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Abstract 

Introduction: Multiple sclerosis (MS) is an immune-mediated chronic neurodegenerative 

disease of the central nervous system (CNS). Therapeutic interventions with 

immunomodulatory agents reduce disease activity and disability development, which are 

monitored clinically and by magnetic resonance imaging (MRI). However, these measures 

largely lack information on the impact from these therapies on inflammation, demyelination 

and axonal injury, the essential pathophysiological features of MS. Several biomarkers for 

inflammation and neurodegeneration have been detected in cerebrospinal fluid (CSF). In 

MS, some of these biomarkers seem to reflect disease activity, disability progression, and 

therapeutic response.  

Areas covered:  In this review, we describe the most promising CSF biomarkers of 

inflammation and degeneration for monitoring therapeutic interventions in MS. We also 

describe the evolution of highly sensitive immunoassays that enable determination of 

neuron-specific biomarkers in blood. 

Expert commentary: Together with clinical and MRI measures, CSF biomarkers may improve 

the assessment of therapeutic efficacy and make personalized treatment possible. One 

disadvantage has been the need of repetitive lumbar punctures to obtain CSF. However, the 

technical development of highly sensitive immunoassays allows determination of extremely 

low quantities of neuron-specific proteins in blood. This will potentially open a new era for 

monitoring disease activity and treatment response in MS.  

 

Keywords: Biomarkers, blood, cerebrospinal fluid, multiple sclerosis, neurofilament light, 

plasma, serum, Single molecule array, treatment 
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1. Introduction 

Multiple sclerosis (MS) is an inflammatory and degenerative disease of the central nervous 

system (CNS). There is accumulating evidence that the inflammatory activity is responsible 

for excessive nervous tissue degeneration and disability development, especially during the 

early phases of MS (1, 2). The rate of inflammation and disease activity are reflected in 

relapses and lesion formation on magnetic resonance imaging (MRI) and subsequently in 

residual disability and atrophy development. Experience from two decades of therapeutic 

interventions in relapsing-remitting (RR) MS shows that immunomodulatory and 

immunosuppressive drugs reduce disease activity. Additionally, there seems to be an effect 

on the rate of degeneration (3). Thus, disease-modifying therapies (DMT) reduce CNS 

inflammation and change the clinical course and prognosis of MS.  

 

To monitor disease activity, disability development, degeneration and therapeutic response, 

the development of biomarkers that reflect different parts of the pathophysiology of MS is 

essential. Currently, patient assessments for treatment decisions are based essentially on 

clinical and MRI measures. However, they largely lack information about the inflammatory 

cascade, its damaging effect of the CNS and repairing processes that may occur in response 

to the MS disease process. Moreover, MS is considered heterogeneous regarding clinical 

course and clinical manifestations, pathological mechanisms, and treatment responses. 

Although there are clinical and MRI measures and also cerebrospinal fluid (CSF) biomarkers 

that to some extent can predict the course and severity of MS, their estimated risk is low 

and their influence on the individual level is difficult to discern (4). The therapeutic options 

constantly increase, and the variety of their mechanism of action and efficacy has reached 

an impressive range. There is an unmet need to develop biomarkers that have the potential 

to reflect several of these aspects. In this review, we present data on biomarkers obtained 

from CSF that may add important knowledge on the pathogenesis of MS and the effect of 

treatment intervention. We also show that the development of extremely sensitive 

immunoassays has made it possible to determine some of these biomarkers in blood. This 

may open a new era for monitoring treatment efficacy in MS. 

 

1.1 Overview of multiple sclerosis 

MS is a common disabling neurological disease in young adults, affecting women more than 

twice as often as men; it is most prevalent in North America (140 cases per 100,000) and 
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Europe (108 cases per 100,000); the prevalence is lowest in sub-Saharan Africa (2.1 cases 

per 100,000) and East Asia (2.2 cases per 100,000) (5). There are no symptoms, clinical 

findings or diagnostic tests that are specific for MS. Instead, the diagnosis is determined 

essentially by a combination of clinical characteristics and MRI findings to establish 

dissemination of demyelinating lesions of the CNS (6).  There is accumulating evidence that 

the cause of MS is multifactorial and depending on the interplay between risk genes, 

environmental and life-style risk factors. Although MS is considered an immune-mediated 

disease of the CNS, there is degeneration of both white and grey matter already at the 

clinical onset of MS, and during later stages of MS, atrophy of the brain and spinal cord 

often becomes extensive. The pathology of MS is characterized by blood-brain barrier 

impairment, multiple focal inflammatory infiltrates, demyelination, axonal loss, and 

astrogliosis. The course of the disease is highly variable and the revised categories or 

phenotypes have included the presence of inflammatory activity as an important feature 

(7). In 85% of the patients, MS starts with a transient episode of neurological symptoms, 

lasting for days to months, followed by remission, a period of clinical stability (8, 9). This 

onset is usually followed by recurrent relapses, on average 0.5-1 per year. After 15-20 years, 

the course of relapses and remissions (RRMS) converts into a secondary progressive course 

(SPMS) characterized by slowly increasing disability, with or without superimposed relapses. 

In 15% of MS patients, the course is primary progressive (PPMS), i.e., progressive from 

onset, and essentially without any relapses.  

 

1.2 Clinical and MRI monitoring of disease course  

In clinical practice and in randomised controlled trials (RCT) the most common clinical 

measures are annual relapse rate (ARR) and confirmed disability progression (CDP), i.e., a 

significant increase of the Expanded Disability Status Scale (EDSS) (10) that is sustained after 

3 or 6 months of follow-up (11, 12). However, in recent RCTs, the ARR is relatively low, 

making it insensitive as a marker of disease activity. Moreover, the sensitivity and specificity 

of ARR and CDP are highly dependent on the frequency of visits, the experience of the EDSS 

rater, and the EDSS inter- and intra-rater variability (13). Even after 3 and 6 months of 

follow-up, EDSS may change and a follow-up period of 12 or 24 months may be necessary to 

achieve stability in the progression assessment (13, 14). Thus, established outcomes as ARR 

and CDP have shortcomings even when used under optimal conditions, which must be taken 

into consideration in the assessment of patients in clinical practice. In RCT and in the 



 5 

neurology outpatient clinic, common MS symptoms, e.g., fatigue, cognitive dysfunction and 

psychiatric symptoms, are often not apparent and therefore neglected or not taken into 

account (15, 16). Thus, the basis for evaluating the clinical course and disability 

development is sometimes inexact.  

 

MRI has become the basis in MS diagnostics (6) and there are several guidelines of the use 

of MRI in monitoring MS (17-20). In contrast to relapse rate, serial MRI of the brain is 

sensitive for detecting disease activity. Over the same observational time, the number of 

new lesions on MRI is 4-12 times higher compared to relapse rate. MRI of the spinal cord, 

on the other hand, has several weaknesses for detecting new disease activity, in particular 

concerning gadolinium-enhancing lesions (21, 22). The reasons for not including serial MRI 

of the spinal cord for monitoring disease activity in MS include difficulties in MRI acquisition 

and MRI assessment and the relatively low frequency of new asymptomatic lesions of the 

spinal cord (23). MRI of the brain every 6-12 month usually includes gadolinium contrast-

enhancing T1-weighted sequences to detect acute lesions (indicating blood-brain barrier 

disruption), active (new or enlarging) T2-weighted lesions and T1 hypo-intense lesions 

(“black holes”) as a marker for degeneration if sustained for at least 6 months (24, 25).  

Although lesion load and brain atrophy development have been included in several RCT as 

measures of disease severity and neurodegeneration (26), they have not yet become useful 

measures of disease severity and degeneration in clinical practice.  

 

1.3 Clinical and MRI monitoring of response to treatment  

In phase III RCT of RRMS, the most used primary outcome has been annual relapse rate. 

Secondary outcomes often include confirmed disability development (EDSS) and MRI 

measures of disease activity (T1 gadolinium enhanced lesions and new or enlarging T2 

lesions). In some trials, T1 hypo-intense lesions and measures of brain atrophy have been 

included as secondary or tertiary outcomes of degeneration. Over recent years, a composite 

measure has emerged, designated “No Evidence of Disease Activity” (NEDA). It includes 

relapse rate, disability development, and the appearance of T1 Gd contrast-enhancing 

lesions or new or enlarging T2 lesions on MRI (27, 28). It has been incorporated as an 

important outcome in clinical trials and has been suggested as a new treating target in 

clinical practice (29). In fact, the concept of not accepting any significant disease activity 

during treatment has received increasing acceptance. Signs of new disease activity in the 
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clinical assessment and on MRI have become a reason to switch to more effective 

treatments. However, it has become evident that only a minority of patients still fulfil NEDA 

after long-term of follow-up and hence the ability of NEDA to predict outcome has been 

questioned (30, 31).  Although there have been attempts to include brain atrophy 

development in NEDA, other important disabilities, e.g., cognitive dysfunction, may still 

evolve in patients with NEDA (32). 

 

1.4 Unmet need in the clinical and MRI assessment of disease course and therapeutic 

efficacy 

Most patients with active MS are monitored repeatedly with clinical examinations and MRI 

to detect disease activity, progression of disability, or adverse events from on-going DMT.  

However, standard 1.5 or 3T MRI almost exclusively detects only focal white matter lesions, 

while grey matter (GM) pathology and diffuse pathology of the normal appearing white 

matter (NAWM) usually remain undetected (33, 34). Asymptomatic lesions of the spinal 

cord may also escape detection, since serial MRI monitoring usually only involves scanning 

of the brain. This may be one reason for why relapses are not always associated with new 

lesions on brain MRI. Other explanations may be the small size of the symptomatic lesion, 

its location, or the high number of lesions, sometimes confluent, that make it impossible to 

distinguish a new lesion among already present ones. There is also the problem to discern if 

a new clinical event is a relapse, a pseudo-relapse or a recurrent symptom from a locus 

minoris. Moreover, development of some symptoms or disabilities, e.g. MS fatigue or 

cognitive dysfunction, may not be recognized at a standard clinical visit (16). Interestingly, 

GM lesions are associated with cognitive dysfunction (35) and correlate with the diffuse 

pathology found in NAWM of MS patients, which in turn seem to be involved in the 

progression of MS (36). Thus, there are several reasons to improve the assessment of MS 

patients to increase the possibilities to identify new disease activity and/or signs of 

neurodegeneration.  

  

Another disadvantage of the clinical and MRI assessment of MS patients is their low ability 

to determine the nature of the pathological process that is involved in relapse, disability or 

formation of new lesions. Briefly, relapses and the appearance of new lesions on MRI are 

considered exacerbations of inflammatory activity and demyelination, contrast 

enhancement of T1 lesions is due to disruption of the BBB and a sign of ongoing immune 
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attack of the CNS, and sustained deterioration of disability and atrophy development are 

considered secondary to neurodegeneration.  

   

The approved DMTs against MS seem to work by modulating the immune system, thereby 

influencing the inflammatory activity within the CNS. Some of these drugs have 

experimentally also shown neuroprotective or regenerative effects (37). There is 

accumulating evidence that degeneration, at least in early phases of relapsing MS, is 

essentially secondary to inflammation (1, 2). However, other processes of degeneration 

probably gain in importance during the course of MS and in particular in progressive MS (1, 

2). It is also possible that degeneration also occurs in parallel with inflammatory-driven 

neuronal injury in relapsing MS. Although the target of the autoimmune attack in MS may 

be oligodendrocytes and myelin, the neuroaxonal damage and loss are probably the culprit 

of the CNS atrophy development and the accumulation of disability and impairment in MS 

over time (26, 38). There is also accumulating evidence that therapeutic intervention 

reduces the rate of atrophy (3). Thus, by use of biochemical biomarkers of inflammation and 

degeneration it may be possible to explore the kind of intervention that is associated with a 

specific treatment and the effect on degenerative processes. 

 

2.1 Overview of biochemical biomarkers in multiple sclerosis 

Biomarkers are characterized as indicators that can be objectively measured and used for 

evaluation of normal biological processes, pathogenic processes or pharmacological 

responses to a therapeutic intervention (39). In MS, the outcome from neurological 

examinations, tests of impairment and disability, and MRI measures constitutes the basis for 

the assessment of patients and the response to therapeutic interventions. Biochemical 

biomarkers in MS can be categorised into diagnostic, predictive, disease activity, and 

treatment response biomarkers (40). Although, they have been extensively explored, there 

is currently no fluid biomarkers that are validated to be used for evaluating disease activity, 

progression of disability or therapeutic response (40).  

In MS, CSF has been the body fluid of particular interest due to its proximity to the CNS. 

Blood-based biomarkers have essentially been used only for differential diagnostic tests and 

for safety concerns associated with DMT treatment. With the discovery of an increasing 

number of biomarkers that may be relevant in MS, guidelines for obtaining and storing CSF 
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(41) and for selecting and defining control groups (42) have been established. The examined 

CSF biomarkers in MS research may roughly be divided into inflammatory, including 

cytokines and chemokines, and degenerative, reflecting different pathological processes, 

e.g., axonal degeneration, astrogliosis and oxidative stress. Since the currently approved 

DMTs for treatment of MS are all immunomodulatory or immunosuppressive, the inhibiting 

effect on inflammatory mediators, such as cytokines and chemokines, is expected. However, 

much more important is to establish if also damage and degeneration of the CNS are 

reduced during intervention with DMT. Demyelination, oligodendrocyte loss, neuroaxonal 

damage, glial damage, and astrogliosis all belong to the pathological processes that are 

active in MS. In the following section, we review CSF biomarkers that reflect either 

inflammatory disease activity (relapse rate, MRI lesion formation) or disability development 

(including brain atrophy development) and have shown altered concentrations following 

DMT treatment in MS.  

 

2.2 Inflammatory biomarkers in cerebrospinal fluid  

There is a plethora of inflammatory biomarkers in CSF that have been explored in MS and 

some of them are associated with disease activity (43). Altered levels of inflammatory and 

regulatory cytokines, chemokines, immunoglobulins, and lymphocyte surface markers 

indicate that the immune attack of the CNS in MS involves a cascade of events that act in 

parallel. Here, we review the inflammatory biomarkers in CSF that have been examined in 

relation to disease activity and therapeutic response. 

 

2..2.1 C-X-C motif chemokine 13  

C-X-C motif chemokine 13 (CXCL13) is the ligand of the B-cell receptor CXCR5 and is the 

most potent B-cell chemoattractant (44). Elevated concentrations of CXCL13 were found in 

patients with MS compared to controls and they correlated with relapse rate (45), disability 

score (EDSS), and formation of new lesions on MRI (46). CSF CXCL13 concentration was also 

higher in patients with IgG oligoclonal bands (OCB) compared to OCB-negative patients and 

may have a predictive role since higher CXCL13 levels were found in CIS patients converting 

to MS compared to non-converters (46). In 25 CIS and RRMS patients, methylprednisolone 

treatment (n=12) significantly decreased CSF levels of CXCL13 compared with placebo 

(n=13). Further, 12 months of natalizumab treatment of 20 RRMS patients reduced CXCL13 
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to undetectable levels in 18 of them (45). In a phase 2 open label trial with natalizumab in 

24 PMS, 17 completed the trial. They demonstrated reduced mean CXCL13 levels after 60 

weeks of treatment (47). Similar results had previously been reported in 22 PMS patients 

after 2 years of mitoxantrone treatment (48). We recently showed that treatment-naïve 

RRMS patients (n=7) and RRMS patients on interferon beta (n=33) had significantly higher 

CXCL13 levels in CSF than patients treated with natalizumab (n=19) (49) and that 4-12 

months of fingolimod treatment of 43 RRMS patients reduced CXCL13 levels in CSF to 

similar levels of that of healthy controls (50). Although DMTs seem to reduce CSF CXCL13 

concentrations irrespective of MS phenotype, the disadvantage with CXCL13 is that the 

concentration is frequently below the lower limit of quantification of the CXCL13 assay (50).  

 

2.2.2 Osteopontin 

Osteopontin (OPN) is a pro-inflammatory cytokine involved in pleiotrophic physiological and 

pathological processes including inflammation and immunity. The protein is expressed in 

most tissues and body fluids. Elevated levels of OPN in CSF were initially confined to active 

RRMS (51, 52), but elevated CSF levels have also been reported in PPMS and were 

associated with subsequent disability (53). Higher OPN levels were found during relapse but 

rescue treatment with methylprednisolone did not influence the concentration (53). 

Further, 60 weeks of monthly methylprednisolone therapy of 30 PMS patients did not 

influence the CSF OPN level either, although clinical and MRI measures improved (54). In 

contrast, 60 weeks of natalizumab treatment of 17 PMS patients reduced OPN significantly 

(47). Thus, there are contradictory results and the value of determining OPN in CSF is still 

uncertain. 

 

2.2.3 Fetuin A protein 

In the search for biomarkers in CSF from MS patients, a proteomic analysis found increased 

levels of fetuin A protein that appeared to correlate with disease activity (55). This 

association to disease activity (relapse, increase of EDSS, or new T2 or contrast-enhancing 

lesions on MRI) was confirmed in another study that included 100 MS patients (56). In 

patients treated with natalizumab for 6 and 12 months, CSF fetuin A protein levels 

decreased and the reduction was more pronounced in treatment responders (56). Similar 

effects on fetuin A protein were not seen in blood.  Fetuin A protein is almost exclusively 
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expressed in the liver of normal adults but was found in demyelinated lesions in brains from 

MS patients (56) and has probably immune regulatory functions.  

 

2.3.1 Degenerative biomarkers in cerebrospinal fluid 

The most studied degenerative biomarkers in MS are neurofilaments (NFs) and glial fibrillary 

acidic protein (GFAP). They are essentially CNS-specific and they represent two major 

pathological processes in MS: NF is elevated in CSF due to axonal damage and increased 

GFAP represents astrocyte activation and astrogliosis. There are several other degenerative 

biomarkers that have been explored in MS but the results have been contradictory or the 

evidence has not convincingly supported an association between therapeutic intervention 

and change of their levels in CSF.  

 

2.3.2 Neurofilament proteins 

NFs are the major structural components of the axonal and dendritic cytoskeleton and are 

composed of four subunits, the triplet of neurofilaments known as light (NFL), medium 

(NFM), and heavy (NFH), alpha-internexin in the central or peripherin in the peripheral 

nervous system (57). NFL is the most abundant (ratio: 4:2:1, NFL:NFM:NFH) and soluble 

subunit. It constitutes the backbone of the NF core, to which NFM and NFH copolymerize 

(58). NFH is the most phosphorylated protein of the brain, involved in the regulation of cell 

homeostasis and axonal transport (59). Except for traumatic brain injury (60), the clinical 

relevance of NFM in neurological diseases has not yet been explored. In contrast, the role of 

NFH and in particular NFL as biomarkers in various neurological diseases, including MS, has 

become more and more established over recent years. NFs are released into the 

extracellular fluid after axonal injury (61), and their levels in CSF are thought to reflect the 

amount of the axonal injury. In MS, NFL has been suggested a biomarker of disease activity 

and NFH of progression (62, 63), however there is considerable overlap between data, 

making such categorization questionable. When comparing NFL and NFH, the former seems 

more reliable for discriminating patients with MS or CIS from controls (64) and superior for 

monitoring treatment efficacy in RRMS (64). It has been claimed that NFL, due to being less 

phosphorylated, is susceptible for proteases in CSF and therefore not stable at room 

temperature (65). However, investigation of pre-analytical stress conditions of CSF samples 

have shown that delay of sample processing at room temperature for 24 h, up to four 

freeze-thaw cycles, and blood contamination of 0.5% had only marginal effects on the 



 11 

stability of NFL and NFH (66). In fact, NFL seems to be stable for up to 8 days at room 

temperature (64).  

 

2.3.3 Neurofilament light protein 

The concentration of CSF NFL seems to be increased in all phenotypes of MS (67, 68). 

However, during relapse CSF NFL concentration is 3- to 10-fold (68-70) higher than in 

remission. After relapse, CSF NFL concentration peaks after approximately 2 weeks and 

thereafter returns to low levels after 2-3 months (67, 69). NFL also increases in conjunction 

with contrast-enhancing lesions on MRI (67, 69, 71, 72) and when new T2 lesions appear on 

sequential MRI examination (49, 62). There is a strong correlation between NFL levels and 

both relapse rate and lesion formation (new T2 lesions on MRI) (49, 62). Higher NFL levels 

are associated with increased CSF cell count, oligoclonal bands, and conversion from CIS to 

MS (62, 68). No or only weak association has been found between progression or disability 

and NFL (62, 67, 73). Thus, NFL in CSF seems to be a reliable marker of disease activity in 

MS, indicating that axonal injury is a major feature in active relapsing MS. In fact, the first 

paper on increased NFL levels in CSF from RRMS patients demonstrated high levels of NFL in 

CSF during relapse (69) and this observation coincided with the often cited paper by Trapp 

et al. that reported a high rate of transected axons in active lesions of MS patients, 

determined by staining of nonphosphorylated neurofilament in ovoid swellings of axons 

(34). There may, however, be additional mechanisms than axonal injury, e.g., increased 

neuronal secretion, contributing to the NFL increase in active MS. Anyhow, the clinical 

relevance of determing NFL in MS has been explored and there is evidence that increased 

CSF NFL concentration may have both diagnostic (62, 74-76) and predictive value (76, 77).  

 

2.3.4 Neurofilament light protein as biomarker for therapeutic response 

Accumulating data show reduction in NFL levels during treatment with DMT in RRMS (49, 

50, 78, 79) but also in PMS (71). In an early study on this topic, natalizumab treatment 

during 6 to 12 months reduced mean NFL level three-fold from 1300 (SD, 2200) ng/l to 400 

(SD, 270) ng/l. (p<0.001) (72). Most patients had switched to natalizumab from first line 

DMD (interferon beta or glatiramer acetate, n=73) because of the appearance of new 

disease activity. In fact, natalizumab treatment reduced NFL levels to similar values 

obtained in CSF of healthy controls. In line with previous pivotal and observational studies 

on natalizumab treatment in RRMS (80-83), natalizumab-treated patients showed reduced 
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relapse rate, disability and inflammatory CSF markers (inflammatory cell counts, IgG 

indices). The anti-inflammatory effect of natalizumab treatment on cytokine and chemokine 

levels in the CSF compartment had been reported previously (45, 84, 85) but the 

normalization of the NFL level indicated for the first time that natalizumab treatment may 

influence axonal damage. Reduction of NFL was also noted in RRMS patients in remission 

indicating that axonal damage is prevalent in clinically stable patients. Interestingly, 9 of the 

natalizumab-treated patients had SPMS and they also showed significantly reduction of NFL. 

However, post-treatment NFL levels of this sub-group were still significantly higher 

compared to healthy controls. Similar results have been reported in RRMS patients treated 

with fingolimod (78, 79), patients (80% RRMS) treated with rituximab (86), and also in PMS 

treated with mitoxantrone or rituximab (71). Patients with breakthrough disease on first-

line therapies showed reduced NFL levels after switching to fingolimod, i.e., a second line 

DMT, and this reduction correlated with reduction in relapse rate and MRI measures (79). 

Included patients tended to be in an active phase of the disease, suggesting that the 

decrease in NFL value could partly be explained by regression to the mean. However, a 

similar reduction of NFL levels was also shown in CSF obtained from patients participating in 

a randomised controlled trial (87), comparing fingolimod treatment with placebo in RRMS. 

In a sub-group of this study-population, CSF was obtained prior to and 12 months after 

treatment initiation. At baseline, CSF NFL concentrations did not differ between placebo, 

fingolimod 0.5 mg and fingolimod 1.25mg treated patients, but 12 months of fingolimod 

therapy significantly reduced NFL levels compared with those in the placebo group (78). A S 

similar influence on NFL values was seen in patients, mostly of RRMS course with 

breakthrough disease on interferon beta or glatiramer acetate, who had rituximab as an 

add-on treatment (86), and in PMS treated with mitoxantrone or rituximab (71). Most of the 

included PMS patients showed clinical activity or evidence of activity on MRI prior to 

treatment. Interestingly, significantly lower NFL levels were found before starting 

mitoxantrone or rituximab treatment in PMS patients previously treated with interferon 

beta compared to treatment naïve patients, indicating an effect on axonal degeneration 

also with first line DMT during progressive MS.   

 

2.3.5 Neurofilament heavy protein 

In contrast to NFL, NFH seems not to reflect disease activity in RRMS, but several studies 

demonstrate a relationship between CSF NFH levels and disability (62, 88, 89). Despite this 
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association, a clear difference between  different MS phentypes has not been seen. There 

are only two studies that include NFH in CSF as a marker of DMT intervention (86, 90). 

However, the reduction of CSF NFH levels was not statistically significant and less 

pronounced than for NFL in both the natalizumab-treated patients (90) and in the study in 

which rituximab was tested as an add-on therapy to interferon beta or glatiramer acetate 

(86). Thus, NFH seems to be a better marker to reflect axonal degeneration during 

progression (63).  

 

2.3.6 Glial fibrillary acidic protein  

Glial fibrillary acidic protein (GFAP) is a structural intermediate filament of the cytoskeleton 

of astrocytes. It is generally considered a highly CNS-specific protein though studies have 

indicated the presence of it in extracerebral tissues (91). GFAP was originally isolated and 

characterized in MS-lesions with severe astrogliosis (92). In MS, no relation to relapse rate 

has been found but augmented concentrations of GFAP correlated with increased disability 

in RRMS (93) and the highest association is found in SPMS (67). CSF GFAP concentration is 

age-dependent. The association of CSF GFAP levels with disability was further investigated 

in MS patients and healthy controls in a long-term follow-up study of 9 years (73). Again, the 

highest GFAP levels were found in patients with SPMS. No effect on CSF GFAP levels were 

found in RRMS patients after 6 to 12 months of natalizumab treatment (72). Unchanged 

GFAP levels were also found in progressive MS after 12 to 24 months of mitoxantrone 

(n=30) or rituximab (n=5) treatment (71).   

 

2.3.7 Chitinase 3-like 1 protein 

Chitinase 3-like 1 protein (CHI3L1), also designated YKL-40, is up-regulated in inflamed 

tissues and altered expression has been detected in several CNS disorders, including MS. 

The level of CHI3L1 increases with age. In the CNS, CHI3L1 is mostly related to astrocytes 

and to some extent also activated macrophages and microglia (94). The function of CHI3L1 is 

unknown but it might be involved in regulation of neurotrophic factors and thereby tissue 

regeneration during inflammation. The transcription of CHI3L1 is associated with reactive 

gliosis and more pronounced in conditions of neuroinflammation than in degenerativ 

diseases (94). Elevated CSF CHI3L1 levels were found in CIS patients and in patients with 

optic neuritis (ON) who converted to MS compared to non-conveters (75, 95). Increased 

CHI3L1 levels were found in both RRMS  (50, 94, 96, 97) and SPMS (97, 98) and have been 
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associated with relapses and number of contrast-enhancing lesions on MRI (50, 97, 98), but 

also with disability progression (75, 76). Treatment of MS patients (n=19; 17 RRMS, 2 SPMS) 

with natalizumab during approximately one year significantly reduced CSF CHI3L1 levels (97, 

99). Similar reductions were found in RRMS patients switching from first line DMT to 

fingolimod (n=26). After 4-12 months of fingolimod treatment, CHI3L1 levels decreased but 

did not reach those of healthy controls (79). Daclizumab given intravenously or 

subcutaneously to 40 RRMS patients, participating in two open-label studies, significantly 

reduced CSF CHI3L1 levels at long-term follow-up (100). Interestingly, mitoxantrone 

treatment of MS patients (n=22; 3 RRMS, 19 SPMS), reduced CHI3L1 conscentrations in CSF 

(97). Thus, CHI3L1 is not confined to a specific phenotype of MS, but is rather associated 

with disease activity and progression of disability in a manner that may be modified by 

DMTs. 

 

3.1 Moving from CSF to blood 

In MS and other CNS disorders, pathological processes are more likely to be reflected in CSF 

than in blood due to its proximity to the affected tissue. However, the need for lumbar 

puncture constitutes a major barrier for more wide-spread use, especially when repeated 

lumbar punctures are needed. This is often the case in MS, when inflammatory disease 

activity, progression of degeneration, and DMT efficacy are monitored. Thus, moving from 

CSF- to blood-based biomarkers would be a major step for monitoring disease activity in MS. 

However, a general challenge with blood-based biomarker analyses when examining CNS 

diseases is that the biomarker concentration may reflect release from peripheral tissues. In 

MS, it has proven very hard to detect an inflammatory profile in the blood that reflects the 

inflammatory process in the brain. More sensitive assays are unlikely to solve this problem. 

Moreover, all DMTs modulate or suppress the immune system and their mechanisms of 

action differ between them. Hence, blood-based inflammatory biomarkers may reflect the 

therapeutic intervention of the immune system but not necessary the effect of DMT on the 

pathological processes in the brain.  However, CNS-enriched proteins that are not expressed 

in peripheral tissues, or are expressed at much lower levels than in the brain, may be 

released into the bloodstream so that they can be measured at very low concentrations, 

provided the assay is sensitive enough. This development of highly sensitive immunoassays 

has just started and amongst the data on serum or plasma derived biomarkers, NFL is 

recognised as the most promising biomarker that could potentially be included as an 
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outcome marker in clinical trials and even as a tool for evaluation of MS patients in the 

clinic.  

 

3.2 The evolvement of immunoassays to facilitate blood analyses 

Most biomarker assays of relevance to MS research are immunochemical, i.e., utilise 

antibodies to quantify a substance in a sample. The most common assay format is the 

sandwich enzyme-linked immunosorbent assay (ELISA) in which the target analyte is 

captured between two antibodies in a complex and one of the antibodies carries a signal 

generator, i.e., an enzyme that converts a substrate into a detectable form (coloured, 

fluorescent or luminescent), which, in combination with a calibrator curve (derived from 

artificial samples with known analyte concentrations), allows for quantification of the 

analyte of interest. ELISA is a theme with many variations, such as the choice of signal 

generator where the enzyme can be replaced by, e.g., a fluorophore or a DNA-based 

detection system. For a regular ELISA, it is rare to reach an analytical sensitivity below 10-50 

pg/mL. In CSF, this may be enough, but to measure CNS-derived proteins in the blood, the 

low concentrations of them demand much higher sensitivity for detection. However, new 

ultrasensitive technologies have largely solved this problem. Most of these technologies rely 

on antibody-based detection of the target molecule, but in Single molecule array (Simoa), 

the detection reaction is compartmentalized into a small volume (50 femtolitres), so that 

the reporter molecule accumulates at a very high concentration (101), in Single molecule 

counting (SMC), the labelled detection antibodies, specifically captured by the target 

molecule/capture antibody complex, are released and counted one by one in a small 

detection cell, which allows for a single molecule read-out (102), and in proximity extension 

assay (PEA), partly overlapping complementary DNA strands are attached to the different 

antibodies allowing the strands to form a polymerase chain reaction-amplifiable template if 

immobilised close to each other on the same molecule (103). These variations in signal 

generation/detection may result in assays that can be 100- to a 1000-fold as sensitive as the 

corresponding regular ELISA using the same antibody pair.  

 

 

3.3 An ultrasensitive assay for NFL 

Increased levels of blood derived NFL were originally detected in MS with an 

electrochemiluminescence-based method for NFL (104). However, the analytical sensitivity 
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of that method limited the quantitation to samples with moderately to severely increased 

concentrations of blood NFL and could not quantify normal levels or detect mild increases 

(105). We recently developed an immunoassay for NFL based on Simoa technology that 

allows quantification down to subfemtomolar concentrations (below 1 pg/mL) of the 

analyte (106) and is 25-fold as sensitive as the previous electrochemiluminescence-based 

method for NFL (104). Serum NFL concentrations measured using Simoa correlate closely 

with CSF concentrations and are increased in HIV-associated dementia, progressive 

supranuclear palsy and frontotemporal dementia (106, 107). In fact, the Simoa method for 

NFL in blood samples (serum or plasma; either sample type works just as well), has 

markedly improved analytical sensitivity as compared to standard ELISA or 

electrochemiluminescence immunoassays, allowing the accurate measurement of NFL in 

blood down to concentrations occurring in healthy persons (108). 

 

3.4 Serum or plasma NFL for monitoring disease activity and treatment response in MS 

In MS populations, there is high correlation between blood and CSF NFL concentrations 

(104, 109-112). By use of the electrochemiluminescence immunoassays or the Simoa 

method for blood NFL, increased levels correlate with relapses, EDSS assessments, cerebral 

MRI measures such as number of cerebral or spinal lesions as well as cerebral lesion 

volumes , and the occurrence of contrast enhancing lesions (104, 109, 111-113). 

 

DMT of MS has previously been shown to reduce levels of NFL in CSF (71, 72, 78). Recently, 

we investigated the effect on plasma NFL in 243 patients following 12 and 24 months of 

fingolimod treatment. They had previously been treated with first generation of DMT 

(interferon beta, galiramer acetate) and switched to fingolimod mostly due to lack of effect. 

After 12 months of fingolimod treatment, the mean reduction of plasma NFL was 34% and it 

remained stable at this level also after 24 months of treatment (111). In another study, 

similar reductions of serum NFL were reported in patients treated with interferon 

beta/glatirameracetate (n=39), fingolimod (n=136), natalizumab (n=21), and rituximab 

(n=16) (109). We showed in a large set up of paired serum and CSF samples obtained from 

RRMS (n=204) and PMS (n=82) from real life MS cohorts that the NFL levels were altered 

similarily in serum and CSF following DMT intervention. Thus, the DMT efficacy was 

reflected by NFL concentrations, and serum NFL was as reliable as CSF NFL to detect the 

change. While patients treated with first generation DMT reduced their serum NFL levels 
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after switching to more efficacious treatment, patients had stable serum NFL levels if they 

remained on a DMT of similar efficacy. Moreover, in RRMS patients who were treated with 

effective DMT, we confirmed our previous finding in CSF, that the NFL concentration in 

serum was not different from that in healthy controls (50, 72). These results support the 

value of blood-based NFL as a sensitive and clinically meaningful blood biomarker to 

monitor disease activity and the effects of therapies in MS. 

 

4. Conclusions 

MS is a heterogeneous immune-mediated disease with considerable elements of 

degeneration in its pathogenesis (1, 2). The growing possibility to treat MS has raised 

demands for accessible, accurate and validated biomarkers for prediction of disease severity 

and for monitoring disease activity, disability progression, and the effect of therapeutic 

intervention. The goal is to offer patients and clinicians tools to enable personalized 

treatment to prevent further injury to the CNS and improve function.  Up to now, the DMTs 

are essentially immunomodulatory or immunosuppressive and with few exceptions 

approved for relapsing MS. Current biomarkers for monitoring therapeutic response rely on 

clinical and MRI measures.  However, in conventional MS care they may not capture 

subclinical processes, more subtle dysfunctions, e.g., cognitive dysfunction, and low-grade 

neurodegeneration. Biochemical biomarkers in CSF and blood may add important 

information on both inflammation and neurodegeneration in MS and may improve our 

knowledge about MS pathogenesis. Cytokines, chemokines and other inflammatory 

biomarkers in CSF may reflect the diversity of the involvement of the immune system in MS 

and its activity. However, these biomarkers are not CNS-specific and other diseases, e.g., 

infections and treatments that affect the immune system, may influence biomarker 

concentrations. Moreover, DMTs have different mechanisms of action, influencing the 

inflammatory biomarkers in the CSF differently from what might happen in blood. It has also 

become evident that inflammatory biomarkers are often sensitive to degradation by 

proteases and therefore demand adequate sample handling and storage. The inflammatory 

biomarkers CXCL13, osteopontin, and feutin A protein were selected in this review since 

they all have shown association to disease activity and were influenced by DMT 

intervention. However, the evidence is mostly based on studies of limited size, the results 

are sometimes contradictory and the sensitivity of current assays may not allow detection 

of the biomarker in patients with low to moderate disease activity. In contrast, CNS-derived 
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proteins are less influenced by pathological processes in other tissues or directly by 

immunomodulatory or immunosuppressive therapies. Although, they may not be the target 

of the immune attack in MS, they are released extracellularly in response to inflammation-

mediated damage to the CNS. NFL and NFH reflect the rate of axonal damage and GFAP and 

CHI3L1 represent astrogliosis and astrocyte or microglia involvement. While NFs and CHI3L1 

correlate mostly with disease activity, GFAP seems to be a marker of disease progression in 

MS. The latter marker appears to be less responsive to DMTs or may possibly require 

considerably longer follow-up than two years (71, 72). It is obvious from current data on CSF 

biomarkers that NFL is the most promising biomarker in MS and that it is already useful for 

evaluation of disease intensity at the clinical onset and for monitoring therapeutic response. 

The development of highly sensitive immunoassays has enabled determination of extremely 

low concentrations of NFL in blood. The accumulating data on blood-based NFL in MS show 

that it may be possible to switch from CSF to blood tests for this marker. This will become 

an important contribution for monitoring therapies in RCT and, when the Simoa method 

and other methods with similar analytical sensitivity have become more available, also in 

conventional MS care.  

 

5. Expert commentary 

Monitoring of therapeutic response in MS would improve if current clinical and MRI 

measures were expanded with determination of biochemical biomarkers in CSF and blood. 

This would improve the guidance for therapeutic decisions. By combining inflammatory and 

degenerative biomarkers, the possibility increases to better define the effect of DMT 

intervention in MS. Several studies that have had this approach show that altered CSF levels 

of inflammatory biomarkers (e.g., CXCL13) correlate with those determined in CSF for 

CHI3L1 and NFL (50, 79), indicating that the reduction of inflammation is accompanied by 

decreased glial activity and axonal degeneration. In fact, these studies strongly support that 

DMT treatment also have profound effects on the progressive changes in MS.  

 

The most promising biochemical biomarker in MS is NFL, reflecting the rate of axonal 

damage. Axonal loss is the main source of brain atrophy and disability development in MS 

and increased NFL levels are found in MS irrespective of phenotype, is associated with 

relapse and formation of lesions on MRI, but less to disability progression. The response to 

DMT is reflected in CIS, RRMS and inflammatory active PMS. However, the invasiveness and 
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discomfort of lumbar puncture, especially if repeated for monitoring therapeutic response, 

has limited the usefulness of NFL and other biochemical biomarkers. The development of an 

ultrasensitive immunoassay for NFL has made NFL a more accessible biomarker. The high 

correlation between NFL in CSF and serum/plasma (111, 112) and their similar outcome 

following DMT treatment suggest that blood-based NFL can replace CSF (112). NFL in 

plasma/serum is robust and the concentration is only slightly reduced when samples were 

transported by post during several days (111). Thus, NFL seems to become the first blood-

based test that can be used on a large scale for monitoring treatment efficacy in MS.  

 

6. Five year commentary 

The Simoa technique and other platforms with similar analytical sensitivity are rapidly 

disseminated over the world, making it possible to offer blood-based NFL for monitoring 

therapeutic response in MS patients. Other CNS-enriched proteins may follow, and thereby 

extend the characterisation of pathological processes in MS and the impact from DMT on 

them. Over recent years the therapeutic alternatives have increased. Today, almost all MS 

patients with activity are treated with DMT and early and effective intervention should be 

mandatory. NFL should become an accessible blood test for monitoring DMTs in 

conventional care and should be included together with clinical and MRI measures as a 

biomarker for disease activity. In treated MS patients who reach traditionally defined NEDA, 

NFL may even replace other measures of disease activity. In the futrue, a blood test every 

third month for monitoring the NFL level may become the only surveillance for disease 

activity needed in such patients.  

 

7. Key issues 

 Cerebrospinal fluid biomarkers may detect disease activity in multiple sclerosis, 

improve the assessment of therapeutic efficacy and make personalized treatment 

possible.  

 Highly sensitive immunoassays allow for the determination of extremely low 

concentrations of neuronal proteins in blood; the most promising blood-based 

biomarker for disease activity in multiple sclerosis is neurofilament light.  

 Blood-based tests of disease activity will potentially open a new era for monitoring 

disease activity and treatment response in multiple sclerosis. 
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8. Review criteria box 

We searched PubMed for English language articles on multiple sclerosis and biomarkers 

using the keyword “multiple sclerosis” together with other keywords, including: 

“biomarker”, “diagnosis”, “prognosis”, “imaging”, “MRI”, “treatment”, and several other 

keywords relevant to every section (e.g., biomarker names). We largely selected 

publications in the past 5 years, but did not exclude important older publications. Selection 

criteria also included a judgment on the novelty of studies and their relevance for the well-

informed neurologist/MS researcher. 
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