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Abstract: Cognitive radar is a rapidly developing area of research with many opportunities for innovation. A significant 
obstacle to development in this discipline is the absence of a common understanding of what constitutes a cognitive radar. 
The proposition in this article is that radar systems should not classed as cognitive, or not cognitive, but should be graded 
by the degree of cognition exhibited. We introduce a new taxonomy framework for cognitive radar against which research, 
experimental and production systems can be benchmarked, enabling clear communication regarding the level of cognition 
being discussed. 

 

1. Introduction 

The term ‘cognition’ emerged into the vocabulary of 

the radar literature in 1990 [1], progressing to the phrase 

‘cognitive radar’ (CR) in the early 2000s [2]. At this early 

stage the concepts of learning, knowledge and feedback 

between receiver and transmitter were established as 

necessary components for a radar to be described as cognitive. 

CR became fully established in Haykin’s 2006 paper [3]. The 

relationship between CR and the early work in cybernetics, 

CRs principal components, and potential benefits are 

explored in [4].  One important benefit CR might offer is the 

mitigation of negative performance effects caused by reduced 

bandwidth availability for radar operations. This bandwidth 

reduction is due to the growth in demand for RF spectrum 

from competing user communities, and the financial dividend 

available to governments from fulfilling that demand. In [5,6] 

the UK Department for Culture Media & Sport states that: 

‘Spectrum is hugely valuable. In economic terms it is already 

worth over £50bn a year to the UK economy’, and ‘… at least 

500 MHz of public sector spectrum holdings below 5 GHz 

would be released by 2020’. High spectrum value is a global 

phenomenon, as evidenced by the greater than $41 billion 

raised by the 2014/2015 AWS-3 auction, conducted by the 

US Federal Communications Commission, selling just 65 

MHz of  bandwidth [7]. 

The economic advantage to be gained from 

technologies such as CR providing reduced instantaneous 

spectral occupancy by radar systems is therefore clear. In 

addition to the economic considerations, attention must also 

be given to the increasing complexity and hostility 

encountered in radar system operation, due to increased 

spectral congestion, and the use of more effective electronic 

countermeasures. These factors require a new approach to 

radar system design. 

Spectrum occupancy and associated waveform design 

opportunities are well represented in the CR literature. The 

possible gains to be made by employing cognition in radar 

systems may be derived by the adaptive control of a wide 

range of other radar system parameters. Examples include the 

selection of transmission power, polarisation, Pulse 

Repetition Frequency (PRF), dwell time on target, scenario 

geometry, and the choice of illuminator of opportunity in 

passive radar. 

The technological advances which have enabled the 

expansion of mobile communications availability, and with it, 

the increased requirements for RF bandwidth, may also offer 

the tools for the solution to the challenges in the CR research 

domain. Modern levels of computing power, innovative 

algorithm developments, advances in digital arbitrary 

waveform generation and RF transmission, can together 

provide the hardware and software capabilities necessary to 

design and build CR.  

Based on the numbers of recent publications appearing 

in the literature, see section 2, CR will continue to receive the 

levels of attention it has attained thus far, and future radar 

research will likely be increasingly targeted towards 

adaptivity and cognition. The domain will likely see a 

convergence of the theoretic concepts of cognition and real-

time experimental capability of research RF systems, taking 

CR to a higher Technology Readiness Level (TRL) [8]. 

Despite the strong interest in CR, there is currently no 

measure which allows for the classification of the cognitive 

capabilities of a radar system to provide all stakeholders with 

a common understanding of the cognitive features available.  

The objective of this article is to develop a systematic 

ontology that allows for the classification of the full range of 

radar systems including non-adaptive, adaptive, fully 

adaptive radar (FAR), and CR, all on a single scale. Thus 

enabling a common understanding of the capabilities of these 

diverse systems, and the techniques that are described as 

cognitive. 

Classification schemes can be seen to be applied in 

many technical areas as a means of distinguishing the 

capabilities of one example of a given system from another. 

By way of illustration two examples of schemes loosely 

related to CR classification are briefly discussed next. 

 

A.  UnManned Systems/Unmanned Marine 
Systems (UMS): Multiple classification schemes are used 

by different organisations to define the levels of autonomy 

exhibited by a given system. The European Defence Agency 

(EDA) employ a 6 level system [9] where 0 indicates a 

‘Human on board’, through to 5 which means the vehicle is 

totally autonomous. The US National Institute of Standards 

and Technology use the Autonomy Levels For Unmanned 

Systems (ALFUS) framework [10] which considers overall 

mission complexity in terms of orthogonal factors, namely, 
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mission complexity, environmental complexity and human 

independence. A 0 to 10 scale is applied to each axis, and the 

values combined to produce an overall score. The ALFUS 

document also includes descriptions of other similar scales 

used by NASA and the Army Science Board. 

 

B. Measuring the Level of Consciousness in 
Artificial Agents: ‘One of the first conclusions that one 

comes to when studying consciousness is that it is a graded 

phenomenon.’ This quote is taken from [11] which describes 

a framework for analysing the relationship between 

consciousness and associated cognitive functionality in 

artificial agents, ConsScale. This scale uses several of the 

attributes we need to assess in classifying CR, such as 

perception, adaptation, attention and learning. Consciousness 

also adds emotion, imagination and self-awareness to the 

synthesis. ConsScale is concerned with higher order 

processes, that of machine consciousness, which is beyond 

what we are considering in this work, with FAR and CR 

fitting into the narrow region of ConsScale levels 2 (Reactive) 

to 5 (Executive). ConsScale level 6 is described as ‘Emotional’ 

– there is certainly no place for an emotional response from a 

cognitive radar! 

 

The remainder of this paper is structured as follows: 

Section 2 describes the characteristic features of CR, and 

provides the motivation for the requirement for a CR 

classification scheme, followed in Section 3 by a description 

of the proposed classification scheme. Finally, Section 4 

provides a summary and conclusions. 

2. The Motivation for a Cognitive Radar 
Classification Scheme 

Over 1000 (June 2018, Full Text & Metadata search) 

publications on IEEEXplore currently include the phrase 

‘cognitive radar’, over 100 being added in 2018 alone, 

demonstrating the significant and growing interest in the 

domain of CR. However, when assessing CR research there 

is no metric available for measuring the level of cognition 

exhibited to substantiate the designation of CR. Another issue 

which is often ignored when work is described as CR, is that 

a radar system is unlikely to be either purely cognitive in all 

aspects, or totally non-cognitive. As radars are complex 

systems, certain aspects of the system may be cognitive to 

some degree, while other aspects are not. Therefore it is also 

important to consider, and to specify, which aspects of a radar 

system are being described as cognitive. 

The focus of this work is on the classification of 

synthetic, or human-independent, fully adaptive/cognitive 

systems, but attention is also afforded to the ‘edge cases’ 

where human involvement is present, and to radar systems 

which exhibit only ‘adaptive-on-receive’ behaviour, hence 

not being what would be termed ‘fully adaptive’. 

This section provides a summary of the nature of 

adaptive radar systems, including adaptive-on-receive, FAR, 

and CR. The purpose of this review is to provide the context 

for the proposal of the ontology covering the range of radar 

systems under investigation. 

We begin by providing a brief overview of CR, with 

particular regard to the agreement of the attributes and 

characteristics necessary for cognition to exist. The initial 

focus is on the two researchers who have defined the 

landscape of CR. This is followed by a more general review 

of CR literature. We subsequently compare the definitions of 

various adaptive radar ‘flavours’. 

 

2.1. Cognitive radar 
It is recognised in [3] that CR, and the environment 

within which it operates, constitutes a closed-loop feedback 

system. An action, possibly a signal transmission, is 

instigated by the CR. This signal interacts with the 

environment, including clutter and targets of interest, 

producing returns, which are subsequently collected by the 

radar receiver. The backscattered returns are analysed by the 

signal processing system to extract the salient features of the 

scene, which may be fused with a priori knowledge and 

information from other sensors, both on-board and remote. 

The aim is to create an understanding of the critical 

components of the environment. From this ‘perception’ the 

system is able to reason as to the appropriate next action to 

take. This repetitive process, termed the ‘cognitive signal 

processing cycle’, is a radar centric version of the human 

cognitive principles described in [12], which in the context of 

human cognition, is called the ‘perception-action cycle’ 

(PAC). The PAC, modified from a version by Haykin [13], is 

illustrated in Fig. 1. The PAC, along with the four other 

characteristics of memory (or learning), attention, 

intelligence and language [12], are the cornerstones of current 

cognitive science in terms of characterising the necessary 

components of cognition, and will play a central role in the 

ontology discussed later in this article. 

 

 

Fig. 1:  The Perception-Action Cycle 

Haykin extends the application of cognition to 

networked radar scenarios [14], which in addition to the 

internal operation of the PAC, also includes a central hub 

fusing information from multiple sensors. The aim being to 

make more informed choices of future radar actions across 

the entire network. Other researchers working on knowledge 

based intelligent multisensory radar networks [15] do not 

employ the receiver to transmitter feedback described by 

Haykin. 

Haykin has continued to work on various aspects of 

CR including waveform design [13], tracking [16,17], 

cognitive control [18,19] and cognitive radar networks 

[20,21]. 

Guerci, with others, has long advocated the use of 

adaptive waveform generation for improving radar 

performance in terms of target detection and identification 
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[22,23]. Guerci has also made significant contributions to our 

understanding of what constitutes CR, by linking cognitive 

and knowledge based radar systems research through the 

KASSPER [24] programme, and adaptive radar architecture 

research [25]. The Knowledge Aided, Fully Adaptive 

Cognitive Architecture is shown in Fig. 2. The vision 

expressed in these works emphasises the knowledge element 

of future radar systems. But central to the architecture are the 

same components defined by Fuster [12] and Haykin, the 

PAC, which provides a framework for sensing and action, 

memory, in the form of learning and knowledge, attention as 

signified by a tasking process focusing resources on items of 

interest, and intelligence, implemented by mission computers 

and CoFar co-processors. 

 

Fig. 2: Knowledge Aided, Fully Adaptive Cognitive 

Architecture [26] 

The inspiration for CR is rooted in the natural world. 

It has long been known that echo locating bats can adjust the 

ultrasonic signals they transmit. In 1965 it was shown [27] 

that bats can learn to discriminate between edible and inedible 

flying objects. Initially the bats would catch both types of 

object with equal success. After training, attention was 

focused on the more tasty variety. This result confirms that 

bats are capable of learning from the environment, and 

change behaviour based on that learning. Results reported in 

2003 show that bats discriminate between plants which had 

not yet been visited, and are therefore a good source of nectar, 

and those that had already been visited [28]. In this work bats 

also learned to discriminate between replica plant features 

with different spectral responses, and focused their attention 

on the features which indicate a reward is available. Vespe et 

al. [29] investigate the waveforms employed by echolocating 

bats, and show the complex dynamic nature of their 

transmitted signals in terms of frequency, bandwidth and 

modulations. The evolution of some plant species such that 

their echo location signature in some way enables bats to 

identify the plant as a good source of food is an example of 

exploitation of third party transmissions [30]. Echoic flow [31] 

is a function seen in bats which contributes to successful 

navigation, and could provide inspiration for synthetic 

cognitive navigation and intercept point planning. 

Dolphins and whales also employ echolocation  

techniques [32]. Echolocating porpoises exhibit the ability to 

reduce the beamwidth of their sonic transmissions during the 

hunt terminal phase, to prevent prey from escaping by 

moving outside of the hunters field of view [33]. Unique 

human individuals also use echolocation, generating sounds 

by tongue clicking [34,35]. For more details on biologically 

inspired radar and sonar systems see [36], and references 

therein. 

As was highlighted in the introduction, spectral 

occupancy and adaptive waveform design, or waveform 

diversity [37], are particularly prevalent themes researched 

under the CR heading. Wicks [38], and Griffiths et al. [39], 

outline the spectrum crowding issues, and how cognition 

might be applied to address the problem. Along with the 

technical aspects, regulatory perspectives must also be 

considered [40]. As long ago as 1967/69, DeLong and 

Hofstetter [41, 42] examined the iterative design of 

waveforms for optimum target detection in thermal noise and 

clutter. Stinco et al. [43] discuss sensing of the spectral 

environment, and how spectrum sharing can achieve minimal 

interference between users, using cognitive techniques. 

Goodman [44] describes a framework for implementing 

closed-loop waveform design. A cognitive processor is 

described [45] capable of learning the spectral content of the 

environment for use in creating an appropriate notched 

waveform for transmission, while the same authors consider 

the impact of the notched waveforms to beamforming in 

wideband phased array radars [46]. Aubry et al. employ 

information from a radio environmental map to provide 

constraints for waveform design in crowded environments 

[47]. In [48] the performance of waveforms created by 

proposed design techniques are assessed in terms of the trade-

offs between competing requirements of signal to 

interference plus noise ratio, waveform features, and radiated 

energy. Aubrey et al. [49] investigate both transmit signal and 

receive filter design in high clutter environments. Blunt and 

Mokole [50] provide a detailed review of waveform diversity 

techniques and challenges, including comprehensive 

references. 

Adaptive waveform design for matched illumination 

is investigated for the purposes of target detection and 

identification. Gjessing [51, 52] worked extensively to 

advance this subject. Matched illumination of ground targets 

is investigated [53] using models of vehicles in experimental 

trials. The use of SNR and mutual information in waveform 

design for target recognition are examined in [54,55], and 

matched illumination waveforms and sequential hypothesis 

testing in [56].  

CR networks have continued to receive attention and 

are examined in [57, 58] investigating suitable network 

architectures, and [59, 60] for target tracking. The application 

of beam steering in CR networks is discussed in [61]. Sensor 

management is an important consideration in CR, examined 

in [62, 63], and [64] considers the control of a multistatic 

multifunction radar network consisting of both active and 

passive radar nodes. 

An area of research which has the potential to inform 

our understanding of CR is in the creation of frameworks and 

architectures in which to instantiate CR systems. Bell et al. 

[65] describe a framework for a fully adaptive radar which 

demonstrates the advantage to be gained by active control of 

radar parameters. The framework is subsequently 

implemented on a general purpose hardware platform, 

specifically designed for FAR and CR research [66]. Oechslin 

et al. [67] describe a CR testbed, and compare its 

characteristics with those of the framework described in [66]. 

Exponents of HF radar argue that this technology is an 

existing example of CR. This is justified on the basis that 

dynamic ionospheric and spectral occupancy conditions 
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require constant monitoring and interpretation to enable the 

selection of appropriate radar operating parameters. In 1986 

expert systems were  applied to HR radar control [68]. Lu and 

Chen [69] describe the merging of HF radar with CR to create 

systems less dependent on highly skilled operators. Cognitive 

waveform parameter selection on the basis of a priori 

information, and external ionosphere measurements is 

described in [70]. Holdsworth discusses performance 

assessment in cognitive over-the-horizon radar using 

synthetic targets [71]. 

Wicks [72] foresees a future in which the integration 

of cutting edge technologies such as knowledge-based signal 

processing, robotics, wireless networking and waveform 

diversity, combine to create systems with extraordinary 

capabilities. A truly ambitious aim in 2003. 

Along with the potential gains of CR, we should also 

consider the problems which might be encountered as we 

progress towards practical CR. Greenspan [73] highlights 

several ‘potential pitfalls’ where caution should be exercised, 

from the reliability of knowledge sources, to the extent of 

training times required for learning machines, and the 

potential for learning stagnation. The legal implications of 

inappropriate actions taken by intelligent machines such as 

CR must also be carefully considered. 

The review provides the foundations of our current 

understanding of CR. The body of literature covering pre-CR, 

and the current state-of-the-art, provides a broad view of the 

subject of CR, and illustrates the wide-ranging nature of the 

subject. However, it has not changed, added to, or clarified 

the true nature of CR significantly. This lack of progress is 

highlighted in [74] in which the author states (2016) ‘There 

is still no exact definition in the community, on what 

discriminates an adaptive from a cognitive radar’. 

There is general agreement among the CR research 

community concerning the elements which must be present 

in a radar system for it to be classed as cognitive, these being 

unchanged since Haykin’s early work on CR. However, the 

cognitive abilities of specific CR implementations is still 

unclear. 

 

2.2. Adaptive radar (AR), cognitive radar (CR), 
fully adaptive radar (FAR) and intelligent 
radar (IR) 

In this subsection, we address the definitions of 

adaptive radar variants, and how the various adaptive radar 

terms apply in the remainder of this work. 

 ‘adaptive radar: A radar system that adapts its 

processing and control to improve achievement of a desired 

function’ [75]. In this article adaptive radar represents the 

container for all forms of adaptivity. 

 ‘cognitive radar:  A radar system that in some sense 

displays intelligence, adapting its operation and its processing 

in response to a changing environment and target scene. In 

comparison to adaptive radar, cognitive radar learns to adapt 

operating parameters as well as processing parameters and 

may do so over extended time periods’ [75]. 

This definition has been debated at length, in 

particular, by members of the NATO SET 227 panel on 

Cognitive Radar, and represents the best high level definition 

currently available. The CR definition extends that of AR to 

specifically include the characteristics of intelligence and 

learning. 

Even within the relatively small community engaged 

in CR research there can be significantly diverse views on 

what constitutes a CR. For example, the question as to if a 

standard air traffic control (ATC) radar system can be 

classified as a CR? Baker and Smith [76] argue that, from a 

systems point of view, ATC can be seen as a CR. This view 

is based on the understanding that the radar acts as a sensor, 

providing data or information to the human controllers. The 

controllers interpret the information to produce an 

understanding of the scene, the perception, and issue flight 

commands, the action, to the pilots, who in turn implement 

the action, and consequently cause the environment to change 

by potentially altering the course and position of their aircraft. 

Therefore the system can be regarded as cognitive by virtue 

of the human-in-the-loop providing the cognitive capability. 

It additionally meets the requirements of CR as specified in 

section 2.1. 

In this work we use CR to represent machine 

implemented ‘synthetic cognition’, as opposed to human 

included cognition. 

The title ‘cognitive radar’, is a basis of heated 

discussion, with alternative labels such as ‘fully adaptive 

radar’ being suggested. For the purposes of clarity, in this 

work the term FAR is used to indicate a radar system which 

is adaptive in more than precisely the receiver chain. It must 

include the PAC, and have the ability to modify some aspect 

of its own behaviour such that the environment being sensed, 

or at least the response created from the environment, is in 

some way changed by its actions. CR is seen as the logical 

extension of FAR, providing the recognisable traits of 

cognition. The transition between FAR and CR is regarded as 

a smooth evolution rather than separate characteristics. 

Additionally we use the term Intelligent Radar (IR) as a 

container to encompass all forms of FAR and CR. 

There is a pressing need to define an ontology which 

encompasses the range of systems, from those which show 

little or no cognitive capabilities, covering systems which 

exhibit cognition by virtue of a human in-the-loop, through to 

the long term goal of CR research, the fully synthetic 

cognitive systems which display, what might be termed, 

human levels of cognition or beyond, but implemented purely 

by machines. Beyond human levels of cognition might be 

understood to be the cognitive capability levels of human 

cognition without the limitations of processing speed, or the 

reliability issues, which might be suffered with human fatigue. 

In contrast, it could also be taken to be learning, decision 

making, and long term planning capabilities far beyond that 

of the human mind. By creating a classification system, the 

domain of CR can develop further by clarifying the 

contributions of new CR research. 

3. Proposed classification scheme  

The principal question to be addressed is how to 

partition the range of possible radar systems such that a clear 

understanding of the capabilities of systems can be 

established. There are numerous approaches to describing 

radar systems [77]. At the top level this might be 

distinguishing by Monostatic vs Multi-static, Primary vs 

Secondary, Ground based vs. Airborne vs. Maritime. The 

purpose of the scheme investigated in this article is to 

categorise in terms of the level of system adaptivity. The 

initial branch separates non-adaptive and adaptive radars. The 
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tree structure shown in Fig. 3 illustrates the taxonomy 

proposed. 

FAR conventionally means adaptivity on transmit and 

receive, with feedback taking place between the two, such 

that the system adapts based on the sensed environment. 

However, the FAR definition should also embrace systems 

which have no control of the transmitter, but are still adaptive 

in more degrees of freedom then receive only. This includes 

passive bistatic radar (PBR), where cognition could be 

exhibited in the adaptive selection of available illuminators 

of opportunity [78] based on previous observations, geometry 

or channel occupancy. Another example being mobile 

systems adaptively manoeuvring such that their location 

provides beneficial performance based on the scenario 

geometry. This generalisation expands the range of systems 

for which the fully adaptive and cognitive terms, and 

therefore the classification scheme, may apply. 

It could be argued that fully adaptive and cognitive 

radars should appear on separate branches of the taxonomy. 

However, this separation would require very clear criteria 

differentiating between the two branch classifications. The 

very issue this article is addressing. 

The green (solid colour) portion of the taxonomy 

illustrated in Fig. 3 shows the well understood non-adaptive, 

human-in-the-loop adaptive, and the existing synthetic 

adaptive-on-receive flavours of radar systems. Examples of 

the human-in-the–loop are simple threshold selections, 

possibly based on visual information presented on a PPI 

display, radar mode selections, for example surveillance or 

tracking modes, and the more sophisticated air traffic control 

application as discussed in Section 2.2. The adaptive on 

receive systems encompass applications from the relatively 

simple constant false alarm rate mechanisms based on the 

assumed statistics of the observed signals, to the complex, 

processing intensive, space-time adaptive processing systems. 

The blue (hatched) region shows the space where 

further refinement of our understanding of IR is required. The 

degree of cognition exhibited is seen at the bottom level of 

the IR branch, increasing from left to right. The term 

‘minimally fully adaptive’ (MFA) representing the lowest 

level of fully adaptive systems envisaged, and cognitive the 

most ‘intelligent’. We require a mechanism to differentiate 

between the base level categories. For this we return to the 

five characteristics described by Fuster [12] necessary for 

cognition. Firstly we consider to what degree each contributes 

to the level of cognitive behaviour exhibited by an IR. In this 

work we consider the characteristics of the PAC, attention 

and language as all being profoundly necessary in any IR 

system. These characteristics must be included to the 

‘necessary degree’, in all systems claiming some level of IR 

capability. The ‘necessary degree’ constraint means sufficient 

to provide the capability required by all other aspects of the 

system. How is this constraint justified? Consider the PAC. 

The PAC is the facility of the adaptive system which 

implements its closed-loop feedback nature, and therefore 

must exist for adaptation to the environment to exist. 

Attention enables the adaptive system to focus its resources 

on some critical aspects of the observed scene, without which 

the objectives of the sensor would be unclear. It might be 

argued that attention has different levels of capability, 

focussing attention on multiple items of interest in the 

multiple target tracking scenario. The view taken here, is that 

this scenario corresponds to multiple attention objects, each 

carrying out the attention function, rather than different levels 

of attention.  The language characteristic can be viewed as the 

ability to store, use and disseminate information from the 

system, without which there is no recognised cognition. 

Therefore, the characteristics which will differentiate 

between lower level fully adaptive, higher functioning fully 

adaptive, and cognitive radar will be those of memory and 

intelligence. The challenge is how to define the nature of 

these two entities in ways which can differentiate the range 

of IR definitions. 

Memory is viewed as the ability to learn and access 

knowledge, using language to store and retrieve data. It will 

be thought of functioning at the following levels : i) as a fixed 

internal knowledge base, ii) as a dynamic knowledge base 

updated by an external agent, and iii) as an on-line learning-

Fig. 3: Radar Taxonomy - Adaptive Radar Centric 
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capable system. Each level will be sub-divided further as 

necessary. 

Intelligence as a characteristic is harder to describe. 

Consider Vernon’s [79] characterisation of ‘agents with 

cognitive abilities’, ‘.. systems which exhibit adaptive, 

anticipatory, and purposive goal-directed behaviour’. The 

adaptive element has already been included in our 

understanding, but can the remaining elements of Vernon’s 

statement be taken as surrogates for intelligence? 

Vernon goes on to state ‘Cognition implies an ability 

to understand how things might possibly be, not just now but 

at some future time, and to take this into consideration when 

determining how to act.’ 

This statement corresponds to this authors’ view, that 

cognition is not only concerned with the immediate future, a 

myopic viewpoint, but instead, should include the ability to 

anticipate [80, 81] and plan future actions, over an extended 

period, acting in a non-miopic way based on the expected 

evolution of the scenario. 

These arguments lead us to the proposal that two 

features should replace the ‘intelligence’ characteristic in the 

new classification scheme. The features are:  i) the decision 

making mechanism, and ii) the degree of non-myopic 

behaviour exhibited.  

i) High quality decision making is central to an 

intelligent system. It is based on the perception gained from 

all the possible sensors, on the fixed knowledge base, on 

external or experiential knowledge contained in memory. 

Decision processing can itself take on a range of complexity, 

from the implementation of simple rules, the use of heuristics, 

which attempt to provide a more flexible response to that of 

the simple rule base, but without excessive computational 

loading, or a full optimisation process which ensures the 

optimal solution given all the available information. 

Tweedale [82] provides a useful review of decision making 

in artificial system. Tweedale argues that humans experience 

new situations within some recognisable context due to 

previous experience, so do not approach new situations 

without any information. This suggests cognitive decision 

making is tightly linked to the learned memory of previous 

events, and artificial systems should maintain similar links. 

The decision making mechanisms form the basis for one 

dimension of the proposed classification system. As systems 

take on more complex decision making functionality, the 

higher the processing load, but with increased probability of 

successful task outcome. 

ii) A system which can plan only one step into the 

future is adaptive, and can be intelligent. For the purposes of 

this taxonomy, as a system moves from myopic to non-

myopic functionality, so the classification moves from 

adaptive to cognitive. So, for a radar to be regarded as fully 

cognitive it should in some way balance short term gains 

against longer term benefits of a seemingly non-optimum 

short term action. In the extreme, for a system to be classed 

as fully cognitive, the anticipation must extend to the 

timeframe of the wider mission objectives. 

Timescale constraints and computational processing 

load can also be considered in cognitive assessment. 

Kyllonen and Zu [83] suggest that, in the human context, 

response time can be used as a measure of cognitive ability. 

Does a system which converges upon a solution more quickly 

as compared with a competitor show higher cognition? 

Alternatively, should a system which results in a more 

accurate solution in the available time be considered ‘more 

cognitive’? For the purposes of classifying IR in this article, 

we consider this computational complexity as being an 

implementation issue, and not part of the classification. 

Although the computational load should be considered when 

designing IR, it will not contribute to the cognitive ability 

definition. 

The classification scheme proposed has three elements 

as illustrated in Fig. 4. The 3-dimensional cube represents the 

space occupied by synthetic IR systems. It can be seen that 

the ‘minimally fully adaptive radar’ sits at the bottom left of 

the space, taking its character from the lower ends of each 

dimension. The minimally fully adaptive radar exhibits a 

myopic nature, with fixed decision rules and fixed memory 

structure. It must, however, include the PAC, attention and 

language capabilities. The ‘fully cognitive radar’ sits at the 

opposite extreme, exhibiting high levels of optimised 

decision making, learning and non-myopic planning. The 

three dimensions contribute equally to the final cognitive 

classification, although differential weighting could be 

applied if the characteristics are found to be of non-equal 

importance. Any such weighting must be specified such that 

the relative importance of each dimension value is understood 

by the whole community. 

All green (solid colour) region characteristics from 

Fig. 3, would appear on the dashed line extension to the 

bottom left of the cube, so are not contained in the 3D 

cognition space. Although these items could conceivably 

contain some of the characteristics employed to define the 

cube, such systems will either not contain all the necessary 

characteristics, or they will be implemented non-synthetically. 

 

 

 

 

 

 

Fig. 4:  3-D Character of Radar Synthetic Cognition Space 
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Table 1  The dimensions of the 3D IR space 

 Planning (P) 
Memory/ 

Learning (M) 
Decision (D) 

10 Mission Level 

Understanding of 

knowledge 

New behaviour 

creation 

Decisions based 

on understanding 

of learning/ 

knowledge 

FULLY COGNITIVE 

9 
Task timeframe, 

multiple tasks 
Abstraction 

Optimisation, 

informed by 

learning,      

multi-parameter 

8 Task timeframe Intention 

Optimisation, 

informed by 

learning 

7 
Non-myopic, 

long timeframe,    

multiple tasks 

Identification Optimisation 

6 
Non-myopic, 

long timeframe 

Parameter 

estimation, 

multisensory, 

external learning 

agent 

Heuristics 

informed by 

learning,      

multi-parameter 

5 
Non-myopic, 

short timeframe, 

multiple tasks 

Parameter 

estimation, 

multisensory 

Heuristics 

informed by 

learning 

4 
Non-myopic, 

short timeframe  

Parameter 

estimation 
Fixed heuristics 

3 
Myopic, 

multiple tasks 

Knowledge 

updated by 

external learning 

agent 

Rules informed 

by learning 

2 Myopic  
Fixed memory / 

knowledge 
Fixed rules 

MINIMALLY FULLY ADAPTIVE 

1 
Non-synthetic 

planning 

Non-synthetic 

learning 

Non-synthetic 

decision making 

Or  

Adaptive-on-

receive 

0 

No planning 

necessary – all 

planning outside 

of system 

No learning 
No decision 

making required 

 

The axes shown in Fig. 4 are divided into course 

increments in order to illustrate the general concept. Within 

the full classification system further subdivisions are defined, 

Table 1. This lists the categories relating to the three cube 

dimensions. These categories represent the level of ability of 

an IR along each dimension in the 3D cognition space. In each 

dimension the available space is divided into 11 partitions, 

ranging from 0 to 10. The lowest levels represent the region 

of the dashed line in Fig. 4, outside of the 3D space. These 

are included so the categories are inclusive of Fig. 3. Level 

zero of all three dimensions represents the absence of 

behaviour expected to be seen in adaptive systems. The 

values of 1 for each dimension represents non-synthetic 

capability in the characteristic, which would be supplied by 

human involvement. These would encompass the 

Adaptive/Human-in-the-loop systems. In addition, the 

adaptive-on-receive systems are also defined at level 1. 

Planning: In the planning dimension the cognition 

level rises with the timeframe over which the system is 

capable of achieving meaningful anticipation, and as a 

secondary factor, by the number of tasks considered. The 

lowest level considered to reside in the IR space is at level 2: 

Myopic. Myopic indicates that the system is capable of 

planning only a single step ahead. Data received and 

processed on the current epoch, allows decisions to be made 

and applied in the next. This level represents the adaptive 

radar case in which the system responds to current sensed 

conditions and reacts accordingly. Level 3 allows for multiple 

tasks, each being planned in a myopic way.  

Non-myopic planning extends the adaptivity by allowing the 

system to select short term actions which appear to be sub-

optimal, but which provides, by some measure, a greater long 

term gain. Level 4 represents the non-myopic/short 

timeframe scenario, where the timeframe over which 

planning takes place is limited to a small number of coherent 

processing intervals. Multiple tasks are added in level 5. 

Level 6 is a longer timeframe non-myopic capability, of the 

order of many seconds. Level 8 extends the planning 

timeframe further to encompass a complete task, such as 

tracking a target until it is out of range. Level 9 adds multiple 

tasks. Finally, level 10 provides planning capability over 

mission duration timescales. 

Memory/Learning: In this dimension the MFA 

capability, level 2, contains fixed memory content defined 

prior to the mission, and could be directly associated with 

known mission parameters. Level 3 allows for the knowledge 

base to be updated by an external learning agent. The higher 

levels embrace learning from the data provided by internal 

sensors, and potentially external sensors, with level 4 dealing 

with model parameter learning, such as the estimation of 

parameters for a tracking filter. Parameter estimation using 

multiple internal sensors applies at level 5, with level 6 

extending this to include information from an external agent. 

Level 7 enables identification of scene components to be 

performed, and level 8 is capable of the evaluation of the 

‘intention’ of the scene components. Level 9 takes the results 

from the learning exercise and abstracts the knowledge such 

that experience might be used to improve performance 

against a previously unseen scenario. Level 10 includes an 

understanding of the knowledge gained, and the creation of 

new behaviours to exploit that understanding.  

Decision: Fixed rules are at the MFA level for the 

decision dimension. Decision processing using fixed rules 

uses data from the sensor to drive the selection of new actions, 

but critically, given identical sensor input, the selected action 

will be the same. Level 3 adds the ability for the rules to be 

modified by learned knowledge, such that performance 

improves over time. Level 4 uses fixed heuristic decision 

making, while level 5 adds learned modification to the 

heuristics. Multiple parameter heuristics are introduced at 

level 6. Level 7 employs optimisation techniques. Level 8 

allows optimisation modified by learning, and level 9 adds 

multiple parameters to the optimisation. Level 10 decisions 

are based on an ‘understanding’ of learned knowledge. 

For each case Level 10 indicates capabilities beyond 

the 3D cognition space being considered, allowing for 

mission timeframe planning, an understanding of the 

meaning of learned information, and the ability to reason 

based on such understanding. 

The three values allocated to a system from the 

dimensions of the cognition space cube, when taken together, 

provide a direct indication of the level of cognition. The three 

values are reported as a 3-tuple, for example, the result might 
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be [4:6:5], representing the individual values for 

[planning:memory:decision]. The order is arbitrary, but fixed. 

No hierarchical significance is to be placed on the ordering of 

the values. 

A three value system is proposed instead of a single 

numerical designation for the cognitive ability of IR. This is 

because of the challenge in creating a system devoid of 

ambiguity and discontinuities. The 3-tuple values may be 

combined, for example using the minimum values, the means, 

and the variance, but currently no satisfactory solution is 

available. 

Table 2 Analysis of reported capability 

No. Description Level 

[P:M:D] 

1 ATC [76] 

Non-synthetic input on all dimensions. 

[1:1:1] 

2 

 

 

 

CREW [66]  

PRF / Number of pulses adjustment for 

target tracking. 

[Single-task myopic/Internal estimation of 

parameters/Optimisation] 

[2:4:7] 

3 Waveform design [25] 

Learning of noise covariance matrix. 

Design of waveform. 

[Single-task myopic/Internal estimation of 

parameters/Fixed rule decision] 

[2:4:2] 

4 HF radar [68] 

Adaptive. Ionospheric and spectral 

occupancy estimation. Rule based 

knowledge engine based on long term 

experience, and updated offline by new 

experience. 

[Multi-task myopic/Internal estimation of 

parameters/Fixed rule decision] 

[3:4:2] 

 

Example algorithms and systems have been assessed 

within the proposed classification schemed and are shown in 

Table 2. The first example is the ATC system having a human 

as part of its assessment as a CR. Level 1 in all dimensions is 

chosen due to the non-synthetic components in the 

architecture. This is followed by the leading CR experimental 

setup, CREW. This system has been shown to adapt radar 

parameters in real-time in order to maintain a specified SNR 

on a target, while maintaining the target in the unambiguous 

Doppler space, and avoiding stationary clutter [66]. This 

work is advanced in the learning and decision-making 

dimensions, but is limited to adaptive planning. In the domain 

of waveform design the work from Guerci [25] is found to be 

equally cognitive in the planning and learning dimensions as 

the CREW experimentation, but lower in the decision making 

dimension. This being due an optimisation process not being 

necessary in this case. Finally, HF radar cognition is assessed 

as being at similar levels to the waveform design case, but it 

should be remembered that this work was carried out in 

1986.When using the classification of IR for comparing 

competing solutions, we should be mindful of increased 

complexity with little benefit. If a lower graded system 

performs equally well in the context of the application, the 

higher graded system offers no advantage. This is shown by 

case 3, Table 2, in terms of the level of decision making being 

low, but the correct level for the application.  

4. Conclusion 

The purpose of this article is twofold, to introduce a 

framework for classifying IR, and secondly to review the CR 

research domain, and promote discussion into the nature of 

cognition as it is be applied in radar system, and specifically, 

how IR should be classified. 

A framework is proposed to allow the classification of 

cognitive elements within IR systems. It should be 

understood that this is a fast evolving, very fluid domain in 

which new research may disrupt our current understanding, 

resulting in a classification scheme which is likely to evolve 

over time. 

Providing a scale measure of systems’ ability is not 

new. Precedent exists, for example the field of autonomous 

vehicles, which employ such scales to represent the degree of 

autonomy exhibited in vehicles. IR research can still be 

regarded as being in its infancy, so defining a classification 

scheme for IR at this early stage of research will avoid the 

proliferation of competing classification systems, which can 

be seen to have occurred in the autonomous vehicles 

discipline, with the resulting ambiguity that brings. 

The realisation that the degree of radar cognition 

should be regarded as a scale rather than a binary attribute is 

fundamental to defining this classification system. It should 

be noted that not all systems need to be cognitive at the 

highest levels, only sufficient cognition need be incorporated 

in any system to achieve the desired outcome, although future 

proofing of systems by the addition of extra levels of 

cognition could offer long term benefits in terms of system 

longevity. 

The proposed tools should be applied to all 

stakeholder functions, such that identical understanding of 

capability is seen in classification, specification, procurement 

and acceptance of IR. 

The existing literature does not address the 

classification of IR. The scheme presented in this article 

begins the process of addressing that requirement. 
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