048x1024. During a transition, the video was started and blended in

over 0.5s, continued playing for 5s, and then blended out over 0.5s, resulting in a total

transition time of 6s. This effect can be seen in Figure 6.3.

The effect produced by the Möbius transformation is difficult to describe accu-

rately, and we would encourage readers to watch our videos of the transition in practice.

We have recorded a complete user journey through the gallery stimulus [126], and made

available a 360° video showing two Möbius transitions in the temple stimulus [127].

The code used to generate our Möbius transitions is available online [128].

6.1.3 Hypotheses

6.1.3.1 Spatial Awareness

As in the related work discussed in section 2.3.2.1, spatial awareness was measured

using a pointing task. Participants were asked to point at a known location in the scene

that was no longer visible using a tracked hand controller. We refer to this task as the

“pointing task”. Both the error angle and the time to complete the task were examined.

The error angle was defined as the angle between the user’s pointing ray and the ray

from the centre of the hand controller to the centre of the target in question. This angle

was calculated on a 2D plane as seen from above, i.e. the elevation components were

discarded for both rays.

It was expected that the teleportation transition would provide the poorest spatial

awareness, while the model transition would provide the best. As the Möbius transition

provides some movement cues, it was expected that this transition would produce a

spatial awareness result somewhere between the model and the teleportation transitions.

H1: It was hypothesised that the transition type would have an effect on spa-

tial awareness.

6.1.3.2 Subjective Measures

H2: It was hypothesised that the transition type would have an effect on partici-

pants’ subjective experience of moving through the space, dizziness, disorientation

and naturalness.

These metrics were assessed by asking the participant to verbally provide a rat-
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a b

c d

e f

Figure 6.3: Frames from the Möbius transition. Frame a: the user initiates a transition by
selecting the new location’s marker using the input device. Frames b-c: a zoomed
out version of the new location’s panorama expands into view. Frames d-e: the
Möbius transformation is applied to both panoramas, creating a zooming effect.
Frame f: looking backwards, the previous location collapses behind the user.
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ing from one to five, where one meant “not at all” and five meant “extremely”. These

four questions were, for the transition that they just saw: how much did they feel that

they were moving through the space (moving); to what extent did they feel disoriented

(disoriented); how dizzy did they feel (dizzy); how natural did the transition feel (natu-

ralness). Naturalness in this context was described to participants as, “how organic and

close to real life” the transition felt. Participants were asked to consider each transition

on its own. For example, when asking about “disorientation”, participants were told

that this was not about their general sense of confusion about the scene, but whether or

not they had been disoriented by that transition.

Moving: an important characteristic of a transition is whether or not a user feels as

if they are moving through the scene. As the teleportation transition is instantaneous, it

was expected that users would not feel that they are “moving through the space” during

this transition. It was expected that users would strongly feel that they are moving

through the space during the 3D model transition. As the Möbius transition provides

some movement cues, it was expected that participants would feel somewhat as if they

are moving through the space during this transition.

Dizzy: in direct contrast to a participant feeling like they are moving through the

space, it was expected that teleportation would produce a low rating for dizziness, while

Möbius and 3D model transitions would produce higher ratings.

Disoriented: as teleportation transitions have previously been shown to disorient

users [95], it was expected that this transition would produce a higher subjective rating

for disorientation. The model transition was expected to produce the lowest disorienta-

tion result, while the effect of the Möbius transition was unclear.

Natural: it was expected that the Möbius and teleportation transitions would be

rated poorly for naturalness, while the 3D model transition would receive a higher

rating.

Additionally, participants’ preferences for transition types were explored. It was

unclear what transitions users would like most. This was measured by asking partici-

pants to state a binary preference between the last two transitions they saw. A prefer-

ence value was taken for each possible pairing and ordering of transition types.

H3: It was hypothesised that there would be a difference in participants’

preferences for transition types.
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6.1.3.3 Movement Profile

H4: It was hypothesised that the transitions type would have an effect on the

movement profile of a user.

Movement profile was measured by examining the time taken to initiate the next

transition, following the completion of the previous transition. As teleportation is more

likely to disorient participants, it was expected that it would take longer for a user to

initiate the next transition following the teleport transition than following the model or

Möbius transitions.

6.1.4 Experimental Setup

Participants wore an Oculus CV1 HMD. The CV1 was driven by a Windows 10 desktop

PC with an Intel i7-6700 CPU running at 3.4GHz with 32GB of RAM. The video card

in use was a NVIDIA GeForce GTX 1080. The software was implemented using the

Unity game engine, version 5.6.2f1.

As the captured 360° images must be viewed from the centre of the viewing

sphere, only the three degrees of freedom associated with orientation were available

to users through their head-tracked movements. This meant there was no visual feed-

back available to participants in regards to their physical position. As a result of this –

coupled with the vection caused by some of the transitions – it was decided that hav-

ing a participant stand during the study could be unsafe. To ensure safety, participants

were seated while wearing the HMD. A swivel chair was used to allow the participant

to rotate freely, while the HMD was suspended from the ceiling to avoid any movement

limitations that would otherwise have been caused by the cable.

As the experiment required the use of a handheld, tracked input device, an Oculus

Touch controller was used. The right-hand controller was used, however as our inter-

face did not require use of the trigger buttons, participants could hold the controller

in their preferred hand. Use of the Oculus Touch controller required 360° positional

tracking. To facilitate this, three Oculus Sensors were placed in a triangle around the

swivel chair facing inwards. This provided accurate positional tracking for the hand

controller, as well as drift correction for the rotation tracking of the HMD. When wear-

ing the HMD, participants could see a virtual representation of the hand controller.

This virtual representation included a ray, to make it easy for participants to identify
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Figure 6.4: Floating spheres represent camera locations the user can move to. Spheres are a
grey colour when not selected, as shown in the left image. When the user points
the hand controller near the sphere, it glows white, as shown in the right image,
indicating that when the user presses a button they will be transitioned to that loca-
tion.

the exact direction the hand controller was pointing. The virtual hand controller main-

tained the same relative position from the user’s head as in the real world, even though

the HMD position was not used to update the virtual head position inside the viewing

sphere.

Participants were shown four scenes, each of which was captured from multiple

locations. Other available locations were represented to the user visually as a sphere,

floating at eye height at the location in 3D space that it represented. Pointing the hand

controller near the sphere caused the sphere to glow, as shown in Figure 6.4, giving

visual feedback to the user that the location was selected. When the user pressed a

button on the hand controller, they were transitioned from their current location to their

selected location via one of the three transition types described in section 6.1.2. Only

other locations in the line-of-sight of the current location were available at any time.

Throughout the study, participants were asked to find targets. Targets were brightly

colored squares, placed against walls or columns inside the scene at eye height. An

example of such a target is shown in Figure 6.5a. These targets provided a catalyst

for exploration, as well as easily identifiable reference points for the pointing task, as

discussed later in section 6.1.6.

While a 3D model of the scene was available, it was not photorealistic and con-

tained visual artefacts. The 360° images of the scene were not stereoscopic. To keep
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the experience consistent, all visuals were presented monoscopically. This included

the spheres that represented other locations, the colored targets, and the 3D model dur-

ing the model transition. The spheres that represented other locations and the colored

targets were only visible when the user was static, and were disabled during transitions.

6.1.5 Participants

The study was approved by the UCL Research Ethics Committee (project ID

8923/003). All participants were recruited via a participant pool website. Thirty-

three participants took part, however data from two were excluded as they did not

complete the trial. For one this was due to time limitations, and the second withdrew

following discomfort from simulator sickness. Of the remaining 31 participants, 18

were female and 13 male. Ages ranged from 18 to 52 years (mean: 27.68; standard

deviation: 7.951). All participants had normal or corrected to normal vision.

6.1.6 Experimental Procedure

Participants were asked to read an information sheet, as well as completing a pre-

experiment questionnaire and SSQ. The experimental procedure was then explained

to them. As simulator sickness was of particular concern in this experiment due to the

large amount of vection involved, the risks of simulator sickness were covered in detail,

as was the participant’s right to stop at any time.

Participants were asked to sit on a swivel chair, and shown the HMD and the hand

controller. Participants then put on the HMD, and were shown a test scene to familiarise

them with the equipment and the procedure. A 360° image of a room was shown, and

the participant encouraged to rotate in their chair to view the entire room. They were

then asked to find a green target, and then hit this target (point at it with the hand

controller and press a button). This caused the target to disappear, and another target to

appear elsewhere in the room. The participant was then directed to find this new target.

Once the second target had been located and hit, there was a delay of a few seconds

before the world faded to a grid environment. In this environment, the entire world is

faded out. A grid is faded in at ground level to allow the participant to maintain aware-

ness of their orientation, as shown in Figure 6.5b. The participant was told that when

this grid environment appeared, they would be asked to point with the hand controller

at where the most recently seen target was in relation to their current location in the
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a

b

Figure 6.5: An example pointing task. A green target is found by the user (frame a). Two
transitions of the same type later, the world fades to the grid environment (frame b)
and the user points to where they believe that most recently seen target is in relation
to their current location in the scene.

scene. At this time, they were asked to point towards the most recently seen target and

press a button. When a button was pressed, the grid environment faded out and the

virtual scene was faded back in.

Participants were then introduced to the first scene, and instructed on how to tran-

sition from one location in the scene to another. They were then asked to move around

the space, moving from location to location, looking for and hitting targets.

The experiment proceeded in sets of two targets, called A and B in this example.

First, a participant was asked to find target A. Each target was identified by a color,

and no participants had any form of colorblindness or experienced any difficulty in

identifying targets. An example of such a target can be seen in Figure 6.5a. Once
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target A was found, they would be instructed to find target B. To ensure comparability

between participants, target A would only be visible from a single location. Although it

was not stipulated to the participant, after hitting target A, the available locations were

restricted, to ensure the participant had to follow a set route. After moving two locations

- in which the participant was shown the same transition type - the world faded to the

grid environment after a delay of one second, as shown in Figure 6.5b. The participant

was then asked to perform the pointing task, i.e. point at where target A was from

their current location and press a button. The error angle was then recorded. After

completion of the pointing task, the world was faded back in and the user continued

looking for target B. After locating target B, they were instructed to return to target A

in as few transitions as possible. Returning to target A – referred to as the returning

phase – allows for analysis of a natural user movement pattern without interference

from the target search i.e. when returning to target A, the user generally knows where

they are going, and are therefore not scanning the space for targets.

In total there were nine such pairs of targets across the four scenes, resulting in

nine pointing tasks. In order to balance any difference in pointing task difficulty be-

tween transition type conditions, the order of transitions shown before each pointing

task was counterbalanced. With three transitions under test (3 = 3D model, T = tele-

portation, M = Möbius), six orderings were possible (3TM, 3MT, T3M, TM3, M3T,

MT3). Each participant saw a single ordering of transitions – for example a partici-

pant assigned to the first ordering would have performed their nine pointing tasks after

seeing transitions in the order 3TM3TM3TM.

At times the experimenter would ask the participant a question about their sub-

jective experience of the transitions. Five such questions were possible. Four of these

questions – moving, dizziness, disorientation and naturalness, as described in section

6.1.3.2 – required the participant to provide a rating from one to five. Before a transi-

tion, the experimenter would get the system to select one of these four questions. In

order to balance any ordering or possible scene effects, the system selected these ques-

tions randomly. Following the transition, if the question had been asked before for that

transition type, the question was skipped. If the question had not been asked before,

the experimenter would pause the environment (the environment faded out slightly,

and actions by the participant were disabled) and orally ask the participant to rank
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the transition for that metric. Once the participant had provided their response orally,

the experimenter would unpause the environment and the participant would continue

searching for the next target. If the experimenter accidentally asked the same question

twice for one transition type, the mean of those ratings was used.

The fifth possible question was for the participant to specify which of the last two

transitions they preferred. In a pilot study, it became clear that participants were unable

to remember the second-to-last transition with enough clarity to provide an accurate

comparison. To ensure that the participant was able to provide an answer, they were

alerted two transitions in advance that the experimenter was going to ask their prefer-

ence, allowing them to be actively comparing them. The experimenter also pressed a

button, ensuring the system would show two different transitions. The pairs of tran-

sitions shown to the user were programmed to ensure that the participant saw each

possible pairing of transitions in all orders. With three transition types, this meant the

user provided a preference for all six possible pairings.

The experimenter determined when to ask these questions through observation of

the participant’s position, and attempted to avoid asking questions at any point when

the question would interfere with other metrics. For example, if the participant was one

location away from a target, the experimenter would not ask the user which of the next

two transitions they preferred, as at the next location the participant may have found the

target and initiated a pointing task. Likewise, the experimenter avoided asking ques-

tions during the returning phase, as this may have affected the participant’s movement

profile.

Due to the amount of vection involved, participants took a five minute break be-

tween each scene. This was done to reduce the cumulative effects of simulator sickness.

During this break, participants were asked to complete a pen-and-paper map-placement

task. This task was intended to provide a general idea of a participant’s spatial aware-

ness of the scene. Participants were asked to mark camera and target locations on a

map of the environment they had just seen. Following the final scene, participants

were asked to complete an SSQ again. Participants were then debriefed, and given £10

compensation for taking part.
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Möbius Teleport Model

Figure 6.6: Histograms of all pointing task results, including the angle’s sign, for each transi-
tion type.

6.2 Results

6.2.1 Spatial Awareness

6.2.1.1 Error Angle

The error angle was defined as the angle between the user’s pointing ray and the ray

from the centre of the hand controller to the centre of the target in question, calculated

on a 2D plane as seen from above. When all pointing task error angles – including

their sign – are shown in a histogram, the distribution shows the expected peak near

0°, as shown in Figure 6.6. Although this data roughly follows a bell shape, analysis

with Shapiro-Wilk indicates that the data cannot be considered normally distributed,

most likely due to the frequency and spread of extreme data points. Pointing task error

angles were often extremely high, indicating that participants struggled with this task.

Indeed, participants frequently had error angles over 90°.

The difficulty of a pointing task is related to the two transitions between when the

user sees the target, and when they are asked to point at it. This could be affected by

the distance travelled in those two transitions, the angle between the two transitions,

and the level of scene occlusion involved. For each pointing task, the two transitions

taken were predetermined; only one route option was available to the user at these

times, so each pointing task is directly comparable to itself between participants. For a

visualisation of all pointing task answers, see Figure 6.7. A breakdown of participant

error angles by pointing task in shown in Table 6.2.

When performing statistical analysis, the average of all three pointing task error

angles was taken for each transition type. Only the magnitude of the error angle was



120 Chapter 6. The effect of transition type in MV360M

Figure 6.7: All participant answers for all pointing tasks. Each coloured line shows the ray
from the hand controller at the point the participant pressed a button, indicating
they were pointing towards the target. Blue = teleport, red = Möbius, green =
model. The sphere in the centre represents the viewing sphere for the pointing task
location i.e. the fixed location of the participant’s head. Each image is oriented so
the vertical aligns with the line between the centre of the viewing sphere and the
centre of the target in question i.e. the target the user is trying to point at is due
north of the sphere in each image.
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Table 6.2: Mean and standard deviation for each pointing task.

Pointing task 3D model Möbius Teleport All
Mean SD Mean SD Mean SD Mean SD

Gallery 63.65 64.33 42.4 32.46 43.79 57.73 49.7 51.85
Upstairs 1 47.09 48.83 61.35 24.04 60.49 52.1 56.01 42.76
Upstairs 2 35.58 52.87 17.69 9.73 71.29 55.63 38.6 45.01
Upstairs 3 33.01 25.81 40.34 38.37 33.66 42.68 35.82 35.34
Temple 1 24.71 34.37 36.04 41.2 66.83 46.02 41.95 43.19
Temple 2 52.14 51.16 12.69 10.94 68.81 44.62 43.06 44.31

Downstairs 1 46.3 36.45 54.58 52.82 25.59 24.18 42.56 40.71
Downstairs 2 35.56 20.07 83.22 58.11 54.49 48.39 57.04 47.43
Downstairs 3 42.34 43.3 20.23 20.73 30.38 37.15 31.65 35.5

Möbius Teleport Model

Figure 6.8: Histograms of mean pointing task results for each transition type.

used. Large error angles, however, were frequent in the data. When the average of three

pointing tasks was taken, this often resulted in unrepresentative values. For example, a

participant with error angles 11.7°, 13.1° and 115.7° following teleportation transitions

results in an average of 46.8°. A participant having a large error angle was so frequent in

the data that taking the average of three pointing tasks for each transition type resulted

in the data appearing multimodal, as shown in Figure 6.8.

As the data is non-normal, a non-parametric test was required. A Friedman test

was run to determine if there were differences in absolute pointing task error angles

following three different transition types. Error angle increased from model (Mdn =

32.38°), to Möbius (Mdn = 35.18°), to teleport (Mdn = 46.81°), but the differences

were not statistically significant, χ2(2) = 2.774, p = .250.

Post Hoc Analysis

It is clear that participants struggled with this task, and the data does not fit expectations.

The median values for error angles appear quite different between transition types, with

teleport producing a median value 45% larger than the model transition. The high

variability and large number of extreme values, however, make analysis difficult. As a

result, we examined the data for possible post hoc analysis techniques.
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Figure 6.9: Boxplot of average pointing task results for each transition type.

The average pointing task data contained no outliers, with an outlier being defined

as a data point beyond 1.5 times the interquartile range (IQR). This can be seen in the

boxplot shown in Figure 6.9, with whiskers representing 1.5 times the IQR. This is due

to the high frequency with which participants produced high error angles, resulting in

a large IQR, and means the data is not suitable for filtering out outliers.

An alternative approach is to define a sensible cutoff value, and remove all values

above that cutoff across all transition types. The issue with this technique is that – as

the teleport transition tended to have more extreme data points – filtering out extremely

high error angles across all transition types introduces bias, and results in a reordering

of mean values.

Counting the frequency of extreme data points would be one way to identify how

often a participant became completely disoriented. An issue with this type of analysis

is that the cutoff value is arbitrary, and could be selected such as to force a statistically

significant result. As a result, we did not examine the frequency of extreme values.

In previous work that has used a pointing task, it was found that self-reported

gaming experience played a role in pointing task performance [99]. In this work, data

from gamers and non-gamers was separated, with the data from gamers having lower

variance and producing a statistically significant result. A Spearman’s rank-order test,

however, found no correlation between frequency of playing video games and pointing

task performance in our data. Participant conformity during the pen-and-paper map-
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Figure 6.10: Boxplot of average times between fading to grid environment and completion of
pointing task.

placement task appeared highly variable, so this data was not analysed.

6.2.1.2 Time

As can be seen in Figure 6.10, there were outliers in the time taken to complete the

pointing task. As a result, a Friedman test was run to determine if there were differ-

ences between transition types. The median time taken to complete the pointing task

increased from teleport (Mdn = 8.453), to model (Mdn = 8.975), to Möbius (Mdn =

9.756), but the differences were not statistically significant, χ2(2) = 1.613, p = .446.

There was little difference in the mean time to complete the pointing task between

transition types, with teleport averaging 10.0s (SD = 4.8), model averaging 10.1s (SD

= 3.7) and Möbius averaging 10.4s (SD = 3.7).

6.2.2 Subjective Measures

As subjective measures were given on a five point scale, it could be argued that the data

was of an interval type. The data, however, was not normally distributed as assessed

by Shapiro-Wilks, and contained outliers. As a result, parametric techniques were not

appropriate. Therefore we treated the data as ordinal, and used the non-parametric

Friedman test for analysis. Boxplots for all rated subjective metrics are shown in Figure

6.11.
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Moving through the space ↑ Dizziness ↓

Disorientation ↓ Naturalness ↑

Figure 6.11: Boxplots of subjective ratings. ↑ indicates a higher rating is better, ↓ indicates a
lower rating is better.

6.2.2.1 Moving Through the Space

A Friedman test was run to determine if there were differences in participants’ sub-

jective experience of moving through the space for the three different transition types.

Participants’ ratings for moving through the space were statistically significantly dif-

ferent for different transitions, χ2(2) = 18.907, p < .0005. Pairwise comparisons were

performed using pairwise Wilcoxon signed-rank tests with a Bonferroni correction for

multiple comparisons. Means are included here due to equal median values. Post hoc

analysis revealed a statistically significant increase in the subjective experience of mov-

ing through the space from teleport (Mdn = 3.0, mean = 2.742) to model (Mdn = 4.0,

mean = 3.875) (p < .0005) and teleport to Möbius (Mdn = 3.0, mean = 3.419) (p =

.042), but not between model and Möbius (p = .063).
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6.2.2.2 Dizzy

A Friedman test was run to determine if there were differences in participants’ sub-

jective experience of feeling dizzy during the three different transition types. Means

are included here due to equal median values. Participants’ ratings for feeling dizzy

increased from teleport (Mdn = 1.0, mean = 1.389), to model (Mdn = 1.0, mean =

1.625), to Möbius (Mdn = 1.5, mean = 1.719), but the differences were not statistically

significant, χ2(2) = 2.774, p = .250.

6.2.2.3 Disoriented

A Friedman test was run to determine if there were differences in participants’ sub-

jective experience of feeling disoriented by the three different transition types. Partic-

ipants’ ratings for feeling disoriented increased from model (Mdn = 1.0), to Möbius

(Mdn = 1.25), to teleport (Mdn = 1.5), but the differences were not statistically signifi-

cant, χ2(2) = 2.136, p = .344.

6.2.2.4 Naturalness

A Friedman test was run to determine if there were differences in participants’ subjec-

tive experience of naturalness during the three different transition types. Means are in-

cluded here due to equal median values. Participants’ ratings for naturalness decreased

from model (Mdn = 3.0, mean = 3.317), to Möbius (Mdn = 3.0, mean = 2.952), to tele-

port (Mdn = 3.0, mean = 2.911), but the differences were not statistically significant,

χ2(2) = 2.482, p = .289.

6.2.3 Preference

Binary preference data was analysed by fitting a Bradley-Terry model [129]. Here,

a “contest” is considered to mean when a participant was asked to state a preference

between two transitions, with the preferred transition becoming the “winner” of that

contest. The count of wins for each transition type are shown in Table 6.3.

The parameters of the Bradley-Terry model were estimated using maximum like-

lihood. The model aims to estimate the probability that transition type i would beat

transition type j in a contest, for each possible pairing of transition types i and j, where

i 6= j. A positive-valued ability score α is calculated for each transition type, such that

the odds that i will beat j are αi/αj .
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Table 6.3: Transition preferences.

Winner When playing against
Model Teleport Möbius

Model - 35 46
Teleport 25 - 39
Möbius 14 20 -

The model can be expressed in the logit-linear form

logit[pr(i beats j)] = λi − λj,

where λi = logαi for all i. This allows all of the parameters {λi} to be estimated

using standard generalised linear models (GLM).

Analysis was conducted using the BradleyTerry2 package for R [130]. As the

parameters are relative rather than absolute, the 3D model parameter λmodel is set to

zero as an identifying convention.

Preference counts for transition types decreased from model (wins = 82, λmodel =

0) to teleport (wins = 63, λteleport = -0.3904) to Mobius (wins = 34, λmobius = -1.1180).

As the model can be expressed as a GLM, it is possible to calculate an analysis

of deviance table and perform a chi-squared likelihood ratio test to obtain significance

values.

Participant preferences were statistically significantly different for different tran-

sitions (GLM: χ2(2) = 25.744, p < .0005). Post hoc analysis was performed by fitting

pairwise Bradley-Terry models, with a Bonferroni correction for multiple comparisons.

Post hoc analyses revealed a statistically significant decrease in preference from model

(wins = 82) to Möbius (wins = 34) (p < .0005) and teleport (wins = 63) to Möbius (p =

.038), but not between model and teleport (p = .59).

6.2.4 Movement Profile

In order to explore the movement profile of the user following the different transition

types, a time metric was examined following each transition during the returning phase

(i.e. when a participant was returning to a known target location, and therefore not

searching for a new target). The metric was the time between the completion of one

transition and the initiation of the next transition. A boxplot of these results is shown

in Figure 6.12.
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Figure 6.12: Boxplot of average time before initiation of the next transition during the returning
phase.

The average time data contained outliers, as assessed by visual inspection of the

boxplots. As a result, a Friedman test was run to determine whether there were statis-

tically significant differences in the average time before the next transition following

each of the three transition types. The time before initiating the next transition was sta-

tistically significantly different for different transition types, χ2(2) = 21.355, p< .0005.

Pairwise comparisons were performed using pairwise Wilcoxon signed-rank tests with

a Bonferroni correction for multiple comparisons. Post hoc analysis revealed a statis-

tically significant increase in the time before the next transition from Möbius (Mdn =

3.33) to teleport (Mdn = 5.1) (p < .0015) and from model (Mdn = 3.45) to teleport (p

< .0015), but not from model to Möbius (p = 1).

6.2.5 SSQ

The mean Total Severity (TS) score for the pre-experiment SSQ was 4.46 (SD = 7.81),

while the mean TS for the post-experiment SSQ was 26.66 (SD = 32.13). TS values

were calculated using the formula specified by Kennedy et al. [108]. While this is well

below a high mean TS of around 70 [131], the increase from pre-exposure to post-

exposure scores does indicate that simulator sickness may be an important factor in

this context.
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6.3 Discussion

6.3.1 Spatial Awareness

It is clear participants struggled with the pointing task, as is evidenced by the frequency

of extremely high values in the error angles metric. The time taken to complete the

pointing task was also high, with the mean for all three transition types being around

10s from fading to the grid environment to the participant pressing the button indicat-

ing they were pointing towards the target. This may indicate that MV360M experiences

do not promote good spatial awareness. This is an important consideration, as an ex-

pected improvement in spatial awareness may be one of the most compelling reasons

to employ such systems over single-view 360° media.

The poor spatial awareness results may also have been caused by the implemen-

tation of the experiment. As participants sat on a swivel chair, and could therefore not

gauge their movement fully through proprioception, a loss of orientation may have been

experienced. In two or three instances, participants had pushed themselves round and

were rotating freely when the pointing task initiated, so had very poor orientation when

the world faded to the grid environment. The grid environment should have ensured

that participants retained visual cues about rotation, however, so the frequency of high

error rates is perhaps still unexpected.

It is worthwhile to note that, while the procedure followed a pattern of pairs of

targets as discussed in section 6.1.6, participants were not told of this pattern and in

general did not appear to identify it. Each pointing task seemed to be unanticipated by

participants. This means they may not have been making a specific effort at that time

to maintain awareness of their own location or the location of the target. This could in

part explain why the pointing task results are unexpectedly high.

There is also evidence that humans generally struggle with pointing tasks. In a

study by Ruddle et al., a pointing task was used to assess spatial awareness in virtual

buildings when viewed in a HMD or a desktop display [132]. In this study, participants

navigated through a large-scale virtual environment using a keyboard and mouse in the

desktop condition, and a handheld input device in the HMD condition. Based on visual

inspection of their boxplots, the pointing task in the HMD condition produced average

error angles of around 45°, while the average for the desktop display was around 55°.
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The standard error of mean (SEM) was approximately 5° for both. In comparison, our

average error angles were between 41° and 51°, with a SEM between 4.5° and 6°. Their

study, however, required participants to navigate buildings containing around 70 rooms

– a task that would likely be considered substantially harder than ours. Other work

in this area reveal similarly poor pointing task results (e.g. [133]). In retrospect, we

believe our pointing task was not well designed for measuring spatial awareness. We

would encourage future studies to either make the task less difficult, for example by not

fading to a grid environment, or by choosing a different method for measuring spatial

awareness.

6.3.2 Subjective Ratings

6.3.2.1 Disorientation

The subjective ratings for naturalness, disorientation and dizziness showed very lit-

tle variation between transition types, with no differences nearing statistical signifi-

cance. Each subjective question was asked once per transition type per participant.

The question was randomly generated by the system, meaning the experimenter could

not influence for which locations the question was asked. It was clear, however, that

following occasional teleport transitions, some participants became disoriented. This

usually presented itself through a verbal indicator from the participant. Anecdotally,

this appeared to be more common when a teleportation ended close to a wall, meaning

the participant had few visual features with which to orient themselves. Occasionally,

participants would teleport twice in quick succession, resulting in confusion. The mea-

surement method in use was not able capture these events. The metric does indicate,

however, that the transition type did not generally have an impact on the subjective

experience of disorientation.

6.3.2.2 Dizziness

The dizziness metric also did not establish any significant differences between tran-

sition types. Similarly to disorientation, there were occasional transitions where par-

ticipants indicated verbally that they had felt dizzy, but our measurement method was

not able to capture these. Anecdotally, these were during model transitions in which

the locations were unusually far apart, meaning the user was moved faster to cover the

larger distance over the 5s transition. Additionally, looking around during transitions
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seemed to increase dizziness.

While a simulator sickness questionnaire was administered before and after the ex-

perience, as all participants experienced all transitions roughly equally, it would not be

possible to assess the cumulative simulator sickness effects of any individual transition

type from our data.

6.3.2.3 Naturalness

During the Möbius transition, participants often commented on how it felt “weird”. It

is perhaps surprising, then, that the naturalness metric did not detect any significant

differences between transition types.

6.3.2.4 Moving Through the Space

It is clear from these results that the model and Möbius transitions created a stronger

feeling of moving through the space than teleport transitions. This is not surprising for

the model transition – as the user does virtually move through the space – but it is an

interesting finding for the Möbius transition. The Möbius transition is image-based,

and no additional information such as parallax is introduced. That the transition can

induce the feeling of moving through the space means it could be a useful tool to allow

the easy production of MV360M content that elicits this feeling, without the expense

or complexity of reconstructing a 3D model of the scene.

6.3.2.5 Preference

As backed up by the quantitative preference results, the model and teleport transitions

were generally well received. Participants expressed different opinions, with some

preferring the teleport transition because it was faster, and some preferring the model

transition because it was more fun or provided additional information about the scene.

In general, participants tended not to enjoy the Möbius transition. Several participants

reported finding it “weird”. One participant commented that it felt “like being pulled

through a keyhole into a different space”. As stated earlier, however, our implementa-

tion is just one possible way to use the Möbius transformation for transitions. Other,

more visually pleasing transitions may improve the user preference results. For exam-

ple, in their work on the topic, Segerman et al. included the visual device of a picture

frame to provide a join between two panoramas [124].
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6.3.3 Movement Profile

As the teleport transition is instantaneous, it is perhaps not a surprise that following a

teleportation the user takes more time to initiate the next transition than for the other

two transition types. While we initially proposed that a longer delay before the next

transition may indicate disorientation, during the study several other factors presented

themselves as possible contributors to this effect. During the Möbius and model tran-

sitions, the user may have more time and visual information to decide on their next

transition – saving them time on arrival. Additionally, the Möbius and model transi-

tions give the user time to adjust their orientation during travel, allowing them to be

facing in their desired direction on completion of the transition.

As the model and Möbius transitions each take 6 seconds to complete (0.5 sec-

onds blend in, 5 seconds in transit, and 0.5 seconds blend out), teleporting would still

be faster despite the increase in time before the next transition. It is interesting to

note, however, that the Möbius and model transitions may not add as much total time

to a journey as expected, as users take approximately 1.6 seconds longer on average

following a teleport transition to initiate the next transition.

It is also interesting to note that there was very little difference between the Möbius

and model transitions in terms of the delay before initiating the next transition. While

the Möbius transition could feasibly have disoriented users, causing an increased delay,

this does not appear to have been the case. Indeed, the median delay for the Möbius

transition is slightly smaller than that of the model transition.

6.4 Limitations and Future Work
Although the SSQ was used to evaluate the simulator sickness effects of the experi-

ence on participants, it is not possible to identify which transitions contributed most to

simulator sickness from our study design. Such an investigation would be valuable, as

simulator sickness is likely to play an important role in the adoption of certain transition

types.

As transition types were generally randomised, participants may have been unable

to fully acclimatise to one transition type. Allowing a participant to acclimatise may be

important to investigate aspects such as spatial awareness, as these may be affected by

learning. Additionally, as participants acclimatise to the virtual space, their preference
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may change, with the faster teleport transition potentially becoming preferred over the

more informative model transition.

In our MV360M content, the user explored scenes in which cameras were arranged

in a connected network, with each camera being in the line-of-sight of at least one other

camera. This allowed the entire scene to be explored, with available locations being

visualised to the user by way of a sphere at that location’s position in the virtual space.

This may not be the case for all MV360M content, as some scenes may be too sparsely

captured for such a network to be feasible. Our research does not cover such scenarios,

and the transition types explored may not be easily adaptable to these types of content.

Due to our desire to explore a 3D model transition, the available content was

limited to static scenes. While our results may be applicable to dynamic scenes, there

are other issues that were not addressed. As a result, further work is needed in order to

understand the impact of dynamic MV360M on users.

There is a wide variety of transition types to be explored, including variations of

the three transition types discussed here. For example, the Möbius and model transi-

tions took six seconds each, irrespective of distance travelled. Varying the time based

on the distance travelled could be one way to provide further information to the user.

Additionally, our implementation of the Möbius transition is only one way to incor-

porate the Möbius transformation into a transition, and more complex transformations

could potentially improve the visual appearance of image-based transitions. While

there are many options, the methods in this paper highlight some important considera-

tions, and show which metrics may be most sensitive to the transition type.

6.5 Conclusion
Our research investigates the impact of different transition types in MV360M for static

scenes, in which users can navigate around a captured virtual space via a connected

network of panoramic views. The three transition types explored were teleportation,

a linear move through a 3D model of the scene, and an image-based Möbius trans-

formation. The metrics investigated were spatial awareness, users’ movement profiles,

transition preference and the subjective feelings of moving through the space, disorien-

tation, dizziness, and naturalness.

Our results indicate that the transition type has a significant impact on the subjec-
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tive feeling of moving through the space, with the 3D model and Möbius transitions

producing a stronger feeling of moving through the space than the teleport transition.

The transition type also had a significant effect on a user’s movement profile, with users

taking on average 1.6 seconds longer to initiate the next transition following a teleport

transition than a 3D model or Möbius transition. The subjective feelings of naturalness,

disorientation and dizziness were not significantly different between transition types.

A pointing task was unable to identify any significant difference in spatial awareness

between transition types. These results indicate that the choice of transition type may

have an impact on several aspects of the user’s experience when exploring MV360M,

and as a result content creators must think carefully before selecting a transition type.



Chapter 7

Conclusion

In the work presented here, we explored the acquisition of 360° media (Chapter 3), and

aimed to improve the production pipeline for 360° media experiences (Chapter 4). We

also aimed to provide a deeper understanding of the end-user experience of single-view

360° video (Chapter 5) and multi-view 360° media (Chapter 6). This closing chapter

summarises the work presented in this thesis. We then conclude with a broader look at

the field of captured virtual reality, and where we believe future work may take us.

7.1 Project summaries

7.1.1 360° media acquisition

In Chapter 3, the process by which 360° media was acquired for all stages of the project

was discussed. This included the capture of content in collaboration with BBC R&D

and Middlesex University. These captured pieces included a test documentary, shot

using a Ladybug3 camera, and a longer documentary piece about a beekeeper shot

using a GoPro HERO camera array. Additionally, the resourcing of single-view 360°

media from YouTube and multi-view 360° media from Matterport were also covered.

A complete list of all 360° media used throughout this work is available in Appendix

B.

7.1.2 Object removal in 360° media

In Chapter 4 we explored object removal in 360° images. A method was proposed in

which field-of-view expansion using retargeting techniques was combined with Graph-

cut Textures to remove objects near the equator of the viewing sphere. Several exten-

sions and refinements were proposed to improve this technique, including how it can be
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extended to remove objects anywhere on the viewing sphere. The proposed retargeting

techniques – seam carving and non-homogeneous warping – helped alleviate the distor-

tions this method of object removal can introduce. In some situations, however, such as

the presence of very regular surrounding structure, it was shown that this method may

fail to produce acceptable results.

Chapter 4 also examined inpainting as a method to remove objects in 360° im-

ages, and explored how the choice of projection affects the inpainting result. In many

cases where the object to be removed is not at the poles, it was shown that the standard

equirectangular projection can be used without additional steps. Due to the distortion

characteristics of equirectangular images, however, it was shown that more work needs

to be done to inpaint content at the poles. Tripod removal was shown to work well

by adding rotation steps to the process, while cubic and rectilinear projections are re-

quired for complex inpainting tasks such as geometric textures. Finally, our inpainting

techniques were shown to work for video in certain situations, such as tripod removal

for a static camera. Inpainting techniques similar to ours are now available in popular

post-production tools, such as the 360° video editing software SkyBox Studio [134],

which has been acquired by Adobe and integrated into Adobe CC 2018 [135].

7.1.3 Cinematic virtual reality

In Chapter 5, we investigated the advantages and disadvantages of CVR compared to

traditional viewing formats such as TV. We explored the consumption of panoramic

videos in three different display systems: a HMD, a standard 16:9 TV, and a SV+ dis-

play. The SV+ display was designed to mitigate some of the issues of directorial control

associated with HMD playback, while attempting to retain some of the immersive char-

acteristics.

To investigate the impact of display type on the viewing experience, an exper-

iment was conducted that measured spatial awareness, narrative engagement, enjoy-

ment, memory, fear, guiding attention, and a viewer’s concern about missing some-

thing. Our results indicated that the HMD offered a significant benefit in terms of en-

joyment and spatial awareness, and our SV+ display offered a significant improvement

in enjoyment over traditional TV for one of the videos. We were unable to confirm the

work of a previous study that showed incidental memory may be lower in a HMD over
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a TV.

Drawing attention and a viewer’s concern about missing something were also not

significantly different between display conditions. These were unexpected results, and

may indicate that using a fixed chair in a HMD experience places a soft limit on the

field of regard. This finding may have important consequences for video production, as

at-home viewers are likely to be seated on a couch.

7.1.4 Multi-view 360° media

In Chapter 6, we investigated the effect of transition types on immersive MV360M

experiences. A repeated-measures experiment was conducted with 31 participants.

Wearing a head-mounted display, participants explored four static scenes using three

transition types: teleport, a linear move through a 3D model of the scene, and an image-

based transition using a Möbius transformation. The metrics investigated were spatial

awareness, users’ movement profiles, transition preference and the subjective feelings

of moving through the space, disorientation, dizziness, and naturalness.

Our results indicated that there was no significant difference between transition

types in terms of spatial awareness. In retrospect, however, we believe our choice

of metric for spatial awareness may have been inappropriate. Significant differences

were found for users’ movement profiles, with participants taking 1.6 seconds longer

to select their next location following a teleport transition. While this might indicate

that the teleport transition disoriented viewers, we also proposed several other factors

that likely played a role in this, such as the additional time available to participants

during the model and Möbius transitions to adjust their orientation during transit.

The model and Möbius transitions were found to be significantly better in terms

of creating the feeling of moving through the space than the teleport transition. This is

an interesting finding for the Möbius transition. The Möbius transition is image-based,

and no parallax information is introduced. As a result, this transition could be a useful

tool to allow the creation of MV360M experiences that elicit the feeling of moving

through the space, without the expense of reconstructing a 3D model of the scene.

Preference was also significantly different, with model and teleport transitions

being preferred over Möbius transitions. Our implementation, however, is just one

possible way to use the Möbius transformation for transitions. Other, more visually
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pleasing transitions may be able to improve the user preference results.

It is clear from our results that trade-offs between transitions will require content

creators to think carefully about what aspects they consider to be most important when

producing MV360M experiences.

7.2 Future work
This work aimed to improve the production pipeline for 360° media, and establish

methods for the evaluation of such experiences. Due to the commercial value in im-

proving the production pipeline, there has been substantial investment in this space

from companies such as Adobe [136] and The Foundry [137]. As these popular tools

now support inpainting, the discussion of how best to apply inpainting techniques de-

scribed in Chapter 4 is more pertinent than ever, as content creators can now easily im-

plement these techniques in their media. Our FOV expansion and Graph-cut Textures

technique represents an alternative method of removing objects from scenes where in-

painting will not produce plausible results, and future work could include implementing

this technique for popular software packages.

Evaluation of 360° media experiences continues to present challenges. In this

work, a range of media types and genres were explored using an array of metrics. De-

spite this breadth and depth of analysis, these investigations only lay the foundation

for the development of a 360° media evaluation framework. There are many further

avenues of research to be explored. Some are logical follow-on studies that are clearly

indicated by our findings as being of value, and some are entirely novel ways of ad-

dressing the issues.

Our findings in Chapter 5 indicated that the user experience was impacted not

simply by the display in use, but also by the physical set-up of the experience, and in

particular by chair type. The effect of the chair type is something that merits further

investigation. An MSc project in this area, co-supervised by the author, was completed

at UCL [138]. The thesis presents some interesting findings. The project found ev-

idence that more restrictive chairs discourage exploration and lead to reduced spatial

awareness over chairs that fully rotate when viewing 360° videos. An understanding

of the impact of such factors is critical for the design of these experiences, and further

work in this area would help illuminate some of these issues.
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The evaluation of transitions in MV360M presented in Chapter 6 also presents

many avenues for development. Exploring dynamic, video-based content would

present many additional complexities both to the user, and in terms of evaluation. There

are also different interfaces and scenarios to be considered. For example, experiences

in which the transitions are not initiated by the user, but are predetermined by a direc-

tor. Evaluation methods for these experiences would likely need to consider cognitive

load, as understanding may become a critical factor as complexity increases.

A major issue that our work was unable to address is the transportive nature of

360° media. While there is an assumption that 360° media creates some form of pres-

ence, in which the viewer feels they are physically in the portrayed space and perhaps

involved in the action, measuring such a response presents many challenges. While

measuring presence remains a challenge for the VR community at large, it is perhaps

particularly difficult in 360° media experiences, where a lack of agency may disrupt

proxies often considered to indicate presence, such as response-as-if-real [74]. Identi-

fication of a suitable proxy for evaluating presence in 360° media experiences would

be of substantial benefit to the community.

7.3 The future of the field
It is clear that 360° media will continue to improve in many areas. Even over the four

year duration of this project, the technologies have advanced. These advances cover all

areas of the workflow, from production, through distribution, to consumption. Capture

has been made easier with purpose built cameras. An example of such a camera is

the Z-Cam S1, which allows the comparatively easy creation of 6k monoscopic 360°

video at 30fps [139]. Companies like Google continue to push the boundaries of what

high-end cameras are capable of. In collaboration with Yi, Google have developed the

Yi Halo, capable of filming 8k stereoscopic 360° video at 30fps [140]. Post-production

has been simplified, with direct integration of 360° support in software such as Adobe’s

Premiere Pro and After Effects [134]. Distribution and consumption has also been

streamlined, with native support from YouTube. YouTube also supports immersive

viewing in Google Cardboard and Daydream HMDs. This increase in quality brings an

equally large increase in storage and transmission requirements, however the relevant

technologies for these issues also continue to improve. While these developments will
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incrementally make 360° media more appealing, they are unlikely to invalidate our

findings as they do not alter the fundamentals of the experience.

There is a growing body of data and research exploring 360° media. YouTube now

provide heatmaps of where the viewport was directed during 360° media playback,

as well as statistics on average 360° media viewing habits. One such statistic is that

“people spent 75% of their time within the front 90 degrees of a video” [141]. It is

statistics such as this that recently led YouTube to encourage creators to consider using

a HFOV of only 180°, a technique termed by YouTube as VR180 [142]. While VR180

may improve the resolution, decrease the required bandwidth and simplify the creation

process over 360° media, more research is required to establish the impact that this

decreased field-of-view has on the end-user experience. Additionally, it is important

to consider that YouTube does not have any data on the physical set-up of the viewer,

including what chair type they are using, and they do not provide details on if videos

were being watched on an immersive display.

There is also a growing body of academic research looking at CVR. Bindman et

al. recently explored the impact of the level of immersion of the viewing device. They

examined the impact of immersion on feelings of presence, narrative engagement and

empathy when watching 360° media [143]. In their work, 65 participants watched a

360° video on either a HMD or a smartphone. In line with our results, the display

device was not found to have an impact on narrative engagement. Additionally, their

results did not indicate that the display type had an impact on empathy, but a higher

level of immersion did produce stronger levels of self-reported presence.

One area that will require active work to address is the lack of visual grammar

available to 360° filmmakers. The visual grammar used in film today was built up over

decades. For example, cross-cutting is frequently used to create suspense [144]. In

this editing technique, frequent cuts are made between two events, to establish to the

audience that both are happening concurrently. Such techniques are not necessarily

transferrable to 360° video, and as a result a new visual language must be created. It

is this lack of visual grammar that has prompted creators to compare the current state

of the field to the early days of cinema (e.g. [145]). While the development of a visual

grammar will likely be a critical aspect for the capabilities of storytelling in the field,

this is a challenge for creators, and is unlikely to be resolved through academically-led
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Figure 7.1: Lytro’s Immerge light-field camera. Each circle is an individual capture camera.
Image source: Lytro, Inc.

technical solutions.

The technical future of the field is open to debate. One opinion is that the next ma-

jor step in captured virtual reality will be the introduction of motion parallax. Allowing

users to move their head with six degrees of freedom, while maintaining photorealism,

is an immense technical challenge. There are currently two suggested approaches to

creating “volumetric video”, i.e. video that supports motion parallax when a viewer in

a HMD moves their head. While the terminology for these technologies is evolving,

here we refer to them as “light-field capture” and “free-viewpoint video”.

Light-field capture is a technology in which multiple cameras are used to cap-

ture a “light-field”, a space in which perspective-correct views are available from any-

where inside that volume [146]. Light-field video capture systems have existed for

some time, but have generally been restricted to capturing in a specific viewing direc-

tion [147]. Even the most up-to-date light-field camera from Lytro, a leader in the field,

only captures in a single direction, and must be rotated in order to capture a full 360°

scene [148]. An image of this camera is shown in Figure 7.1. To our knowledge, there

are currently no omnidirectional light-field capture systems.

In free-viewpoint video capture, a large number of cameras are arranged facing
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Figure 7.2: Microsoft’s free-viewpoint video capture system [120].

inwards towards a capture volume [26]. While older versions of such systems were

limited to capturing character performances, more recent systems are more generic and

can capture any central object [120]. The central object can then be segmented from the

background, and the various views integrated to create a textured 3D model. For VR

viewing, this 3D model could then be integrated into scenery that is computer generated

or has been captured using photogrammetry. Such systems have the benefit of allowing

greater freedom of movement to viewers, who can view the captured scene from any

angle. Despite continuing work in the field, however, these systems are limited in terms

of their visual quality, with resolution and artefacts that mean these experiences do not

currently reach photorealism [120]. An example of a free-viewpoint video system is

shown in Figure 7.2.

Whatever the future of captured virtual reality experiences may be, it is clear that

evaluation of such experiences is a critical issue that presents many challenges. There is

a complex interplay of perceptual and cognitive processes at work. Regardless of where

the technology may take us, a concrete understanding of these processes is essential to

ensuring that these experiences are engaging and safe, and it is hoped that the work

presented here can act as a foundation for such evaluations.
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List of Acronyms

ANNF Approximate nearest-neighbour field

AR Augmented reality

CVR Cinematic virtual reality

DoF Degrees of freedom

FOR Field of regard

FOV Field of view

HFOV Horizontal field of view

HMD Head-mounted display

IEQ Immersive Experience Questionnaire

IMU Inertial measurement unit

MNEQ Measuring Narrative Engagement Questionnaire

MV360M Multi-view 360° media

NNF Nearest-neighbour field

SA Spatial awareness

SAR Spatial augmented reality

SSQ Simulator Sickness Questionnaire

VFOV Vertical field of view

VE Virtual environment

VR Virtual reality
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List of all 360° media

Included here is a list of all 360° media used throughout this document. The media is

split into two categories: images and video that are viewable only from a single posi-

tion at any time (“360° images and video”) and media that is viewable from multiple

positions at any time (“multi-view 360° media”).

360° images and video

Name: Sherbrooke Forest
Source: Peter Gawthrop
Used: Chapter 4
URL: https://www.flickr.com/
photos/gawthrop/3241996032

Name: Test documentary
Source: Filmed in collaboration with BBC R&D
Used: Frames from video used in Chapter 4
URL: not available online

Name: Test footage
Source: Peter Boyd Maclean
Used: Frames from video used in Chapter 4
URL: not available online

Name: London documentary
Source: BBC R&D
Used: Chapter 4
URL: not available online

https://www.flickr.com/photos/gawthrop/3241996032
https://www.flickr.com/photos/gawthrop/3241996032
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Name: BBC office tour
Source: BBC R&D
Used: Frames from video used in Chapter 4
URL: not available online

Name: The Resistance of Honey
Source: Filmed in collaboration with BBC R&D
Used: Chapter 5 (documentary stimulus)
URL: https://www.youtube.com/
watch?v=t6u3opMTCV4 (to reduce length,
edited out 2m20-2m46 and 3m26-6m15)

Name: Noa Neal ‘Graffiti’
Source: YouTube
Used: Chapter 5 (music video stimulus)
URL: https://www.youtube.com/
watch?v=LByJ9Q6Lddo

Name: Hide and Seek
Source: YouTube
Used: Chapter 5 (horror stimulus)
URL: https://www.youtube.com/
watch?v=ePf7mQJ3IvE

Name: Real Memories
Source: YouTube
Used: Chapter 5 (narrative stimulus)
URL: https://www.youtube.com/
watch?v=9Ta2Et4jX4Y

https://www.youtube.com/watch? v=t6u3opMTCV4
https://www.youtube.com/watch? v=t6u3opMTCV4
https://www.youtube.com/watch?v=LByJ9Q6Lddo
https://www.youtube.com/watch?v=LByJ9Q6Lddo
https://www.youtube.com/watch?v=ePf7mQJ3IvE
https://www.youtube.com/watch?v=ePf7mQJ3IvE
https://www.youtube.com/watch?v=9Ta2Et4jX4Y
https://www.youtube.com/watch?v=9Ta2Et4jX4Y
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Multi-view 360° media

Name: Bagan Buddha Temple

Source: Matterport

Used: Chapter 6 (temple stimulus)

URL:

https://matterport.com/3d-space/

bagan-four-buddha-temple/

Name: House

Source: Matterport

Used: Chapter 6 (upstairs/downstairs stimulus)

URL: not available online

Name: Gallery

Source: Matterport

Used: Chapter 6 (gallery stimulus)

URL: not available online

https://matterport.com/3d-space/bagan-four-buddha-temple/
https://matterport.com/3d-space/bagan-four-buddha-temple/


Appendix C

User study one: questions and tasks

for all metrics

C.1 Pre-experiment questionnaire
Gender (options: male/female)

Age (free text entry)

How many times have you used a head-mounted display in the past? (options:

Never/Once or twice/A few times/Moderately often/Often)

On average, how many hours a week do you think you spend watching TV or movies?

(options: Never, Rarely, Occasionally, Often, Always)

Do you easily become deeply involved in movies or TV dramas? (options: Never,

Rarely, Occasionally, Often, Always)

Do you ever become so involved in a television program or book that people have

problems getting your attention? (options: Never, Rarely, Occasionally, Often, Always)

Do you ever become so involved in doing something that you lose all track of time?

(options: Never, Rarely, Occasionally, Often, Always)

Do you ever become so involved in a movie that you are not aware of things happening

around you? (options: Never, Rarely, Occasionally, Often, Always)

How frequently do you find yourself closely identifying with the characters in a story

line? (options: Never, Rarely, Occasionally, Often, Always)

Do you ever become so involved in a daydream that you are not aware of things hap-

pening around you? (options: Never, Rarely, Occasionally, Often, Always)

How good are you at blocking out external distractions when you are involved in some-
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thing? (options: Very bad/Moderately bad/Neither good nor bad/Moderately good/Very

good)

How afraid of bees would you say you are? (options: Not at all/A little/A moderate

amount/A fairly large amount/Extremely

C.2 DOCUMENTARY stimulus

Memory

All memory questions were answered using free text entry. To ensure fairness, the

answers were marked blind, i.e., the display condition of the participant was not known

when their score was tallied.

Question: How many years has the beekeeper been recording bees?

Corresponding audio: “People have been recording bees since the 1950s – mainly to

try and predict swarming. I started recording bees about ten years ago.”

Question: How many microphones were on the honeycomb?

Corresponding audio: “On this frame there’s a couple of microphones. I like to record

stereo inside the hive.”

Question: What is the beekeeper allergic to?

Corresponding audio: “I’m allergic to any animals with fur: cats, dogs, sheep, horses.

So beekeeping seemed the right thing for me.”

Question: When did people start recording bees?

Corresponding audio: “People have been recording bees since the 1950s – mainly to

try and predict swarming.”

Question: What are the three types of bees in the hive?

Corresponding audio: “Inside each bee hive there are three types of bees: the queen,

the workers and the drones.”; “In a beehive, there one queen, anything up to 50 thousand

workers, and about 500 or 1000 drones.”; “This baby bee synth emulates the frequen-

cies of bees. It has three oscillators, one for the queen, one for the workers, and one for

the drones.”
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Question: Originally, what was the main reason for people to start recording bees?

Corresponding audio: “People have been recording bees since the 1950s – mainly to

try and predict swarming.”

Question: What ratio of people are allergic to bee stings?

Corresponding audio: “I’m not allergic to strings, which one in every thousand people

are.”

Question: What is the life span of a worker bee?

Corresponding audio: “The worker bee gives itself tirelessly to the colony. It’s got a

short lifespan, only six weeks.”

Question: What percentage of honey is water?

Corresponding audio: “Honey has 17% water, which makes it a great conductor, or

resistor.”

Question: What percentage of animals on the planet did the bees tell the beekeeper are

wild rather than domestic?

Corresponding audio: “They tell me they’re worried about the world. How there’s

only, like, 5% or less wild animals in the world. The other 95% are all domesticated

animals.”

Enjoyment

Enjoyment questions were answered on a 5-point Likert scale of agreement. Consider-

ing the display and the video separately, please indicate how much you agree with each

statement:

I enjoyed watching this video.

I enjoyed using this display.

Concern about missing something

Concern about missing something questions were answered on a 5-point Likert scale

of agreement.

At times, I was worried I was missing something.

My concern about missing something impacted my enjoyment of the video.
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C.3 HORROR stimulus

Fear

Fear questions were answered on a 5-point Likert scale of agreement.

I felt nervous while watching this video.

I felt afraid while watching this video.

Concern about missing something

Concern about missing something questions were answered on a 5-point Likert scale

of agreement.

At times, I was worried I was missing something.

My concern about missing something impacted my enjoyment of the video.

Enjoyment

Enjoyment questions were answered on a 5-point Likert scale of agreement. Consider-

ing the display and the video separately, please indicate how much you agree with each

statement:

I enjoyed watching this video.

I enjoyed using this display.

Attention

Who initiated the phone call? (choose from images of:)

The murderer

This victim

A character who doesn’t appear on screen

I’m not sure

Narrative engagement

The questionnaire was the measuring narrative engagement questionnaire (MNEQ).

See [86] for full list of questions.

Spatial awareness

The spatial awareness task was completed on a laptop, using a touchpad to drag and

drop circles onto a map of the scene. The task is shown in Figure C.1.
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Figure C.1: Object placement task for HORROR stimulus.

C.4 NARRATIVE stimulus

Attention

The below attention questions were answered with free text entry. To ensure fairness,

the answers were marked blind, i.e., the display condition of the participant was not

known when their score was tallied.

In the first car scene, what was the younger man holding?

In the ‘flashback’, what was the murder weapon? Describe it as specifically as you can

(object type, material, colour).

What was the projection showing? Be as specific as you can.

Enjoyment

Enjoyment questions were answered on a 5-point Likert scale of agreement. Consider-

ing the display and the video separately, please indicate how much you agree with each

statement:

I enjoyed watching this video.

I enjoyed using this display.

Concern about missing something

Concern about missing something questions were answered on a 5-point Likert scale

of agreement.
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Figure C.2: Object placement task for NARRATIVE stimulus.

At times, I was worried I was missing something.

My concern about missing something impacted my enjoyment of the video.

Narrative engagement

The questionnaire was the measuring narrative engagement questionnaire (MNEQ).

See [86] for full list of questions.

Spatial awareness

The spatial awareness task was completed on a laptop, using a touchpad to drag and

drop circles onto a map of the scene. The task is shown in Figure C.2.

C.5 Final questions
Simulator sickness was measured using the Simulator Sickness Questionnaire (SSQ).

See [108] for full list of questions.
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