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Abstract: The continuous stirred tank reactor (CSTR) is representative of a typical class of chemical equipment, where the dy-
namics is strongly nonlinear. Two difficult issues in control of a CSTR are the difficulty of accurate modeling and the suppression
of external disturbances. Driven by these challenging issues and demanding expectations around performance levels, this paper
proposes a control solution based on the model-free data-driven linearization method and sliding mode control. After giving the
corresponding stability proof, the effectiveness of the method is validated by MATLAB simulation. Experimental results are also
presented to further test the proposed method.
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1 Introduction

The CSTR is one of the most commonly used reactors in
the process industry. It has many advantages, such as low
cost, high heat transfer capability and product stability. From
the perspective of modeling and control, the CSTR exhibits
nonlinear behaviour. This renders controller design difficult,
especially in the presence of external disturbances. In ad-
dition, research studies relating to the control of the CSTR
not only have the potential to improve product quality and
stability of operation, but also provide added value to wider
research on nonlinear process modeling and control [1].

Many efforts have been made to control the CSTR. Be-
sides traditional PID control [2], many other control algo-
rithms such as model predictive control [3], anti-jamming
control [4] and fuzzy control [5] have been successfully ap-
plied to the CSTR. A predictive control approach has been
developed to tackle the control problem in the presence of
temperature delay effects which is based on fuzzy modelling,
early prediction and rolling optimization [6]. A robust adap-
tive control scheme has been proposed in the literature [7]
which can guarantee the convergence of parameter estimates
and the stability of the closed-loop system. A new robust
control strategy has been presented based on the theory of
cooperative control in [8]. However, these methods require
that the model is known. This study focuses on designing a
model free controller with strong robustness.

Variable structure control with a sliding mode is a widely
used control method, which can effectively solve the prob-
lem of controlling uncertain nonlinear systems [9]. In
the sliding mode, the system is completely robust against
matched disturbances. By designing the sliding mode appro-
priately, the control performance can be achieved indepen-
dently of the disturbance, which provides advantages such
as rapid response and insensitivity to a class of uncertainty
and disturbances whilst being simple to implement. There
are many successful applications of sliding mode control
to CSTR. An output feedback terminal sliding mode con-
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trol (TSMC) is proposed to estimate the system states and
stabilize the system output tracking error to zero in finite
time [10] . A sliding mode predictive control (SMPC) al-
gorithm has been applied to the CSTR in [11] . A sliding
mode control to achieve asymptotic tracking in the presence
of disturbances is designed in [12]. The aforementioned ap-
proaches require the use of the CSTR dynamic model in
the controller design which may be difficult to obtain ac-
curately in practice. Model-free adaptive control [13–17]
(MFAC) is a method that does not requires any informa-
tion on the mathematical model. It has been successfully ap-
plied to control problems in the fields of oil refining, chem-
ical, electrical, light industry and urban road systems. Since
model free adaptive control does not need the mathemati-
cal model, some algorithms have been developed in this area
[18–20]. However the existing methods have not been ap-
plied to CSTR and verified experimentally.

In many practical engineering systems, real-time con-
troller implementations are computer based and the design
of discrete time control systems becomes of interest. How-
ever, for discrete time systems, the reaching law based slid-
ing mode control may only achieve quasi-sliding motion
[21–23]. The adaptive discrete time sliding mode control
approach [24–26] can ensure the system exhibits good per-
formance without large chattering. This paper proposes an
adaptive model-free control algorithm by combining discrete
time sliding mode control and the partial form dynamic lin-
earization method. The goal is to develop a control paradigm
which does not require a dynamic model and ensures the
system yields good performance without inducing excessive
chattering.

The rest of this paper is organized as follows. In section
2, the dynamic linearization method is given for the CSTR.
In Section 3, a model-free controller is designed based on
a discrete sliding mode control approach and the stability is
analyzed. In Section 4, case studies are used to validate the
effectiveness of the proposed approach. In Section 5, ex-
perimental studies are used to further validate the proposed
method. Finally, some concluding remarks are made in Sec-
tion 6.



2 Partial Form Dynamic Linearization (PFDL)
Method for CSTR

Informed by the dynamics of the CSTR reaction, the di-
mensionless dynamic model from [27] is used:

x1(k + 1) = [−x1(k) +Da(1− x1(k)) exp(
γx2(k)

γ + x2(k)
)]T

+ x1(k)

x2(k + 1) = [−x2(k) + bDa(1− x1(k)) exp(
γx2(k)

γ + x2(k)
)]T

+ [β(u(k)− x2(k) + d(k))]T + x2(k)

y(k) = x2(k)
(1)

where x1, x2 ∈ R are the states, which respectively repre-
sent the dimensionless concentration and temperature. The
input of the CSTR is the flow of the jacket water and this is
denoted u(k). The sampling time is given by T .
Assumption 1. x1(k) and x2(k) are measurable. The CSTR
system is observable and controlled.

(1) can be written as:

y(k + 1) =f(y(k), · · · , y(k − ny),

x1(k), · · · , x1(k − ny),

u(k), · · · , u(k − nu))

(2)

where f(·) denotes an unknown nonlinear function.
Let UL(k) ∈ RL be a vector consisting of all control

input signals within the time window [k − L+ 1, k],

UL(k) = [u(k), · · · , u(k − L+ 1)]
T (3)

where UL(k) = 0 for k ≤ 0 , L is a constant to control the
input linearization length, and 0 is a zero vector of dimen-
sion L.
Assumption 2. (2) is generalized Lipschitz, i.e., for any
k1 6= k2 , k1, k2 ≥ 0 , and UL(k1) 6= UL(k2), there is

|∆y(k + 1)| ≤ b ‖∆UL(k)‖ (4)

where ∆y(k+ 1) = y(k+ 1)− y(k), ∆UL(k) = UL(k)−
UL(k − 1), and b is a positive constant.
Assumption 3. The partial derivative of f(·) with respect to
the control input signal u(k), · · · , u(k−L+1) of the system
is continuous.
Remark 1. Assumption 2 is a restriction on the output vari-
ation of the CSTR system whereby the variation in the
bounded output is generated by a change in the the bounded
input. Assumption 3 holds for a broad class of nonlinear sys-
tems including the CSTR.
Lemma 1[28]. For the nonlinear discrete-time CSTR sys-
tem shown in (2), if the Assumptions 1-3 are satisfied, when
‖∆UL(k)‖ 6= 0, there must be a pseudo gradient (PG), so
that

∆y(k + 1) = θTp,L(k)∆UL(k) (5)

with bounded θTp,L(k) = [θ1(k), · · · θL(k)]
T .

(5) is a partial form dynamic linearization for the CSTR
which defines a linearized equation using a data-driven ap-
proach. This reduces to some extent the modeling effort re-
quired to determine (1).

3 Model-Free Adaptive Sliding Mode Controller
Based on Partial Form Dynamic Linearization
(MFASMC-PFDL)

The system tracking error of the CSTR is defined as:

e(k) = yd(k)− y(k) (6)

where yd(k) is a given desired trajectory. The control objec-
tive is to stabilize the tracking error e(k) to zero asymptoti-
cally. Define the sliding mode as:

s(k) = ce(k) (7)

where c is a positive constant. In order to determine a slid-
ing mode control, it is first necessary to define a reachability
condition. Discrete sliding mode design frequently adopts
the exponential reaching law which is given by:

s(k + 1)− s(k) = −qTs(k)− εTsgn(s(k)) (8)

The discrete reaching law shown in (8) has many advantages.
The performance is determined by the parameters defining
the reaching rate as well as the sampling period of the dis-
crete time system, but the system may exhibit large chatter-
ing. The ideal ε should be time varying, so that ε is larger
when the system is far away from the sliding mode but de-
creases as the sliding mode is attained [29]. Motivated by
the above, the reaching law can be designed as:

s(k + 1)− s(k) = −qTs(k)− |s(k)|
2

Tsgn(s(k)) (9)

where q > 0.
According to (6), (7), (9):

yd(k + 1)− y(k + 1) =
1− qT
c

s(k)

− |s(k)|
2c

Tsgn(s(k))

(10)

A estimation criterion function is proposed to estimate the
PG θp,L(k):

J(θp,L(k)) =
∣∣y(k)− y(k − 1)− θTp,L(k)∆UL(k)

∣∣2
+ µ

∥∥∥θp,L(k)− θ̂p,L(k − 1)
∥∥∥2

(11)
where µ is a positive constant to express the weighting factor,
θ̂p,L(k − 1) is the estimation value of θp,L(k − 1).

Under an optimal condition ∂J(θp,L(k))
∂θp,L(k) = 0:

θ̂p,L(k) = θ̂p,L(k − 1) +
η∆UL(k − 1)

µ+ ‖∆UL(k − 1)‖2
·[

y(k + 1)− y(k)− θ̂Tp,L(k − 1)∆UL(k − 1)
] (12)

where the step-size factor η ∈ (0, 2].
Considering the estimation ability of the algorithm (12)

in some special cases, the following reset algorithm is pro-
posed:

θ̂p,L(k) = θ̂p,L(1) (13)

if sgn(θ̂p,L(k)) 6= sgn(θ̂p,L(1)),
∥∥∥θ̂p,L(k)

∥∥∥ ≤ ε, or
‖∆UL(k − 1)‖ ≤ ε, where ε is a small positive constant
and θ̂p,L(1) is the initial value of θ̂p,L(k).



Integrating (5) and (10), the MFASMC-PFDL algorithm
can be expressed as:

u(k) = u(k − 1) +
1

θ1(k)
[yd(k + 1)− y(k)

−1− qT
c

s(k) +
|s(k)|

2c
Tsgn(s(k))

−θ2(k)∆u(k − 1)− · · · − θL(k)∆u(k − L+ 1)]

(14)

where the θ̂p,L(k) depends on (12) and (13).
Remark 2. The desired trajectory yd(k) is frequently con-
stant for the CSTR. This means that the temperature of the
CSTR needs to be stabilized to a constant. In the model (1),
Da is a small positive constant representing the Damkohler
number.

Theorem 1. If (2) satisfies Assumptions 1-3, the
MFASMC-PFDL algorithm (14) can render e(k) asymptoti-
cally stable and x1(k) will be bounded.
Proof: In order to prove the stability of the MFASMC-PFDL
algorithm, an estimate of the boundedness of the PG has
been given in the literature [30]. The stability of the discrete
sliding mode is shown as follows.

Choose a Lyapunov candidate function:

V (k) = s2(k) (15)

When ∆V (k) < 0 is satisfied, any initial state tends to the
switching surface s(k) , where ∆V (k) = s2(k+1)−s2(k).
The conditions for convergence are therefore

s2(k + 1) < s2(k) (16)

From (16), the reaching condition for the discrete time slid-
ing mode can be expressed as:

[s(k + 1)− s(k)] sgn(s(k)) < 0
[s(k + 1) + s(k)] sgn(s(k)) > 0

(17)

For the discrete reaching rate, the following equations are
available.

[s(k + 1)− s(k)]sgn(s(k)) = −qTs(k)sgn(s(k))

− |s(k)|
2

Tsgn(s(k))sgn(s(k))

= −(q + 0.5)T |s(k)| < 0

(18)

[s(k + 1) + s(k)]sgn(s(k)) = 2s(k)sgn(s(k))

− qTs(k)sgn(s(k))

− |s(k)|
2

Tsgn(s(k))sgn(s(k))

= (2− 0.5T − qT ) |s(k)| > 0

(19)

where T < 4
1+2q .

The result shows the correctness of (16), that is,
lim
t→∞

s(k) → 0. So lim
t→∞

e(k) → 0 can be obtained from
(7).

Based on the analysis above, TDa exp( γx2(k)
γ+x2(k)

) is also
bounded due to the boundedness of x2(k) .

Let C1 = TDa exp( γx2(k)
γ+x2(k)

), C = 1 − T − C1, it is ob-
vious that C1 > 0 and 0 < C < 1 .

According to (1):

x1(k + 1) =

[
−x1(k) +Da(1− x1(k)) exp(

γx2(k)

γ + x2(k)
)

]
T

+ x1(k)

x1(k + 1) = (−T − C1 + 1)x1(k) + C1

x1(k + 1) = Cx1(k) + C1

(20)
Using iteration

x1(k) = Ck−1x1(0) + C1
1− Ck−1

1− C

lim
k→∞

x1(k) =
C1

1− C

(21)

where x1(0) is the initial condition of x1(k). Hence x1 is
bounded and Theorem 1 is proved; the stability of the closed-
loop system is guaranteed.

4 Simulation Analysis

In view of the need for complicated controller param-
eter settings and the poor robustness of PID schemes for
the CSTR, an adaptive PID controller based on RBF net-
work tuning (APID-RBF) has been previously proposed in
the literature [31]. In this section, the performance of the
MFASMC-PFDL and APID-RBF algorithms are tested by
using the model (1). The performance of the two controllers

is compared by evaluating J and δ , where J =
∞∫
0

te2dt and

δ is the system overshoot.
The parameters of the model (1) were selected as: β =

0.3, γ = 20.0, b = 8.0, Da = 0.078. The initial conditions
are chosen as x1 = 0.5, x2 = 3 and the given desired trajec-
tory is chosen as yd(k) = 4.
Case 1. There is no external disturbance, that is, d(k)= 0.

Fig. 1 shows the two controllers can guarantee x2 con-
verges to the desired trajectory. Fig. 2 and Fig. 3 show the
convergence of x1 and the boundedness of the control input.
At the same time, it can be seen that J(APID− RBF) =
2.3213, δ(APID− RBF) = 0, J(MFASMC− PFDL) =
0.5434, δ(MFASMC− PFDL) = 0. The results show that
the MFASMC-PFDL has better overall performance. Specif-
ically, it achieves a faster response. For the APID-RBF con-
troller, the control performance can be improved by adjust-
ing the parameters, but the control input will have a larger
overshoot, which will cause damage to the actual CSTR de-
vice, where the constraints on the the valve that controls the
water flow to the jacket are pertinent.
Case 2. Performance in the presence of a rectangular wave
disturbance as shown in Fig. 7.

Fig. 4 shows the two controllers can guarantee x2 con-
verges to the desired trajectory. Fig. 5 and Fig. 6 show
the convergence of x1 and the boundedness of control in-
put. It can be obtained that J(APID− RBF) = 4.4391,
δ(APID− RBF) = 2.34%, J(MFASMC− PFDL) =
0.5676, δ(MFASMC− PFDL) = 0.25%. The results show
that the MFASMC-PFDL has better overall performance and
the system overshoot is smaller. The MFASMC-PFDL guar-
antees that the level of chattering is acceptable in the pres-
ence of the rectangular wave disturbance as shown in Fig.6.



Fig. 1: x2 performance of the two algorithms for the nominal
CSTR system without disturbance

Fig. 2: x1 performance of the two algorithms for the nominal
CSTR system without disturbance

Case 3. Performance in the presence of a sine wave distur-
bance as shown in Fig. 11.

Fig. 8 shows the two controllers can guarantee x2 con-
verges to the desired trajectory. Fig. 9 and Fig. 10 show
the convergence of x1 and the boundedness of control in-
put. It can be seen that J(APID− RBF) = 1.0559,
δ(APID− RBF) = 2.37%, J(MFASMC− PFDL) =
0.5256, δ(MFASMC− PFDL) = 0.25%. The results show
that the MFASMC-PFDL has better overall performance
while the system overshoot is smaller. At the same time, the
MFASMC-PFDL does not induce chattering in the presence
of the sine wave disturbance as shown in Fig. 10.

Based on the analysis of the above three cases, the
MFASMC-PFDL approach exhibits robustness while ensur-
ing acceptable performance in terms of chattering in the
presence of external disturbances.

5 Experimental Verification

In this section, the performance of the MFASMC-PFDL
algorithm is experimentally tested on a CSTR. The experi-
mental operating interface is shown in Fig. 12. The esterifi-
cation of sodium hydroxide with ethyl acetate is carried out
in the CSTR. The purpose of this experiment is to stabilize
the temperature of the CSTR from 40 degrees Celsius to 30
degrees Celsius.

In the experiment, the cooling water flow in the jacket is
used as the control input u and the reactor temperature is the
control output y. The controller is designed using the pre-

Fig. 3: The control input of the two algorithms for the nom-
inal CSTR system without disturbance

Fig. 4: x2 performance of the two algorithms for the CSTR
system in the presence of rectangular wave disturbance

Fig. 5: x1 performance of the two algorithms for the CSTR
system in the presence of rectangular wave disturbance

sented MFASMC-PFDL approach. As can be seen from Fig.
13, the temperature of the reactor finally stabilizes to the de-
sired temperature after four fluctuations. This is because the
chemical reaction is an exothermic reaction, and the material
has been preheated. The cooling of the jacketed water and
reaction heat must achieve dynamic balance. In the experi-
ment, the water temperature of the jacket is not completely
constant and other external disturbances exist. The prac-
ticability and robustness of the proposed MFASMC-PFDL
method is verified.



Fig. 6: The control input of the two algorithms for the CSTR
system in the presence of rectangular wave disturbance

Fig. 7: The rectangular wave disturbance

Fig. 8: x2 performance of the two algorithms for the CSTR
system in the presence of sine wave disturbance

6 Conclusion

In this paper, a MFASMC-PFDL controller is proposed
by combining the dynamic linearization method from dis-
crete time nonlinear systems and sliding mode control. The
corresponding stability analysis is given to provide a theo-
retical foundation for the results. The effectiveness of the
proposed method is validated by a detailed numerical simu-
lation. The MFASMC-PFDL method shows strong robust-
ness in the presence of external disturbances, while ensur-
ing acceptable levels of chattering. The experimental testing
further demonstrates the proposed approach. Future work
will consider the performance indicators for a variety of con-

Fig. 9: x1 performance of the two algorithms for the CSTR
system in the presence of sine wave disturbance

Fig. 10: The control input of the two algorithms for the
CSTR system in the presence of sine wave disturbance

Fig. 11: The sine wave disturbance

Fig. 12: The experimental operating interface
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Fig. 13: The temperature performance of the MFASMC-
PFDL controller

trollers, especially the sliding mode control, while using the
experimental platform for verification of the results obtained
in theory and simulation.
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