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Abstract (229 words) 

Objective: To assess whether a high-salt diet, as measured by urinary sodium concentration, is 

associated with faster conversion from clinically isolated syndrome (CIS) to multiple sclerosis 

(MS) and MS activity and disability.  

Methods: BENEFIT was a randomized clinical trial comparing early versus delayed interferon 

beta-1b treatment in 465 patients with a CIS. Each patient provided a median of 14 (IQR: 13 to 

16) spot urine samples throughout the 5-year follow-up.  We estimated 24-hour urine sodium 

excretion level at each time point using the Tanaka equations, and assessed whether sodium 

levels estimated from the cumulative average of the repeated measures were associated with 

clinical (conversion to MS, EDSS) and magnetic resonance imaging (MRI) outcomes.  

Results: Average 24-hour urine sodium levels were not associated with conversion to clinically-

definite MS over the 5-year follow-up (hazard ratio [HR]=0.91; 95% CI: 0.67-1.24 per 1g 

increase in estimated daily sodium intake);  nor were they associated with clinical or MRI 

outcomes (new active lesions after 6 months HR: 1.05; 95% CI 0.97-1.13; relative change in T2 

lesion volume: -0.11; 95% CI -0.25-0.04; change in EDSS: -0.01; 95% CI: -0.09-0.08; relapse 

rate HR: 0.78; 95% CI: 0.56-1.07). Results were similar in categorical analyses using quintiles.  

Interpretation: Our results, based on multiple assessments of urine sodium excretion over 5 

years and standardized clinical and MRI follow-up, suggest that salt intake does not influence 

MS disease course or activity. 

 

  



Introduction 

Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disorder that likely 

results from a combination of genetic and environmental factors.1–3 Recently, several in vivo and 

in vitro studies have suggested that salt (NaCl, sodium chloride) could potentially influence MS 

disease activity and progression, possibly through modulation of T-cell differentiation.4,5 

Further, mice fed a high-sodium diet developed a more aggressive course of experimental 

autoimmune encephalomyelitis (EAE), the animal model of MS.4,5  

 

Two studies, both of pediatric MS, did not find an association between self-reported dietary 

sodium intake with risk of MS6 or with relapse rate in MS patients.7  Another study in 70 

relapsing-remitting (RR) MS patients who were followed for 2 years found that higher levels of 

urinary sodium excretion, a marker of dietary sodium intake, were associated with higher 

relapse rates and lesion volume.8 However, the study was small and relied on a single spot urine 

sample, which is a poor predictor of average sodium intake. Further, there were few relapse 

events, and only a cross-sectional assessment of sodium and radiographic outcomes.  

 

We assessed longitudinally whether sodium intake, estimated from sodium excretion in multiple 

(median 14) urinary samples per subject, is associated with early MS disease activity and 

progression among participants in the Betaferon/Betaseron in Newly Emerging Multiple 

Sclerosis for Initial Treatment (BENEFIT) clinical trial, a well-characterized cohort of over 400 

patients who were randomized to receive either interferon beta-1b or placebo soon after 

experiencing a clinically isolated syndrome (CIS).  

 



Methods 

Study Population 

The BENEFIT study was a clinical trial (NCT00185211) of 468 CIS patients who were 

randomized to receive either interferon beta-1b (IFNb-1b) or placebo within 60 days of the CIS, 

and were followed for conversion to MS (both clinically definite MS9 [CDMS] and McDonald 

MS10 [MDMS]). The full details of the trial and results have been previously described.11  

Following conversion to CDMS or after 24 months, patients in the placebo group began 

treatment with interferon-beta 1b and patients were followed for an additional 3 years for a total 

of 5 years of follow-up. Expanded Disability Status Scale (EDSS)12 was assessed and MRI 

imaging done at baseline, then every 3 months through month 12, and then at months 18, 24, 36, 

48, and 60. EDSS scores were also assessed at months 30, 42, and 54. Relapses were confirmed 

as they occurred.  At each clinic visit (baseline, every 3 months through month 12, and then 

every 6 months thereafter), patients provided casual (‘spot’) urine samples that were received by 

the central laboratory within 3 days of collection, and stored at −20°C. Samples were first 

thawed for assessment of urinary sodium and creatinine for this study.  

All participants in BENEFIT provided written informed consent and this study was approved by 

the Office of Human Subjects Administration at the Harvard T.H. Chan School of Public Health 

and included only deidentified data and urine samples.    

 

MRI 

MRI imaging procedures and processing used in BENEFIT have been previously described in 

full.13  Briefly, T2- and T1-weighted images (following administration of 0.1 mmol/kg of 

gadolinium–diethylenetriaminepentaacetic acid) were analyzed centrally at the Image Analysis 



Centre at the VU University Medical Center in Amsterdam where the number of new lesions 

(including active lesions) and lesion volume were determined. Brain volumes were quantified 

using the structural image evaluation using normalization of atrophy cross-sectional (SIENAX) 

algorithm.14  

 

Sodium intake assessment 

 

As 80-90% of ingested sodium is excreted through the urine,15 we used urinary sodium as a 

marker of dietary sodium intake. Because sodium excretion varies throughout the day,16 

assessment of urinary sodium from 24-hour urine collection is considered the gold standard. 

However, as 24-hour urine samples are not typically collected in large studies, several methods 

to estimate 24-hour urinary sodium excretion from a single urine sample have been developed. 

For this study (and to be consistent with previous research,8 we used the Tanaka equations15 in 

our primary analyses. Though originally developed in a Japanese population, these equations 

have been extended to other populations.8 The full equation includes an individual’s urinary 

sodium, urinary creatinine, age, height and weight as described below:  

24 ℎ𝑜𝑢𝑟 𝑢𝑟𝑖𝑛𝑎𝑟𝑦 𝑠𝑜𝑑𝑖𝑢𝑚

=  21.98 

×  [(
23 ∗ 𝑠𝑝𝑜𝑡 𝑢𝑟𝑖𝑛𝑎𝑟𝑦 𝑠𝑜𝑑𝑖𝑢𝑚 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝑚𝑚𝑜𝑙/𝐿

10 ∗ 𝑠𝑝𝑜𝑡 𝑢𝑟𝑖𝑛𝑎𝑟𝑦 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 
𝑚𝑔
𝑑𝐿

 
) 

×  (−2.04 ×  𝑎𝑔𝑒 + 14.89 ×  𝑤𝑒𝑖𝑔ℎ𝑡 + 16.14 ×  ℎ𝑒𝑖𝑔ℎ𝑡 − 2244.45)]

0.392

 



For this study, patients had a median of 14 urine samples collected (interquartile range [IQR]: 13 

to 16 samples) between baseline and month 60, from which sodium and creatinine were 

measured.  

Urinary sodium and creatinine levels were quantified using a Roche/Hitachi Modular System 

(Roche Diagnostics, IN, USA) and patient height, weight and age were documented as a part of 

the existing clinical trial.  In the initial laboratory assessment, estimated urinary creatinine levels 

were considerably lower than in previous global population-based studies.16 Therefore, we 

reassessed creatinine levels in a subset of samples (n=96) and found the levels obtained in our 

initial assessments were likely underestimated. However, the initial and re-assessment of 

creatinine were highly correlated (Spearman correlation =0.87; Supplemental Figure 1 A and B), 

suggesting that while our estimates of absolute creatinine in the larger cohort may be 

underestimated, the relative ranking within the population is likely unaffected. We created 

“corrected” absolute creatinine value in the full study sample using the following calibration 

equation developed from the regressing the initial estimates on the re-assessed creatinine in the 

subset of 96 samples with both measurements:  

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒, 𝑚𝑔/𝑑𝐿 = 36.86 + 1.16 × (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒, 𝑚𝑔/𝑑𝐿 ) 

These corrected estimates were then used to estimate 24-hour urinary sodium using the Tanaka 

equation shown above.  Intra-patient variability (characterized by intra-class coefficients [ICC]) 

in estimates of 24-hour sodium excretion was 0.38 (95% CI: 0.34, 0.41) over follow-up. 

However, the ICC of the average of alternating samples (e.g. the average of samples 1, 3, 5, 7, 9, 

[...] vs. the average of samples 2, 4, 6, 8, 10, […]) was substantially higher at 0.74 (95% CI: 

0.70, 0.78), a result which is consistent with the well-known high day-to-day variability of 

sodium intake,17,18 and demonstrates that average long term sodium excretion can be  reliably 



estimated  with multiple spot urine samples. Use of a large number of urine samples collected 

over a long period of time from each patient also minimizes the error due changes in factors that 

affect sodium balance, such as use of diuretics and other drugs. Although a steady-state in which 

sodium intake is approximately equal to excretion is usually reached within weeks,19,20 a single 

urine sample could fall in a period of positive or negative sodium balance and thus misrepresent 

the long term intake.  

Statistical analysis 

We treated estimated 24-hour urine sodium excretion as a time-dependent variable using at each 

time point the average of all previous values, and characterized the exposure in three a priori 

defined variables: 1) as continuous  (per g/day), 2) dichotomized on the median (<3.7 vs > 3.7 

g/day), and 3) as quintiles based on the overall distribution. For our primary analyses, we started 

follow-up at month 6, as baseline MRI measurements were obtained within 60 days of a clinical 

event and they could have been affected by underlying inflammatory processes. We analyzed 

time to conversion to MDMS and CDMS using Cox proportional hazards models and relapse 

rate using an Andersen-Gill model to allow for repeated events. Other outcomes including 

cumulative number of new active lesions (CNAL), T2 lesion volume, brain volume and EDSS 

scores were analyzed using generalized estimating equations. We modeled the number of CNAL 

as a count variable and the other outcomes as continuous variables. We conducted further 

analyses also using deciles and splines to explore the dose response. We adjusted each model for 

age, sex, randomization status (IFNb-1b vs. placebo), the type of CIS (monofocal vs multifocal), 

baseline T2 lesion score (the logarithm of the number of T2 lesions), body mass index (weight in 

kg / height in m2), and 25(OH)D status.  



We conducted several sensitivity analyses for each set of outcomes. First, we fit models using 

the average of all estimated 24-hour urinary sodium levels and assessed the association of non-

time varying estimated 24-hour sodium with MS outcomes (assuming variation in estimated 24-

hour is random). Next, we fit models using the average of estimated 24-hour urinary sodium 

during the first year (to relax the assumption that MS outcomes do not influence urinary sodium) 

and assessed its association with MS outcomes. Finally, we assessed the within person change in 

estimated 24-hour urinary levels and its association with MS outcomes. Further, we also 

conducted secondary analyses estimating 24-hour urinary sodium excretion using other similarly 

validated methods including using the ratio of sodium to creatinine21 or adjustment equations 

developed by Kawasaki et al,22 which, similar to the Tanaka equations, were developed in a 

Japanese population but have also similarly been extended to Western populations.23 They 

include adjustments for age, height, weight, casual urinary sodium and creatinine but are sex-

specific. We also conducted sensitivity analyses restricting to casual urine samples collected in 

the midmorning (10:00am-12:00pm) as some studies have indicated these samples have a higher 

correlation with 24-hour urinary sodium levels.24  

 

Results 

Patient Characteristics and Estimated 24-hr Sodium Levels 

The median 24-hour urinary sodium excretion was 3.7 g/day, across all time points.  Patients 

with higher 24-hour urinary sodium levels at month 6 were more likely to be male and had a 

higher BMI, and fewer T2 lesions on baseline MRI (Table 1).  Other patient characteristics 

including age, 25-hydroxyvitamin D level, CIS onset type, region of residence in Europe or 

Canada, and centralized brain volume did not appear to vary across estimated 24-hour urine 



sodium levels. In addition, overall estimated 24-hour urinary sodium was relatively consistent 

across time of day of sample collection (Figure 1A) and over the course of follow-up (Figure 

1B), but did display expected random day-to-day variation (Figure 1C).  

 

Conversion to Definite MS 

Starting follow-up at 6-months, 217 (75.0%) patients converted to MDMS and 150 (39%) 

patients converted to CDMS over the 5 years. We did not observe any association between 

higher levels (above the median or using quintiles) of estimated 24-hour sodium excretion levels 

and faster conversion rates after 6 months (median analyses: for CDMS: P=0.50 for MDMS: 

P=0.12; Figure 2A and 2B; quintile analyses: for CDMS: P=0.88 for MDMS: P=0.10; Figure 2C 

and 2D). Similarly, in multivariate analyses, we did not observe any association in continuous 

(per 1g increase in estimated 24-hour urine sodium level: for CDMS: HR=0.91, 95% CI: 0.67 to 

1.24, P=0.55; for MDMS: HR=0.83, 95% CI: 0.66 to 1.05, P=0.13) or quintile analyses (Table 

2). We observed similar results in analyses starting follow-up at month 12. In analyses using 

splines, we also did not detect any association between estimated 24-hour urine sodium levels 

and CIS to MS conversion (CDMS: P for any association=0.58; MDMS: P for any association: 

0.39). 

 

Relapse and EDSS 

We did not observe any association between estimated 24-hour urine sodium excretion and 

relapse rate from month 6 to month 60 (Figure 2E; per 1g increase in estimated 24-hour urine 

sodium excretion: RR: 0.86, 95% CI: 0.0.71-1.05, P=0.14). Results were similar when 

considering estimated 24-hr sodium excretion and time to first relapse after conversion to 



definite MS (per 1g increase in estimated 24-hour urine sodium excretion: RR: 0.88, 95% CI 

0.72 to 1.07, p=0.19). Similarly, we did not observe any associations between estimated 24-hr 

sodium excretion and confirmed changes in EDSS score from month 6 through month 60 (Figure 

2F; per 1g increase in estimated 24-hr sodium excretion: β=-0.01., 95% CI −0.09 to 0.08, p = 

0.90) 

 

MRI  

Estimated 24-hour urine sodium excretion was not associated with MRI activity.  Levels were 

not associated with developing new lesions from month 6 to month 60 (per 1g increase in 

estimated 24-hour urine sodium excretion: RR of CNAL=1.05, 95% CI 0.97 to 1.13, p=0.24 

Figure 3A). Similarly, it was not associated with percent changes in T2 lesion volume (Figure 

3B) or percent change in brain volume (Figure 3C) month 6 to month 60 in continuous or 

categorical models (per 1g increase: change in T2 lesion volume: -0.11; 95% CI -0.25-0.04; 

P=0.17). 

 

We conducted several sensitivity analyses that similarly did not indicate any association between 

estimated 24-hour urine sodium excretion and MS outcomes. First, we did not observe any 

association between non-time-varying estimated 24-hour urine sodium excretion (a metric that 

minimizes random variation in estimated excretion) and any MS outcome. Next, we did not 

observe any association between the average estimated 24-hour urine sodium excretion during 

the first year and subsequent MS outcomes. Finally, we did not observe any association between 

within-person changes in estimated 24-hour urine sodium excretion and MS outcomes. All of the 

above analyses were also conducted separately by randomized treatment group (placebo or 



interferon beta-1b) and no associations between estimated 24-hour urine sodium excretion and 

any of the outcomes were observed.  In addition, we repeated all analyses using the Kawasaki 

estimates for 24-hour urine sodium levels and the ratio between sodium to creatinine. As with the 

Tanaka estimate, we did not observe any associations between each additional sodium metric and 

MS outcomes. 

 

Discussion 

In this large, prospective study among patients with CIS and including a median of 14 urine 

sodium measurements per patient, estimated 24-hour urine sodium levels were not associated 

with conversion to definite MS (both CDMS and MDMS) or with MS activity or early 

progression as indicated by both clinical and MRI outcomes over the 5 years of follow-up. One 

previous study was conducted among a population of 70 RRMS patients in Argentina and found 

that high levels of urinary sodium excretion (>4.8 g/day) were associated with an increased 

relapse rate and correlated with cross-sectional MRI activity.8 In this study, the long term 

average sodium intake -- the hypothesized cause of MS exacerbations -- was estimated from a 

single spot urine sample, which is a very poor proxy for long term sodium excretion or intake.  

The error (i.e. the difference between intake estimated from the single spot urine and the true 

long term intake) is due mostly to random day-to-day within person variations in sodium intake, 

and is thus unlikely to correlate with MS outcomes.  As a result of such error, any hypothetical 

true association between actual sodium intake and MS outcomes would be strongly attenuated 

towards the null. Thus, the strong association reported by Farez et al. would imply an even 

stronger association for true intake. The results of our study with a larger sample size, multiple 

measurements and diverse set of MS outcomes demonstrate that such strong association does not 



exist in the European and Canadian populations in BENEFIT. Thus, the association reported in 

the Argentine study was either a chance occurrence or reflects an unknown mechanism unique to 

the population included in that study.  

 

Our study is consistent with findings from a previous investigation of pediatric MS patients7 that 

found no association between self-reported dietary sodium intake and time until relapse. 

However, in that study sodium intake was estimated using a food frequency questionnaire, which 

may be unreliable and underestimate intake of sodium.25,26 Further, the questionnaire was 

administered only at baseline and could thus not account for changes in diet during the follow-

up.  For these reasons, it cannot be excluded that the null result was due to inadequate 

assessment of sodium intake.  

 

Although the results of these epidemiological studies appear to be in conflict with EAE studies 

indicating an earlier and more aggressive disease course associated with high salt intake4,5 and in 

vitro observations that sodium chloride induces  Th-17 generation4,5 and IFNγ secretion,27  and 

causes a loss of Treg function,27 changes that are expected to adversely affect the course of MS, 

the clinical relevance of these observation is uncertain.  Among other considerations, it is 

uncertain whether high salt intake in humans can lead to sodium concentrations in the relevant 

fluid compartments that are comparable to those used in the in vitro experiments.  

 

Our study has several strengths including its longitudinal design, nearly-uniform treatment with 

INFB-1b, large sample size of nearly 500 patients with CIS, and systematic collection of both 

clinical and MRI data. Further, the per-patient number of samples (median of 14) in our study is 



considerably larger than in the previous report where one measure of 24-hour sodium excretion 

per patient was used.8 Using formulas derived by Beaton et al.17 to calculate the number of 

samples needed to estimate a person’s true 24-hour sodium levels with a specified degree of 

error, and assuming a coefficient of variation of 16% (as estimated in our samples), we estimate 

that 14 samples is sufficient to estimate 24-hour sodium levels to within 4% of their true mean 

95% of the time.  

 

Limitations include that BENEFIT participants were treated nearly uniformly with INFB-1b, and 

the results of our study may not apply to patients on other therapies. While our results suggest 

there is no association between sodium intake and MS prognosis, they cannot comment as to 

whether sodium intake modifies risk of developing MS. In addition, patients in the BENEFIT 

trial were primarily Caucasian and resided in Europe and Canada, and it is currently unknown as 

to whether similarly null results would apply to other populations and ethnicities. The large 

number of samples (median 14 samples) contributed by each patient as well as the high ICC 

between average alternating samples lends credence to our analysis.  

 

Taken together, these results suggest that high sodium intakes do not play a major role in 

influencing MS disease course or activity in patients treated with INFB-1b, at least in the early 

stages of disease. 
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Figure Legends 

 

Figure 1: Estimated 24-hour urinary sodium excretion using the Tanaka et. al equations by hour 

of sample collection (A) and by study visit (B). (C) Spaghetti plots of individual variability over 

follow-up in estimated 24-hour sodium excretion from selected study patients. Selected patients 

plotted are those having a patient-specific median excretion (across follow-up) at the 5th, 25th, 

50th, 75th and 95th percentiles of the distribution of patient-specific overall median values. 

 

Figure 2: Relation between estimated 24-hour urinary sodium excretion using the Tanaka 

equations and MS outcomes from months 6 through 60 for sodium intake dichotomized at the 

median (A, B) and quintile categories (C, D). (A) Median analyses: Conversion to CDMS 

(P=0.50), (B) Median analyses: conversion to MDMS  (P=0.12), (C) Quintile analyses: 

Conversion to CDMS (P=0.88), (D) Quintile analyses: conversion to MDMS  (P=0.10) , (E) 

relapse rate , (F) change in EDSS. Estimates are adjusted for age, sex, randomization status 

(IFNB-1b, placebo), CIS onset type (multifocal, monofocal), 25-hydroxyvitamin D status, and 

body mass index. 

 

Figure 3: Relation between estimated 24-hour urinary sodium excretion using the Tanaka 

equations and MRI outcomes from months 6 through 60. (A) relative rate of CNAL, (B) change 

in T2 lesion volume, (C) change in brain volume.  Estimates are adjusted for age, sex, 

randomization status (IFNB-1b, placebo), CIS onset type (multifocal, monofocal), 25-

hydroxyvitamin D status, and body mass index. 

  



 

Table 1: Baseline characteristics by quintile of estimated 24-hour urinary sodium excretion at 6-

months in BENEFIT participants 

*Calibrated creatinine concentration denotes raw values transformed using 1.16 x (original lab values) + 36.86;  

 Quintiles of Estimated 24-hr Sodium Excretion 

 

 1 2 3 4 5 

No. of patients 85 86 85 86 85 

Mean 24-hr sodium excretion* 

(SD), g 2.77 (0.03) 3.32 (0.02) 3.76 (0.01) 4.19 (0.01) 4.94 (0.05) 

Mean raw sodium 

concentration (SD), mmol/L 73.7 (4.4) 97.4 (5.1) 122.5 (4.4) 146.5 (5.2) 186.8 (5.1) 

Mean raw creatinine 

concentration (SD), mg/dL 76.6 (6.6) 64.9 (5.0) 57.3 (3.8) 53.8 (3.1) 48.4 (2.4) 

Mean calibrated creatinine 

concentration* (SD), mg/dL 125.9 (7.6) 112.3 (5.8) 103.5 (4.5) 99.4 (3.6) 93.1 (2.8) 

Estimated 24-hr sodium 

excretion using Kawasaki 

Equations (SD), g  3.87 (0.07) 4.51 (0.08) 4.76 (0.09) 5.08 (0.10) 5.89 (0.11) 

Median quintile value of 

estimated 24-hr sodium 

excretion using Kawasaki 

Equations (IQR), g 1 (1-2) 2 (2-4) 3 (2-4) 4 (2-5) 4 (4-5) 

Ratio of Sodium excretion to 

creatinine excretion (SD) 0.61 (0.02) 0.89 (0.02) 1.22 (0.03) 1.5 (0.04) 2.06 (0.05) 

Median quintile value of  Ratio 

of Sodium excretion to 

creatinine excretion (IQR) 1 (1-2) 2 (2-2) 3 (3-4) 4 (3-5) 5 (4-5) 

Mean age at recruitment (SD), 

years 30.6 (0.8) 31.5 (0.8) 31.2 (0.8) 31.1 (0.7) 29.4 (0.8) 

Female, N (%) 70 (82) 66 (77) 62 (73) 57 (66) 48 (56) 

Randomized to INFB-1b, N 

(%) 52 (61) 51 (59) 54 (64) 52 (60) 58 (68) 

Monofocal onset, N (%) 47 (55) 49 (57) 40 (47) 46 (53) 43 (51) 

Median no. of T2 Lesions at 

baseline median (IQR) 17 (7-39) 15 (6-34) 20 (9-40) 17.5 (8-38) 13 (6-31) 

Mean centralized brain volume 

at baseline median (SD), mm3 1049 (5) 1052 (5) 1050 (5) 1062 (5) 1058 (5) 

Body mass index (SD), kg/m2 22.6 (0.4) 23.6 (0.4) 23.9 (0.5) 24.6 (0.5) 26.2 (0.5) 

25(OH)D levels, nmol/mL 51.8 (2.2) 49.2 (1.5) 51.8 (2.1) 48.7 (1.6) 47.7 (2.1) 

Steroids at first clinical event, 

N (%) 65 (76) 56 (65) 61 (72) 60 (70) 57 (67) 

Region of residence, N (%)      

    Canada 3 (4) 2 (2) 7 (8) 9 (10) 4 (5) 

    Southern Europe 14 (16) 11 (13) 11 (13) 12 (14) 15 (18) 

    Central Europe 57 (67) 63 (73) 57 (67) 59 (68) 58 (68) 

    Scandinavia 11 (13) 10 (12) 10 (12) 6 (7) 8 (9) 



 

Table 2: Adjusted hazard of conversion to definite MS by quintiles of estimated 24-hour sodium 

excretion*--months 6 to 60--BENEFIT 

 

Quintile of 24-hour sodium excretion  

 1 2 3 4 5 Ptrend 

CDMS       

No. of conversions / 

No. of patients 28/70 34/89 21/59 43/83 24/79 

 

HR** (95% CI) 1.00 [ref] 1.10 (0.66-1.83) 0.75 (0.42-1.33) 1.60 (0.96-2.65) 0.75 (0.41-1.37) 0.77 

MDMS       

No. of conversions / 

No. of patients 46/62 50/63 44/61 39/50 38/55 

 

HR** (95% CI) 1.00 [ref] 1.13 (0.75-1.70) 1.07 (0.70-1.63) 0.83 (0.53-1.30) 0.84 (0.51-1.37) 0.25 

*Estimated using the Tanaka et al equations. 

**Adjusted for age, sex, randomization status (IFNB-1b, placebo), CIS onset type (multifocal, monofocal), 25-

hydroxyvitamin D status, and body mass index.  

 


