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Abstract  
Breast implants have a role in both aesthetic and reconstructive surgery. They are 

however, associated with long-term complications including capsular contracture (a 

fibrotic encapsulation of the implant), implant rupture and leakage often necessitating 

further corrective surgery. The mechanisms driving these complications are not fully 

understood. Indications for post mastectomy radiation therapy are expanding leading 

to more patients with implant based breast reconstructions receiving it. The aim of 

this thesis was to investigate failure mechanisms of breast implants and the role of 

radiation therapy in its pathogenesis. 

 

Meta-analysis was performed investigating the clinical outcomes of PMRT directly 

upon the permanent implant in patients undergoing breast reconstruction. Retrieved 

breast implants and the corresponding capsular tissue from patients were collected 

and their material characteristics and histology studied. Un-implanted (control) 

Silicone breast implant shells were submitted to treatment dose radiation therapy and 

their material characteristics evaluated and compared to those of casted PCU and 

POSS-PCU. 

 

Meta-analysis demonstrated increased surgical complication rates and poorer patient 

satisfaction and cosmetic outcome in the PMRT group. Retrieved breast implants 

demonstrated a significant reduction in mechanical strength properties with increasing 

duration of implantation but there was no correlation with thickness of the 

corresponding retrieved fibrotic capsule. Treatment dose radiation to un-implanted 

silicone breast implant shells had no overall significant effect on its material 

characteristics or in vitro cellular response. This was in keeping with the response to 

PMRT of PCU and POSS-PCU, however POSS-PCU demonstrated different 

mechanical properties in comparison to silicone. 

 

These results indicate that although radiation therapy is significantly associated with 

poorer clinical outcomes for patients with implant based reconstruction, it is not due 

to alterations in the mechanical strength and surface chemical properties of the 
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silicone implant shells. Therefore further study evaluating the tissue response to the 

implant in the setting of radiation therapy is required.  
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Thesis Impact Statement 
 
The aim of this thesis was to investigate mechanisms of breast implant failure and 

examine the role of radiotherapy. As a result of the systematic review and meta-

analysis performed in Chapter 3, this thesis has shown that post mastectomy radiation 

therapy (PMRT) onto the permanent implant in patients with implant based breast 

reconstruction leads to increased rates of capsular contracture, revisional surgery and 

reconstructive failure (as defined by removal or replacement of implant). In addition, 

we have shown that PMRT on to the definitive implant is associated with poorer 

patient satisfaction and cosmetic outcome. This is the first meta-analysis examining 

the effect of PMRT on to the permanent implant in the literature to date and is a 

valuable for medical professionals when deciding on which breast reconstruction 

approach to take when patients are undergoing PMRT making informed decisions. 

 

Further work in this thesis examined the mechanical strength and surface chemical 

properties of retrieved implants from patients attending our unit. In keeping with 

previous work, mechanical strength properties fell with increasing duration of 

implantation. However, a key finding was the change in the micro-mechanical 

properties across the cross section of the implant determined by atomic force 

microscopy. This work led to form the basis of a subsequent Masters student research 

project. 

 

Furthermore, a key finding was the effect of radiotherapy treatment upon the silicone 

breast implant shells. Analysis showed there was no change in tensile, tear or Young’s 

modulus between the fully irradiated and non-irradiated shells however there was a 

fall in the elongation at break suggesting that the shells become less flexible following 

radiation. Wettability and ATR-FTIR analysis did not show significant changes and 

therefore this work forms the basis of the potential future work assessing the effect of 

radiation delivered to the cell and the breast implant shells in combination to gain a 

deeper understanding of the pathogenesis of breast implant failure in the setting of 

radiotherapy.  
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In addition, further work tested the effect of radiation therapy upon a newer material, 

the nanocomposite POSS-PCU which has been demonstrated to have different bulk 

mechanical and surface chemical properties to that of silicone breast implant shells 

and do not change their properties in response to treatment dose radiation therapy. 

This work provides the basis for further investigation of this material as a potential 

alternative to silicone in designing future breast implants.  
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1.1 Introduction  
Breast implants are used for both reconstructive and aesthetic purposes. According to 

the Breast and Cosmetic Implant Registry, over 8 500 patients in England underwent 

breast implant surgery between October 2016 and 2017 [3]. Breast cancer is the 

commonest cancer in women accounting for over 1.5 million newly diagnosed cases 

worldwide in 2010 [4]. In the UK it accounted for 15% of total cancers diagnosed in 

2011 [5]. Of all diagnosed breast cancer patients approximately 40-45% will undergo 

mastectomy [6,7]. The breast shape is synonymous with femininity, attractiveness and 

reproduction and thus breast reconstruction is key to improve body image, emotional 

and sexual well-being particularly in younger patients following partial or total 

mastectomy [8] however, some studies have suggested breast reconstruction offers no 

difference in the psychological outcome and quality of life for this group of patients 

[9]. The current guidelines are that all suitable patients undergoing mastectomy 

should be offered breast reconstruction.  The National Mastectomy and Breast 

Reconstruction Audit published in 2011 showed that over half (52%) of breast 

reconstructions performed between 2008-2009 were implant based [10]. There is also 

a clinical need for breast implants to achieve normal breast contours in patients with 

congenital disorders of the breast such as hypoplasia (Poland’s syndrome) and 

tuberous breasts. From the aesthetic viewpoint, the breast augmentation industry is 

thriving.  Breast augmentation remains the most popular cosmetic surgical procedure 

in both the UK and US. In 2016, 7 769 procedures were performed in the UK [11] and 

290 467 procedures were performed in the US [12]. 

Since the inception of the silicone elastomer breast implant shell containing silicone 

gel in the 1962, silicone breast implants have undergone five generations of 

manufacturing changes in response to implant related complications. Despite these 

modifications, all breast implants will inevitably fail due to fibrotic encapsulation 

thickening, inflammation and contraction, leading to implant distortion, leakage and 

rupture.  

 

1.1.1 Clinical Need for Improved Breast Implants  
Since the inception of the silicone elastomer shell containing silicone gel in the 1962 

[13], silicone breast implants have undergone five generations of manufacturing 

changes in response to implant-related complications. Despite significant advances in 
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the design and development of silicone breast implants over the past fifty years, long-

term post-operative complications such as fibrotic capsular contraction leading to 

pain, firmness and distortion of breast shape are reported to occur in 9.2-26.8% at 10 

years after implantation dependent on the indication and as well as reported implant 

rupture rates of 9.7% at 10 years [2] . A large meta-analysis by Marotta et al [14] 

examining implant data from 42 studies and 9774 implants, demonstrated that the 

implant rupture rate varied from 26% to 69% over a implantation time ranging from 

3.9 to 17.8 years. These complications can necessitate further corrective operative 

intervention with reoperation rates reported up to 28.3% at 8 years follow up in the 

literature [15,16]. 

1.2 Evolution of the Breast Implant  
It is over one hundred years since Gersuny first injected paraffin into breast tissue in 

an attempt to augment the breast [17]. This was followed by Czerny in the late 19th 

century who pioneered the technique of autologous fat transfer as a method of breast 

reconstruction by excising a lipoma from a patient’s flank and inserting this into a 

mastectomy site. In the following years, a variety of materials including paraffin, 

ivory, glass, beeswax, soybean oils and injectable silicones were experimented with in 

the early 20th Century often with disastrous results culminating in serious 

complications including skin erosion, infection, silicone granulomata, tissue necrosis 

and soft tissue loss and therefore were abandoned [17,18]. The advent of the silicone 

implant in 1962 by Cronin and Gerow, composed of a silicone elastomer shell 

containing a filler material, marked a new era in breast augmentation and 

reconstruction surgery. Over the past half a century however, despite retaining the 

original design of a silicone elastomer shell and a filler material, the silicone breast 

implant has undergone five generations of manufacturing changes in response to 

complications which have overall reduced complications and improved their safety 

[1] (Figure 1.2). 

 

1.2.1 The Structure of the Silicone Gel Implant  
The breast implant is composed of a silicone elastomer outer envelope containing 

silicone gel in an attempt to recreate the natural breast mound. Silicone 

(polydimethylsiloxane, PDMS) is a polymer composed of a Si-O backbone with two 
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methyl groups bonded to each silicon atom (PDMS :(CH3)2 SiO) [1] as shown in 

Figure 1.1.   

  
Figure 1.1: Structure of polydimethylsiloxane (PMDS) 

 

Silicone gels are made from PDMS chains, lightly cross-linked through vinyl 

hydrogen bonds. The silicone elastomer shells are composed of 3-dimensional cross 

linked PDMS chains blended with amorphous silica (SiO2) for reinforcement [19] . 

This is achieved using heat energy in a process called curing or vulcanization to 

achieve an elastomer. In breast implants, to prevent leakage of PDMS fluids from the 

silicone gel through the elastomer shell to surrounding tissues, a barrier layer of 

fluorosiloxane is incorporated into the shell to reduce the incidence ‘gel bleed’ as it is 

not as soluble to PDMS [1,20]. The cohesiveness of the silicone gel is dictated by the 

intensity of cross-linking between chains. Newer fifth generations gel implants feature 

a highly-cohesive gel filler which allows the shaped-implants to be less likely to 

disrupt and fold despite changes in breast position and chronic stress loading [21]. 

 

1.2.2 The History of the Breast Implant -1962 to present 
The first generation silicone implant consisted of a thick smooth-surfaced silicone 

shell with a thick, viscous gel filling featuring a Dacron patch posteriorly for 

adherence to the chest wall [22]. However, it was discovered that these implants were 

associated with significant rates of capsular contracture, leakage and aesthetically 

were firm to touch. A retrieved breast implant study by Peters et al. [23] of over 400 

silicone breast implants, demonstrated that all 28 first generation implants with a 

mean implantation duration of 17.6 years were intact and demonstrated capsular 

calcification. Second generation implants were introduced in the early 1970’s 

featuring a thinner, but slightly more permeable shell, containing thinner gel in order 

mimic the desired natural feel. These, however, were associated with increased rates 
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of implant rupture and it was discovered that intact implants could ‘bleed’ silicone 

into the surrounding tissues from histological examination by Thomsen et al. [24] of 

breast tissue capsules from 55 patients who had silicone gel breast implants.  It was 

this generation of breast implants which would become a major source of litigation in 

the 1990’s.  A retrieved implant study by Collis et al. [25] of implants inserted 

between 1971 and 1997 reported highest incidence of implant rupture occurred with 

second generation implants (71 of 110 implants: 65%). Furthermore, Peters et al. [26] 

showed that 77% second generation implants explanted between 1991 and 1995 had  

either ruptured or leaked.  

 

 
 

Figure 1.2: Evolution of the silicone breast implant since it’s inception in 1962 – 
(modified from Berry et al. [1]) (CC – capsular contracture, GB- gel bleed)  
 
 
The beginning of the 1980’s heralded the introduction of third generation implants. 

These featured a viscous gel and a shell containing an extra fluorosiloxane barrier 
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layer (elastomer) to reduce the rate of implant rupture. Peters et al. [26] reported in 

their series of explanted implants 27 of 28 retrieved third generation implants were 

intact. Despite these implants providing durability, they were firmer to the touch.  To 

overcome this, they were required to be surgically placed with adequate soft tissue 

cover to minimize visibility and palpability. In the 1970s further implant surface 

modification by coating the silicone breast implant shells with a 1mm thick 

polyurethane foam layer was pioneered by Ashley et al. [27]. Handel et al. reported in 

a prospective study of 719 patients receiving breast implants, only 20% of patients 

who received polyurethane-coated implants developed capsular contracture (Baker 

Grade 3-4) at 8 years compared to 35% who received textured implants and 50% who 

had smooth implants [27]. Polyurethane coated implant was shown to reduce the 

contracture rate (p< 0.0009) compared to textured implants [27]. In 1991, the US 

manufacturing company of these coated implant shells withdrew their product amidst 

reports that the degradation of polyurethane in vitro produced the carcinogenic by-

product toluene diamine (2,4 TDA) [27,28]. However further published data in 1997 

by Hester et al. [29] who performed a risk assessment after examining for free 2,4 

toluene diamine in urine and serum samples from 60 women with polyurethane 

coated breast implants reported insignificant levels of 2, 4 TDA in the urine and the 

FDA reported the risk of developing cancer was negligible. A recent long term study 

of 382 patients with polyurethane coated implants over a 30 year period reported an 

overall capsular contracture rate of 2.4% and demonstrated an inverse correlation 

between amount of polyurethane coating found on the implant and severity of 

capsular contracture [30].  

In the 1990’s, fourth generation implants were created featuring textured outer 

surfaces in response to the reduced capsular contraction rates witnessed with the 

polyurethane-coated implants. Fifth generation implants were created using a highly 

cohesive, ‘form-stable’ gel more solid in nature allowing maintenance of its 

anatomical shape. This is achieved by increasing the ratio of crosslinking of the 

silicone gel allowing the gel to maintain its shape despite effects of gravity [21,31].  

1.2.3 Litigation in Breast Implant Surgery  
In April 1992, the Food and Drug Association (FDA) placed a moratorium on the 

commercial use of silicone gel implants in the USA. This was a direct result of the 

increasing litigation, particularly resulting from shell rupture and the available 
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evidence at the time of a causal link with the development of autoimmune connective 

tissue diseases [32]. This was largely based upon a series of case reports and a further 

meta-analysis including nine cohort studies published in 2000 [33] refuted the link. 

The FDA lifted the ban on the use of silicone breast implants in 2006 [1].  

1.2.4 Breast Implant Fillers 
The most popular breast implant filler is silicone gel. Silicone is composed of the 

chains of PDMS of varying lengths with its viscosity dictated by the average length of 

the polymer chains and the ratio of cross-linking occurring between them. Following 

the FDA ban on silicone gel implants in the early 1990’s, saline-filled implants 

remained the only alternative. Cunningham et al. performed a retrospective study of 

450 patients with saline filled implants commissioned by the FDA with a minimum 

10 year follow up. They reported an overall complication rate of 20.2% including 

capsular contracture and deflation and a propensity for visible rippling and palpable 

edges, however 93% of patients were satisfied or highly satisfied with their breast 

implants [34].  

During this time period, alternative fillers to silicone were rushed onto the market. 

The Trilucent™ implant, filled with medical grade soya bean oil encased in a silicone 

elastomeric shell, was introduced in 1995 [35].  These implants were associated with 

a high complication rate reported by Rizkalla et al. [35] who studied 29 patients (50 

implants) over 3 years and reported an overall reoperation rate of 20% and deflation 

rate of 10%.  It was discovered the rapid degradation of the shell led to implant 

rupture or leak and the subsequent perioxidation of the oil released genotoxic 

products [36,37] . The UK Medical Device Agency (MDA) withdrew the implant 

from the market in 1999 and the following year advised all patients to have their 

implants removed [35].   

Hydrogels, a further class of filler, are polymeric macromolecules that retain water 

without dissolution [1]. Carboxy-methyl-cellulose gel (CMC) hydrogel implants have 

been reported to have acceptable patient satisfaction outcomes and allow improved 

mammographic imaging of the breast due to their translucency [38]. 

Polyvinylpyrrolidone-hydrogel (PVP)-hydrogel filled breast implants (Misti Gold™   

prostheses) were shown to be advantageous initially as they demonstrated improved 

radiolucency allowing for detection on mammography of breast tissue pathology. 

However, these were associated with volume expansion and in one retrospective 
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review 59% of such implants had been removed at 4 years due to complications of 

volume expansion and capsular contraction and were withdrawn from the market in 

2000 [39]. The NovaGold™   implant with a hybrid PVP-guar gum gel was 

introduced in 1996. These were withdrawn from the market in 2000 due to high 

reported rates of rupture as well as the propensity of the filler to induce a vigorous 

subcutaneous inflammatory reaction necessitating surgical intervention [40]. 

Most notably in recent years, the withdrawal from the market by the French Medical 

Regulatory Authority of Poly Implant Prothesis™  (PIP) silicone implants in 2010 

attracted vast media attention [41]. The filler used in the implant manufacturing 

process was discovered to be industrial grade silicone and as a result these implants 

were associated with significantly higher rates of rupture [42]. A study comparing 

explanted PIP and medical grade silicone implants demonstrated reduced tensile 

strength and increased degradation of explanted PIP implants shells compared to 

those of explanted medical grade silicone implants [43]. However, PIP implant 

rupture rates have been reported to be similar to other silicone implant types in long 

term studies [44,45]. 

 

 

 

1.3 Complications Related to Breast Implants   
Breast implant surgery is associated with complications often necessitating further 

corrective surgery most commonly, capsular contracture leading to pain, distortion 

and firmness of breast, implant rupture and implant leakage. Complications can be 

further classified into early, occurring within the first 30 days following surgery and 

late. The available literature regarding the risks and complication rates of breast 

implants is derived from core manufacturers long term studies. Table 1.1 outlines the 

incidence of late complications related to 5th generation implants in Allergan’s 10 

year follow-up core study of Allergan Natrelle 410 anatomical shaped implants in 492 

patients undergoing primary augmentation. 
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Complications occurring 

in primary augmentations 

after 10 years in patients 

with Allergan Natrelle 

shaped breast implants  

 

 

            Re-operation 29.7% 

            Capsular contracture, Baker Grade III/IV 9.2% 

            Implant rupture  (17.7% MRI cohort) 

            Implant malposition 4.7% 

            Breast pain 4.5% 

Infection 1.7% 

Seroma 1.6% 

Haematoma 1.3% 

Visible rippling of implant/wrinkling 0.9% 

Asymmetry/Ptosis 1.2% 

Hypertrophic scar/poor scar formation 1.4% 

Palpable implant 0.3% 

 

Table 1.1: Reported rates of complications of Allergan Natrelle 410 anatomical 

shaped implants after 10 years in primary augmentations n=492 (adapted from 

Maxwell et al [2]) 

1.3.1 Early Complications 
Early complications associated with breast implants include haematoma, infection and 

seroma formation [46] have been reported to occur in up to 10% of patients in the 

reconstructive setting [46]. Meticulous haemostasis at time of surgery and use of 

antibiotic irrigation of the breast implant pocket are routinely incorporated into breast 

implant surgery to reduce risk of contamination with breast ductal flora [47]. Infection 

is most commonly caused by Staphylococcus aureus and coagulase negative 

Staphylococci [48].  Literature reports a 1.8% risk of implant associated infection in 

patients undergoing augmentation [49] and a higher risk of 5.8% ( range 0-29%) 

reconstructive procedures [50], This may be explained by increased area of surgical 

dissection, scarring and operative time required to perform reconstructive surgery. 

Risk factors for infection and skin necrosis include smoking, obesity, diabetes 

mellitus, renal disease, radiation therapy, steroid use, use of an acellular dermal 

matrix, operations lasting more than 2 hours and placement of a drain [48,51].  
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1.3.2 Long Term Complications of Breast Implants 
 

1.3.2.1 Capsular Contracture  
Capsular contracture, an abnormal fibrotic encapsulation is the most common adverse 

complication of breast implants leading to pain, firmness, distortion of the breast and 

asymmetry and shall be discussed further in the coming section. 

1.3.2.2 Implant Rupture 
Implant rupture can present as pain, asymmetry or deflation of the breast, presence of 

silicone granuloma or on radiological imaging. There is no standardised reporting 

method of breast implant rupture and published literature on rupture rates is derived 

from large follow-up studies from implant manufacturers performed to meet FDA 

approval. Implant ruptures can be clinically silent with less than 30% of magnetic 

resonance imaging (MRI) detected ruptures evident on clinical examination [52] thus 

the true incidence of ruptures may be underestimated. Allergan’s Natrelle round 

implant 10 year core study reported in their MRI screening group an implant rupture 

sik of 9.3% for augmentations, 5.4% in revision augmentations and 35.4% in 

reconstructions [53]. Allergan’s Natrelle 410 anatomical shaped implant study at 10 

years reported in the MRI screened group a rupture risk of 17.7% for augmentations, 

14.7% in revision augmentations and 12.4% for reconstructions [2]. 

 

The exact mechanism of breast implant rupture is unknown. Postulated mechanisms 

of rupture include iatrogenic damage to implant at time of initial surgery [54] and 

excessive handling of implant, trauma, excessive compressive forces exerted during 

mammography, the presence of folds or wrinkling of the implant and presence of 

surrounding capsular contracture [55]. In addition, reduced mechanical properties of 

the silicone implant shells has been reported in several retrieved implant studies as 

outlined in Table 1.2 [14,43,56–60].  

 

Postulated mechanisms include the effects of in vivo aging [43,57,58,60] which 

reduce the silicone shell’s mechanical properties accounting for the increased rupture 

and leakage rates with increasing duration of implantation.  

 

Brandon et al [59] examined the mechanical properties of explanted breast implants 

from a range of manufacturers and demonstrated that increasing swelling of the 
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silicone elastomer shell caused by diffusion of low molecular weight silicones from 

the encapsulated gel into the elastomer shell was associated with reduced mechanical 

properties of the shells [59]. Furthermore, Neechi et al [61] studied 100 explants and 

found a significant difference in mechanical properties between ruptured and intact 

implants and ruptured implants shells. With increased shell swelling evident in 

ruptured implants shells [61]. In addition, diffusion of lipids into the elastomer shell 

has been postulated to contribute to mechanical weakening of the breast implant shell 

[62]. Furthermore, change in mechanical properties of the shell could be attributed to 

other factors such as potential trauma to the implant at time of surgical handling and 

implantation described in a cadaver model [54], trauma to the breast in vivo 

(mammography, trauma, breast tissue biopsy) and by forces exerted on implant at 

time of explantation. 
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Author/Year Retrieved 

Implants 

Implant 

Type 

Duration of 

implantation  

Outcome 

Greenwald et 

al. 1996[63] 

25 explants Smooth-

surfaced 

silicone gel  

23 - 216 months 
(Mean =117, SEM 

=12.9)  

Significantly reduced shell 

strength, shell toughness and 

elasticity with increasing 

implantation time 

Philips et al. 

1996[58] 

29 explants Silicone gel  4 - 240 months 

 

Reduced material strength with 

increasing implantation time 

Marotta et al. 

2002[14] 

51 explants Silicone gel 12 to 228 

months (Mean- 

18.8 months) 

Reduced tensile and tear and 

reduced % elongation compared 

to un-implanted controls 

No correlation with duration of 

implantation. 

Brandon et al 
2003[59] 
 

42 explants 

51 control 

Single lumen 

silicone gel 

Controls 

Explants: 3 - 

384 months  

Increased extraction of non-

cross-linked silicones from shell 

correlated with reduced tensile 

and elongation strengths. 

- effect of shell swelling 

Neechi et al 
2011[56] 

100 

explants 

Silicone gel 6 – 132 months 

(Mean 58.3, SD 

37) 

Intact implants demonstrated 

significantly higher mechanical 

strength properties than ruptured 

implants. Ruptured implants 

shells demonstrated higher 

extraction fraction of low 

molecular weight silicones. 

Yildrimer et al 

2013[43] 

22 explants 

 

4 silicone gel 

18 PIP 

 

12 – 150 months 

(Median = 126) 

Reduced mechanical properties 

comparing silicone to PIP 

implants 

PIP implants reduced 

mechanical properties with 

increasing implantation time 

Bodin et al. 

2015[60] 

21 implants 

11 5th 

generation 

10 4th 

generation 

Silicone gel  3 – 130 months Reduced breaking strength with 

increasing implantation times. 

Table 1.2: Studies investigating mechanical properties of retrieved breast implants 
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1.3.2.3 Re-operation  
The most common indications for revisional surgery following breast implant 

augmentation include request for size change, capsular contracture, implant 

malposition, suspected rupture and following reconstruction most commonly capsular 

contracture, scarring and suspected rupture [2,64]. Re-operation rates following 

implant augmentation surgery have been reported up to 29.7% at 10 years [2,49,65]. 

1.3.2.4 Silicone Granuloma 
Silicone granuloma can present as a palpable breast mass, breast pain, mastitis or 

palpable lymphadenopathy. Its presence indicates leakage of the silicone breast 

implant and is an indication for revisional surgery [66]. 

1.3.2.5 Late Seroma  

The development of late seroma (peri-implant fluid collection occurring >1 year after 

implantation) is reported to occur in <0.1% of patients and is often managed 

conservatively with aspiration [67]. The aeitology of late seromas is unknown 

however, the development of synovial metaplasia and shear-stress micro-movement 

exerted by the implant on the surrounding tissues is postulated to have a role.  

1.3.2.6 Chronic Infection 

Chronic infection can lead to biofilm formation, increased risk of capsular contracture 

and osteomyelitis of the ribs and can range from mild, subclinical infection to severe 

leading to wound breakdown and sepsis requiring implant removal and autologous 

reconstruction [68]. The role of bacteria in capsular contraction is not fully 

understood however it is thought to cause chronic stimulation of the inflammatory 

response surrounding the implant. It has been shown that presence of biofilms, 

detected by sonification on explanted breast implants is directly correlated with 

increased rates of capsular contracture [69]. Furthermore, a higher rate of capsular 

contracture has been reported in those patients undergoing sub-glandular placement of 

the implant in comparison to sub-muscular [70] and a possible hypothesis to explain 

may be sub-glandular implants exposure to mammary duct bacterial flora. Local 

irrigation with anti bacterial agents at time of breast augmentation surgery using 

inflatable prosthesis in 124 patients showed significantly reduced early post operative 

capsular contracture [71]. The presence of chronic biofilm infection in breast implants 

may increase the likelihood of developing BIA-ALCL [72] 
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1.3.2.7 Breast Implant Associated – Anaplastic Large Cell Lymphoma (BIA-

ALCL) 

Breast implant associated-anaplastic large cell lymphoma (BIA-ALCL) is a rare type 

of T-cell non-Hodgkin’s lymphoma reported to occur in patients with textured surface 

implants [73]. It is characterized by being CD30 positive and ALK negative and 

arising from either the effusion surrounding the implant or the peri-implant capsule 

tissue. Patients with breast implants presenting with a late onset seroma must have 

cytology performed to exclude this rare disease. First reported in 1997 the incidence 

has been reported to be higher in patients with higher surface area textured breast 

implants, with the highest associated with Biocell implants (1 in 3 817 implants) [74]. 

The pathogenesis of this disease is not fully understood but inflammation and the 

presence of chronic biofilm infection may increase the likelihood of developing BIA-

ALCL [72]. Higher surface area textured implants may allow increased load of 

biofilm and ingrowth of bacteria thereby further activating immune process and 

cancer development.  

1.4 Capsular Contracture  
Capsular contracture has been reported by the manufacturer Allergan’s core studies to 

occur in up to 9.2%–18.9% of primary augmentations and in up to 14.5%-24.6% of 

primary reconstructive cases at 10 year follow-up [2,53] and is higher for revision 

augmentations and reconstructions [2]. The aetiology of capsular contracture is poorly 

understood and is thought to be multi-factorial. It is characterised by a pathological 

fibrotic encapsulation of the breast implant that can lead to firmness, pain, distortion 

and asymmetry of the breast. It is classified clinically using the Baker Classification 

system I-IV. Grade I is a soft, non-visible implant, Grade II feature a mild firmness to 

the breast, Grade III a moderate firmness with visual distortion of the breast and 

Grade IV is when the capsular contracture is associated with pain or severe distortion 

of the breast, is firm with palpable implant.  

 

1.4.1 The Host Response to the Silicone Breast Implant. 
The interaction of the silicone breast implant and the host tissue is poorly understood. 

The insertion of the implant initiates the host ‘foreign body response’ with tissue 

injury, blood/material interaction, the acute inflammatory response and recruitment of 
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neutrophils, acute phase proteins, followed by the chronic inflammatory response 

with recruitment of macrophages and fibroblasts, collagen deposition and formation 

of foreign body giant cells leading to the development of a fibrotic encapsulation of 

the breast implant. This is necessary to support the implant and prevent its 

unnecessary movement within the breast. However the in the development of capsular 

contracture, the inflammatory foreign body response is propagated by a pathological 

trigger(s) which further stimulates the fibroblasts and myo-fibroblasts. It is the 

parallel alignment of collagen fibres produced which then myo-fibroblast contract 

upon which produces a tight collagen capsule surrounding the implant ultimately 

leading to distortion of the breast shape with firmness, discomfort and pain [75,76]. 

Histological examination of samples from capsules retrieved at time of implant 

removal by Bui et al. [77] demonstrated thicker capsules, increased myo-fibroblast 

alpha smooth muscle actin (α-SMA) expression at the implant- capsule surface and 

overall greater acellular content in those patients with Baker III and IV contracted 

capsules compared to Baker I and II uncontracted capsules ( p<0.05) [77]. 

1.4.2. Cell Material Interactions  
 
The exact patho-aeitiology of capsular contracture is unknown, however it is thought 

to be multi-factorial and many factors have been implicated including haematoma or 

seroma at time of implantation, implant surface texture, bacterial colonisation, 

radiotherapy and shear-forces exerted upon the tissues [78,79]. The surface of the 

material or substrate can influence the host responses. Hydrophobicity of the breast 

implant can influence the host response as it influences protein adsorbtion to its 

surface, producing conformational changes in the protein, altering cell binding 

receptor sites and triggering inflammatory responses [80] ultimately influencing 

macrophage and fibroblast behavior. The substrate stiffness, the ability of a material 

to resist deformation, can also direct cell behavior with cells ‘pulling’ on cell 

adhesions made via their cytoskeleton and relaying information back the nucleus. 

Previous studies have demonstrated that substrate stiffness influences fibroblast 

behavior, attachment and migration [81] with fibroblasts moving toward stiff 

substrates [81–83].  
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1.4.3 Textured vs Smooth Implants 
Many studies have examined the rate of capsular contracture in smooth compared to 

textured implants. A recent meta-analysis [84] of 16 randomised control trials and 2 

retrospective studies showed that overall textured implants were associated with 

reduced rates of capsular contracture compared to smooth [84]. The uneven 

topography of the implant surface in textured implants disrupts the fibroblast cell 

orientation, leading to random alignment of collagen fibres, reducing their ability to 

optimally contract and thereby reducing the incidence of capsular contracture. 

Silicone breast implants are textured by either ‘salt-loss’ techniques as seen with 

Allergan Biocell surfaces (dipping the silicone coated mandrel in salt prior to the 

curing process) or by indenting the outer silicone layer into a polyurethane foam 

before curing as in Mentor Siltex implants [85]. Further research by Valencia-

Lazcano et al. [86] to explain the reduced rates of capsular contracture associated with 

textured implants found that there was greater fibroblast cell adhesion to textured as 

opposed to smooth implants which may suggest textured implants provide an 

improved cell surface interface and reduced micro-movement possibly due to 

increased surface area [86]. Furthermore, coating the breast implants with extra-

cellular matrix proteins collagen I and fibronectin have been shown in in vitro models 

to demonstrate greater breast fibroblast cell adhesion as demonstrated by resistance to 

detachment by trypsin [86] Current thinking accredits this reduction in micro-

movement and shearing motion at the host-implant interface will reduce 

overproduction of collagen fibres and thus capsular contracture [87].  

 

1.4.4 Role of Acellular Dermal Matrixes  
Acellular dermal matrixes (ADMs) are human, porcine or bovine derived 

decellularised extra celluar matrix grafts which have been associated with reduced 

incidence of capsular contracture in breast reconstruction [88] . The hypothesized 

mechanism is that the ADM closely mimics the host extracellular matrix thereby 

reducing the inflammatory response, ultimately reducing the development of capsular 

contracture. This has been strengthened by a study of capsule biopsies taken at time of 

implant exchange and found histological reduced evidence of inflammation at ADM 

tissue compared to the host breast capsule [89]. Furthermore, there was found to be 

reduced levels of inflammatory markers [90]. 
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1.4.5 Site of Surgical Incision 
The choice of incision has been shown to contribute to capsular contracture formation 

with infra-mammary incisions associated with lower rates compared to peri-areolar or 

trans-axillary approaches [91,92]. 

1.5 Impact of Radiotherapy 
Immediate two-stage breast reconstruction using a tissue expander followed by 

permanent implant is the most common form of breast reconstruction performed post 

mastectomy for breast cancer [93]. Offering immediate breast reconstruction provides 

replacement of the breast mound as well as significant psychological and emotional 

advantages for the patient [94]. Implant based reconstruction following mastectomy 

can be performed immediately as a one (direct to permanent implant) or two stage 

procedure (tissue expander followed by permanent implant) or as a delayed procedure 

after several months. Post-mastectomy radiation therapy (PMRT) is a known to 

prevent local recurrence and improve disease free and overall patient survival [95]. 

Since the publication of the Danish and Canadian trials in 1997, the numbers of 

patients eligible for post mastectomy radiotherapy are increasing [96,97]. This is 

further supported by a subsequent study by Tendulkar et al. who reported a significant 

reduction (12%) in loco-regional recurrence in those patients receiving post 

mastectomy radiation therapy (PMRT) with only 1-3 positive axillary nodes [98]. 

Following the publication of a meta-analysis of 22 randomised clinical trials in 2014 

[99], guidelines now recommend PMRT should be offered to patients with T1-2 

disease and 1-3 positive lymph nodes as well as patients with T1-2 tumours with a 

positive node on sentinel node biopsy who do not undergo further axillary clearance 

[100].  

Radiotherapy has been shown in several retrospective patient studies to increase rate 

of capsular contracture as well as the failure rate as defined as necessitating surgical 

removal of the implant [95,101–103] however the underlying mechanism is yet 

unknown. A recent study investigating the effect of post mastectomy radiation 

therapy on silicone breast implants shells showed an increase in low molecular 

fragments on the surface of the treated implant shells using surface spectroscopy 

methods which may be responsible for the increase the rate of adverse events in these 

patients [104]. However, studies investigating the effect of gamma radiation upon 
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PDMS based materials have shown no significant changes in their material 

characteristics [105,106]. 

1.6 Properties of an Ideal Breast Implant  
 
In designing newer breast implants, the material used to form the implant shell should 

possess the following desirable properties: being non-toxic, non carcinogenic, non- 

immunogenic, biocompatible (able to perform its function and elicit an appropriate 

host response), impermeable to leakage of its inner contents, the ability to withstand 

sterilisation, resistant to damage by radiation therapy and possess the mechanical 

properties desired to function and regulate the cellular response to the material. 

Implant rupture and failure is associated with reduced mechanical tensile properties in 

studies of explanted implants therefore creating breast implants using materials with 

increased mechanical properties is desired. Substrate stiffness has been proven to 

influence cell movement, adhesion, proliferation and differentiation [81,82,107]. 

Since the reduced rates of capsular contracture were seen in patients with 

polyurethane coated breast implants, textured breast implant surfaces have been 

employed with a recent meta-analysis [84] showing reduced overall rates of capsular 

contracture compared to smooth surfaces. The surface nano-topography as well as 

micro-topography of a material surface has been shown to influence cellular response 

[108] and cellular adhesion [109]. Thus, research is required to discover the optimal 

surface topography of future breast implants to direct an appropriate host response.   

1.7 Future perspectives: Potential Application of Alternative 

Biomaterials in the Development of Future Breast Implants   
 
Polymers are widely used in medical applications to replace or augment tissues 

following injury and disease and for congenital and cancer reconstructive purposes. In 

addition, research and applications of polymers is rapidly expanding in the field of 

tissue engineering, drug deliver and medical diagnostics. The requirement of a 

polymer in biomedical applications is to mimic the natural tissue mechanical 

properties and function but most also posses the ability to not evoke a host 

inflammatory response, be able withstand sterilisation, non-toxic, resistant to 
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degradation and non-carcinogenic [110]. Silicones are widely used for medical 

applications for possessing the aforementioned qualities and excellent 

biocompatibility. They have been used in the manufacturing breast implants over the 

past 50 years as well as other types of aesthetic implants, hydrocephalic shunts, 

cardiac pacemakers, valves, catheters, small joint replacements and bariatric surgery 

[110].  

Only one in vivo study to our knowledge has investigated the use of nanostructured 

thermoplastic polymers (linear triblock poly(styrene-b-isobutylene-b-styrene) as an 

alternative to silicone as breast implants in a rabbit model. Following 2 weeks 

implantation, the SIBS–type polymers demonstrated superior mechanical properties 

compared to silicone following explantation with no difference in inflammatory 

response between all tested materials [111]. This research is still ongoing and further 

long-term study is required before translating this into clinical practice. 

Our lab has developed and patented a nano-composite polymer called polyhedral 

oligomeric silsequioxane poly (carbonate-urea) urethane (POSS-PCU). Initially, 

vascular grafts composed of the polymer poly-carbonate urethane (PCU) were 

discovered to resistant to degradation in in-vivo studies [112].  This led to further 

studies using the nano-composite polymer POSS-PCU composed of a poly-carbonate 

urethane (PCU) soft segment incorporating a silica nanocage in the form of 

polyhedral oligomeric silsesquioxanes (POSS) hard segment. The incorporation of the 

silica nanoparticle (POSS) cage, measuring less than 1.5nm in diameter and regarded 

as the smallest achievable silica particles, into the polymer significantly changes the 

mechanical properties of the polymer [113]. This nano-composite polymer has been 

studied in comparison to silicone-containing polyurethanes in an in-vivo ovine model 

demonstrating reduced capsule formation at 36 months [114]. It has also been 

investigated in the formation of a lacrimal duct [115], cardiovascular grafts [116] and 

ear reconstruction [117] as well as human tracheal formation [118]. 

Further research is required in the potential application of other biomaterials in the 

development of new breast implants to provide ‘tailor-made’ implants and improved 

outcomes for patients. By optimising the host inflammatory response, controlling 

fibroblast behavior by adjusting the substrate stiffness, surface topography tailoring 

the mechanical properties to withstand shear stress forces and implant rupture, this 

nano-composite may be a promising alternative to silicone breast implant. 
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1.8 Conclusions 
Since their conception in the early 1960’s silicone breast implants have revolutionized 

breast augmentation and subsequently breast reconstruction. They have gone through 

an array of manufacturing modifications and refinements involving five generations 

of implant through trial and error to create the current fifth generation form stable 

implant. Unfortunately, despite these efforts the complications of infection, capsular 

contracture and implant rupture remain which often necessitate further corrective 

surgical intervention. Future research should be aimed to uncover the exact 

mechanisms of why breast implants fail and at exploring alternative materials, which 

could be employed in order to provide an improved, implant for this cohort of 

patients.  

1.9 Hypotheses of this MD thesis  
The hypotheses of the MD thesis were that radiation therapy is associated with poorer 

clinical outcomes for patients undergoing implant based breast reconstruction. In 

addition, mechanical properties of retrieved implants would fall with longer duration 

of implantations and that radiation therapy directly to the silicone breast implant 

shells would change their mechanical and surface chemical properties.  

1.10 Aims of this MD thesis  
Radiotherapy has been reported to be associated with adverse outcome for patients 

with implant based breast reconstruction. With the indications for post mastectomy 

radiotherapy increasing, it is imperative to understand the effect of post mastectomy 

radiotherapy upon the breast implant and this shall form part of the focus of this 

thesis. This shall be done by firstly performing a systematic review and meta-analysis 

of the current literature regarding outcome of PMRT onto the permanent implant. 

This shall be followed by examining mechanical, chemical and cellular as well as 

histological response to retrieved breast implants in our clinical study. Finally the 

effect of radiotherapy treatment upon the silicone breast implant shells shall be 

analysed as well as to the nano-composite POSS-PCU to explore its potential as an 

alternative biomaterial in the development of breast implants to improve the outcome 

for patients. 
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Chapter 2: Materials and Methods  
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2.1 Introduction 
The overall aim of this thesis to further understand and elucidate the relationship 

between the material (breast implants, polymers) and the host’s (patient) response to 

the material to gain a deeper understanding of why breast implants fail with particular 

focus on the role of radiation therapy. This chapter describes the detailed methods 

used to perform the systematic review of current literature with respect to the effect of 

post-mastectomy radiation therapy delivered to the permanent implant in patients 

undergoing implant based breast reconstruction, how the clinical study was performed 

(retrieval of explanted breast implants and samples of the surrounding fibrotic 

capsule), the methods used to characterize the mechanical and chemical properties of 

the materials as well as to assess their histological and in-vitro response. Experiments 

specific to a particular chapter described in detail in the respective chapter.  

 

2.2 Systematic Review and Meta-analysis 
The systematic review and meta-analysis was performed according to the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement 

[119] The study protocol was registered with the University of York Centre for 

Reviews and Dissemination international prospective register of systematic review 

(2015:CRD42015026061). Ovid MEDLINE and Embase databases were searched up 

to and including the second week of October 2016 using the following search 

algorithm: ((breast reconstruction.mp. or Mammaplasty/) OR ((breast$ adj3 

(reconstruction or implant)).mp.)) AND ((Radiotherapy, High-Energy/ or 

Radiotherapy, Intensity-Modulated/ or Radiotherapy/ or Radiotherapy, Computer-

Assisted/ or Radiotherapy, Image-Guided/ or Radiotherapy, Adjuvant/ or 

Radiotherapy Dosage/) OR (radiotherapy.mp. or Radiotherapy/)). The literature was 

searched for studies comparing patients who received radiotherapy post mastectomy 

directly to a permanent implant to those patients who received no radiation therapy. 

Exclusion criteria included patients undergoing delayed reconstruction post 

mastectomy, combined autologous reconstruction, radiation delivered to the tissue 

expander prior to implant exchange for the permanent implant and patients with a 

prior history of radiotherapy. Primary outcomes were implant loss, capsular 
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contracture and revisional surgery. Secondary outcomes were cosmesis and patient 

satisfaction. 

A manual search was also performed to search for relevant studies. Publications were 

excluded if not relevant to the topic, review articles, autologous breast reconstruction 

articles, letters, comments and conference abstracts.  

All patients undergoing immediate one or two stage implant breast reconstruction 

were included in the study. Articles had to define that PMRT was delivered to the 

permanent implant or following tissue expander exchange to the definitive implant to 

be included. Patients who received PMRT to the tissue expander prior to exchange to 

PI and those patients who had combined implant autologous or autologous breast 

reconstruction were excluded. A time limit of the studies published in the last 20 

years was chosen to reflect the improvements in breast implant technology and design 

as well as improvements in surgical and radiation techniques to limit bias.  

Primary outcomes were defined as capsular contracture (as defined as Baker Grade III 

or IV), revisional surgery and reconstructive failure (as defined as removal or 

replacement of the implant).  

Secondary outcomes were defined as patient satisfaction and cosmetic outcomes. 

Patient satisfaction outcomes varied between studies and a good outcome was 

accepted as ‘partially to fully satisfied’, ‘medium to good’ and ‘satisfied’ for the 

purpose of our review. Cosmetic outcomes were similarly varied but defined by the 

operating surgeon. 

2.2.1 Statistical Analysis  
All primary and secondary endpoints were entered into and analysed using 

Revman5® software (The Nordic Cochrane Centre, Copenhagen, Denmark) using a 

random effects DerSimonian-Laird model and results were reported with 95% 

confidence intervals. Heterogeneity was assessed using τ2, χ2, and Ι2 measures and 

was deemed significant if p<0.10 or Ι2 was greater than 30%. 

 

2.3 Retrieval of Breast Implants and Surrounding Capsule  

2.3.1 Ethical Approval and Consent 
Local ethical approval was granted from the UCL Royal Free Hospital BioBank 

Ethical Committee. Patients were identified from theatre lists and consented by author 
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on morning prior to surgery. Patients were given a written information sheet 

(Appendix 2) 

2.3.2 Recording of Clinical and Demographic Data 
Using history-taking, medical case notes and using the Royal Free Hospital electronic 

medical database records (EDMS) clinical and demographic data including age, 

reason for implant removal, duration of implantation, reason for original implant 

placement, smoking status, previous radiotherapy, chemotherapy and implant 

revisional surgery and complications were recorded.  

2.3.3 Retrieval of Explanted Implants and Surrounding Capsule 
Implant(s) and samples of the adjacent surrounding capsule tissue were collected from 

the theatre by the author. The implants were at first visually inspected to determine 

whether they were ruptured or intact prior to being cleaned with iso-propanolol and 

stored for further analysis. The sample of surrounding capsule tissue was placed in 

10% neutral buffered formalin for at least 48 hours prior to further processing. All 

samples were labeled anonymously. 

2.3.4 Non-implanted Breast Implant (Control) 
Two non-implanted (Mentor Siltex™ Contour Profile™ Becker ™ 35 Expander, 

Cohesive II™, Lot 6811381, volumes 195cc and 295cc) were used the non-implanted, 

control implants for the purpose of our experiments.  

2.4 Polymer and Nanocomposite Synthesis  

2.4.1 Preparation of Polyhedral oligomeric silsesquioxane poly(carbonate-urea) 
urethane (POSS-PCU) nanocomposite  
Dry polycarbonate polyol (2000 molecular weight) and trans-

cyclohexanechloroydrinisobutyl-silsesquioxane were placed in a 250ml reaction flask 

with a mechanical stirrer and nitrogen inlet. The mixture was then heated to 135°C to 

dissolve the POSS cage into the polyol and then cooled to 70°C. Flake 4,4’-

methylenebis(phenyl isocyanate), was added to the polyol blend and then reacted, 

under nitrogen, at 70°C-80°C for 90 minutes to form a pre-polymer. 

Dimethylacetamide (DMAC) was added slowly to the pre-polymer to form a solution 

and this was cooled to 40°C. Chain extension of the pre-polymer was carried out by 

the addition of a mixture of ethylenediamine in dimethylacetamide to form a solution 



 43 

of POSS modified Polycarbonate urea-urethane in Dimethylacetamide. After the 

chain extension completion, 4g of 1-butanol in 80g of DMAC was added to the 

polymer solution to form the nano-composite.  

2.4.2 Synthesis of Poly(carbonate-urea) urethane (PCU) polymer  
Dry Polycarbonate polyol (2000mwt) was placed in a 250ml reaction flask equipped 

with mechanical stirrer and nitrogen inlet. The polyol was heated to 60°C and then 

flake MDI was added and reacted with the Polyol, under nitrogen, at 70°C - 80°C for 

90 minutes to form a pre-polymer. Dry Dimethylacetamide was added slowly to the 

pre-polymer to form a solution; the solution was cooled to 40°C. Chain extension of 

the pre-polymer was carried out by the drop wise addition of a mixture of 

Ethylenediamine and Diethylamine in dry Dimethylacetamide. All reagents and 

chemicals were purchased from Sigma-Aldrich Ltd., Gillingham, UK. 

2.4.3 Casting of POSS-PCU and PCU  
The final polymer mixtures (15% mwt POSS-PCU and PCU) were separately casted 

onto 16 x 16cm stainless steel plates and then placed in an oven at 65°C overnight to 

allow the dimethylacetamide to evaporate. The casted polymer sheets were removed 

from the oven, allowed to cool to room temperature and carefully peeled off the plates 

before further analysis.  

2.5 Mechanical Strength Properties  
In the early 1990’s, a moratorium on the use silicone breast implants was issued in 

response to reports of an association silicone gel leakage from the implants with 

autoimmune connective tissue. As a result, studies were performed upon explanted 

breast implants to determine the changes in the mechanical properties of the shell 

namely their tensile strength, elasticity and strain at break [63]. As part of the 

evaluation of retrieved implants in this study, these mechanical properties of implants 

were tested. The maximum tensile strength is the maximum force required to break 

the material apart. Elongation at break is the maximum stretch of the material tested 

as measured by percentage of its original size. Young’s modulus or elastic modulus a 

measure of the stiffness of a given material and is calculated using the following 

equation 

        Young’s modulus = (Force applied/Area) / (change in length/original length) 
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The higher the Young’s modulus, the more resistant a material is to elastic 

deformation. Previous studies have shown that the longer the breast implant remains 

in vivo the mechanical properties of the implant shell fall [63].  

2.5.1 Tensile Strength   
Using the British Standards ISO 37:2005 tensile stress-strain properties of the 

polymeric sheets and breast implant shells were performed. A dumbbell-shaped, 

specimen type 3, shaft length 20mm with a width of 4mm (n=6) was cut using a die 

cutting press (Wallace instruments, UK). Three thickness measurements were 

performed using a digital electronic micrometer and the average thickness was 

inputed into the software. The sample was loaded onto the pneumatic grips of the 

Instron 5565 tensiometer equipped with a 500 N load (Instron, UK) and uniaxial 

testing at a rate of 100 mm/min was performed. The data was captured and analysed 

using Bluehill software. All experiments were performed on dry samples at room 

temperature. 

2.5.2 Tear Testing 
Tear testing was determined using the British Standard ISO 34-1:2004 standards and 

assessed using method 3. Crescent-shaped samples (n=3) were cut to shape with a 

single nick using a scalpel blade. The thickness of each specimen was measured thrice 

using a digital electronic micrometer and the average value used to input into the 

software. The ends of the crescent shaped specimens were loaded into the pneumatic 

grips of the Instron 5565 tensiometer and uniaxial tension was performed at a rate of 

500 mm/min until the specimen was tore apart. Data was captured using Bluehill 

software. This was performed on dry samples at room temperature.  

2.5.3 Statistical Analysis 
Tensile testing was performed n=6 and tear testing was performed n=3. Mean and 

standard deviations were calculated using GraphPad Prism software Version 6. 

2.6 Attenuated Total Reflectance-Fourier Transform Infra-Red 

Spectroscopy (ATR-FTIR) 
To determine the surface chemical structure of any given polymer, and to determine 

compounds and functional groups, infra-red spectrosocopy is employed. Elemental 

analysis can be performed upon a material as discussed later in this chapter by 
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scanning electron microscopy however it cannot determine compounds [120]. 

Attenuated Total Reflectance-Fourier Transform Infra-Red (ATR-FTIR) spectroscopy 

is a newer method used to determine the molecular composition of a liquid, gas or 

solid substance without the need to prepare the sample. It detects concentrations of 

functional groups and molecules in any given sample by its ability to absorb infra-red 

(IR) light at a specified wavelength. Attenuated total reflectance allows only a limited 

path length of the IR beam to the sample and therefore avoids over-absorbance of the 

IR beam in samples that are highly absorptive. The sample’s ability to absorb the IR 

beam at differing wavelengths is collected on an IR detector providing spectra with 

information on the molecular bonds present and composition of any given substance 

without causing damage or changes to the chemical structure [120]. 

2.6.1 ATR-FTIR 
Fourier Transform Infrared Spectra (FTIR) recordings were obtained using a Jasco 

FT/IR 4200 Spectrometer with a diamond attenuated total reflectance accessory 

(Diamond Miracle ATR, Pike Technologies, US). From an average of 30 scans a 

spectra was produced over a range of 600cm-1 to 4000 cm-1 with a resolution of 4cm-1. 

Each breast implant shell and casted polymer sheet was analysed at 5 different points. 

Each gel was analysed using 5 separate samples. A background scan was performed 

prior to every measurement. The data was collected, spectra and standard deviation 

were composed from the mean value of the 5 repeat measurements using Microsoft 

Excel worksheet (Microsoft Excel, 2011) and statistical analysis performed using 

GraphPad Prism software Version 6 

 

2.7 Surface Properties of Retrieved Breast Implants and Polymers  
To investigate the surface properties of the materials, contact angle measurements and 

scanning electron microscopy were performed. Contact angle measurement examines 

the wettability of a given material providing information on its free surface energy. 

Wettability describes the ease by which a fluid flows across a solid surface. Materials 

displaying contact angles of less than 90o are generally considered hydrophilic and 

those materials greater than 90o are hydrophobic. Protein adsorption and cell adhesion 

to a foreign material are influenced by its surface chemistry that naturally is key in 

developing a biomaterial [121,122] 
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Scanning electron microscopy is a method used to obtain high resolutions images of 

the surfaces of materials at high magnifications. This is achieved by scanning the 

material using a beam of electrons, rather than a light source as performed in light 

microscopy, which interacts with the atoms on the surface of the material generating 

forces which are analysed providing detailed images and information about the 

sample’s surface topography. The samples are first coated with a conductive metal 

such as gold/palladium to avoid the sample absorbing electrons and providing a poor 

image or artifacts.  

2.7.1 Surface Wettability/Contact Angle Measurements (θ) 
Samples were cleaned using iso-propanolol and contact angle measurements were 

performed using DSA 100 Krűss Goniometer. Using the sessile drop technique, 5µl of 

deionized water was dropped onto the samples using an automated syringe with 10 

seconds of dispensing and analysis was performed using the Drop Analysis software 

(EasyDrop DSA200, KrűSS) at room temperature. Four samples from each specimen 

were tested three times, n=12 and mean and standard deviation were calculated. 

2.7.2 Scanning Electron Microscopy  
Breast implant shell specimens were immersed in 1% Triton X100 and 1% sodium 

dodecyl sulfate for 16 hours, washed x2 with deionized water then washed with 

absolute ethanol followed by a further x2 washes with deionized water to remove any 

biological proteins. The samples were then dried in a 40 degrees oven for 1 hour. The 

samples were then mounted on aluminum stubs using carbon adhesive tabs and 

sputter coated with gold/palladium using a High Resolution Ion Beam Coater (Gatan 

Model 681). Images were taken using a scanning electron microscopy at 

magnifications ranging from x50 to x 1000 using a Field Emission Scanning 

Microscope (JEOL- JSM 7401F) and images saved as JPEG.  

2.8 Determination of the Protein Content in Retrieved Breast 

Implant Shells (Bicinchoninic Acid Assay) 
In keeping with previous literature examining the protein deposition found in silicone 

contact lenses [123] 0.25gm of breast implant shell were placed in 0.2% 

Trifluoroacetate and acetonitrile 50v/50v for 24 hours in a dark cupboard at room 

temperature. The solution was evaporated to dryness using a speedivac, the breast 

implant shell removed and the extracted proteins were re-suspended in 250µl of 
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water. Protein content of the resuspension was determined using the Pierce™ BCA 

Protein assay kit (Bicinchoninic acid assay), ThermoFisher Scientific, UK. This 

method relies on the Cu2+-protein reaction and measures Cu+ under alkaline 

conditions using the bicinchoninic acid which produces a vivid purple colour 

maximally detected at 592mm absorbance. A standard curve was performed using 

bovine serum albumin (BSA) as a control before the fluorescence of the samples at 

592mm excitation wavelength were measured using a fluorescent plate reader 

(Fluoroskan Ascent FL™, ThermoScientific™, USA). 

 

2.9 Histological Response to Retrieved implants 

2.9.1 Preparation of Retrieved Surrounding Capsule Tissue, Processing and 
Staining 
The retrieved capsular tissue was labeled anonymously and placed in 10% formalin 

for at 48-72 hours. The tissue was then cut into approximately 1 cm sections and 

placed in labeled tissue cassettes before being submitted to 15 hr automatic tissue 

processing using a Shandon Citadel 2000 Automatic Tissue Processor (Thermo 

Scientific™, UK). Processed samples were then removed from the cassettes and 

paraffin embedded using a Tissue Tek II™ tissue embedding centre. 

Paraffin blocks were sent for sectioning and staining to Departments of Pathology at 

the Royal Free Hospital (Haematoxylin and Eosin, H&E stain) and at the UCL 

Institute for Neurology (Masson’s Trichrome stain). 

Sections were imaged and analysed using an EVOS XL Core Microscope and saved 

as TIFF images. 

2.9.2 Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy 
(SEM EDX)  
SEM EDX is a method similar to previously described in section 2.7 but 

incorporating an energy dispersive X-ray detector to conduct elemental analysis of a 

given sample. It relies on the unique atomic structure of individual elements and the 

impact of the electron beam on the sample produces characteristic x-rays of elements 

present that are absorbed and analysed by the detector. Combined with SEM, 

elemental mapping is achieved. The paraffin embedded tissue blocks were first 

sputter coated with a thin layer of carbon using a K975X Turbo Evaporator, Quorum 
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Technologies, UK. Images and analysis were performed using a scanning electron 

microscope Hitachi S-3400N with an EDS Oxford instrument. Analysis was 

performed using the INCA software package.  

 

2.10 Cellular Response to Retrieved Implants and Materials  

2.10.1 Culture and Seeding of Fibroblasts 
HDFa fibroblasts were passaged in sterile T-75 flasks using Trypsin with Dulbecco’s 

Modified Eagle’s Medium, low glucose DMEM (Gibco, ThermoScientific™, UK) 

supplemented with 10% FBS (foetal bovine serum) and 1% PenStrep (penicillin-

streptomycin, Gibco) or cryopreserved using DMSO until further required. HDFa’s 

used in the experiment were between passage 7 and 11.  

Discs of materials measuring 6mm (n=6 or otherwise stated in the text) were used for 

the cell seeding experiments as availability of material to test was limited.  

A 6 mm heavy-duty office hole punch was used to cut 6mm discs from the breast 

implant shells and polymer.  The specimens were then decellularised by being placed 

in 1% Triton X for 1 hour, washed twice in PBS followed by 70% ethanol followed 

by washing twice in PBS.  

Specimens were then placed in a 96 well plate and covered with 100µl of warmed 

DMEM for approximately 2 hours prior to cell seeding. Each specimen was seeded 

with cells at density of 5 x 104 cells/cm2 and incubated at 37oC at 5% CO2 in air.   

Cells seeded onto tissue culture plastic served as a positive control and media only 

wells provided a negative control. Cell culture media was replenished on days 0, 1, 3 

and 6 during the 7 day experiment.  

2.10.2 Measurement of Cell Metabolism using Alamar Blue™ Assay  
Cell metabolism was assessed using the Alamar Blue™ assay (Invitrogen, Paisley, 

UK). This commercially available assay kit contains the compound resazurin that in 

the presence of respiring cells, is reduced to resofurin which is pink and highly 

fluorescent. This oxidation reaction is a direct measure of the cells metabolic activity. 

The fluorescence is proportional to the number of respiring cells and can be measured 

objectively using a fluorescent plate reader. 

At each timepoint, day 1, 3 and 7, media from the wells was removed and fresh media 

containing 10% Alamar Blue™ solution was added to each well. The plates were 
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immediately wrapped in aluminium foil and incubated for 4 hours. Then, 100µl of the 

media from each well was placed into a 96-well plate and analysed using a 

fluorescent plate reader (Fluoroskan Ascent FL™, Fluorescence Plate Reader, 

ThermoScientific, USA) at an excitation and emission wavelength of 530nm and 

620nm. Values from the media only wells were subtracted from the other wells and 

recorded using Microsoft Excel and presented using the mean and standard deviation. 

Statistical analysis was performed using GraphPad Prism software Version 6. 

2.10.3 DNA Quantification Assay – Cell proliferation  
To assess cell proliferation, Hoechst 33258 DNA Quantification Kit™, Fluorescence 

Assay (Sigma-Aldrich, UK) was used. Following Alamar Blue™ analysis the 

specimens were washed with PBS and 100µl of molecular grade water was added to 

each well. The plates were then submitted to 6 freeze-thaw cycles to achieve cell 

lysis. Fluorescence was measured using a fluorescent plate reader (Fluoroskan Ascent 

FL™ Fluorescence Plate Reader, ThermoScientific, USA) at excitation and emission 

wavelengths of 360nm and 460nm (n=6). A standard curve was performed with 

known quantities of calf thymus DNA and the equation was used to calculate the 

DNA concentrations from the fluorescence of the specimens. Statistical analysis was 

performed using GraphPad Prism software Version 6. 

2.10.4 Cell Morphology Imaging: Cytoplasmic Actin and Nuclear Fluorescent 
Staining 
In order to assess cytoplasmic morphology, fluorescent green staining of actin (F-

actin Phalloidin stain) and fluorescent blue staining of the cell nuclei (DAPI) was 

performed on day 7. Cells were fixed with 100 µl 10% neutral buffered formalin for 

30mins then permeabilised using 1% Bovine Serum Albumin (BSA)/0.3% Tween in 

PBS for 1 hour. The cells were then washed thrice with PBS before being immersed 

in 1:500 solution of Alexa Fluor 488 Phalloidin (Molecular Probes, 

ThermoScientific™, UK) in PBS for 2 hours. Following a further wash with PBS, 1 

droplet of Vectashield Antifade Mounting Medium with DAPI (Vector Labaoratories, 

USA) was added to each well prior to imaging to stain the nuclei. Images were 

captured using the EVOS fluorescent microscope (EVOS FL Imaging System, 

ThermoScientific™, UK) and saved as TIFF files. 
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Chapter 3: Determining the outcomes 
of post mastectomy radiation therapy 
delivered to the definitive implant in 

patients undergoing one and two stage 
implant based breast reconstruction: A 

systematic review  
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3.1 Introduction  
 

Post mastectomy radiation therapy is increasing being offered to patients undergoing 

implant based breast reconstruction [97–99]. It has been shown in some studies that 

PMRT negatively impacts on the cosmetic outcome and increases the complication 

rate for patients undergoing implant based reconstruction however the results are 

conflicting [124]. Delayed reconstruction or autologous reconstruction can be offered 

to women who are likely to undergo radiotherapy [125,126] However, delayed 

reconstruction following treatment with radiotherapy can often be much more 

technically challenging thus resulting in a poorer cosmetic result and leaves the 

patient without a breast for a period of time [127]. There are various advantages of 

implant-based over autologous reconstruction including reduced operative time, 

avoidance of donor site morbidity, reduced cost and can be offered to those patients 

unsuitable for autologous reconstruction either due to co-morbidities or lack of 

available donor tissue [128].  

 

In the two-stage setting of implant based breast reconstruction, radiotherapy can be 

given at one of three time-points, firstly to the un-expanded tissue expander, secondly 

to the fully expanded tissue expander prior to exchange to a permanent implant and 

lastly following implant exchange radiotherapy can be delivered to the permanent 

implant. In one stage implant reconstruction, radiation is delivered to the permanent 

implant.  

 

Several studies have investigated the effect of PMRT on implant-based reconstruction 

including one and two stage reconstructions, however are limited to mostly single 

unit, retrospective cohort studies. Moreover, the studies are limited by the variability 

in the timing radiotherapy treatment regimes in relation to the reconstruction often 

dictated by local hospital protocols (radiation therapy delivered to tissue expander or 

permanent implant or delivered pre or post mastectomy) which incurs significant bias 

as operating on previously irradiated tissue is associated with a more complex 

procedure and an increased risk of post-operative complications. In addition, small 

patient sample size and lack of control population results in variable outcomes. A 
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meta-analysis is of use to determine the effect of PMRT onto the permanent implant 

and may identify significant results. 

 

3.2 Aims of Chapter  
 
The aim of this review was to systematically examine the effect of post mastectomy 

radiation therapy delivered to the permanent implant to determine the incidence of 

complications such as implant loss, capsular contracture and patient satisfaction to 

determine the impact of post mastectomy radiation therapy to permanent breast 

implants.  
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3.3 Methods 
 
This systematic review and meta-analysis was performed according to the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement 

[119] (Fig. 3.1). The study protocol was registered with the University of York Centre 

for Reviews and Dissemination international prospective register of systematic review 

(2015:CRD42015026061). Ovid MEDLINE and Embase databases were searched up 

to and including the second week of October 2016 using the following search 

algorithm: ((breast reconstruction.mp. or Mammaplasty/) OR ((breast$ adj3 

(reconstruction or implant)).mp.)) AND ((Radiotherapy, High-Energy/ or 

Radiotherapy, Intensity-Modulated/ or Radiotherapy/ or Radiotherapy, Computer-

Assisted/ or Radiotherapy, Image-Guided/ or Radiotherapy, Adjuvant/ or 

Radiotherapy Dosage/) OR (radiotherapy.mp. or Radiotherapy/)). Medical literature 

was searched for studies comparing patients receiving radiotherapy post mastectomy 

directly to permanent implant with patients who did not receive PMRT. Patients 

undergoing delayed reconstruction post mastectomy, combined autologous 

reconstruction, radiation delivered to the tissue expander prior to implant exchange 

for the permanent implant and patients with a prior history of radiotherapy were 

excluded. Primary outcomes were implant loss, capsular contracture and revisional 

surgery. Secondary outcomes were cosmesis and patient satisfaction. 

 

 

A manual search was also performed to search for relevant studies. Publications were 

excluded if not relevant to the topic, review articles, autologous breast reconstruction 

articles, letters, comments and conference abstracts.  

 

All patients undergoing immediate one or two stage implant breast reconstruction 

were included in the study. Articles had to define that PMRT was delivered to the 

permanent implant or following tissue expander exchange to the definitive implant to 

be included. Patients who received PMRT to the tissue expander prior to exchange to 

PI and those patients who had combined implant autologous or autologous breast 

reconstruction were excluded. A time limit of the studies published in the last 20 

years was chosen to reflect the improvements in breast implant technology and design 

as well as improvements in surgical and radiation techniques to limit bias.  
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Primary outcomes were defined as capsular contracture (as defined as Baker Grade III 

or IV), revisional surgery and reconstructive failure (as defined as removal or 

replacement of the implant).  

 

Secondary outcomes were defined as patient satisfaction and cosmetic outcomes. 

Patient satisfaction outcomes varied between studies and a good outcome was 

accepted as ‘partially to fully satisfied’, ‘medium to good’ and ‘satisfied’ for the 

purpose of our review. Cosmetic outcomes were similarly varied but defined by the 

operating surgeon. 

3.3.1 Statistical Analysis  
All primary and secondary endpoints were entered into and analysed using Revman 

5® software (The Nordic Cochrane Centre, Copenhagen, Denmark) using a random 

effects DerSimonian-Laird model and results were reported with 95% confidence 

intervals. Heterogeneity was assessed using τ2, χ2, and Ι2 measures and was deemed 

significant if p<0.10 or Ι2 was greater than 30%. 
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Figure 3.1: PRISMA flow chart.  
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3.4 Results 
A total of 2979 results were identified from combined Ovid Medline and Embase 

searches. Following electronic removal of duplicates, 2277 remained.  Following 

review of the title and abstracts 1883 studies were considered irrelevant, 224 were 

reviews, case reports, letters and editorials, 48 were autologous breast reconstruction 

and radiation therapy and 12 were outside the defined time frame.  

110 studies were selected for full text review, 50 described radiation therapy to tissue 

expander or combined outcomes of TE/PI and/or autologous reconstruction, 10 did 

not address surgical outcomes of radiation therapy, 33 were conference abstracts, 4 

studies did not report outcomes for non-irradiated patients, 2 studies contained 

duplicate patient populations, 2 studies reported on less than 5 patients and 2 studies 

were not available in full text.  Thus, seven studies [129–135] were selected for data 

extraction and inclusion in the final analysis containing 2921 patients (520 PMRT, 

2401 control). A summary of the patient characteristics is outlined in Fig. 3.2. 

 

 

 
 Benediktsson 

et. al 2005 
Cordeiro 
et. al 2004 

Cordeiro 
et. al 2015 

McCarthy 
et al 2005 

Nava et. 
al 2011 

Rella et. 
al 2015 

Vandeweyer 
et. al 2000 

No. Of Patients 
radiotherapy 
group (PMRT) 

98 81 1486 10 109 64 6 

No. of Patients 
control group 
(Control) 

107 542 210 10 98 80 118 

Mean age 
(years) 

54 (range 32-
75) 

48.5 
(PMRT) 

48.1 
(control) 

46.3 
(PMRT) 

47.8 
(control) 

47.9 49 46 (38-76) 45 (range 38-
59)(PMRT) 

47 (range 29-
73)(control) 

Mean follow-up 
(months) 

56 33 (PMRT) 
34 (control) 

40.3 
(PMRT) 

45.6  
(control) 

23.5 (12-
58.5) 

50 10(PMRT
) 

9 (control) 

64.5 (PMRT) 
65 (control) 

 

One vs Two 
stage 
reconstruction 

One stage Two stage Two stage Two stage Two 
stage 

One stage One stage 

Figure 3.2: Summary of Patient Characteristics  
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3.4.1 Primary End Points 
All seven studies commented on capsular contracture [129–135] (2529 patients: 494 

PMRT, 2035 control). There was significant increase in rate of capsular contracture in 

those patients receiving PMRT (OR 10.21, 95% C.I 3.74 to 27.89, p<0.00001). 

However, there was significant heterogeneity between the studies (I2=88%, 

p<0.00001) indicative of retrospective cohort studies (Fig. 3.3) 

 

 
 
 
Figure 3.3: Forest plot demonstrating increased incidence of capsular contracture in 
patients undergoing PMRT 
 
 

 

In addition, all studies reported patients undergoing revisional surgery including those 

with reconstructive failure [129–135] (7 studies, 2921 patients: 520 PMRT, 2401 

control) (Fig. 3.4). There was no significant heterogeneity between the studies 

(I2=30%, p=0.20). There was a significant increase in numbers of patients undergoing 

revisional surgery in the PMRT group (OR 2.18, 95% C.I 1.33 to 3.57, p=0.002). 

 
 

 
Figure 3.4: Forest plot demonstrating increased incidence of revisional surgery in 
patients undergoing PMRT 
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Six studies [130–135] (2814 patients: 496 PMRT, 2318 control) described 

reconstructive failure (as defined as implant removal or replacement) (Fig. 3.5).  

There was no significant heterogeneity between the studies (I2=21%, p=0.28). PMRT 

was significantly associated with an increased number of patients with reconstructive 

failure (OR 2.52, 95% C.I 1.48 to 4.29, p=0.0007) 

 

 

 
 

Figure 3.5: Forest plot demonstrating increased incidence of reconstructive failure in 
patients undergoing PMRT 
 

 

3.4.2 Secondary End points 
 
Four studies reported patient satisfaction outcomes [131,132,134,135] (468 patients: 

174 PMRT, 294 control). There was no significant heterogeneity between the studies 

(I2=0%, p=0.5). There was significant reduction in patient satisfaction rates in patients 

undergoing PMRT compared to the control group (OR 0.29 95% C.I 0.15 to 0.57, 

p=0.0003) (Fig. 3.6). 

 
 

 
Figure 3.6: Forest plot demonstrating a reduction in patient satisfaction at 
reconstructive outcome following PMRT 
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Four studies reported cosmetic outcome [130,132,134,135] (1317 patients: 275 

PMRT, 1042 control). There was significant heterogeneity in the studies (I2=59%, 

p=0.09) with a significant reduction in acceptable cosmetic outcome in patients 

undergoing PMRT compared to the control group (OR 0.28 95% C.I 0.11 to 0.67, 

p=0.005) (Fig. 3.7). 

 
 

 
 

Figure 3.7: Forest plot demonstrating reduced cosmetic outcome as reported by the 
surgeons in patients undergoing PMRT 
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3.5 Discussion 
 
Radiotherapy has now been shown to be increasingly efficacious in early stage breast 

cancer disease as well as those with established disease [99]. With an increasingly 

younger population of patients diagnosed with breast cancer, the numbers of patients 

undergoing implant based breast reconstruction and PMRT is set to increase. Implant 

based breast reconstruction is the most popular form of reconstruction and may 

represent increasing numbers of younger patients who lack the adipose reserves to 

perform autologous reconstruction or the patients desire to achieve a more 

aesthetically pleasing, non-ptotic breast.  To date, studies on PMRT and permanent 

implants are limited due to their small patient sample size, retrospective nature, lack 

of randomization, variable reporting outcomes and often lack of control groups to 

compare their findings as well as variability in timing of radiation therapy in relation 

to the breast reconstruction – therefore a systematic review of this topic is important 

as it may demonstrate significant results from underpowered studies. 

The results from this review demonstrate clearly that the deliverance of PMRT to a 

permanent implant is associated with significantly increased rate of capsular 

contracture. The incidence of capsular contracture increased from 5% in the control 

group to 43% in patients undergoing PMRT. 

Furthermore these patient groups are more likely to suffer from a failure of their 

reconstructive surgery (9% vs. 6%, p<0.001) and to have to undergo further revisional 

surgery (11% vs. 5%, p=0.002). 

Cosmetic outcome as reported by both patients and surgeons were significantly poorer 

in patients undergoing PMRT. 

 

There are limitations to this review. There was significant heterogeneity in the method 

that each paper reported their outcomes. We included ‘partially to fully satisfied’ 

[131], ‘medium to good’ [132] and ‘satisfied’ [134,135] as acceptable patient 

satisfaction outcomes for the purpose of our review. In addition, this was echoed in 

the reported outcomes for cosmesis [130,132,134,135]. 

Radiotherapy was generally delivered 3-6 weeks following reconstructive procedure, 

however in a study published by Vandemeyer et al. two patients included in the study 

with permanent implants were irradiated for local recurrences months after 

reconstructive surgery [131]. In addition, in a study reported by Cordeiro et al. those 
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patients receiving PMRT to permanent implant had already undergone post 

mastectomy chemotherapy in comparison to those patients in the same study who did 

not require chemotherapy and had therefore PMRT delivered to the tissue expander 

[130]. This may therefore select a patient cohort with later stage disease requiring 

several adjuvant treatment modalities that may influence their overall quality of life 

and may impact on their psychological state and patient satisfaction scores. However, 

despite this, data published by Cordeiro et al. 2015 reported no difference in patient 

satisfaction scores between the PMRT to tissue expander and PMRT to permanent 

implant groups [130]  

 

All studies stated that textured implants were employed, one study used only saline-

filled implants [129] another study stated that eight of 12 patients underwent 

reconstruction with saline implants, the remaining patients having silicone breast 

implants and one study stated only ‘textured’ implants [131]. 

 

In addition, a study by Benediktsson et al. excluded 14 patients who had lost their 

implant before the two year follow up therefore this will have led to under-reporting 

the revisional surgery and reconstructive failure data [129] . Moreover, 6 patients in 

the study did not undergo revisional surgery due to personal choice or advanced 

disease which may have influenced the results [129]. 

In the study by Cordeiro 2015, not all patients in the study had capsular contracture 

outcomes recorded which might have led to bias in the results [130].  

Interestingly, a study by McCarthy et al. reported outcomes for those patients 

undergoing bilateral reconstruction with unilateral radiotherapy using the non-

irradiated breast as a control [135]. All patients described their cosmetic outcome as 

excellent/very good or good but only 70% of patients were satisfied with their 

reconstruction [135].  

The average length of follow up in these studies was 31 months (range 9 – 65 

months). There were a significant number of patients lost to follow up by five years in 

one study [129] therefore we used the data generated at 2 years follow up for the 

purpose of our review. No study followed patients up beyond five years and therefore 

the long-term outcome has not yet been reported.  

 

 



 62 

3. 6 Conclusion  
 
This meta-analysis has shown that there are significantly increased rates of capsular 

contracture, revisional surgery and reconstructive failure as well as reduced patient 

satisfaction scores and cosmetic outcome in those patients receiving PMRT to a 

permanent implant within the first five years of surgery. As this is the first meta-

analysis to report patient outcomes for PMRT delivered to the permanent implant, it 

provides robust knowledge which can help guide informed decision making when 

deciding the most appropriate method and timing of breast reconstruction for the 

patient undergoing PMRT. Further long-term follow-up to determine the long-term 

complication rates of PMRT are required. 
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Chapter 4:Analysis of Retrieved 
Breast Implants from a Single Centre 
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4.1 Introduction  

Breast implants have a role in aesthetic and reconstructive breast surgery however 

little is known of the mechanism of aging and in vivo response to breast implants. 

Complication rates or need for re-operation within the first two years following initial 

implant surgery have been reported up to 24.5% in primary augmentation patients and 

up to 42.9% in primary reconstruction patients [136] 

Silicone gel breast implants are composed of an elastomer shell envelope containing a 

gel made from the polymer polydimethylsiloxane (PDMS (CH3)2SiO). The difference 

between the shell and gel composition is the degree of cross-linking between the 

polymer chains [56]. The mechanism of breast implants failure during implantation 

resulting in capsular contracture (a pathological fibrous encapsulation of the implant), 

gel bleed or leaking of silicone into the surrounding tissues and implant rupture is not 

yet fully elucidated.  

Several studies have sought to establish the cause of breast implant failure. Research 

has shown that increasing implantation times negatively effect the mechanical 

strength properties in explanted breast implants [14,63,137]. Furthermore, mechanical 

weakening of the shells have been also postulated to be attributed to swelling of the 

breast implant shells with low molecular weight silicones diffusing from the gel into 

the shells during implantation [56,138]. Further chemical analysis through use of 

attenuated total reflectance–Fourier transform infra-red spectroscopy (ATR-FTIR) has 

been studied in breast implants highlighting potential functional groups with may 

interact with the surrounding host cellular environment [120] and surface chemical 

changes of the implants following radiation therapy [104] and implantation [43].  

Prasad et al [139] demonstrated that increasing the surface roughness of silicone 

elastomers samples produced a decrease in fibroblast growth which may account for 

reduced incidence of capsular contracture using textured rather than smooth breast 

implants [140]. Valencia-Lazcano et al [86] showed that increased surface roughness 

of uninplanted breast implants resulted in greater fibroblast adhesion in an in-vitro 

model. However, no studies to our knowledge have investigated fibroblast behavior 

on retrieved breast implants.  

Thus, the aim of this study was to characterize the effects of implantation and aging 

on the mechanical and surface chemical properties of the implants retrieved from 
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patients attending for elective removal or exchange of implants and their in vitro 

fibroblast response.  
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4.2 Aims  

To assess the effect of increasing duration of implantation on the surface, chemical 

and mechanical properties of implants and to assess the fibroblast response to these 

implants. 
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4.3 Materials and Methods 

4.3.1 Consent and Patient recruitment  

Patients were consented by the author prior to surgery. Breast implants were collected 

from theatre, labeled anonymously, visually inspected and cleaned with iso-

propanolol. The implants were cut using a scalpel into anterior shell and posterior 

shell (in contact with patient’s chest wall) and the inner gel carefully inspected and 

removed. The anterior and posterior shells were then cleaned with iso-propanolol and 

left to air dry at room temperature prior to analysis (Fig. 4.1).  For the purpose of 

control analysis in the Atomic Force Microscopy, an un-implanted textured silicone 

breast implant shell with the inner gel carefully removed (Mentor Siltex™ Contour 

Profile™ Becker ™ 35 Expander, Cohesive II™, Lot 6811381). 
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Figure 4.1: Timeline of sample collection, processing and analysis. 
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4.3.2 Tensile Testing and Tear Testing  

From the implant shells, six dumbbell shaped (20mm x 4mm) specimens were cut 

using a Wallace cutting press and three crescent shaped specimens for tear testing 

from anterior and posterior parts of the implant shell in accordance with the ISO 

37:2005 standards. Specimens were placed in the pneumatic grips of the tensiometer 

(Instron 5565 tensiometer equipped with a 500 N load, Instron, UK) and pulled apart 

at a rate of 100mm/min and 500mm/min for tensile and tear testing respectively. The 

data was captured using Bluehill software. Ultimate tensile strength, strain at break, 

Young’s modulus and tear strength values were recorded. 

4.3.3 Atomic Force Microscopy (AFM) 

This was performed by selecting a control sample (un-implanted sample) and two of 

the retrieved breast implants from the same manufacturer (Allergan) of differing 

lengths of implantation. Using a Nanowizard 1 (JPK – Force Spectroscopy mode), 

AFM measurements of the selected shells were taken from the shells’ cross section, 

outer and inner measurements, over 10 µm x 10 µm areas, using n= 256 per group 

with a sensitivity of 36.76 nm/V, k = 5.8311 (Bruker RFESPA), set point 64.304 nN 

and Z-length = 15 µm. 

4.3.4 ATR-FTIR of Breast Implant Shells and Gels 

To evaluate the chemical composition and quantity of molecules in any given 

substance, attenuated total reflectance-Fourier transform infrared spectra (ATR-FTIR) 

was used. This uses infrared radiation to identify chemicals and chemical bonds with 

breast implant shells tested and to determine if there were any chemical/molecular 

changes between them as result of implantation (n=5). Briefly, the midpoint of the 

anterior shell of each implant was tested (n=5). The breast implant shells were 

quantified using ATR-FTIR recordings using Jasco FT/IR 4200 Spectrometer with a 

diamond attenuated total reflectance accessory (Diamond Miracle ATR, Pike 

Technologies, US). A spectrum was produced (n=5) from an average of 30 scans a 

spectrum was produced over a range of 600cm-1 to 4000 cm-1 with a resolution of 

4cm-1. A background scan was performed prior to every measurement.   

4.3.5 Surface Wettability/Contact Angle Measurements (θ) 

Using a DSA 100 Krűss Goniometer, wettability analysis was performed on the breast 

implants outer shell surface. Using the sessile drop technique, 5ul of deionized water 
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was dropped onto the implants using an automated syringe with 10 seconds of 

dispensing and analysis was performed using the Drop Analysis software (n=12) 

(EasyDrop DSA200, KrűSS) at room temperature. 

4.3.6 Scanning Electron Microscopy of Breast Implant Shells 

Following the decellularisation protocol as outlined in 2.7.2, the breast implant 

samples were mounted on aluminum stubs using carbon adhesive tabs and sputter 

coated with gold/palladium using a High Resolution Ion Beam Coater (Gatan Model 

681). Images were taken using a scanning electron microscopy at magnifications 

ranging from x50 to x 1000 using a Field Emission Scanning Microscope (JEOL- 

JSM 7401F) and images saved as JPEG.  

4.3.7 Protein Quantification Assay (Bicinchoninic Acid (BCA) assay) of Breast 

Implant specimens.  

The protein content of the breast implant shells specimens were analysed using the 

Bicinchoninic (BCA) assay. 0.25gram of implant shell and 0.25grams of gel were 

placed in 0.2% trifluoroacetate and acetonitrile 50v/50v for 24 hours in a dark 

cupboard at room temperature. The solution was evaporated to dryness using a 

speedivac, the implant shell removed and the extracted proteins were re-suspended in 

250µl of water. Protein content of the resuspension was determined using the 

Pierce™ BCA Protein assay kit, (BCA assay) ThermoFisher Scientific, UK. The 

absorbance was measured at 592mm excitation using a fluorescent plate reader 

(Fluoroskan Ascent FL™, ThermoScientific™, USA) 

4.3.8 In Vitro Cellular Response to Retrieved Breast Implants  

4.3.8.1 Preparation of Breast Implant Shell specimens and Cell Culture  

HDFa fibroblasts were passaged in sterile T-75 flasks using Trypsin with Dulbecco’s 

Modified Eagle’s Medium, low glucose (Gibco, ThermoScientific™, UK) 

supplemented with 10% FBS (foetal bovine serum) and 1% PenStrep (penicillin-

streptomycin, Gibco) or cryopreserved using DMSO until further required. HDFa’s 

used in the experiment were between passage 7 and 11.  

Discs measuring 6mm (n=6) were cut using a heavy-duty office hole punch from the 

breast implant shells. Decellularisation of the specimens was achieved by placing 

them in 1% Triton X for 1 hour, washing twice in PBS followed by 70% ethanol 

followed by washing twice in PBS. Discs were then placed in a 96 well plate and 
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covered with 100µl of warmed DMEM for approximately 2 hours prior to cell 

seeding.  

4.3.8.2 Alamar Blue™ Assay – Cell Metabolism 

To assess cell metabolism, Alamar Blue™ assay (Invitrogen, Paisley, UK) was used. 

Implant disc specimens were seeded with HDFa cells at density of 5x104 cells/cm2. 

Cells seeded onto tissue culture plastic served as a positive control and media only 

wells provided a negative control. Cells were incubated at 37oC at 5% CO2 in air and 

cell culture media was replenished on days 0, 1, 3 and 6. The Alamar Blue™ assay 

was conducted according to manufacturer’s guidelines on days 1, 3 and 7. Media from 

the wells was removed and fresh media containing 10% Alamar Blue™ solution was 

added to each well. Following a 4 hr incubation wrapped in aluminium foil, 100µl of 

the media from each well was placed into a 96-well plate and analysed using a 

fluorescent plate reader (Fluoroskan Ascent FL™ Fluorescence Plate Reader, 

ThermoScientific, USA) at an excitation and emission wavelengths of 530nm and 

620nm (n=6). 

4.3.8.3 DNA Quantification – Cell proliferation 

To assess cell proliferation, Hoechst 33258 DNA Quantification Kit, Fluorescence 

Assay (Sigma-Aldrich, UK) was used. Following Alamar Blue™ analysis the 

specimens were washed with PBS and 100µl of molecular grade water was added to 

each well. The plates were then submitted to 6 freeze-thaw cycles to achieve cell 

lysis. Fluorescence was measured using a fluorescent plate reader (Fluoroskan Ascent 

FL™ Fluorescence Plate Reader, ThermoScientific, USA) at excitation and emission 

wavelengths of 360nm and 460nm (n=6). A standard curve was performed with 

known quantities of calf thymus DNA and the equation was used to calculate the 

DNA concentrations from the fluorescence of the specimens.   

4.3.12 Statistics  
All statistics were performed using either linear correlation, non-parametric Spearman 

correlation, one-way ANOVA and 2 way ANOVA where significance was p <0.05. 

All graphs were performed using GraphPad Prism software Version 6 apart from 

ATR-FTIR were presented using Microsoft Excel. 
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4.4 Results 

A total of 15 patients were recruited to the study. All patients were female and mean 

age at time of implant removal or exchange was 42.3 years (SD 8.36 years). Eleven 

patients had undergone breast implant surgery for reconstructive purposes (9 

unilateral procedures, 2 bilateral procedures) and four patients had undergone breast 

implant surgery for cosmetic augmentation (4 bilateral procedures). Three of fifteen 

patients were smokers. Twenty-one breast implants and 8 corresponding samples of 

surrounding capsular issue were retrieved. All implants retrieved featured a textured 

surface. The mean time from initial operation to removal or exchange of implant was 

133.3 months (SD 90.1 months). Five implants (24%) were ruptured at time of 

retrieval. The reasons for removal were capsular contracture (suffering either Baker 

III or IV level of capsular contracture) (5 implants), exchange for permanent implant 

(5), suspected or confirmed rupture (4), pain/discomfort (3), complication with other 

breast (2), symmetrisation (1), presence of axillary silicone granuloma (1). A 

summary of patient and breast implant characteristics is provided in Table 4.1 and 

detailed in Appendix 1. 
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No. of Patients  

Unilateral procedure 

Bilateral procedure  

15 (21 implants) 

9 (60%) (9 implants) 

6 (40%) (12 implants) 

Age, Mean ± SD (years)  42.3 ± 8.4 
Duration of Implantation, Mean ± SD (months) 133.4 ± 90.1 
Smoker 3 patients (18.6%) 

Indication for Implants 

Breast Reconstruction  

Cancer 

Risk Reducing Surgery 

Breast hypoplasia 

  

Breast Augmentation 

No. of Patients 

11 patients ( 9 unilateral, 2 bilateral) 

8 patients (8 unilateral) 

2 patients ( 2 bilateral) 

1 patients (1 unilateral) 

 

4 patients (4 bilateral) 

Indication for implant removal/exchange 

Capsular Contracture (Baker Grade III/IV) 

Exchange for Permanent Implant 

Suspected/Confirmed Implant Rupture 

Contralateral breast implant complication 

Pain/Breast distortion 

Symmetrisation  

Presence of Axillary Silicone Granuloma 

No. of Patients 

5(23.8%) 

5(23.8%) 

4 (19.0%) 

3 (14.2%) 

2 (9.6%) 

1 (4.8%) 

1 (4.8%) 

Implant integrity at time of retrieval 

Intact 

Ruptured 

No. of Implants 

16 (76.2%) 

5 (23.8%) 

 
Table 4.1. Summary of Patient and Breast Implant Characteristics 
 

Retrieved gels varied in colour from clear, colourless to strong yellow. As shown in 

Fig. 4.2 ruptured implants contained strong yellow discoloured gels in comparison to 

intact implants.  

  
Figure 4.2: Intact Implant (left) with ruptured implant with observed yellowing of 

inner gel (right) 
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4.4.1 Breast Implant Type and Manufacturer 
 
Implants collected were found to be from a range of manufacturers as shown in Fig. 

4.3 and included Allergan (5), McGhan (3), Mentor (2), Poly Implant Prothèsis (3) 

and Labaratoire Sebbin (2). Five of the 21 retrieved implants did not exhibit 

manufacturers details and were therefore labeled as ‘unknown’. Furthermore, 

implants were determined as tissue expanders or permanent implants as shown in 

Table 4.2. 

 
 

Figure 4.3: Analysis of Implant Type by Manufacturer. Five retrieved implants 
(23.8%) were manufactured by Allergan. 

 

 

 

 

 

 

 

 

 

 

 

 



 75 

Implant Type Implants By Manufacturer 
Permanent Implant 

Total = 14 
• Unknown (5) 

• Poly Implant Prothèse (3) 

• McGhan (3) 

• Laboratoires Sebbin (2) 

• Allergan (1) 

• Mentor (1) 

Tissue Expander 
Total =7 

• Allergan (4)  

• Mentor (2) 

• McGhan (1)  

 

Table 4.2: Implant Type and Manufacturers 

4.4.2 Tensile Mechanical Properties of Retrieved Breast Implants  
A significant fall in ultimate tensile strength (UTS) is observed with increasing 

implantation times both for anterior shell (p=0.0003, r -0.708) and posterior shells 

specimens from the explanted implants (p=0.0312, r=-0.5085) as shown in Fig. 4.4A 

and B. In addition, Young’s modulus for anterior shell specimens (p=0.0037, 

r=0.6049) was reduced however, posterior shell specimens showed no significant 

difference (p=0.2032, r=-0.3149) as shown in Fig. 4.5. Strain at break demonstrated a 

significant reduction in anterior shell specimens (p=0.0003, r=-0.7158) but no 

significant difference was observed in the posterior shell specimens (p=0.0654, r=-

0.4433) as shown in Fig. 4.6.  
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Figure 4.4: A fall in ultimate tensile stress (MPa) is significantly associated with 

increasing implantation times seen in A Anterior Shell Specimens (p=0.0003) and B. 

Posterior Shell Specimens (p=0.0312). Markers by manufacturer are displayed as 

follows: McGhan (dark blue), PIP (green), Labaratoire Sebbin (purple), Mentor (light 

blue), Allergan (red), Unknown (orange). 
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Figure 4.5: Young’s Modulus of breast implants falls significantly with increasing 

duration of implantation in (A) Anterior Breast Implant Shells (p=0.0037) but no 

significant change is seen in (B) Posterior Breast Implant Shells (p=0.2032). Coloured 

markers by manufacturer as per Fig. 4.4. 
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Figure 4.6: % Elongation, Strain at break of Anterior Breast Implant Shells (A) falls 

with increasing implantation times (p=0.0003) but no significant difference detected 

in (B) Posterior Shells (p= 0.0654).  

 

 

 

 

 



 79 

4.4.3 Tear Strength of Retrieved Breast Implants  
Ultimate tear strength demonstrated a significant reduction with increasing 

implantation times as shown in Fig. 4.7 A and B for anterior (p=0.0006, r=-0.6714) 

and posterior shell specimens (p=0.0254, r=-0.5108). 

 

 

 
 
Figure 4.7: Tear Strength of Anterior (A) (p=0.0006) and Posterior (B) (p=0.0254) 

Breast Implant Shells fall significantly with increasing implantation times. 

 



 80 

4.4.4 Atomic Force Microscopy of Retrieved Breast Implants 
This demonstrated in the control specimen, no difference in cross section. In the 7 

month implant, significant reduction in the young’s modulus from inner to outer 

section of the shell. In the 204 month shell, there was no significant difference but the 

values were lower than the control specimen shown in Table 4.3.  

 
 
 

Specimen Type Young’s Modulus (MPa)  
Inner 

Young’s Modulus (MPa) 
Outer 

Control 6.53 (1.67) 7.70 (2.60) 
7 months 12.14 (2.97) 0.37 (0.13) 

204 months 4.35 (0.62) 4.32 (0.99) 
 
Table 4.3: Atomic Force Microscopy (AFM) Young’s Modulus values of control 
specimen, 7 month and 204 month retrieved implants. 
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4.4.5 ATR-FTIR of Retrieved Breast Implant Shells  
 

Chemical analysis of the retrieved breast implant shells grouped into 5 year categories 

was determined by ATR-FTIR, outlined in Fig. 4.8. The average spectrum of implant 

shells (n=5) grouped into 5-year categories is shown in the overlaid spectra in Fig. 4.9 

and Fig. 4.10. On review, there was statistically significant observed changes at the 

peak spectral height 784 cm-1 corresponding to  –CH3 rocking and –Si-C-stretching in 

–Si-CH3   as shown in Fig, 4.11A (p=0.0224, one-way ANOVA, parametric data). 

However, there were no significant differences between the peak spectral heights at 

1004 cm-1 corresponding to the asymmetric stretching of –Si-O-Si- (Fig. 4.11B 

p=0.2152, one-way ANOVA, parametric data) and at 1257 cm-1 corresponding to 

symmetric bending of –CH3 in –Si-CH3 (Fig. 4.11C p=0.1698, one-way ANOVA, 

parametric data). Furthermore, on statistical analysis of the peak spectral height 

between the intact group (n=17) versus ruptured shells (n=4) found no significant 

differences as shown in Fig. 4.12 and Fig. 4.13. 

 

 
 
Figure 4.8: Overlaid ATR-FTIR spectra by 5-year categories offset by 0.2 

absorbance 
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Figure 4.9: ATR-FTIR spectra from wavenumber 750–1300 cm-1 showing overlaid 

spectra from the 5-year categories. Significant differences in spectra height seen at 

peak 784 cm-1, but not at peak height 1004 cm-1 and 1257 cm-1. 
 

 
 

Figure 4.10: Overlaid ATR-FTIR spectra by 5-year categories offset by 0.2 

absorbance from wavelength 600-1300cm-1  
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Figure 4.11: (A) Peak Spectral Height 784 cm-1  (p=0.0224, one way ANOVA, 

parametric data) (B) Peak Spectral Peak Spectral Height 1004 cm-1 (p=0.2152, one-

way ANOVA, parametric data) (C) Height 1257 cm-1 (p=0.1698, one-way ANOVA, 

parametric data) 
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Figure 4.12: ATR-FTIR spectra of Intact and Ruptured shell specimens (staggered).  

A subtraction spectrum (Intact-Ruptured) is shown. 

 
Figure 4.13: ATR-FTIR spectra from wavenumber 600 – 1300 cm-1 showing overlaid 

spectra from the intact breast implant shells (+0.6) and ruptured (+0.4) shells. No 

significant differences detected in the peak spectral values between each group: 

784cm-1 p=0.8303, 1004cm-1 p=0.9569, 1257 cm-1 p=0.9342, two tailed, unpaired t-

test. Subtraction spectrum is also shown.  
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4.4.6 Surface Wettability/Contact Angle Measurements (θ) 
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Figure 4.14: Contact angle measurements of retrieved breast implant shells grouped 

into 5-year categories. 

There was no significant difference in contact angle/surface wettability in the 

implants grouped into 5-year duration of implantation categories as shown in Fig. 

4.14 (p= 0.7583. one way ANOVA). 
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4.4.7 Scanning Electron Microscopy of Breast Implant Shells 
The SEM images of retrieved implants from the same manufacturer of differing 

implantation times demonstrated within increasing implantation times the breast 

implant shell surface was roughened with pits, grooves and ‘ragged’ edges.  

All retrieved implants irrespective of duration of implantation displayed evidence of 

surface wearing. The McGhan implants retrieved after 85months (Figure 15a) and 

110 months (Figure 15b) showed increasing evidence of ragged edges of the 

manufactured pits with surface dents and grooves. In the Allergan implants retrieved 

after 7 months (Figure 16a) and 204 months (Figure 16b) surface degradation was 

evident with ragged edges, increasing irregularity of the pits outline more pronounced 

in the 204 months implant suggesting increasing surface degradation with time.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 87 

     
 

     
 
Figure 4.15: SEM images of retrieved McGhan™ implant (scale bar represents 200 µms) 
 
 
 
 

     
 
 
 

     
 
Figure 4.16: SEM images of retrieved Allergan™ implants (scale bar represents 200 µms) 
 
 
 
 
 
 
 
 
 

 

Fig. 4.16A: 7 
months 
duration of 
implantation 
 

Fig. 4.16B: 
204 months 
duration of 
implantation 
 

Fig. 4.15B: 
110 months 
duration of 
implantation 
 

Fig. 4.15A: 
85 months 
duration of 
implantation 
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4.4.8 Protein Quantification of Breast Implant Shells – Bicinchioninic Acid 

(BCA) Assay 

Volume of extracted protein from retrieved breast implant shells varied significantly 

as determined by Bicinchioninic Acid (BCA) assay (standard curve shown in Fig. 

4.17). There was no statistically significant difference determined between protein 

content of the shells and duration of implantation (p = 0.91, two tailed correlation) as 

shown in Fig. 4.18. 

.  

Figure 4.17: Bicinchoninic Acid Assay standard curve 
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Figure 4.18: Protein content extracted from retrieved implants. No significant 

difference detected with duration of implantation (p=0.91) 
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4.4.9 Alamar Blue™Assay (Cell Metabolism) 

HDFa cells were cultured for 7 days and alamar blue assays were performed at 24 

hours, 72 hours and 7 days as shown in Figure 17. There were significant differences 

at Day 1 between TCP and Allergan 7 months and McGhan 85 months only. At Day 3 

there were significant reduced cell metabolism on all implants apart from McGhan 85 

months. At Day 7 there was significantly increased metabolism in all implants apart 

from McGhan 110 months.  Analysis of the time points revealed significant 

differences between the timepoints (p<0.0001) and between the groups (p = 0.003, 2 

way ANOVA, multiple comparisons) 
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Figure 4.19: Alamar Blue Assay cell metabolism on tissue culture plastic (TCP), cells 

grown on retrieved implant shells over 7 days as assessed by Alamar™ Blue assay. 

Significant differences between the timepoints (p<0.0001) and between the groups (p 

= 0.0030, 2 way ANOVA, multiple comparisons) 

 

 

 

 

 

 

 

 



 90 

4.4.10 DNA Quantification (Cell Proliferation) 

Hoechst 33258 DNA Quantification Kit™, Fluorescence Assay showed significant 

increased cell proliferation in comparision to TCP Day 1 apart from implant Lab 

Sebbin 300months. There was no significant difference at Day 3 apart from McGhan 

85 months. At Day 7 there was no significant difference in cell proliferation detected 

between the materials tested and TCP.  On 2 way ANOVA, multiple comparisons, 

there was significant differences in cell proliferation between the timepoints 

(p<0.0001) and the implants tested (p = 0.0001, 2 way ANOVA, multiple 

comparisons). 
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Figure 4.20: Hoechst 33258 DNA Quantification Kit™, Fluorescence Assay, cell 

quantification as measured on cells grown on tissue culture plastic and retrieved 

implant shells over 7 days as assessed by total DNA assay over 7 days.  
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4.5 Discussion 

At the time of inception in 1962, the breast implant manufactured by Dow Corning 

Corporation featured a thick silicon envelope and viscous inner gel that ultimately led 

to high rupture and silicone gel bleed rates. After five generations of manufacturing 

adjustments the current fifth generation breast implants are comprised of a textured 

surfaced silicone elastomer envelope containing a cohesive silicone gel to minimize 

capsular contracture, gel leakage and implant rupture rates. All patients who were 

approached participated in the study agreed to take part. Increasing implantation times 

demonstrated a significant reduction in the shells ability to withstand stretch both for 

the anterior and posterior components of the implant. In addition, tear strength was 

significantly reduced with increasing implantation times. This is in-keeping with 

previous work by Greenwald et al. [63] of 25 retrieved implants who showed that 

increasing implantation times resulted in reduced shell strength and elasticity 

[14,57,60].  In addition, Brandon et al. [141] showed, in un-implanted control breast 

implants, evidence of significant lot to lot variability as well as between different 

models of implant by same manufacturer suggesting variability in the manufacturing 

process of implants. 

However, to our knowledge this is the first study to examine the micro-mechanical 

properties in relation to the breast implant shells through atomic force microscopy. 

This showed significant changes in young’s modulus across the cross-sectional layer 

in 2 of 3 specimens indicated that either the surrounding host environment or the 

inner silicone gel is exerting an influence on the material characteristics of the 

implant. Swelling of the breast implant shells caused by diffusion of low molecular 

weight silicones from the gel have been implicated in weakening the mechanical 

properties [56,138]. Lipid infiltration to the shells has also been implicated in causing 

degradation of breast implant shells in vivo [62]. In addition, our study showed that 

contact angle measurements/wettability was not statistically changed with increasing 

duration of implantation. Previous work by Wei et al. [142] demonstrated that 

increasing hydrophilic surfaces promote cell adhesion in a mouse fibroblast model 

and hydrophobic surfaces promote cell spreading. Valencia-Lazcano et al. [86] 

examined new un-implanted implants from a range of manufacturers and reported 

contact angles for textured implant surfaces between 130° and 142° in-keeping with 
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our work. Furthermore, protein deposition levels in this study showed no significant 

changes in relation to the implantation times.   

ATR-FTIR analysis showed significant changes only at the peak spectral height 784 

cm-1 corresponding to CH3 rocking and –Si-C-stretching in –Si-CH3. This may 

represent degradation of the surface of the implant however, there was no significant 

differences seen in the other peak spectral heights nor was there any statistically 

significant differences demonstrated in all peak spectral heights comparing the 

ruptured and intact shells. The spectra and peak intensities produced are in keeping 

with previous work by Yildrimer et al [43]. However, they found there was a 

statistically significant difference in peak intensity at 1007.6cm-1 corresponding to 

stretching of the Si-O-Si polymer when comparing explanted PIP implants containing 

industrial grade silicone and explanted implants produced by Allergan and Mentor 

manufacturers which may have influenced their results.  

Gel colour changes identified on naked eye inspection from clear, colourless gels in 

intact, short duration of implantation implants to deeply yellow gels and in one case 

cloudy gels in older and ruptured implants is in-keeping with previous work [60]. The 

cause of this is yet unknown but has been postulated to be an unknown biological 

component which diffuses from the host through the silicone elastomer to interact 

with the gel. However, this does not uniformly occur in all explanted implants [60]. 

Yildirimer et al. [43] demonstrated protein-like peaks intensities on FTIR analysis of 

gels from ruptured implants suggesting a bacterial contaminant. Further work 

analyzing the gels of explanted breast implants revealed evidence of lipid infiltration 

[62] but no evidence of protein or peptides in the gels from intact implants sampled 

by proteonomic analysis [143]. A further area of study would be to analyse the colour 

intensity of the retrieved gels and correlate this with the implant shell mechanical 

properties.  

Scanning electron microscopy imaging revealed visual changes in the surface of the 

implants with roughening of the pits and ragged edges. Comparing retrieved breast 

implant shells from same manufacturer, through scanning electron microscopy there 

was evidence of increasing surface degradation with increasing implantation times. 

However, further research is required to quantify this further using retrieved implants 

from a single manufacturer and type and a range of implantations times to further 

detect the true effect of in vivo aging. In addition, a possible explanation may be 

trauma to the implant at time of retrieval surgery and separation from the surrounding 
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encapsulated implant could account for the surface changes encountered as shown in 

cadaver studies [54]. 

The cellular response results show no significant differences in cell metabolism 

between the implants tested but increased with each timepoint. Cell quantification 

measurements however, did not show statistically significant changes between the 

timepoints and the implants tested. For the purpose of this study we used human 

dermal fibroblasts to establish the cellular response, however, future research is 

required examining the behavior of other cell types as well as measurement of 

inflammatory cytokines would be of value.  

The limitations of our study included retrieval of breast implants from a range of 

different manufacturers and small sample size. In addition, the implants were 

retrieved from patients who had originally received breast implants both for 

augmentation and for reconstructive purposes which may have also influenced the 

results. Two of sixteen patients had undergone pre-operative radiation therapy prior to 

implant placement and this may have contributed to increased risk of capsular 

contracture and implant failure as previously been reported [144].  
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Chapter 5: Analysis of the Cellular 
Response to the Retrieved Implants 

and of the Surrounding Capsular 
Tissue 
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5.1 Introduction  
 

The host inflammatory response is known to play a significant role in the 

development of capsular contracture (a pathological fibrous encapsulation of the 

breast implant causing firmness, pain and distortion of the breast) and has been 

reported to occur in up to 9.8%-18.9% of primary augmentations and in 14.5%-24.6% 

of primary reconstructions at 10 years follow up [2,53] in implant manufacturers pre-

market approval studies. It has also been shown to be the commonest cause of re-

operation in long-term studies [145]. The pathogenesis is as yet unknown but thought 

to be multi-factorial in origin and factors such as haematoma, biofilm formation, 

radiation therapy, implant surface, implant rupture and gel leakage have been 

implicated [146–148]. 

 

The host response to a foreign body is to provide protection for the body. It is 

characterized by injury, blood-interaction, acute inflammation followed by chronic 

inflammation and fibrous encapsulation [149]. A degree of fibrous encapsulation 

around the implant is necessary to prevent unwanted movement of the implant within 

the breast. However, in the development of capsular contracture, the foreign body 

response to the implant is chronically perpetuated by an unknown trigger(s) with 

inflammation and recruitment of fibroblasts, which produce collagen fibres and 

myofibroblasts that exert contractile forces upon the collagen fibres.  This continuing 

chronic inflammatory process allows the development of more collagen fibres and 

recruitment of myofibroblasts to exert tight forces upon them resulting in a firm 

capsule surrounding the implant [77]. This often leads to a painful condition with 

distortion and firmness of the breast often necessitating further corrective surgery. 

 

In order to reduce the incidence of capsular contracture, several approaches have been 

used including pocket antibiotic washes [150], minimal surgical handling of the 

implant, using textured surface implants (to disrupt the parallel alignment of collagen 

fibres) [151], delayed reconstruction following radiation therapy [152], use of 

acellular dermal matrix [90,153] and using submuscular implant placement compared 

to subglandular [78]. 
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To date, histological analysis of capsules have shown evidence of synovial metaplasia 

at implant surface, inflammation, and calcification as well as evidence of silicone 

bleeding. Thickness of the capsule has been previously shown to be positively related 

to duration of implantation and severity of capsular contracture [154], whilst Dolores 

et al. [155] showed that fibroblasts and macrophages constituting the majority of cell 

type present within retrieved capsules. Hwang et al. [156] showed in 31 retrieved 

surrounding breast implant capsules, the tensile strength of capsular tissue was related 

to the degree of capsular contracture.  However, to our knowledge, no studies have 

compared the mechanical and chemical properties of the implants to the 

characteristics of the corresponding surrounding capsular tissue. 
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5.2 Aims 
 
To assess the histological host response to retrieved implants and correlate this with 

the characterization of the breast implants mechanical properties. 
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5.3 Materials and Methods 
 

5.3.1 Consent and Patient recruitment  
 
Patients were consented by the author on day of surgery. Only in cases where 

capsulotomy was clinically indicated in addition to removal or exchange of implants, 

consent was obtained to collect the collagenous capsules. Ethical approval was 

obtained as outlined in Chapter 2.  

 

5.3.2 Histological Analysis of the Retrieved Capsule tissue 
 
Retrieved capsule tissue were collected from theatre by author at time of surgery, 

labeled anonymously and placed in 10% formalin for 48-72 hours. The tissue was 

then cut into approximately 1 cm sections, placed in labeled tissue cassettes and 

underwent a 15 hour automatic tissue processing using a Shandon Citadel 2000 

Automatic Tissue Processor (Thermo Scientific™, UK). Once complete, the 

processed samples were removed from the cassettes and paraffin embedded using a 

Tissue Tek II™ tissue embedding centre and labeled anonymously (Fig. 5.1). 

Paraffin blocks were sent for sectioning and staining to Departments of Pathology at 

the Royal Free Hospital (Haematoxylin and Eosin stain) and at the UCL Institute for 

Neurology (Masson’s Trichrome stain). 

Sections were imaged and analysed using an EVOS XL Core Microscope and saved 

as TIFF images. 
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Figure 5.1: Flowchart of sample collection, processing and analysis. 
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5.3.3 Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy 
(SEM-EDX) 
 
The paraffin embedded tissue blocks were sputter coated with a thin layer of carbon 

using a K975X Turbo Evaporator, Quorum Technologies, UK. Images and analysis 

were performed using a scanning electron microscope Hitachi S-3400N with an EDS 

Oxford instrument. Elemental analysis was performed using the INCA software 

package.  

 

 

5.3.4 Tensile Strength of Corresponding Retrieved Breast Implant Shells 
 

Using the methods outlined in Section 2.5.1, briefly the retrieved implant shells were 

cut into dumbbell shapes 20mm x 4mm, specimen type 3 using a cutting press 

(Wallace instruments, UK). ). Three thickness measurements were performed using a 

digital electronic micrometer and the average thickness was inputed into the software. 

The sample was loaded onto the pneumatic grips of the Instron 5565 tensiometer 

equipped with a 500 N load (Instron, UK) and uniaxial testing at a rate of 100 

mm/min was performed. The data was captured and analysed using Bluehill software. 

All experiments were performed on dry samples at room temperature.  

 

5.3.5 Statistics  
 
All statistics were performed using non-parametric Spearman correlation where 

significance was p <0.05. All graphs were performed using GraphPad Prism software 

Version 6. 
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5.4 Results  
 

5.4.1 Histological Analysis of Retrieved Capsule 
Histological examination of the retrieved surrounding capsule revealed overall 

reduced cellularity and presence of thick, dense layers of aligned collagen fibres (Fig. 

5.2) in keeping with previous work [77]. At the surface in direct contact with the 

implant, there was evidence of synovial metaplasia and engulfment of silicone 

particles which appeared birefringent under the microscope in keeping with silicone 

‘bleeding’ as evidenced in capsules from ruptured implants (Figure 1 and 3) as well as 

intact implants (Figure 2). Only in the capsule at 85 months from an explanted intact 

breast implant there was evidence of loose areolar tissue (Figure 8). There was no 

evidence of acute inflammatory response or infection as predicted. A summary of 

patient characteristics are documented in Table 5.1.  

 

 
No. of breast implant capsule specimens retrieved 9 

Mean age (years) 42.8 (SD. 9.2) 

Mean duration of implant (months) 122.1 (SD. 59.2) 

Reason for implant placement  

       Augmentation 

       Reconstruction  

 

4 

5 

Reason for exchange or removal of implant 

        Capsular Contracture (Baker Grade III/IV) and implant rupture 

        Capsular Contracture (Baker Grade III/IV) and implant rupture 

        Implant rupture 

        Contralateral removal/exchange of implant 

        ‘Rippling’ of the implant 

 

4 

2 

1 

1 

1 

Radiotherapy 

        Pre-operative radiotherapy  

 

2 

 

Table 5.1. Summary of Patient Characteristics 
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Figure 5.2:  Representative Haematoxylin & eosin (left) and Masson’s trichrome 

(right) staining of retrieved capsules from (A) 96 month ruptured implant, CC, (B) 

120 month implant removed due to contralateral rupture (C) 120 month ruptured 

implant (D) 120 month intact implant CC. x 20 magnification Arrows point to engulfed 

silicone particles. 
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Figure 5.3: Retrieved capsule from 19 month implant with densely aligned collagen 

fibres and thickened relatively acellular area. 
 
 
 

 
 

Figure 5.4: Retrieved capsule from 215 month intact implant, Grade III CC with 

dense highly aligned collagen fibres with synovial metaplasia at the implant surface 

edge (arrows). 
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5.4.2 Correlation of Fibrotic Capsule Thickness and Duration of 
Implantation/Mechanical Properties of Corresponding Breast Implant Shell 
In order to assess the relationship between the formed surrounding implant capsule 

tissue and the implant, the thickness of the fibrotic capsule was measured from 

surface edge to limit of aligned collagen fibres as shown in Fig. 5.5. There was no 

significant correlation between fibrotic capsular thickness and duration of 

implantation (p = 0.8503, r =0.07833, Spearman two-tailed correlation). In addition, 

there was no significant correlation between fibrotic capsular thickness and ultimate 

tensile strength properties of the corresponding retrieved breast implant shell (p = 

0.1206, r = 0.5667, Spearman two-tailed correlation) as shown in Fig. 5.6. 

Measurements are outlined in Table 5.2. 

 
Figure 5.5: Fibrotic capsule stained with H&E at x4 magnification demonstrating 

measurements of aligned collagen fibres from patient 15, retrieved implant and 

capsule at 19 months. 
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Figure 5.6: Graphs demonstrating no significant relationship between fibrotic capsule 

thickness and duration of implantation, p = 0.8503, r =0.07833, Spearman two tailed 

correlation, (left). No significant relationship between fibrotic capsule thickness and 

UTS of corresponding breast implant shell, p = 0.1206, r = 0.5667, Spearman two 

tailed correlation, (right). 
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Table 5.2: Measurements of capsule thickness, duration of implantation and ultimate 
tensile strength measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Implant Duration of 
Implantation 
(months) 

Capsular 
Thickness 
Measurements 
(µm) 

Mean 
Thickness 
(µm) 

Ultimate Tensile Strength + 
SD (MPa) 

1 96 263.32 
276.59 
179.60 

239.84 6.54 + 0.595 

2 120 361.81 
95.72 
163.38 

205.97 4.09 + 1.305 

3 120 447.15 
408.02 
303.45 

386.21 7.33 + 0.450 

7 120 149.37 
109.73 
192.72 

150.61 2.97 + 0.147 

8 120 249.10 
257.39 
208.02 

238.17 3.47 + 0.399 

9 204 370.38 
387.32 
382.78 

380.16 3.58 + 0.481 

11 215 312.62 
377.02 
347.96 

345.87 4.30 + 0.350 

12 85 140.12 
85.70 
117.48 

114.43 6.41 + 0.571 

15 19 619.39 
575.07 
445.18 

546.55 8.22 + 0.871 
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5.4.3 Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy 
(SEM EDX) of Surrounding Retrieved Capsule  
 
Six specimens were selected for SEM EDX. In all ruptured implants (n=3) and in 1 

intact implants (n=3) there was evidence of silicone particles engulfed into foreign 

body giant cells a shown in Fig. 5.7. 

B                                                              C 

 

Figure 5.7: Ruptured Implant 96 months duration (A) H&E staining at x10 

magnification (B) SEM-EDX imaging displaying Silicon element (C) SEM image 

(scale bar =200µm). 

 
 
 
 
 
 
 
 
 
 
 

A 



 107 

5.5 Discussion  
 
On histological analysis, the capsules were overall relatively acellular with an 

abundance of thick, highly aligned collagen fibres in keeping with previous research 

[77]. Interestingly, in capsules sampled from patients with both ruptured and intact 

breast implants there was evidence of engulfment of silicone particles by foreign body 

giant cells demonstrating silicone bleeding in-keeping with previous work by 

Siggelkow et al. [154]. As shown by Ko et al. [157], synovial metaplasia was seen at 

the host/implant interface in our specimens and this may serve as a lubricating 

mechanism in response to mechanical stress between the surrounding cells and the 

implant. In contrast to Bui et al. [76] the thickness of the capsules was not 

significantly correlated with length of implant duration. However, in this study the 

implants were not all derived from the same implant manufacturer and were 

implanted for either cosmetic or reconstructive purposes that may have influenced the 

results. In addition, two patients had undergone radiation therapy to the breast prior to 

implant insertion that could have contributed to increased risk of capsular contracture 

seen in these patients. To our knowledge, the thickness of the surrounding capsule has 

not yet been correlated mechanical properties of the implant shells in the literature. In 

this study, it was demonstrated that capsular thickness is not significantly associated 

with tensile strength of the corresponding implant. Overall, this suggests that the 

fibrotic encapsulation occurring is not simply the result of changes alone in the 

mechanical properties of the corresponding breast implant relating to changes in 

substrate stiffness as shown in previous in vitro studies [81,83]and indeed is 

multifactorial. 
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Chapter 6: Impact of Post Mastectomy 
Radiotherapy on the Silicone Breast 

Implant  
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6.1 Introduction 
 
Breast reconstruction following mastectomy can be performed using either an 

implant-based technique or autologous tissue reconstruction or using a combination of 

both. Rates of mastectomy and breast reconstruction are increasing, even in patients 

who are deemed suitable for breast conserving surgery and those with early stage 

disease [158,159]. This may be attributed to improved aesthetic outcome associated 

with reconstruction, anxiety associated with possible breast cancer recurrence and 

increased in rates of prophylactic mastectomies [158,160]. Breast reconstruction 

offers improved psychological, body-image, emotional and sexual well-being for 

patients undergoing mastectomy [161] and therefore is offered to those patients 

deemed suitable. Following the publication of the Danish and British Columbia trials 

there is increasing evidence of the benefits of post mastectomy radiotherapy (PMRT) 

in reducing loco-regional recurrence in certain cohorts of patients [96,97]. The recent 

guidelines published by the American Society of Surgical Oncology advise all 

patients with T1-2 tumours and 1-3 positive lymph nodes should be considered for 

PMRT as well as patients with T1-2 tumours with one positive node on sentinel node 

biopsy who do no undergo further axillary clearance should be considered [100]. 

According to the UK National Audit of Mastectomy and Breast Reconstruction, over 

half of breast reconstructions performed in the UK were implant based. The 

advantages of implant-based breast reconstruction (IBBR) over autologous tissue 

reconstruction include shorter operative time and inpatient stay, reduced cost, 

avoidance of donor site morbidity and can be offered to patients whose co-morbidities 

would prevent them from undergoing autologous reconstruction [162] 

 

However, IBBR is associated with long term complications including most commonly 

capsular contracture, causing breast distortion, pain and firmness as well as implant 

rupture and gel leakage. Capsular contracture has been reported to occur in 24.6% of 

patients at ten years in patients undergoing implant based reconstruction [53]. The 

exact mechanism of the cause of breast implant failure is unknown and several factors 

have been postulated in both augmentation and reconstructive procedures including 

surgical handling of implant, biofilm formation, peri-operative haematoma, exposure 

to silicone and peri-operative radiotherapy [163,164] As demonstrated in the 

systematic review of Chapter 3, post mastectomy radiotherapy delivered to the 
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permanent implant increases the rate of capsular contracture, implant failure and 

revisional surgery [103,165]. Moreover, it is associated with poor cosmetic outcome 

and patient satisfaction [131,132]. However, the role of radiation on the 

physicochemical material properties of the implant or the material biological interface 

remains unclear. Here we investigate if radiation (at similar doses to that delivered to 

the patient) changes the material properties of the implant.  

 

Breast implants are composed of polydimethylsiloxane (PDMS, (CH3)2SiO). The 

outer envelope of the implant is composed of highly crossed-linked PDMS chains 

buttressed by silica whereas the inner gel is composed of the same linear PDMS 

polymer, minimally cross-linked PDMS chains by vinyl-hydrogen bonding [1]. The 

difference in the outer elastomer shell and the inner gel although composed of the 

same polymer is the degree of crosslinking between the chains. Silicone is recognised 

for its relatively low toxicity and is widely used in several medical applications [139] 

including aesthetic implants, cardiovascular grafts, hydrocephalic shunts, soft joint 

replacements and in bariatric gastric bands [110]. It is well known that material 

surface properties, including chemistry and topography play important roles in 

determining protein and cellular interactions, that can influence short and long-term 

host responses [139]. Surface texturisation of silicone breast implants has been shown 

to reduce the incidence of capsular contracture in comparison to smooth surface 

implants [78].  

 

The influence of radiation therapy on the material chemical properties is unclear, with 

previous studies showing that radiation had no significant effect upon the surface and 

bulk properties of PDMS based materials [105,106], but others demonstrating change 

in the  surface chemical changes following treatment dose radiation (50 Gy in 25 

fractions) of commercially available silicone breast implants [104]. The aim of this 

study was to examine the effect of treatment dose radiation therapy upon the 

mechanical and surface chemical properties as well as the cellular response of silicone 

breast implants pre and post radiation exposure to gain a deeper understanding of the 

role of radiation therapy on breast implant failure.  
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6.2 Aims of Chapter 
 

Aim 1 – To examine the effect of treatment dose radiation therapy on the mechanical 

and surface chemistry properties of silicone breast implants by performing tensile and 

tear strength, attenuated total reflectance-fourier transform infra-red spectroscopy 

(ATR-FTIR) and wettability measurements. 

 

Aim 2  - To assess the fibroblast response to treatment dose radiation therapy on 

silicone breast implants. 
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6.3 Methods  
 

6.3.1 Preparation and Irradiation of Silicone Breast Implant Shells 
 

Un-implanted textured silicone breast implants (Mentor Siltex™ Contour Profile™ 

Becker ™ 35 Expander, Cohesive II™, Lot 6811381) were used. The implant inner 

gel was removed and the outer shells were subjected to radiation. The radiation 

delivered to the implants was based upon the recommended chest wall dosing 

schedule for patients with invasive breast cancer after mastectomy (40.05Gy in 15 

fractions) [166]. The breast implant shells were then categorized into three groups 

according to full treatment dose radiotherapy (40.05 Gy), one daily fraction dose 

radiotherapy (2.67 Gy) and a non-irradiated shell was used as the control.  

 

The implant shells were surrounded by blocks and adjuncts to simulate surrounding 

soft tissue and radiated at a rate of 6 Gy/min courtesy of the Department of 

Radiotherapy, Royal Free Hospital, London.  

 

6.3.2 Mechanical Testing of Breast Implant Shells  
All samples were measured using the Instron 5565 tensiometer equipped with a 500 N 

load (Instron, UK). From the implant shells, for each condition, six 20mm x 4mm 

dumbbell shaped specimens were cut from the implant shells using a Wallace cutting 

press for tensile testing and 3 crescent shaped specimens were cut for tear testing in 

accordance with the ISO 37:2005 standards. Specimens were placed in the pneumatic 

grips of the tensiometer. The specimen was pulled apart at a rate of 100mm/min and 

500mm/min for tensile and tear testing respectively. The data was captured using 

Bluehill software. Ultimate tensile strength, strain at break, Young’s modulus and tear 

strength values were recorded. 

 

6.3.3 ATR-FTIR of Breast Implant Shells 
 

Fourier Transform Infrared Spectra (FTIR) recordings were obtained to determine the 

surface chemical fingerprint of the implants using a Jasco FT/IR 4200 Spectrometer 

with a diamond attenuated total reflectance accessory (Diamond Miracle ATR, Pike 
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Technologies, US). A total of 5 silicone shell samples from each of the radiated 

groups and the control group were analysed. From an average of 30 scans a spectra 

was produced over a range of 600cm-1 to 4000 cm-1 with a resolution of 4cm-1 (n=5) 

for each group. The resulting spectra and the peak spectral intensities were identified 

and one-way ANOVA was performed using Graph Pad Prism software Version 6 to 

detect changes between the groups. 

 

6.3.4 Surface Wettability/Contact Angle Measurements (θ) 
 

Using a DSA 100 Krűss Goniometer, wettability analysis was performed on the 

implant samples from each of the 3 groups. Using the sessile drop technique, 5µl of 

deionized water was dropped onto the samples using an automated syringe with 10 

seconds of dispensing and analysis was performed using the Drop Analysis software 

(EasyDrop DSA200, KrűSS) at room temperature. Four samples from specimens 

from each group were tested three times (n=12) and statistical analysis performed 

using Graph Pad Prism software Version 6. 

 

6.3.5 Cell Metabolism, Growth and Morphology   
6.3.5.1 Alamar Blue™ and Total DNA Assay  

In order to assess cell metabolic activity and number, 6mm round disc cut samples 

(n=8) from each of the three groups: silicone shell radiated at 40.05Gy, silicone shell 

radiated at 2.67Gy and non-irradiated (control) silicone shell were sterilized by being 

placed in 1% Triton X for 1 hour, washed twice in PBS followed by 70% ethanol 

followed by washing twice in PBS. The discs (n=8) were placed in a 96 well plate, 

covered with 100µl of warmed DMEM for approximately 2 hours then seeded with 

HDFa cells at a density of 5 x 104 cells/cm2. HDFa cells used were between passage 7 

and 11. Cells seeded onto tissue culture plastic served as a positive control and media 

only wells provided a negative control. Cells were incubated at 37oC at 5% CO2 in 

air. Cell culture media was replenished on days 0, 1, 3 and 6 during the 7 day 

experiment. Cell metabolism was assessed using Alamar Blue™ assay (Invitrogen, 

Paisley, UK) and conducted in accordance with protocol guidelines on days 1, 3 and 

7.  Fluorescent analysis was performed using a Fluoroskan Ascent™ Fluorescence 

Plate Reader (ThermoScientific, USA) at excitation of 530nm and 620nm. The 
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Hoechst 33258 DNA Quantification Kit™, Fluorescence Assay (Sigma-Aldrich, UK) 

was used to quantify number of cells and was performed in accordance with protocol 

guidelines on days 1, 3, and 7.  Analysis was performed using the Fluoroskan 

Ascent™ Fluorescence Plate Reader (ThermoScientific, USA) at an excitation of 

360nm and 460nm. 

  

6.3.5.1 Cell Morphology  

Using commercially available fluorescent green cytoplasmic actin (Alexa Fluor 488 

Phalloidin, Molecular Probes, ThermoScientific™, UK) and fluorescent blue nuclei 

staining kit (Vectashield Antifade Mounting Medium with DAPI, Vector 

Laboratories, USA), cell morphology was examined at day 7 of seeded HDFa cells on 

tissue culture plastic and on non-irradiated silicone implant shells. This was 

performed in accordance to the manufacturers protocols. Images were captured using 

an EVOS Fluorescent Microscope (EVOS FL Imaging System, ThermoScientific™, 

UK). 
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6.4 Results  

6.4.1 Material Mechanical Properties  
There were no significant differences in maximal tensile strength (Fig. 6.1A) and tear 

strength (Fig. 6.1C) between each of the groups.  There was no significant difference 

in Young’s modulus between the control and full treatment dose group (40.05G) but 

there was a significant decrease in the 2.67 Gy group (Fig. 6.1.D). A significant 

reduction in the maximum elongation strain at break was, however, evident (Fig. 

6.1B, p<0.05) suggesting the samples are less flexible under strain following 

irradiation. 
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Figure 6.1: Mechanical Characterisation of Samples  

No significant difference detected in A. maximal tensile strength and C. maximal tear 

strength. Significant differences were seen in C. maximum elongation at break. No 

significant difference in Young’s modulus detected between control and full dose 

radiation groups D. 
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6.4.2 Material Surface Chemistry  
 

6.4.2.1 ATR-FTIR of Breast Implant Shells  
 
A 

 
 
 
B 

 
 

Figure 6.2: A. Overlaid ATR-FTIR spectra of non-irradiated (control) and irradiated 

silicone breast implant shells at 2.67 Gy and at 40.05 Gy offset by +0.2 with 

subtraction spectrum (Non Irradiated Silicone – Irradiated Silicone 40.05 Gy). B. 

Spectra between 600 and 1300 cm-1 wavelength showing subtraction spectrum 
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Analysis of the material surface properties was performed using ATR-FTIR. Despite  

some spectral difference observed upon spectral subtraction (Fig, 6.2A) of the ATR- 

FTIR spectra, there was no significance difference between the peak heights at 

784cm-1 corresponding to  –CH3 rocking and –Si-C-stretching in –Si-CH3 (p=0.33) 

one way ANOVA, parametric data), at 1004 cm-1 corresponding to the asymmetric 

stretching of –Si-O-Si- (p =0.87), one –way ANOVA, parametric data) and at 

1257cm-1 corresponding to symmetric bending of –CH3 in –Si-CH3 (p = 0.67, one 

way ANOVA parametric data) as shown in Fig. 6.3 

 

 

Figure 6.3: ATR-FTIR spectra from wavenumber 700 – 1300 cm-1 showing overlaid 

spectra from non irradiated and irradiated specimens. No significant differences in 

spectra height seen at peak 784 cm-1, 1004 cm-1 and 1257 cm-1 
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6.4.2.2 Surface Wettability/Contact Angle Measurements (θ) 
 

On analysis of the contact angle measurements there was no significant differences 

detected between each of the groups (p=0.23, Kruskal Wallis test) as shown in Fig. 

6.4.  
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Figure 6.4: Contact Measurements showed no significant differences in each of the 3 

groups (p= 0.23), Kruskal-Wallis test) 
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6.4.3 Cell Metabolism, Growth and Morphology   
 

6.4.3.1 Cell metabolism  
Cell metabolic activity increased with time (Day 1 and Day 7) as cells proliferated on 

all samples, but no significant difference was detected between irradiated (40.05Gy) 

and non-irradiated silicone  (p=0.79, 2-way ANOVA) (Fig. 6.5). Significant 

difference was detected in cell activity between the days (p <0.0001). 
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Figure 6.5: Cell metabolism on tissue culture plastic (TCP), cells grown on non-

irradiated silicone breast implant shell and silicone breast implant shell subjected to 

full treatment dose radiation (40.05 Gy) (Irradiated Silicone) as assessed by Alamar 

Blue™ assay over 7 days. No significant differences were detected between the tested 

material groups (p=0.79, using 2-way ANOVA test). 

 

 

 

 

 

 

 

 

 

 



 120 

6.4.3.2 Cell proliferation 
Total DNA assay showed no significant differences in cell numbers between silicone 

and non-irradiated silicone when compared to the TCP (p=0.61, 2 way ANOVA) as 

shown in Fig. 6.6. 
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Figure 6.6: Total DNA assay, cell quantification as measured on cells grown on 

tissue culture plastic, non-irradiated silicone breast implant shells and silicone breast 

implant shells subjected to full treatment dose radiation (40.05Gy) (Irradiated 

silicone) as assessed by total DNA assay over 7 days. No significant differences 

detected between the groups were detected in comparison to TCP (p=0.61, 2 way 

ANOVA). 
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6.4.3.3 Cell Morphology (Immunofluorescence staining) 
 
The cell morphology of cells grown on tissue culture plastic (TCP) demonstrated 

highly aligned, thin, long, spindle like projections in parallel with an abundance of 

nuclei. In contrast, the cells cultured upon non-irradiated silicone breast implant shells 

showed thickened projections with random orientation with fewer nuclei evident                                                              

 

 
Fig. 6.7A. Cells seeded on TCP at Day 7 

 

 
Fig. 6.7B. Cells seeded on non-irradiated Silicone Breast implant shells at Day 7 

 
Figure 6.7: Fluorescent images capturing HDFa cells cultured at Day 7 stained with 

fluorescent F-actin (green) and DAPI nuclei (blue) staining on A. TCP versus cells 

seeded on B. non-irradiated Silicone Breast implant shells. The white line represents 

200µm.  
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6.5 Discussion  
 

As the indications for PMRT are expanding [100] and as patients undergoing implant 

based breast reconstruction who receive PMRT have been shown in our meta-analysis 

to have an increased rate of surgical complications such as capsular contracture and 

revisional surgery (Fig. 3.3, Fig. 3.4, Chapter 3), there is a clinical need to understand 

the mechanism of failure, which could lead to the creation of new materials or 

different treatment approaches. This is further supported by a recent systematic 

review by Lam et al. who reported patients undergoing a two stage implant based 

breast reconstruction demonstrated a higher rate of complications (capsular 

contracture, reconstructive failure and poor cosmetic outcome) of 18.6% in those 

receiving PMRT versus 3.1% (p <0.00001) in those without [167]. This study sought 

to establish if the physicochemical properties and consequently cellular response to 

silicone breast implants change following radiation treatment.  

 

In examining the mechanical properties of the implant shells, there were no 

significant changes in tensile strength between the groups in keeping with previous 

literature [104] and tear strength (Fig. 6.1). Young’s modulus was not significant 

changed following full dose radiation (40.05Gy) but showed a decrease following 

single treatment fraction dose (2.67 Gy). In addition, elongation at break was 

significantly reduced after both single treatment fraction radiation dose (2.67 Gy) and 

after full dose radiation (40.05 Gy) suggesting that samples are less flexible after 

radiation treatment. Limitations to these results include testing implants of one type 

and from one manufacturer (Mentor Siltex™ Contour Profile™ Becker ™ 35 

Expander implants). These implants were available and commonly used for breast 

reconstruction in the unit but limited samples were available for analysis and this may 

have influenced the results. Furthermore, our methods of material characterization 

assessed bulk mechanical properties in dry conditions at room temperature that may 

not be consistent with in-vivo conditions.  There may have been micro-mechanical 

changes that were therefore not detected by the analyses performed. Further 

modalities of investigations including atomic force microscopy are warranted. 
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Contact angle measurements, performed to assess the hydrophobicity of the tested 

material that directly influences protein and cell attachment, were not significantly 

different between the irradiated and non-irradiated groups.  ATR-FTIR analysis 

showed no significant differences detected between the spectral peaks amongst the 

three groups. This is not in keeping with Ribuffo et al. who detected changes in ATR-

FTIR following treatment dose radiation therapy with the observance of smaller 

fragments suggesting scission of the polymers chains [104]. Although sample sizes 

were similar, this may possibly be explained by the higher radiation dose delivered in 

the study (50 Gy versus 40.05 Gy) delivered over a total of 25 fractions over 5 weeks 

in comparison to this study which delivered the full treatment radiation dose in one 

sitting.  

 

Cellular response to the breast implant as demonstrated by fibroblast activity revealed 

no significant differences in terms of the cell metabolism and cell proliferation 

between the tested groups but a significant reduction in comparison to the control 

group (TCP) as demonstrated by Alamar Blue™ and Total DNA assays. 

Immunofluorescence staining revealed the effect on cell orientation and morphology 

between the ‘smooth’ TCP surface and the textured surface of the silicone implant. 

The cells grown on the TCP showed highly aligned, stretched out fibroblasts with 

increased nuclei in comparison to the cells grown upon the textured non-irradiated 

silicone implant which showed random orientation of shortened cells and reduced 

numbers of cells. This is in-keeping with clinical studies describing increased rates of 

capsular contracture in patients with smooth implants in comparison to textured 

implants [78].  

 

Several theories as to the mechanism of capsular contracture exists including biofilm 

formation leading to chronic inflammation [69], surgical handling of the implant, 

peri-operative complications including haematoma and seroma, implant filler, 

radiation therapy and submuscular implant placement [164] but the actual mechanism 

is not fully understood and thought to be multi-factorial. It is well documented that 

radiation causes damage to normal cells through damage to DNA and cellular 

components leading to alterations in the cells signaling pathways could explain the 

increased rate of implant failure in those patients receiving PMRT [168]. Another 

possible factor could be the tumour microenvironment, which could be contributing to 
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implant failure as those patients receiving PMRT may in general have more advanced 

disease than patients who do not require PMRT.  

 

This study shows that treatment dose radiation therapy administered to the silicone 

breast implant does not have an overall effect on the mechanical, surface chemistry 

and fibroblast cellular response and this is in keeping with previous literature 

examining the effect of radiation on PDMS based materials [105,106]. However, of 

note these studies used significantly greater doses of radiation for the purpose of 

examining the effect of material sterilisation than the doses required in the clinical 

setting and thus used in our experiment. Further in-vitro research is required to 

examine the effect of radiation therapy to the cells and the silicone breast implants in 

parallel to elucidate the mechanisms of development of capsular contracture and 

breast implant failure.   
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Chapter 7: A Comparison of the Effect 
of Treatment Dose Radiation on 
POSS-PCU, PCU and Silicone: 

Implications for future breast implant 
design 
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7.1 Introduction 
 

Current day silicone breast implants are associated with complications such as 

capsular contracture, implant rupture and silicone gel bleeding/leakage often 

necessitating further corrective surgery. As shown in Chapter 4 and 5 their 

mechanical and chemical properties change over time and a fibrotic encapsulation can 

occur as well as leakage of silicone particles into the surrounding tissues.  

 

Several attempts to produced the ideal breast implant using a variety of materials such 

as polyurethane [30] as well as fillers including soybean oil [36], hydrogels [1] and 

polyvinyl-pyrrolidone (PVP)-hydrogels [39] been withdrawn due to increased 

complications and carcinogenic potential. Current day breast implants are composed 

of the man made repeating unit polymer silicone, polydimethylsiloxane (PDMS, 

(CH3)2SiO). Silicone is well recognised for its inert qualities, low toxicity and is used 

in several medical applications [139].  

 

The quest remains to produce a desirable breast implant with improved mechanical 

properties, biocompatibility and impermeability to leakage as well as the ability to 

mimic the natural breast mound. 

 

Attempts to create the ideal implant are ongoing. Lim et al. [111] have described the 

potential application of a new polymer linear triblock poly(styrene-b-isobutylene-b-

styrene) (SIBS) in comparison to silicone as a breast implant and shown promising 

results in a two week in vivo rabbit model.  Furthermore, coating of silicone breast 

implants with extracellular proteins, namely collagen I and fibronectin has shown in 

an in vitro model to improve fibroblast adhesion which in turn may reduce micro-

movement and shearing forces at the host-implant interface thereby reducing fibrous 

encapsulation [87]. 

 

Over recent years, the field of nanotechnology has grown and shown promise in drug 

delivery, medical diagnostics and tissue engineering. Previous research has 

demonstrated the effectiveness of a new nanocomposite polymer, composed of a poly 

(carbonate-urea) urethane (PCU) backbone integrated with the silica nanoparticle 
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polyhedral oligomeric silsesquioxane (POSS). The incorporation of the silica 

nanoparticle (POSS) cage into the polymer significantly enhances the mechanical 

properties and biocompatibility of the polymer [169]. Following research it has now 

been used in formation of lacrimal duct [170], human tracheal replacement [118] and 

ear and nose reconstruction [117] and in vascular bypass grafts [171].  

 

The potential application of POSS-PCU as a possible alternative breast implant 

material thus is the focus of this chapter. The purpose of this study was to evaluate the 

mechanical, surface chemical properties and cellular response of POSS-PCU 

compared to PCU controls and current day silicone implants and also determine if 

these properties are altered by treatment dose radiation.  
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7.2 Aims of Chapter 
 

Aim 1 – To evaluate the mechanical and surface chemistry properties of silicone 

breast implants versus POSS-PCU and PCU polymers and the effect of radiation upon 

these materials 

 

Aim 2  - To assess the fibroblast response to treatment dose radiation therapy on 

silicone breast implants, POSS PCU and PCU. 
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7.3 Methods  

7.3.1 Preparation and Irradiation of Materials 

7.3.1.1 Silicone Breast Implant Shells 
 

As described in Chapter 6.3.1.Un-implanted textured silicone breast implants (Mentor 

Siltex™ Contour Profile™ Becker ™ 35 Expander, Cohesive II™, Lot 6811381) 

were used. The implant inner gel was carefully removed and the outer shells were cut 

longitudinally into halves. 

7.3.1.2 Preparation of POSS PCU nanocomposite 
 
 
The synthesis of POSS-PCU has previously been described [172]. Polycarbonate 

polyol (2000 molecular weight) and trans-cyclohexanechloroydrinisobutyl-

silsesquioxane were placed in a 250ml reaction flask possessing a mechanical stirrer 

and nitrogen inlet. The mixture was then heated t0 135°C to dissolve the POSS cage 

into the polyol and then cooled to 70°C. Flake 4,4’-methylenebis(phenyl isocyanate), 

was added to the mixture and then reacted, under nitrogen, at 75°C - 85°C for 90 

minutes to form a pre-polymer. Dimethylacetamide was added slowly to the pre-

polymer to form a solution; the solution was cooled to 40°C. Chain extension of the 

pre-polymer was carried out by the drop wise addition of ethylenediamine in 

dimethylacetamide to form a solution of POSS modified Polycarbonate urea-urethane 

in Dimethylacetamide. All reagents and chemicals were purchased from Sigma-

Aldrich Ltd., Gillgham, UK. 

 

7.3.1.3 Synthesis of polymer PCU  
 
Dry Polycarbonate polyol (2000mwt) was placed in a 250ml reaction flask equipped 

with mechanical stirrer and nitrogen inlet. The polyol was heated to 60°C and then 

flake MDI was added and reacted with the Polyol, under nitrogen, at 70°C - 80°C for 

90 minutes to form a pre-polymer. Dry Dimethylacetamide was added slowly to the 

pre-polymer to form a solution; the solution was cooled to 40°C. Chain extension of 

the pre-polymer was carried out by the drop wise addition of a mixture of 

Ethylenediamine and Diethylamine in dry Dimethylacetamide. All reagents and 

chemicals were purchased from Sigma-Aldrich Ltd., Gillgham, UK. 
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7.3.1.4. Casting of polymer sheets (POSS-PCU and PCU) 
 
The final polymer mixtures were separately casted onto 16 x 16cm stainless steel 

plates and then placed in an oven at 65°C overnight to allow the dimethylacetamide to 

evaporate. The casted polymer sheets were then carefully peeled off the plates for 

further testing.  

 

7.3.1.4 Irradiation of Materials  
 
The breast implant shells and casted polymer sheets were categorized into three 

groups according to full dose radiotherapy (equivalent of 15 fractions delivered over 3 

weeks) 40.05 Gy, one treatment dose radiotherapy (equivalent of one daily fraction) 

2.67 Gy and non-irradiated samples (control). Implant shells and casted sheets of 

polymer were surrounded by blocks and adjuncts to simulate surrounding soft tissue 

and radiated at a rate of 6 Gy/min courtesy of the Department of Radiotherapy, Royal 

Free Hospital, London.  

 

7.3.2 Mechanical Testing of Materials (Implant Shells and Casted Polymer 
Sheets) 

  
All samples were measured using the Instron 5565 tensiometer equipped with a 500 N 

load (Instron, UK). From the implant shells and the casted sheets of POSS-PCU and 

PCU, for each condition, six dumbbell shaped specimens were cut using a Wallace 

cutting press for tensile testing and 3 crescent shaped specimens were cut for tear 

testing in accordance with the ISO 37:2005 standards. Specimens were placed in the 

pneumatic grips of the tensiometer and pulled apart at a rate of 100mm/min and 

500mm/min for tensile and tear testing respectively. The data was captured using 

Bluehill software. Ultimate tensile strength, strain at break, Young’s modulus and tear 

strength values were recorded. 

 

7.3.3 ATR-FTIR of Samples  
 

Samples of silicone implant, casted sheets of POSS-PCU and PCU subjected to each 

condition radiation condition were collected (n=5) and Fourier Transform Infrared 
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Spectra (FTIR) recordings were obtained using a Jasco FT/IR 4200 Spectrometer with 

a diamond attenuated total reflectance accessory (Diamond Miracle ATR, Pike 

Technologies, US). Spectra were produced from an average of 30 scans at a 4cm-1 

resolution over a range of 600cm-1 to 4000 cm-1. A background scan was performed 

prior to every measurement. The spectra were composed from the mean value of the 5 

repeat measurements using Microsoft Excel worksheet (Microsoft Excel, 2011). 

 

7.3.4 Surface Wettability/Contact Angle Measurements (θ) of Samples 
 

Using a DSA 100 Krűss Goniometer, wettability analysis was performed on the 

implant samples, casted POSS-PCU samples and PCU samples from each of the 3 

groups. Using the sessile drop technique, 5µl of deionized water was dropped onto the 

samples using an automated syringe with 10 seconds of dispensing and analysis was 

performed using the Drop Analysis software (EasyDrop DSA200, KrűSS) at room 

temperature. Four samples from specimens from each group were tested three times 

(n=12). 

 

7.3.5 Cell Metabolism, Proliferation and Morphology   

7.3.5.1 Cell Culture of HDFa   
As previously described, HDFa fibroblasts were passaged in sterile T-75 flasks using 

Trypsin with Dulbecco’s Modified Eagle’s Medium, low glucose (Gibco, 

ThermoScientific™, UK) supplemented with 10% FBS (foetal bovine serum) and 1% 

PenStrep (penicillin-streptomycin, Gibco) or cryopreserved using DMSO until further 

required. HDFa’s used in the experiment were between passage 7 and 11.  

Discs measuring 0.9cm (n=8) were cut using a heavy-duty office hole punch from the 

breast implant shells and casted polymer sheets. All specimen discs were placed in 

1% Triton X for 1 hour, washing twice in PBS followed by 70% ethanol followed by 

washing twice in PBS. Discs were then placed in a 96 well plate and covered with 

100µl of warmed DMEM for approximately 2 hours prior to cell seeding.  
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7.3.5.2 Alamar Blue™ Assay – Cell metabolism 
To assess cell metabolism, Alamar Blue™ assay (Invitrogen, Paisley, UK) was used. 

Disc specimens were seeded with HDFa cells at density of 5x104 cells/cm2. Cells 

seeded onto tissue culture plastic served as a positive control and media only wells 

provided a negative control. Cells were incubated at 37oC at 5% CO2 in air and cell 

culture media was replenished on days 0, 1, 3 and 6. Alamar Blue™ assay was 

conducted according to manufacturer’s guidelines on days 1, 3 and 7. Media from the 

wells was removed and fresh media containing 10% Alamar Blue™ solution was 

added to each well. Following 4 hr incubation, 100µl of the media from each well was 

placed into a 96-well plate and analysed using a fluorescent plate reader (Fluoroskan 

Ascent FL™ Fluorescence Plate Reader, ThermoScientific, USA) at an excitation and 

emission wavelengths of 530nm and 620nm (n=8). 

7.3.5.3 DNA quantification – Cell proliferation 
To assess cell proliferation, Hoechst 33258 DNA Quantification Kit, Fluorescence 

Assay (Sigma-Aldrich, UK) was used. Following Alamar Blue™ analysis the 

specimens were washed with PBS and 100µl of molecular grade water was added to 

each well. The plates were then submitted to 6 freeze-thaw cycles to achieve cell 

lysis. Fluorescence was measured using a fluorescent plate reader (Fluoroskan Ascent 

FL™ Fluorescence Plate Reader, ThermoScientific, USA) at excitation and emission 

wavelengths of 360nm and 460nm (n=8). A standard curve was performed with 

known quantities of calf thymus DNA and the equation was used to calculate the 

DNA concentrations from the fluorescence of the specimens.   

 

7.3.5.4 Cell Morphology  
Using commercially available fluorescent green cytoplasmic actin (Alexa Fluor 488 

Phalloidin, Molecular Probes, ThermoScientific™, UK) and fluorescent blue nuclei 

staining kit (Vectashield Antifade Mounting Medium with DAPI, Vector 

Laboratories, USA), cell morphology was examined at day 7 of seeded HDFa cells on 

tissue culture plastic and on non-irradiated silicone implant shells. This was 

performed in accordance to the manufacturers protocols. Images were captured using 

an EVOS Fluorescent Microscope (EVOS FL Imaging System, ThermoScientific™, 

UK). 
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7.3.6 Statistical Analysis  
 
Statistical analysis was performed using Graph Pad Prism software Version 6 with 

p<0.05 as significant.  
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7.4 Results  

7.4.1 Material Mechanical Properties  
 
Stress strain curves of silicone breast implant shells, POSS-PCU and PCU are shown 

in Fig. 7.1 and mechanical characteristics outlined in Table 7.1. POSS-PCU and PCU 

had significantly higher tensile strength than silicone breast implant shells both for 

non-irradiated and full dose irradiated specimens as shown in Figure 7.2.  No 

significant difference in maximum tensile strength was detected between non-

irradiated and radiated silicone breast implant shells and POSS-PCU (Fig. 7.3). 

However, there was a significant difference in maximal tensile strength of non-

irradiated and irradiated PCU (Fig. 7.3). There were no significant differences in 

maximal tear strength in all samples detected following irradiation as outlined in Fig. 

7.4. 

 

 

Figure 7.1: Overlaid Stress Strain Curves of Irradiated and Non-irradiated POSS-

PCU, PCU and Silicone Breast Implant Shells. POSS-PCU and PCU demonstrate 

greater stress-strain profiles than Silicone breast implant shells.  

 

 

 

 

 

% Strain 

Te
ns

ile
 S

tr
es

s 
(M

Pa
)

0 200 400 600
0

10

20

30

40

50
Silicone Breast Implant
Silicone Breast Implant 40.05 Gy
POSS PCU 15%
POSS PCU 15% 40.05Gy 
PCU
PCU 40.05 Gy



 135 

 

A                                                                   B 
M

ax
im

um
 T

en
si

le
 S

tr
es

s 
(M

Pa
)

Silic
one

POSS PCU 15
%  

PCU 
0

10

20

30

40

50

p <0.05

p <0.05

                          

M
ax

im
um

 T
en

si
le

 S
tre

ss
 (M

Pa
)

Silic
one 40.05 G

y

POSS PCU 15
% 40

.05
Gy 

PCU 40
.05

 G
y

0

20

40

60
p <0.05

p <0.05

 
Figure 7.2: Maximal tensile strength (MPa) of A. Non-Irradiated specimens and B. 

Maximum Tensile Strength of Irradiated Specimens     

 

 

 

A                                              B                                       C 

M
ax

im
al

 te
ns

ile
 s

tr
es

s 
(M

P
a)

No ra
diat

io
n 

 2.
67

 G
y

 40
.05

 G
y

0

5

10

15

p=0.58

p=0.32

 

M
ax

im
al

 te
ns

ile
 s

tr
es

s 
(M

Pa
)

Non-ir
rad

iat
ed

 POSS-P
CU

POSS PCU 2.
67

 G
y

POSS-P
CU 40

.05
 G

y
0

20

40

60

p=0.66

p=0.80

 

M
ax

im
al

 te
ns

ile
 s

tr
es

s 
(M

P
a)

Non-ir
ra

diat
ed

 P
CU

PCU 2.
67

 G
y

PCU 40
.05

 G
y

0

20

40

60

80

100 p <0.05

p <0.05

 
 

Figure 7.3. Maximum Tensile Strength of A irradiated and non-irradiated Silicone 

samples. No significant differences detected between the samples B irradiated and 

non-irradiated POSS-PCU samples. No significant differences detected between the 

samples C. Maximum Tensile Strength of irradiated and non-irradiated PCU samples. 

Significant differences detected between the non-irradiated and irradiated samples 
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Sample  Max. Tensile 

Strength (MPa) + SD 

Young’s Modulus 5-

10mm (MPa)+ SD 

Strain at Break 

(%)+ SD 

Silicone Breast Implant Shell  8.68 ± 1.79 0.91 ± 0.09 1181.51 ± 194.65 

Silicone Breast Implant Shell – 

40.05Gy 

6.46 ± 1.49 1.12 ± 0.11 717.37 ± 128.42 

POSS- PCU 40.95 ± 3.70 5.46 ± 0.41 526.45 ± 43.08 

POSS-PCU - 40.05Gy 35.13 ± 11.28 4.99 ± 1.22 560.95 ± 70.19 

PCU  70.82 ± 6.99 8.03 ± 0.64 765.53 ± 61.77 

PCU - 40.05Gy 24.74 ± 6.42 5.30 ± 0.98 412.83 ± 51.99 

 

Table 7.1. Mechanical characteristics of irradiated and non-irradiated materials.  
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Figure 7.4: Maximum Tear Strength of irradiated and non-irradiated materials. A. 

Silicone breast implant shells showed no significant differences (p=0.94). B. No 

significant differences detected between irradiated and non irradiated POSS-PCU 

(p=0.12). C No significant differences detected between irradiated and non-irradiated 

PCU (p=0.73). 
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7.4.2 Material Surface Chemistry  
 

7.4.2.1 ATR-FTIR 
 
Surface chemical properties of the tested specimens were performed using ATR-

FTIR. The overlaid spectra for non-irradiated and irradiated silicone breast implant 

shells, shown in Chapter 6 appeared the same. As described in the previous chapter, 

there were no significant differences detected in the peak spectral intensities in the 

irradiated and non-irradiated silicone breast implant shells. No observed differences 

between the peak spectral heights at 784 cm-1 corresponding to  –CH3 rocking and –

Si-C-stretching in –Si-CH3 (p=0.3260, one way ANOVA, parametric data), at 

1004cm-1 corresponding to the asymmetric stretching of –Si-O-Si- (p =0.8746, one –

way ANOVA, parametric data) and at 1257 cm-1 corresponding to symmetric bending 

of –CH3 in –Si-CH3 (p = 0.6676, one way ANOVA parametric data)  

 

The overlaid spectra for the POSS-PCU samples, shown in Figure 5, appear the same.  

On statistical analysis, there was no significant difference in the peak spectral 

intensities at (carbonate C=O stretching from carbonate) (p=0.0686, one way 

ANOVA), at 1111.7cm-1   (carbonate C-O-C stretching) (p= 0.2094, one way 

ANOVA) and at (POSS Si-O-Si stretching) (p =0.1183, one way ANOVA) between 

the non-irradiated and irradiated POSS-PCU specimens. 

 

The overlaid spectra for the non-irradiated and irradiated PCU specimens are shown 

in Figure 6 and again appear similar. There were no significant statistical differences 

detected at the peak spectral intensities at 1737cm-1 (p=0.2903, one way ANOVA) 

and 1241cm-1 (p=0.4318, one way ANOVA) between the non-irradiated and 

irradiated specimens.  
 



 138 

 

 
 

Figure 7.5: A. Overlaid ATR-FTIR spectra of tested POSS-PCU samples B. ATR-

FTIR spectra of non-irradiated (+0.2) and irradiated POSS-PCU at 2.67 Gy (+0.4) and 

at 40.05 Gy (+0.6). No significant differences were seen in peak spectral differences. 
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Figure 7.6: A. Overlaid ATR-FTIR spectra of non-irradiated and irradiated PCU 

samples. B. ATR-FTIR spectra of non-irradiated (+0.2) and irradiated PCU at 2.67 

Gy (+0.4) and at 40.05 Gy (+0.6). No significant differences were seen in peak 

spectral differences. 
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7.4.2.2 Surface Wettability/Contact Angle Measurements (θ) 
There were significant differences in contact angle measurements detected between 

each of the POSS-PCU groups (p=0.0002, one way ANOVA) as shown in Fig. 7.710. 

On further analysis, there were statistically significant differences between non-

irradiated POSS-PCU and 2.67 Gy POSS PCU (p = 0.0115, Mann-Whitney test) but 

no significant difference was detected between non-irradiated POSS PCU and 

40.05Gy POSS-PCU (p=0.1987). There were no significant differences shown 

between the PCU non-irradiated and irradiated specimens, Fig. 7.7B (p = 0.4760, one 

way ANOVA). As shown in Chapter 6, there was no significant difference following 

irradiation in silicone breast implant shells, Fig. 7.7C. 
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Figure 7.7: Contact Measurements showed no significant differences in contact angle 

measurements A. No significant differences between non-irradiated POSS-PCU and 

POSS-PCU 40.05 Gy (p = 0.11, Mann Whitney test) B. No significant differences 

between the PCU groups (p = 0.48, Kruskal-Wallis test) C. No significant differences 

between the silicone breast implant shell groups (p= 0.23, Kruskal-Wallis test) 
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7.4.3 Cell Metabolism, Growth and Morphology   
 

7.4.3.1 Alamar Blue™ Assay (Cell metabolism) 
There were similar cell metabolism seen when seeded upon tissue culture plastic 

(TCP) and the irradiated and non-irradiated samples as shown in Figure 8. At day 1 

only HDFa cells seeded upon irradiated POSS-PCU 40.05Gy showed statistically 

significant reduction in cell metabolism (p<0.05). On Day 3, a significant reduction in 

cells seeded on irradiated silicone and non-irradiated POSS-PCU was observed 

(p<0.05). On day 7, cells seeded on upon non-irradiated POSS-PCU, non-irradiated 

PCU and irradiated PCU 40.05Gy showed a significant reduction in cell metabolism 

(p<0.05, 2 –way ANOVA). 
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Figure 7.8: Cell viability on tissue culture plastic (TCP), cells grown on non-
irradiated and irradiated silicone breast implant shells, POSS-PCU and PCU as 
assessed by Alamar Blue™ assay over 7 days.  In comparison to tissue culture plastic 
(TCP) after 7 days there was significant reduction cell metabolism of HDFa cells 
seeded upon non-irradiated POSS-PCU, non-irradiated PCU and irradiated PCU 
40.05Gy (* = p<0.05, 2 –way ANOVA). 
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7.4.3.2 Total DNA assay (cell proliferation) 
Hoechst 33258 DNA Quantification Kit™, Fluorescence Assay showed no significant 

differences in cell growth on cells seeded on the irradiated or non-irradiated samples 

in comparison to tissue culture plastic as shown in Fig. 7.9. 
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Figure 7.9: Hoechst 33258 DNA Quantification Kit™, Fluorescence Assay over 7 

days performed on irradiated and non-irradiated silicone breast implant shells, POSS-

PCU and PCU. No significant differences in cell growth detected between the 

samples. 
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7.4.3.3 Cell Morphology at Day 7 (Immunofluorescence staining) 
 
Cells grown on tissue culture plastic (TCP) demonstrated highly aligned, thin, long, 

spindle like projections in parallel with an abundance of nuclei (Fig. 7.10A). In 

contrast, the cells cultured upon non-irradiated silicone breast implant shells showed 

thickened projections with random orientation with fewer nuclei evident (Fig. 7.10B). 

Cells grown on casted PCU (Fig. 7.10C) showed orientated, thicker, long spindle 

projections of the fibroblasts and cells grown on POSS-PCU showed fewer nuclei, 

with thicker projections of fibroblasts in comparison to TCP (Fig. 7.10D).  

 
A                                                              B 

 
 
C                                                               D 

 
 
Figure 7.10. Fluorescent images capturing HDFa cells cultured at Day 7 stained with 

fluorescent F-actin (green) and DAPI nuclei (blue) A. Tissue culture plastic TCP B. 

Non-irradiated silicone breast implant shells C. casted PCU D. casted POSS-PCU  
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7.5 Discussion  
 

The development of the ideal breast implant remains a challenge. It must possess 

improved mechanical properties, be impermeable to leakage and promote a minimal 

inflammatory host response in order to reduce or eliminate the known complications 

of implant rupture, leakage and capsular contracture. In addition, it must also be soft 

to palpate mimic the natural breast tissue to make this an acceptable implant for 

patients. 

  

This study sought to compare the mechanical and surface chemical properties and 

cellular response of nano-composite POSS-PCU, PCU polymer and silicone breast 

implants shells to assess its potential material for future breast implant manufacture. 

In terms of mechanical properties, POSS-PCU showed greater tensile strength than 

current day silicone breast implant shells and in addition, showed that these properties 

were unchanged in response to treatment dose radiation therapy. This is a key feature 

in creating an improved alternative breast implant to improve implant rupture and 

leakage rates as it is documented from previous research that increasing duration of 

implantation of silicone breast implants leads to shell weakening and reduced 

mechanical properties [60,63]. In addition, POSS-PCU demonstrated no detectable 

changes in mechanical properties response to treatment dose radiation therapy further 

supporting its potential application in breast implant prosthesis manufacture.  

 

 In addition, there was no statistically significant difference in the peak spectral 

intensities between the irradiated and non-irradiated specimens as demonstrated by 

ATR-FTIR analysis, thereby indicating no significant changes in the surface 

chemistry of the materials in response to irradiation. The hydrophobic surfaces of the 

textured silicone breast implant shells and POSS-PCU in comparison to PCU may 

explain the reduction in cellular proliferation and viability seen in the study.  In 

addition, the cellular response was reduced in comparison to TCP but was unaffected 

by radiation therapy. Hydrophobic surfaces reduce protein adsorption at the material 

surface. As demonstrated with cell morphology, the ‘smooth’ POSS-PCU featured 

less cell nuclei and thickened projections of the fibroblasts in comparison to TCP and 
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PCU. In assessing the cellular response, there was increased cell metabolism between 

the timepoints but no overall significant increase in cell proliferation. 

The surface chemistry of any given material directs the cellular response, cell 

adhesion and migration. The addition of functional groups can alter the 

biocompatibility of the material. Studies by Barr et al. have already shown providing 

specific coatings to silicone breast implants can alter the cellular fibroblast response 

[87] In addition, preliminary studies have shown promise in functionalizing the 

surface of POSS-PCU to promote endothelisation in vascular bypass grafts [173]. A 

potential further area of research could assess the impact of altering topographical 

surface of POSS-PCU to create a textured surface in keeping with the current day 

textured silicone implants. Textured silicone breasts implants in comparison to 

smooth have been reported to produce reduced rates of capsular contracture [146]. 

Barr et al[174] demonstrated that the textured surface of the silicone breast implant 

disorientates the planar alignment of collagen fibres produced by fibroblasts which 

may explain the observed reduced capsular contracture rates. Therefore, it would be 

pertinent to conduct further research comparing smooth and textured POSS-PCU 

surfaces with current day textured silicone breast implants.  

 

Preliminary studies have already compared the in vivo response to POSS-PCU to 

siloxane in a sheep model at 36 months [175] and reported a reduction in capsule 

formation around the POSS-PCU implants. However, further in vivo work, comparing 

POSS-PCU to current day silicone implants and the response to treatment dose 

radiation therapy is required to further evaluate POSS-PCU as a new potential 

material for breast implant manufacture, particularly for use in those patients 

undergoing implant based breast reconstruction. 
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Chapter 8: Discussion  
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Current day silicone breast implants have been subjected to five generation of 

manufacturing changes in response to complications. Despite this however, silicone 

breast implants are still associated with complications such as capsular contracture, 

gel leakage and implant rupture. 

 

The aim of this thesis was to further understand and investigate the mechanism of 

breast implant failure with particular emphasis on the role of radiation therapy in its 

pathogenesis.  

 

There is a clinical need to further understand this mechanism of injury with radiation 

therapy. The indications for radiation therapy post mastectomy are expanding and 

often in patients who have undergone implant based breast reconstruction. Thus the 

timing and method of breast reconstruction and radiotherapy has become a 

controversial topic in managing patients who require post mastectomy radiation 

therapy. One of the aims of this thesis was to determine the long-term clinical 

outcomes of radiation therapy delivered to patients with a permanent implant post 

mastectomy. As such, it was found that patients receiving PMRT directly to the 

permanent implant have increased risk of capsular contracture, implant rupture and 

failure of their reconstruction. In addition, these patients were also found to have 

poorer cosmetic outcome and satisfaction levels. This study is particularly of value to 

breast surgeons and oncologists when planning breast cancer treatment taking into 

account the timing of PMRT and the potential risks of implant based breast 

reconstruction in order to allow patients to make informed choices regarding their 

treatment. 

 

With the knowledge that post mastectomy radiation therapy delivered to patients with 

breast implants increases the likelihood of breast implant failure, this thesis sought to 

further investigate the failure mechanisms of breast implants. Firstly this was done by 

retrieval of explanted breast implants from patients and their surrounding capsule 

from a single centre. A fall in mechanical properties of the breast implant shells was 

witnessed with increasing duration of implantation as described in previous studies. 

The limitations to the study were that the implants collected were derived from a 

range of manufacturers and consisted of both tissue expanders and permanent 

implants. Moreover, the indication for implants was for both cosmetic and 



 149 

reconstructive purposes which may have influenced the results as patients who 

underwent reconstructive procedure may be followed up routinely by physicians and 

therefore may present earlier to hospital services with implant related complications. 

Further study to compare breast implants from a single manufacturer is warranted. In 

some of the breast implant shells, due to shell rupture and the retrieval process, there 

was in some cases not enough sample material to test the mechanical properties that 

may have influenced the results.  Atomic force microscopy showed interesting initial 

results with a change in mechanical properties across the cross section of the implant 

shell suggesting the inner gel or the surrounding host environment is exerting changes 

upon the shell. However, due to limited samples, further study examining implants 

from a range of manufacturers and of varying ages of implants is required.  

 

In assessing the cellular response, HDFa cells were employed as these are a reliable, 

easily accessible cell line. However, future study to mimic the true conditions a breast 

implant is subjected to in vivo would be to use breast derived cells including 

fibroblasts as well as other inflammatory cell types (macrophages and monocytes) as 

well as conducting studies to assess cytokine release.  

 

Another limitation of our study was the histological analysis of the surrounding 

capsule. The capsules were retrieved by different surgeons and the area the sample 

was take from in relation to the position of the breast implant within the breast was 

variable which may have influenced the results which may have influenced the 

results. In addition, only six of the samples were submitted from SEM-EDX testing 

due to time and financial constraints and further study assessing all retrieved samples 

would be warranted. 

 

In an attempt to explain the increased adverse events reported in patients receiving 

radiation therapy directly to the breast implant, a study of the effect of treatment dose 

radiation therapy in isolation on the silicone breast implant shells alone was 

performed. This showed no significant changes upon the bulk mechanical properties 

and surface chemical properties and the cellular response. Therefore, it has been 

shown in this thesis it is not the radiation therapy causing a fall in mechanical 

properties of the implants but the host response to the material. A further area of 

research would be to measure the cellular response to fibroblasts seeded upon the 
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silicone breast implants which are then both subjected to radiation therapy and assess 

the cellular behaviour upon the breast implant shells following the treatment.  

The development of the ideal breast implant remains a challenge. It must possess 

improved mechanical properties, be impermeable to leakage and promote a minimal 

inflammatory host response in order to reduce or eliminate the known complications 

of implant rupture, leakage and capsular contracture. In addition, it must also be soft 

to palpate mimic the natural breast tissue to make this an acceptable implant for 

patients.  

 

In this thesis radiation therapy has been shown in increase the complication rate for 

patients with breast implants however it has been shown that radiation therapy in 

isolation does not produce changes in the bulk mechanical and surface chemical 

properties of silicone implants. Therefore, it is hypothesised that the radiation therapy 

is causing changes in the cellular behaviour towards the breast implants which is in 

turn responsible for the increased complications seen. Future work therefore should 

be directed at understanding the cellular response in combination with the breast 

implants and the effect of radiation therapy delivered to both. POSS-PCU, a 

nanocomposite polymer has been shown to have different bulk mechanical properties 

and surface chemical properties to that of silicone breast implant shells and in this 

thesis have been shown to be unaffected by radiation therapy therefore could be a 

potential new material for future development of breast implants.  

 

There will be a continuing need for breast implant both in the cosmetic and 

reconstructive setting and further research into understanding the cellular behaviour 

on the implant is necessary to allow researchers to design an improved tailor made 

polymer material that reduces the inflammatory response whilst retaining its 

mechanical and surface chemical properties.  
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Appendix 1: Summary of Patient and 
Breast Implant Characteristics. 

 
 
Implant Age Duration of 

Implant  

(months) 

Reconstruction 

Vs.  

Augmentation 

Reason for  

Explantation 

Adjuvant 
Therapy 

Intact vs. 
Ruptured 

1 53 96 Reconstruction CC 

Suspected 
Rupture 

Pre-op  

Radiotherapy 

Ruptured 

2 29 120 Augmentation Contralateral 
revision 

Nil Intact 

3 29 120 Augmentation Suspected  

Rupture  

Nil Ruptured 

4 48 300 Augmentation MRI confirmed 
intra-capsular 
rupture 

Nil Ruptured 

5 48 300 Augmentation Contralateral  

revision 

Nil Intact 

6 36 5 Reconstruction Exchange for PI Nil Intact 

7 48 120 Augmentation CC Grade 3 Nil Ruptured 

8 48 120 Augmentation CC Grade 3 Nil Intact 

9 37 204 Reconstruction CC Grade 4 Nil Intact 

10 44 84 Reconstruction CC Grade 3 Nil Intact 

11 45 215  Reconstruction CC Grade 3 Nil Intact 

12 53 85 Reconstruction Pain at port site, 
distortion of 
breast, CC Grade 
3 

Pre-op  

Radiotherapy 

Intact 

13 35 7 Reconstruction Exchange for PI Nil Intact 

14 35 7 Reconstruction Exchange for PI Nil Intact 

15 43 19 Reconstruction Rippling Nil Intact 

16 45 204 Reconstruction Bilateral 
discomfort around 
implant 

Nil Intact 

17 45 204 Reconstruction Bilateral 
discomfort around 

Nil Intact 
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implant  

18 60 110 Reconstruction Symmetrisation Nil Intact 

19 43 147 Reconstruction Exchange for PI Nil Intact 

20 33 86 Augmentation Silicone 
granuloma Axilla 

Nil Ruptured 

21 33 86 Augmentation Contralateral 
revision 

Nil Intact 
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Appendix 2: PATIENT 

INFORMATION SHEET & 

CONSENT FORM. 

Study title: Collection and Analysis of Retrieved Breast Implants and Surrounding Capsule 

Tissue. 

Invitation  

You are being invited to take part in a research study. Before you decide it is 

important for you to understand why the research is being done and what it will 

involve. Please take time to read the following information carefully and discuss it 

with friends and relatives if you wish. Ask us if there is anything that is not clear or if 

you would like more information. Take time to decide whether or not you wish to 

take part. 

Thank you for reading this. 

1. What is the purpose of the study? 

Breast Implants are known to be associated with significant complications such 

as capsular contracture (severe scar tissue forming around implant) which can 

cause firmness, pain and distortion, implant leakage and rupture. This study is 

aimed to determine why breast implants fail by investigating the mechanical and 

chemical properties of retrieved breast implants as well as analysing the capsule 

(scar tissue) surrounding the implant to analyse the cells involved. 

2. Why have I been chosen? 

All patients waiting to undergo removal and/or exchange of breast implant(s) will be 

invited to take part in the study. 

3. Can I refuse to take part in the study or withdraw from the study?  

You do not have to take part in the study or you can withdraw at any stage. This will 

not affect your treatment in any way. If you refuse to participate in the study we will 

provide you with the standard treatment. No further data will be collected.  
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4. What will happen to me if I take part? 

• After your Surgeon removes your breast implant(s) instead of being discarded, 

these will be collected for further analysis 

• As part of routine care, the capsule surrounding the implant or scar tissue is 

removed and discarded. We will use some of that tissue for research purposes.  

5. Will there be any changes to my treatment because of this research? 

There will be no difference in the care that people who participate and do not 

participate receive.  

6. What do I have to do? 

There are no changes to your routine treatment or restrictions imposed on you from 

taking part in this research.   

7. What are the possible benefits of taking part? 

The information we get from this study may help us to understand why breast 

implants wear and why patients develop complications from breast implants. This will 

allow us to develop safer breast implants in the future 

8. Will my GP be informed of this research? 

We will not inform your GP routinely that you have participated in this research, as 

there will be no difference in the care that people who participate and do not 

participate receive, apart from this inflation and deflation of the blood pressure cuff.  

9. Will my taking part in this study be kept confidential? 

All information which is collected about you during the course of the research will be 

kept strictly confidential. Any information about you will stored using hospital 

numbers rather than using identifiable information names, address, and date of birth.   

10. What will happen to the results of the research study? 

The results from the study may be published in medical journals anytime between 6 to 

12 months following completion of the study, but you will not be identified.   

11. Who is organising and funding the research? 
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The study is being supported by the Department of Breast Surgery and Department of 

Plastic Surgery at the Royal Free Hospital. There are no additional payments either to 

the doctor or patients for being involved in the study.  

12. Who has reviewed the study? 

The study has been reviewed and approved by the Research Ethics Committee of the 

Royal Free Hospital.   

13. Contact for Further Information 

Prof Mohammed Keshtgar 

Professor of Cancer Surgery 

 

We thank you for reading this information sheet.  Please keep a copy of this 

information sheet and the signed consent form for your records if you agree to 

participate in this study.     
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CONSENT FORM 
Title of Project: Collection and Analysis of Retrieved Breast Implants and Surrounding 

Capsule Tissue  

Ethics approval number: 

Hospital number of the patient: 

1. I confirm that I have read and understand the information sheet dated 20th 

August 2015 (version 11) for the above study and have had the opportunity to 

ask questions. 
 

2. I understand that my participation is voluntary and that I am free to withdraw at 

any time, without giving any reason, without my medical care or legal rights 

being affected. 

3. I understand that sections of any of my medical notes may be looked at by 

responsible individuals or from regulatory authorities where it  is relevant to 

my taking part in research.  I give permission for these individuals to have 

access to my records. 

4. I agree to take part in the above study.   

 

             

________________________ ________________ ________________ 

Name of patient Date  Signature 

 

_________________________ ________________ _________________ 

Name of person taking consent Date  Signature 

 

_________________________ ________________ _________________ 

Researcher Date  Signature 

 

 
 

                                                
1  
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Appendix 3: Presentations and 
Publications  

Published Manuscripts. 
 

• Magill LJ, Tanska A, Keshtgar M, Mosahebi A, Jell G. Mechanical and surface 
chemical analysis of retrieved breast implants from a single centre. J Mech 
Behaviour of Biomedical Materials. 2019 Mar;(91); 24-31 
 

• Magill LJ, Robertson FP, Jell G, Mosahebi A, Keshtgar M. Determining the 
outcomes of post-mastectomy radiation therapy delivered to the definitive implant in 
patients undergoing one- and two-stage implant-based breast reconstruction: 
A systematic review and meta-analysis 
J Plast Reconstr Aesthet Surg. 2017 Oct;(70)10: 1329-1335. 

Conference Presentations  
 

• Magill LJ, M Keshtgar, A Mosahebi, G Jell. Histological Analysis of Retrieved 
Silicone Breast Implant Capsules and Correlation with the Implant’s Mechanical 
Properties 
Accepted for poster presentation, Association of Breast Surgery Annual Conference, 
18th -19th June 2018, Birmingham, UK. 
 

• Magill LJ, Jell G, Keshtgar M. Analysis of the Mechanical and Chemical Properties 
of Retrieved Breast Implants.  
Poster presentation, TERMIS, 28th June – 1st July 2016, Uppsala, Sweden 
 

• Magill, LJ, Faulker P, Mosahebi A, Ricketts K, Jell G, Keshtgar M. Polyhedral 
Oligomeric Silsesquioxane Poly (Carbonate-Urea) Urethane (POSS-PCU) has 
superior mechanical properties compared to current breast implant silicone shells 
and shows promise as a next generation breast implant shell. European Journal of 
Surgical Oncology, Volume 42, Issue 5, S48 - S49 
Poster presentation. Presented at the Association of Breast Surgery Annual 
Conference, 16th-17th May 2016, Manchester, UK. 

 
• Magill LJ, Mosahebi A, Davidson T, Ghosh D, Hamilton S, Marsh D, Jell G, 

Keshtgar M. An analysis of the mechanical strength properties of retrieved silicone 
breast implants in a single centre. European Journal of Surgical Oncology, Volume 
42, Issue 5, S46 - S47 
Poster presentation, Presented at the Association of Breast Surgery Annual 
Conference, 16th-17th May 2016, Manchester, UK. 
 

• Magill LJ, Faulker P, Ricketts K, Mosahebi A, Jell G, Keshtgar M. Treatment dose 
radiation therapy does not significantly weaken 5th generation silicone implant shells. 
European Journal of Surgical Oncology, Volume 42, Issue 5, S49 
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Poster presentation. Presented at the Association of Breast Surgery Annual 
Conference, 16th-17th May 2016, Manchester, UK. 

 


