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Abstract  28 

The decapod Crustacea are the most species-rich order of the crustacean classes and include 29 

some of the most charismatic and highly-valued commercial species. Thus, the decapods 30 

draw a significant research interest, in relation to aquaculture as well as gaining a broader 31 

understanding of these species’ biology. However, the diverse physiology of the group 32 

considered with the lack of a model species have presented an obstacle for comparative 33 

analyses. In reflection of this, the recent integration of comparative transcriptomics has 34 

rapidly advanced our understanding of key regulatory pathways and developmental 35 

phenomena, an example being our understanding of sexual development. We discuss our 36 

work in the Eastern spiny lobster, Sagmariasus verreauxi, in the context of what is currently 37 

known about male sexual development in the decapods, highlighting the importance of 38 

transcriptomic techniques in achieving our recent advancements.  39 

Firstly we describe male sexual differentiation and maturation, as mediated by the insulin-40 

like androgenic gland hormone (IAG), integrating the role of regulatory binding proteins 41 

(IGFBPs), a tyrosine kinase insulin receptor (TKIR), as well as the upstream effect of 42 

neuroendocrine hormones (GIH and MIH). We then consider the less well understood 43 

mechanism of male sex determination, with an emphasis on what we believe to be the key 44 

regulatory factors, the Dsx- and mab-3-related transcription factors (Dmrts). Finally we 45 

discuss the function of the antennal gland (AnG) in sexual development, relating to the 46 

emergence of male-biased up-regulation in the AnG in later sexual maturation and the 47 

sexually dimorphic expression of two key genes Sv-TKIR and Sv-Dmrt1. We then present the 48 

AnG as a case study to illustrate how comparative transcriptomic techniques can be applied 49 

to guide preliminary analyses, like the hypothesis that the AnG may function in pheromone 50 

biosynthesis. 51 

In summary we describe the power of transcriptomics in facilitating the progress made in our 52 

understanding of male sexual development, as illustrated by the commercial decapod species, 53 

S. verreauxi. Considering future directions, we suggest that the integration of multiple omics-54 

based techniques offers the most powerful tool to ensure we continue to piece together the 55 

biology of the important group of decapod Crustacea. 56 

 57 

 58 
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Definitions 59 

Sexual development: The integrated cascade that stems from an initial genetic/environmental 60 

signal and eventuates with (1) sex determination, leading to activation of the downstream 61 

mediators that govern (2) sex-specific differentiation and (3) ongoing maturation. 62 

1. Sex determination: The genetic (or environmental) mechanism that coverts a 63 

chromosomal signal to the onset of a sex-specific developmental biochemical network 64 

that triggers male or female phenotypic differentiation. 65 

2. Sexual differentiation: The subsequent manifestation of sex determination, resulting 66 

in sex-specific phenotypic development and consequential sexual dimorphism 67 

between the sexes. 68 

3. Sexual maturation: The ongoing regulation of a sexually differentiated individual to 69 

reach and maintain reproductive maturity and enable reproductive functionality 70 

(behavioural, physiological, morphological and anatomical). 71 

 72 

Introduction  73 

The group Crustacea includes around 50,000 species, occupying an abundance of ecological 74 

niches and adopting a diversity of life history strategies (Porter et al. 2005). The decapods 75 

comprise the most species-rich order of the Crustacea including the commercially significant 76 

species of the Palaemonidae (prawns), Palinuridae (spiny lobsters), Parastacidae (crayfish), 77 

Penaeidae (shrimps) and Portunidae (crabs) (Porter et al. 2005). Global crustacean 78 

aquaculture exceeded value of US$30 billion in 2012 (FAO 2014), however, despite the 79 

commercial importance of this group, the limited knowledge concerning decapod crustacean 80 

physiology, considered with the lack of genomic data (Mykles and Hui 2015) is a significant 81 

obstacle to our understanding of these species’ biology.  In reflection of this, comparative 82 

transcriptomics has become the primary tool to facilitate the rapid identification of genes, 83 

allowing us to develop a mechanistic understanding of key regulatory pathways from sexual 84 

development (Leelatanawit et al. 2009; Zhang et al. 2011; He et al. 2012; Gao et al. 2014; 85 

Jiang et al. 2014; Liu et al. 2015; Powell et al. 2015; Chandler et al. in press) to 86 

metamorphosis (Ventura et al. 2015).  87 

In the context of aquaculture, an understanding of sexual development and reproduction is 88 

central to successful and sustainable culture (Nagaraju 2011). In addition, an insight into the 89 
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regulation of sexual development provides scope for the use of novel biotechnologies to 90 

induce sex-change, benefitting productivity like that seen with the giant freshwater prawn, 91 

Macrobrachium rosenbergii (Ventura et al. 2012; Sagi et al. 2013). Despite the latter 92 

achievement, our broader understanding of the genetic regulation of sexual development is 93 

still poor amongst the decapods. In addition, the diversity and complexities of sex 94 

determination mechanisms across Animalia (Stothard and Pilgrim 2003; Suzuki 2010; Kopp 95 

2012; Matson and Zarkower 2012; Beukeboom and Perrin 2014) severely limit what can be 96 

learnt from the closest model species in the branchiopods (Daphnia) and arthropods.  97 

Our model species, the Eastern spiny lobster, Sagmariasus verreauxi, is an example of one 98 

such commercially valued decapod species, where a high demand and high value (Phillips 99 

2006; Jeffs et al. 2013) offer significant economic gains through successful culture 100 

(Fitzgibbon and Battaglene 2012a).  In recent years a dramatic advancement in hatchery 101 

technologies (Fitzgibbon and Battaglene 2012a; Fitzgibbon and Battaglene 2012b; Jensen et 102 

al. 2013; Fitzgibbon et al. 2014) has enabled the life cycle of S. verreauxi to be successfully 103 

closed in culture. One of the next advancements called for is to integrate a molecular 104 

understanding of the species’ biology to enhance current culture practices. 105 

 106 

Male sexual development in Decapoda: an overview 107 

Sexual differentiation 108 

Although our understanding of sexual development amongst the decapods is limited there is 109 

an element of the developmental pathway that unifies our knowledge of the group. As 110 

members of Malacostraca, the effect of the male-specific androgenic gland (AG) is 111 

fundamental to male sexual differentiation. The AG is located along the sperm duct or testes 112 

(Charniaux-Cotton 1954; Charniaux-Cotton 1958; Charniaux-Cotton 1956; Sagi et al. 1997) 113 

and is responsible for the expression of the insulin-like androgenic gland hormone (IAG) 114 

(Martin et al. 1999; Okuno et al. 1999; Manor et al. 2007). It is this IAG hormone that is 115 

central to male sexual differentiation, directly governing testicular development right through 116 

to the emergence of secondary-sexual characteristics (Ventura et al. 2009; Rosen et al. 2010), 117 

with further evidence of its role in sexual behaviour mediated through the AG (Barki et al. 118 

2003; Karplus et al., 2003; Barki et al. 2006).  119 
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The central function of IAG has been explicitly demonstrated by the full, functional sex-120 

reversal of male M. rosenbergii, to generate homogametic (ZZ) neo-females, ultimately 121 

facilitating the production of an all-male population within two generations. First via AG 122 

removal (Sagi et al. 1990; Aflalo et al. 2006) and later by specifically silencing IAG using 123 

RNAi (Ventura et al. 2009; Rosen et al. 2010; Ventura et al. 2012), employing genetic sex 124 

markers (Ventura et al. 2011a) to facilitate the rapid and accurate identification of sex-125 

changed individuals. Sex change of females into neo-males has also been achieved in 126 

M. rosenbergii, through the use of AG-grafting techniques (Malecha et al. 1992). More 127 

recently the production of active recombinant IAGs might provide a more elegant and 128 

efficient method to achieve the same “masculinising” effects (Katayama et al. 2014; Aizen et 129 

al. under review).  130 

The X-organ-Sinus-gland complex (XO-SG), acting as the primary neuroendocrine gland in 131 

the eyestalk, also has a role in sexual development, acting through the XO-SG – AG – Gonad 132 

axis (Rodriguez et al. 2007). Removal of the XO-SG through eyestalk ablation leads to 133 

hypertrophy and hyperplasia of the AG cells (Khalaila et al. 2002) with the increased IAG 134 

production resulting in accelerated testicular development (Nagaraju 2011; Zhang et al. 135 

2014a). The secreted neurohormones, gonad inhibiting hormone (GIH) aka VIH 136 

(vitellogeneis inhibiting hormone in females) and molt-inhibiting hormone (MIH) are thought 137 

to be those directly regulating IAG expression (Li et al. 2015a), having an ongoing inhibitory 138 

effect throughout sexual development and reproduction (Suwansa-ard et al. 2015). 139 

A visual summary of our current understanding of sexual development in Decapoda can be 140 

seen in Figure 1A. In Figure 1B and C, we have placed this regulatory cascade of Decapoda, 141 

in the context of the sexual development of our model species, S. verreauxi.  Figure 1B 142 

describes S. verreauxi development in culture, subdivided into an embryonic phase, lasting 143 

66 - 68 days at 18°C, followed by hatching and a short nauplius stage lasting under an hour. 144 

Seventeen phyllosoma instar then follow (Kittaka et al. 1997), lasting for a period of 5.5 - 8 145 

months at 21 - 23°C (Q. Fitzgibbon. pers com); reduced from the 8 - 12 months seen in the 146 

wild (Montgomery and Craig 2005). The oceanic phyllosoma then molt into a lecithotrophic, 147 

non-feeding puerulus phase (a nektonic stage that swims towards the shore to seek a suitable 148 

habitat). The puerulus exists for a period of 19 - 28 days at 21°C (Fitzgibbon et al. 2014), 149 

over which time a digestive system re-develops, demonstrated by the emergence of the 150 

hepatopancreas during the H-phase, followed by cuticular pigmentation (Ventura et al. 2015). 151 

The metamorphic molt follows as the puerulus transitions into a juvenile. Within a few molts 152 
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the gonopores can be identified at the base of the fifth walking leg; the first morphological 153 

emergence of sexual differentiation (Q. Fitzgibbon. pers com). Full sexual maturation then 154 

occurs over a period of 4.5 -5 years at 18°C.  155 

Considering the pivotal role of IAG during sexual differentiation, Figure 1C contextualises 156 

the temporal expression profile of Sv-IAG alongside the morphological development of 157 

S. verreauxi. In-depth temporal sequencing is presented (as reads per kilobase per million 158 

reads, RPKM) for the phyllosoma instar 17, which can be accurately classified into intermolt, 159 

early and late premolt (defined by retraction of the hepatopancreas from the cephalic shield 160 

(Ventura et al. 2015)), as well as two puerulus stages taken at postmolt and at H-phase. 161 

Expression was also quantified from an AG taken from an immature 400g male, the age at 162 

which the AG is first visually identifiable and finally an AG taken from a sexually mature 163 

3kg male. The dramatic increase in Sv-IAG expression over the period of later sexual 164 

differentiation and maturation is readily apparent, falling below 0.5 RPKM through 165 

immaturity (< 400g) but reaching nearly 1500 RPKM at sexual maturity (Ventura et al. 166 

2014).  167 

These data are true demonstration of the depth of sequencing achieved by next-generation 168 

techniques, quantifying expression < 1 RPKM, which would otherwise go un-noticed using 169 

PCR technologies. Indeed, when one considers that the first evidence of sexual differentiation 170 

occurs during this phase of extremely low IAG expression, these data raise the debate over 171 

what level of expression is to be considered biologically relevant. 172 

Although the IAG gene has now been identified in well over fifteen decapod species 173 

(reviewed in Ventura et al. 2011b; with the subsequent additions of Banzai et al. 2011; 174 

Mareddy et al. 2011; Li et al. 2012a; Ma et al. 2013; Huang et al. 2014; Savaya-Alkalay et al. 175 

2014; Ventura et al. 2014; Liu et al. 2015) including all those key commercial groups 176 

mentioned above, there is still a limited understanding of the regulation and endocrinology of 177 

the hormone. Thus, our work has used the power of comparative transcriptomics to gain a 178 

more comprehensive understanding of the molecular regulation of male sexual development 179 

in S. verreauxi as a representative for Decapoda.  180 

In doing so, the use of high-throughput sequencing technologies has rapidly added to the 181 

understanding of IAG’s insulin-like endocrinology. An example of this is the recent 182 

discovery of the first non-IAG insulin-like peptide (ILP), identified in S. verreauxi (Chandler 183 

et al. 2015). Sv-ILP1 was the first ILP of its kind to be identified amongst the decapods, 184 
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adding to the evidence of a broader insulin-like endocrinology. Further targeted screening 185 

aided the identification of an insulin-like growth factor binding protein (Sv-IGFBP) 186 

(Chandler et al. 2015) as well as four other putative chaperone proteins orthologous to Alpha-187 

2 macroglobulins, which were identified due to their AG-biased expression (Chandler et al., 188 

in press). The conserved function of these proteins in binding and chaperoning insulin-like 189 

peptides in vertebrates (Borth 1992; Hwa et al. 1999) and decapods (Rosen et al. 2013a; Li et 190 

al. 2015b) is an indication that secondary regulatory-proteins must be considered to 191 

understand the bioavailability and cellular activity of IAG.   192 

The identification of orthologous genes is demonstration of the power of transcriptomics, 193 

where comparative analyses can improve understanding of gene function. This was the case 194 

with Sv-MAG, the S. verreauxi orthologue of the AG-specific membrane-anchored protein 195 

(Cq-MAG) identified in Cherax quadricarintus (Rosen et al. 2013b). Unlike in 196 

C. quadricarinatus, Sv-MAG was not AG-specific but AG-biased, due to weak expression in 197 

the gonads (Chandler et al. in press), suggesting that it might facilitate the function of other 198 

ILPs or that IAG is expressed in the gonads. Nevertheless these data provide supportive 199 

evidence for the function of the MAG protein in sexual differentiation and maturation as 200 

mediated through the AG.  201 

Perhaps the most significant gap in our understanding of IAG endocrinology was relating to 202 

the identification of the hormone’s insulin-like receptor. Using transcriptomic in silico 203 

techniques, we were able to assemble a complete 7081-nucleotide transcript encoding a 204 

conserved tyrosine kinase insulin receptor (TKIR), which (after molecular validation) we 205 

termed Sv-TKIR. This in turn facilitated further in vitro studies, which provided for the first 206 

time proof-of-activation of IAG with its receptor, as demonstrated through a COS-7 207 

luciferase assay (Aizen et al. under review). The latter work has strong support in the recent 208 

findings of Sharabi et al. (2015), who have also identified a highly homologous TKIR in 209 

M. rosenbergii (Mr-IR) and demonstrated its receptor-ligand interaction with IAG, as well as 210 

its explicit function in sexual development through gene silencing.  211 

 212 

Sex determination  213 

Thus far only the terminal effectors of male sexual development, regulating sexual 214 

differentiation, have been discussed. The initiation of sexual development occurs with a sex-215 

specific genetic cascade mediated through a chromosomal mechanism of sex determination. 216 
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Unlike the unifying role of IAG, the decapods do not show a conserved mechanism of sex 217 

determination. In groups such as the penaeid shrimp, a general ZW/ZZ mechanism seems to 218 

exist (Benzie et al. 2001; Li et al. 2003; Preston et al. 2004; Preechaphol et al. 2007; Zhang et 219 

al. 2007; Coman et al. 2008; Gopal et al. 2010), however in other groups such as the crabs 220 

and freshwater crayfish, both ZW/ZZ (Eriocheir sinensis (Cui et al. 2015) and 221 

C. quadricantus (Parnes et al. 2003)) and XX/XY (Charybdis feriatus (Trino et al. 1999), 222 

Austropotamobius pallipes and Austropotamobius torrentium (Mlinarec et al. 2016)  223 

mechanisms exist. All that is known in the spiny lobsters is a suggested XX/XY mechanism 224 

in the Hawaiian spiny lobster Panulirus marginatus (Shaklee 1983). This disparity illustrates 225 

the complexity of sex determination mechanisms in the decapods and elucidates to why we 226 

currently lack a mechanistic understanding of the process.  227 

Following this, there is no knowledge of the master sex-regulator that triggers the onset of 228 

sex determination. A range of sex determination linked orthologues have been identified in 229 

the decapods, mainly guided by genes characterised in the arthropods: these include 230 

orthologues of the master sex-determinant in Drosophila, Sxl (Zhang et al. 2013a; Shen et al., 231 

2014; Powell et al. 2015; Chandler et al. in press) and downstream mediators TRA and TRA-2 232 

(Leelatanawit et al. 2009; Li et al. 2012b; Zhang et al. 2013b; Cui et al. 2015; Liu et al. 2015; 233 

Chandler et al. in press) as well as genes from C. elegans such as FEM-1 (Ma et al. 2012; Jin 234 

et al. 2013; Goa et al. 2014; Robinson et al. 2014; Cui et al. 2015; Liu et al. 2015; Powell et 235 

al. 2015; Song et al. 2015). However, due to the rapid and repetitive divergence of sex 236 

determination systems (Stothard and Pilgrim 2003; Suzuki 2010; Kopp 2012; Matson and 237 

Zarkower 2012) the functional significance of these genes in decapods is questionable.  238 

Instead, we believe that the emphasis should be placed on a family of zinc-finger, DNA-239 

binding transcriptional regulators, termed the DM-domain DNA binding motif, also known as 240 

Dsx- and mab-3-related transcription factor (Dmrt). This gene family has a diverse and 241 

conserved role in sex determination and sexual differentiation across Animalia (Haag and 242 

Doty 2005; Hong et al. 2007; Kopp 2012; Wexler 2014). We recently identified three DM- 243 

and one DMA-domain containing Dmrts in S. verreauxi (Chandler et al. in press), one of 244 

which was found to be a Dmrt11E orthologue, also identified in M. rosenbergii (Yu et al. 245 

2014), Fenneropenaeus merguiensis (Powell et al. 2015) and E. sinensis (Cui et al. 2015). In 246 

M. rosenbergii, Mro-Dmrt11E was shown to regulate Mr-IAG, as silencing of the gene 247 

caused a near 50% reduction in IAG expression (Yu et al. 2014). Again employing 248 

comparative analyses, the identification of Dmrt11E across multiple decapod species, the 249 
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functional data from M. rosenberrgii and the AG-biased expression of Sv-Dmrt11E in 250 

S. verreauxi (Chandler et al. in press), strongly suggest that this Dmrt has a regulatory effect 251 

over the AG, acting upstream of IAG. Considering the other Dmrts identified in S. verreauxi 252 

and other decapods, it is our belief that this gene family should be the focus of future studies 253 

regarding the regulation of sex determination and development.  254 

Together, each of these advances demonstrates how comparative transcriptomics has 255 

facilitated the identification and integration of novel genes into the regulatory pathway of 256 

male sexual development in decapods.  257 

 258 

The power of the transcriptome 259 

As well as facilitating the targeted identification of specific genes and functional pathways, 260 

transcriptomic datasets also allow for broader expression analyses. Differential expression 261 

analyses (DEA) provide a comparative tool to visualise large-scale patterns of transcriptomic 262 

regulation. DEA have been repeatedly applied across the animal kingdom highlighting the 263 

central role of sex-biased gene expression in the regulation of sexual dimorphism (Ingleby et 264 

al. 2014). This is owing to the fact that sex-specific development is primarily regulated by the 265 

sexually-dimorphic differential expression of shared genes, which it appears, are most 266 

commonly upregulated in males (male-biased) (Ellengren and Parsch 2007; Ingleby et al. 267 

2014). 268 

Thus, in addition to the targeted identification of specific genes, we have applied 269 

transcriptomics to visualise the broader patterns of sexual dimorphism in S. verreauxi. 270 

Through the comparison of multiple tissues (taken from sexually mature males and females at 271 

3kg) it was readily apparent that the most striking differential expression was found between 272 

the gonads (12.04% of transcripts), which conformed to the general phenomenon of male-273 

biased expression (87.8% of differentially expressed transcripts were found in the testis) 274 

(Chandler et al. in press). This data is hardly surprising, as the mature testis and ovary are two 275 

highly dimorphic tissues reflective of their sex-specific function. What is more interesting are 276 

the patterns of differential expression observed in the morphologically, and (seemingly) also 277 

functionally homogenous antennal gland (AnG). Although a far lower level of differential 278 

expression existed between the sexes (1.42%), this was the only other tissue to display a sex-279 

bias in differential expression, with 73.5% of transcripts again over-represented in males.  280 
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Placing the functional genes discussed earlier in the context of this broader-scale observation, 281 

both Sv-TKIR and the Sv-Dmrts (most significantly Sv-Dmrt1) also show considerable 282 

differential expression between male and female AnGs; measured by both RPKM and 283 

semiquantitative RT-PCR; both techniques show strong correlation (Fig. 2A-B and D-E). 284 

Interestingly however, these two genes appear to show a female-bias in their differential 285 

expression. Although somewhat contradictory, taken together these data provide evidence 286 

that the AnG appears to show sexually dimorphic expression patterns in mature individuals, 287 

including genes considered to function in the regulation of sexual development. This presents 288 

the idea that the AnG should be considered alongside the gonad and AG as a tissue with a 289 

function in sexual development. A research outcome attained through a synergy of 290 

transcriptomic data: both the targeted identification of candidate genes and broader 291 

expression analyses.   292 

 293 

A case study: the antennal gland 294 

Considering the biological significance of the antennal gland (AnG), herein we present an 295 

investigative case study of the AnG to demonstrate the strengths of comparative 296 

transcriptomics in the research of a non-model species such as S. verreauxi.  297 

Physiology and function 298 

The AnG, also known as the green or maxillary gland, is found in all decapod Crustacea. The 299 

bilateral glands are located at the base of each antenna and have a single nephropore which 300 

opens at the underside of the antennal coxae (Vogt 2002). The AnG functions somewhat like 301 

a mammalian kidney (Behnke et al. 1990; Dove 2005) and is responsible for osmotic and 302 

ionic regulation along with excretion of metabolic waste products as urine (Vogt 2002). In 303 

addition to its excretory function, this urine also provides a means for chemical 304 

communication and is the source of pheromones (Shabani et al. 2009; Aggio and Derby 305 

2011). It is thought that these pheromones are either general metabolic bi-products within the 306 

urine or unique substances mixed into the urine (Bushmann and Atema 1993). This suggests 307 

that these chemical cues are produced within the AnG (Dunham 1978), however another 308 

source gland may also be involved such as the gonads (McLeese et al. 1977) or a distinct 309 

secretory tissue such as rosette glands, found at the base of the nephropore in the clawed 310 

lobster Homarus americanus (Bushmann and Atema 1993; Bushmann and Atema 1996).  311 
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There is an abundance of behavioural data demonstrating the use of chemical communication 312 

amongst the decapods (Wyatt 2011). In the spiny lobsters there is evidence for urine-borne 313 

sexual communication, with females using male urine to guide mate-selection (Raethke et al. 314 

2004); social recognition, to establish and maintain dominance hierarchies (Shabani et al. 315 

2009); and aggregation and avoidance, mediating communal living (Horner et al. 2006; 316 

Horner et al. 2008; Briones-Fourzán et al. 2008) amongst other social interactions (Aggio and 317 

Derby 2011). Thus if the AnG is indeed the source of these chemical cues, this may well 318 

explain the sexually dimorphic expression observed in mature individuals.  319 

Considering this we chose to investigate the sexually dimorphic role of the mature AnG 320 

relative to AnGs from immature individuals.  To do so, we compared our mature data with 321 

sequencing data from AnGs taken from sexually immature (~700g) males and females for 322 

evidence of a similar sex-biased differential expression. 323 

 324 

The immature antennal gland 325 

Paired reads from three immature male AnGs mapped to an average of 90.0% of the entire 326 

reference transcriptome (described in Chandler et al. (in press)), with three female AnGs 327 

mapping to 88.8%. This is fitting with the data from Chandler et al. (in press), which 328 

determined that of the entire reference transcriptome 89.4% of Unigenes and Contigs were 329 

present in the mature AnGs and therefore provides good evidence for a thorough sequencing 330 

coverage across the immature AnGs. Interestingly when analysed in immature AnGs, there 331 

was no evidence of any significant differential expression or sex-bias between males and 332 

females (P ≤ 0.05 with FDR, fold change of 2). What is more, considering the specific genes 333 

discussed previously, neither Sv-TKIR nor Sv-Dmrt1 showed any evidence of differential 334 

expression between immature male and female AnGs when analysed by qPCR (Fig. 2C and 335 

2F). This suggests that the AnG develops dimorphic expression patterns later during sexual 336 

maturation, including the expression of key genes considered to be involved in sexual 337 

development.  338 

Considering this result and our knowledge of the biology of the AnG, we chose to investigate 339 

the male-biased expression seen in mature AnGs in the context of reproductive-related 340 

pheromone production. To do this, we merged our two data sets (both mature and immature) 341 

and performed a preliminary annotation scan to identify genes with known function in the 342 

pheromone biosynthesis (guided by that characterised in arthropods (Tillman et al. 1999; 343 
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Zhang et al. 2014b; Xia et al. 2015). In addition, for a more in-depth analysis of broader 344 

spatial expression, we included the RPKM expression values for all tissues comprising the 345 

reference transcriptome. This allows for the comparative evaluation of broader tissue 346 

expression, highlighting any tissue-specificity or bias. When considered together these data 347 

provide improved guidance for candidate gene selection for further analyses.  348 

This simple exercise highlighted over fifty genes (defined with an E -value < 1.00-20) which 349 

show a > 2-fold male-biased differential expression in mature AnG with no evidence of 350 

differential expression in immature glands (see Sup. Material 1). After providing simplistic 351 

criteria for rapid gene identification, annotation scanning also guides further comparative 352 

analyses. Consider CL8012.Contig1 identified using our approach (Sup. Material 1), a 353 

“Elongation of very long chain fatty acids protein” (6.0e-70), an orthologue of which, Bond, 354 

has been characterised in Drosophila as essential for the biosynthesis of the male sex-355 

pheromone and spermatogenesis, thus central to male fertility (Ng et al. 2015). In Drosophila 356 

the gene is expressed in females, but shows male-biased up-regulation in the ejaculatory bulb 357 

(the site of pheromone synthesis) and gonad (Ng et al. 2015); a trend also seen in S. verreauxi 358 

(showing a male-biased expression of 2-fold in AnG and 3-fold in gonad). In conducting 359 

these preliminary analyses, we are not suggesting that all genes listed in Sup. Material 1 have 360 

a definite function in pheromone biosynthesis in S. verreauxi. Instead we are aiming to 361 

demonstrate the power of transcriptomics in guiding preliminary analyses, highlighting 362 

candidate genes that stimulate future research and functional validation. 363 

 364 

Conclusions  365 

In summary, we present this research in S. verreauxi, as evidence for the advances made in 366 

our understanding of decapod sexual development through the application of comparative 367 

transcriptomics. We aim to demonstrate how transcriptomic data sets like these can be 368 

applied to tackle long-standing research challenges like that regarding the need for molecular 369 

data to advance our understanding of chemical communication in Crustacea (as described by 370 

Thiel and Breithaupt (2011): Research challenges for Twenty-First Century). Although each 371 

of us specialises with regard to species or question, there is an over-arching theme that unifies 372 

twenty-first century research: an aim to understand the underlying mechanisms that govern a 373 

certain phenotype or developmental phenomenon. It is this common feature that allows the 374 
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broader application of the transcriptomic techniques described to enhance our research 375 

capability amongst these non-model species. 376 

However, there is no doubt that these advances could be improved further, through the use of 377 

integrated ‘omics-based techniques. Genome data would provide clarity in cases where 378 

transcriptomics is lacking, providing definitive evidence of gene omissions and emergence, 379 

allowing for full comparative evolutionary analyses (Hardison 2003). In addition, considering 380 

that our research questions tend to lie at the phenotypic end of the Central Dogma cascade, 381 

the integration of proteomics and metabolomics would provide a front-line functional 382 

relevance that can be masked when inferring from the genetic level alone. Hence although 383 

not detracting from the power and application of transcriptomics, we believe that the 384 

integration and synergy of multiple ‘omics-based techniques offers the most “powerful” 385 

progression forward.  386 
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Figure legends  831 

Figure 1: An integrated illustration of male sexual development in a decapod 832 

1A) A representation of what is currently known of male sexual development in the 833 

Decapoda, highlighting the three main phases of sex determination, sexual differentiation and 834 

sexual maturation. 1B) A developmental trajectory of male development in S. verreauxi in 835 

culture. The representative images show (from left to right): an early stage blastula; a late-836 

stage embryo; stage 1 instar; stage 17 intermolt instar; H-phase puerulus; recently emerged 837 

juvenile; 400g immature male; and 2.5kg mature male.* indicates the first evidence of sexual 838 

differentiation: male-specific gonopores emerge within the first 2-3 juvenile instars, at 1-3g. 839 

1C) A contextualised expression profile of IAG in S. verreauxi, as quantified by RPKM, 840 

individual values are presented in red for: phyllosoma instar 17, intermolt (0 RPKM), early 841 

(0.07 RPKM) and late (0.17 RPKM) molt; postmolt puerulus (0.31 RPKM) and H-phase 842 

puerulus (0.23 RPKM); AG from an immature 400g male (0.40 RPKM); and an AG from a 843 

sexually mature 3kg male (1495 RPKM); the line break indicates the dramatic increase in 844 

IAG expression seen in later development.  845 

 846 

Figure 2: Three methodologies testing expression patterns of Sv-TKIR (Figure 2A - C) 847 

and Sv-Dmrt1 (Figure 2D - F) 848 

Mature: 2A) Transcriptomic expression profile of Sv-TKIR and 2D) Sv-Dmrt1 quantified as 849 

RPKM across all mature transcript libraries, namely the male and female brain (BR), eyestalk 850 

(ES), gonads (TS and OV), antennal gland (AnG) and fifth walking leg (5WL) and the 851 

mature androgenic glands (AG1 and AG2*) where * indicates a hypertrophied gland. As the 852 

full Sv-TKIR gene was present as several transcript fragments, an average RPKM across 853 

transcripts is shown; error bars indicate the standard error. 2B) Semiquantitative RT-PCR 854 

expression profile of Sv-TKIR and 2E) Sv-Dmrt1 including all the mature tissues used for 855 

transcriptomic analyses with the addition of male and female hepatopancreas (HP); negative 856 

control (nc) in the fifteenth lane, with 16S acting as a positive control.  Immature: 2C) qPCR 857 

quantification of Sv-TKIR and 2F) Sv-Dmrt1 across testis (TS), ovary (OV) and antennal 858 

glands (AnG); n=8, standardised against Sv-18S. Figure 2A and B are adapted from Aizen et 859 

al. (under review). 860 

Supplementary Material 1: List of transcripts, annotated with an E -value < 1.00-20, with 861 

putative involvement in a male-related pheromone biosynthesis pathway in the antennal 862 

gland (AnG). 863 


