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Abstract Introduction: Individuals with subjective cognitive decline (SCD) are at increased risk for clinical
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progression.We studied how combining different diagnostic tests can help to identify individuals who
are likely to show clinical progression.
Methods: We included 674 patients with SCD (46% female, 646 9 years, Mini–Mental State Exami-
nation 286 2) from three memory clinic cohorts. A multivariate model based on the Disease State Index
classifier incorporated the available baseline tests to predict progression toMCI or dementia over time.We
developed and internally validated the model in one cohort and externally validated it in the other cohorts.
Results: After 2.96 2.0 years, 151(22%) patients showed clinical progression. Overall performance
of the classifier when combining cognitive tests, magnetic resonance imagining, and cerebrospinal
fluid showed a balanced accuracy of 74.0 6 5.5, with high negative predictive value (93.3 6 2.8).
Discussion: We found that a combination of diagnostic tests helps to identify individuals at risk of
progression. The classifier had particularly good accuracy in identifying patients who remained stable.
� 2018 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Background

In the setting of a memory clinic, patients with subjective
cognitive decline (SCD) are highly relevant [1]. Most of
imer’s Association. This is an open access article under the CC BY-NC-ND
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them are “worried well”, yet a small proportion of these
patients is likely to suffer from preclinical Alzheimer’s
disease (AD) [2,3]. For both the patient and the clinician,
it is important to know who will progress to mild cognitive
impairment (MCI) or dementia and who will remain stable
[2,4,5].

At this point, cerebrospinal fluid (CSF) and magnetic
resonance imagining (MRI) markers, and to a lesser
extent cognitive tests, are associated with decline in SCD
[3,6–13]. These findings have been translated into the
“SCD plus”—criteria that have been developed to identify
individuals who are more likely to harbor preclinical AD
[2,14]. Translation to clinical practice is hampered because
a set of recommendations for what the diagnostic workup
and follow-up for patients with SCD should look like is
currently lacking [15,16].

Clinical decision support systems based on modern
machine-learning technologies are being developed to
support clinicians to integrate multiple determinants in daily
practice [17]. We have previously developed the Disease
State Index (DSI) classifier, which is a technology that
integrates patient data from multiple modalities to support
the clinician in decision-making [18]. In previous studies,
we showed that the DSI can distinguish different types of
dementia and discriminate between stable and progressive
MCI patients [18–21].

In this study, we aimed to investigate and validate in
independent cohorts the prognostic ability of the DSI
classifier to identify patients with SCD at risk for
progression, by combining and visualizing all available
data on baseline characteristics, neuropsychology, CSF
biomarkers, and automated MRI features.
2. Methods

2.1. Patients

We included 674 patients with SCD with baseline
neuropsychology available and a minimal follow-up of
1 year, from three different memory clinic-based cohorts:
354 from the Amsterdam Dementia Cohort (ADC) from
the VU Medical Center [22–24], 51 from Barcelona [25],
and 269 from the German Dementia Competence Network
(DCN), consisting of nine memory clinics [26,27]. We
used the ADC cohort to develop and internally validate
our model and the pooled data of the Barcelona and DCN
cohorts to externally validate our model. The study was
approved by the local medical ethical committees. All
patients provided written informed consent for their
clinical data to be used for research purposes.

2.2. Clinical assessment

All patients went to the memory clinics seeking medical
help. At baseline, they received a standardized and
multidisciplinary work-up, including medical history
and neuropsychological examination. CSF and MRI were
performed in a subset of patients. In multidisciplinary
consensus meetings, patients were labeled as having SCD
when the cognitive complaints could not be confirmed by
cognitive testing using a neuropsychological battery and
criteria for MCI, dementia, or other neurologic or
psychiatric disorder known to cause cognitive complaints
were not met.

Annual follow-up took place by routine clinical visits, in
which medical and neuropsychological examinations were
repeated. As outcome measure, we defined clinical
progression as conversion to MCI, AD, or another type of
dementia as diagnosed at follow-up. Time to follow-up
was defined as time in years from baseline SCD diagnosis
to progression or, if stable, time to most recent follow-up
date. In the ADC and Barcelona cohort, MCI was diagnosed
using Petersen’s criteria; in addition, all patients fulfilled the
core clinical criteria of the NIA-AA for MCI [28,29]. In
DCN, MCI patients met the Jak and Bondi criteria [30].
Patients were diagnosed with probable AD using the criteria
of the NINCDS-ADRDA in all centers; all patients also met
the core clinical criteria of the NIA-AA for AD dementia
[31,32].
2.3. Neuropsychological tests

Cognitive functions were assessed with a standardized
test battery, and we selected those tests that overlapped
between the three centers. We used the Mini–Mental State
Examination for global cognitive functioning [33]. For
measuring executive functioning, we used Trail Making
Test A (TMT-A) and Test B (TMT-B), and also for
measuring language, category fluency (animals) [34,35].
For episodic memory, we included the tests that resembled
each other most. In ADC, the Rey Auditory Verbal
Learning Task (RAVLT) immediate and delayed recall
were included [36]. In the Barcelona cohort, the Free and
Cued Selective Reminding Test (FSCRT) immediate and
delayed total recall were used [37]. In DCN, the Consortium
to Establish a Registry for Alzheimer’s Disease word list
immediate and delayed recall were used [38]. To pool the
different memory tests, we standardized RAVLT, FSCRT,
and Consortium to Establish a Registry for Alzheimer’s
Disease per center to z-scores using group mean (details
on distribution can be found in Supplementary Fig. A1).
Missing data varied per test, details can be found in Table 1.
2.4. MRI

In ADC, patients were scanned routinely on a 1.0 T
(n5 183), 1.5 T (n5 26), or 3.0 T (n5 123) MRI scanners.
Images were acquired on a 3.0 T scanner in Barcelona
(n 5 49) and on 1.5 T scanners in DCN (n 5 93). A set of
computed MRI imaging biomarkers were extracted using an
image quantification tool (Combinostics Oy, Tampere,
Finland, www.cneuro.com/cmri/) [19]. We included four
features in the current analysis: hippocampal volume,

http://www.cneuro.com/cmri/


Table 1

Baseline characteristics according to outcome at follow-up for the separate centers

Variable

ADC Barcelona DCN

n

Stable SCD,

n 5 291

Progressive SCD,

n 5 63 n

Stable SCD,

n 5 46

Progressive SCD,

n 5 5 n

Stable SCD,

n 5 186

Progressive SCD,

n 5 83

Demographics

Female, n (%)* 354 138 (47) 26 (41) 51 34 (74) 4 (80) 269 71 (38) 34 (41)

Age in years 354 61.2 ± 9.6 69.0 ± 7.1 51 64.9 6 6.4 70.2 6 8.3 269 64.5 ± 7.8 68.0 ± 8.4

Education in years 354 13.3 6 4.3 14.0 6 4.4 51 10.8 6 4.2 11.6 6 4.3 269 12.5 ± 2.8 13.3 ± 3.3

Follow-up in years 354 3.4 ± 2.2 3.8 ± 3.2 51 3.7 6 1.8 2.8 6 1.8 269 2.3 ± 0.9 1.6 ± 0.7

MCI/AD/non-AD, n 42/15/6 2/2/1 53/21/9

APOE status

APOE ε4 carrier, n (%)* 317 92 (35) 27 (54) 49 10 (22) 2 (50) 226 56 (35) 32 (47)

Neuropsychology

MMSE 351 28.4 6 1.7 28.0 6 1.5 51 28.3 ± 1.5 26.8 ± 1.9 265 28.2 ± 1.6 27.6 ± 1.8

Memory, immediate recall 304 41 ± 9 37 ± 8 51 42 6 5 38 6 6 269 20 ± 3 18 ± 4

Memory, delayed recall 303 8 ± 3 6 ± 3 51 14 ± 6 13 ± 2 269 7 ± 2 5 ± 2

TMT-A, seconds 318 40 6 19 44 6 14 50 44 6 16 47 6 18 264 42 ± 15 51 ± 20

TMT-B, seconds 318 97 ± 51 113 ± 48 50 135 6 87 163 6 103 264 102 ± 41 127 ± 52

Category fluency 312 22 ± 6 21 ± 5 51 21 6 5 17 6 4 269 21 ± 5 20 ± 5

MRI

Hippocampal volume, mL 332 7.96 ± 0.83 7.49 ± 0.81 49 8.20 6 0.80 7.77 6 1.12 93 7.92 ± 0.84 7.19 ± 1.12

cMTA 332 0.37 ± 0.46 0.54 ± 0.54 49 0.22 6 0.43 0.40 6 0.54 93 0.54 ± 0.53 1.08 ± 0.86

cGCA 332 0.75 6 0.65 0.87 6 0.62 49 0.10 6 0.24 0.22 6 0.36 93 0.49 ± 0.64 1.17 ± 0.90

Grading 332 0.22 ± 0.19 0.36 ± 0.22 49 0.09 6 0.12 0.23 6 0.22 93 0.21 ± 0.23 0.44 ± 0.32

CSF

Ab42, pg/mL 227 875 ± 235 638 ± 279 41 771 6 221 637 6 194 87 846 ± 300 670 ± 305

Total tau, pg/mL 227 266 ± 146 456 ± 370 41 333 ± 227 645 ± 694 87 286 ± 152 454 ± 281

p-tau, pg/mL 227 46 ± 18 65 ± 34 41 55 6 28 83 6 65 87 48 ± 20 63 ± 35

Abbreviations: SCD, subjective cognitive decline; ADC, Amsterdam Dementia Cohort; DCN, Dementia Competence Network; AD, dementia due to

Alzheimer’s disease; FTD, frontotemporal dementia; VaD, vascular dementia; DLB, Lewy body dementia; MMSE, Mini–Mental State Examination;

RAVLT, Rey Auditory Verbal Learning Task; FSCRT, Free and Cued Selective Reminding Test; CERAD, Consortium to Establish a Registry for Alzheimer’s

Disease; TMT, Trail Making Test; cGCA, computed cortical atrophy score, estimated using gray matter concentration; cMTA, computed medial temporal lobe

atrophy score, (left1 right)/2, derived from volumes of hippocampus and lateral ventricles; Ab42, amyloid-b 1-42; p-tau, tau phosphorylated at threonine 181.

NOTE. Follow-up in years: time to conversion toMCI/dementia or follow-up time for nonconverters. Non-AD cases consisted of (1) ADC: 3 FTD and 3 VaD;

(2) Barcelona: 1 DLB; and (3) DCN: 1 FTD, 1 VaD, 3 DLB, and 4 nonspecified dementia.

NOTE.Memory, immediate recall: data on immediate recall using RAVLT (ADC), FSCRT (Barcelona), and CERAD (DCN); memory, delayed recall: data on

delayed recall using RAVLT (ADC), FSCRT (Barcelona), and CERAD (DCN); hippocampal volume: left plus right hippocampus (in mL), normalized for head

size and gender; grading: computed using a region of interest around the hippocampus, describing the intensity similarity of test image and training set images.

NOTE. Raw data are presented as mean 6 SD or n (%). Group differences per center according to outcomes were calculated using Student’s t-test for

continuous variables. Bold represents P values , .05.

*For categorical variables, the chi-square test was used.
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a computed medial temporal lobe atrophy (cMTA) score, a
computed global cortical atrophy (cGCA) score, and region-
of-interest (ROI)–based grading. They were derived as
follows: first, whole-brain segmentation into 136 structures
was performed using multi-atlas segmentation method [39].
From these structures, total (left 1 right) hippocampal
volume was used in the classification. In addition, cMTA
score was derived from the volumes of the hippocampus
and inferior lateral ventricles [40]. Similarly, cGCA score
was estimated using voxel-based morphometry [40]. Finally,
the ROI-based grading method measures the similarity of the
patient image to patient images from a certain diagnostic
group. In practice, an ROI from the patient is represented as
a linear combination of the corresponding ROIs from a data-
base of reference images. As each reference image contains
also information about the patient’s diagnostic label, the
grading feature is defined as the share of the weights from
images with a certain diagnostic label. In this work, we
used an ROI centered around the hippocampus [41]. See
Supplementary Fig. A2, for a schematic presentation of this
method. For classification, the volume of the hippocampus
was normalized first for head size [42] and then for gender
using the LMS method (referring to smooth curve [L],
mean [M], and coefficient of variation [S]) [43]. The grading
feature was also normalized for gender.
2.5. CSF

CSF samples from both ADC (n 5 227) and Barcelona
(n 5 41) were analyzed at the Neurochemistry Laboratory
at the Department of Clinical Chemistry of the VUmc, the
Netherlands. In DCN (n 5 87), samples were analyzed at
the laboratory of the University of Erlangen, Germany. All
centers measured amyloid-b 1-42 (Ab42), total tau, and tau
phosphorylated at threonine 181 (p-tau) with commercially
available ELISAs (Innotest; Fujirebio, Ghent, Belgium).
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2.6. APOE genotyping

In ADC (n 5 317), the apolipoprotein E (APOE)
genotype was determined with the LightCycler APOE
mutation detection method (Roche diagnostics GmbH,
Mannheim, Germany). In Barcelona (n 5 49), the APOE
genotype was determined with PCR amplification and
Sanger sequencing (ThermoFisher, USA). In DCN
(n 5 226), leukocyte DNA was isolated with the Qiagen
Isolation Kit (Qiagen, Hilden, Germany). Patients were
dichotomized into APOE ε4 carriers (heterozygous and
homozygous) and noncarriers.
2.7. Disease State Index

For classifying patients at risk of progression or not, we
used a modification of the PredictND tool that was
previously developed in the European FP7 project
PredictND (www.predictnd.eu). The tool is based on the
DSI classifier [17]. When presented with a new patient, the
DSI estimates the similarity of measurement values from
this patient to observed values from reference patients with
and without a certain medical condition, in this case
similarity to patients with stable SCD and patients
progressing to MCI or dementia [17]. Similarity is estimated
in the following way: (1) Each measurement value of an
individual person is compared with the reference data using
a fitness function defined as f(x) 5 FN(x)/(FN(x)1FP(x)),
where FN is the false-negative error rate, and FP is the
false-positive error rate in the reference data when using
the individual’s measurement value x as a cutoff value in
classification. (2) The “relevance” of each determinant is
defined as sensitivity 1 specificity 2 1. (3) Finally, a
composite DSI is defined as a weighted average of fitness
values: DSI 5 S (relevance , fitness)/S relevance. DSI is
a continuous value between zero and one, reflecting how
similar an individual is to patients who have previously
progressed. A cutoff value of 0.5 is used to classify
whether an individual patient is more likely to remain stable
(DSI , 0.5) or progress to MCI or dementia (DSI � 0.5) at
follow-up. In addition, we studied whether the performance
is improved for a subset of patients with high (DSI. 0.7 and
DSI . 0.8) or low (DSI , 0.3 and DSI , 0.2) DSI values.
This could enable detecting patients with very low risk or
very high risk of progression for clinical counseling. The
classifier also provides a visual representation of how
different features contribute to the DSI in a so-called
disease state fingerprint (see Fig. 2, for details). As the
DSI combines multiple independent classifiers (fitness
functions), there is no need to impute data or exclude cases
with incomplete data. More mathematical details can be
found in the study by Mattila et al. [17].

2.7.1. Development and internal validation
We developed the model on the ADC data and internally

validated this model on the same cohort using 10 iterations
of three-fold cross-validation. We assessed the different
data sources separately (demographics, APOE status,
neuropsychology tests, CSF biomarkers, and computed
MRI imaging markers) and then combined them,
independent of missing data. Owing to the technical
differences between scanners, we excluded MRI features
from patients scanned with 1.0 T devices (n 5 183) from
the training set and tested using all field strength and only
.1.0 T. In this way, the classifier is able to better learn the
differences between diagnostic groups without the excess
variation from the scanner differences (for details, see
Supplementary Table A1). We used the following
performance metrics in the evaluation of the DSI: the area
under the receiver operating characteristic curve (AUC),
sensitivity, specificity, negative predictive value (NPV),
and positive predictive value (PPV). Although DSI balances
the results by default, we also estimated balanced accuracy
that is typically defined as mean of sensitivity and
specificity. As an outcome measure, we defined progression
to MCI or dementia, and we also repeated the analyses
including only progression to MCI or dementia due to AD
(excluding other dementias).

2.7.2. External validation
For external validation, we tested our developedmodel on

new, unseen cases from pooled Barcelona and DCN data. To
understand why the performance decreased with the
independent validation cohort, we repeated the analyses by
training the model and performing cross-validation with
the Barcelona and DCN data, and using the ADC data as a
separate validation cohort.

2.7.3. Comparison to other machine-learning algorithms
Earlier studies have performed comprehensive

comparisons between the DSI classifier and other
machine-learning algorithms [17,44,45]. We add on to this
by comparing the classifier to Na€ıve Bayes and Random
Forest classifiers. Details can be found in Appendix.

2.8. Other statistical analyses

We investigated differences in baseline characteristics in
each center according to outcome, using Student’s t-test and
the chi-square test when appropriate, using SPSS, version 22
(IBM, Armonk, NY, USA). P , .05 was considered
significant. The DSI analysis was performed using
MATLAB toolbox in MATLAB, version R2015b
(MathWorks, Natick, MA, USA) [46].
3. Results

3.1. Baseline characteristics

After a mean of 2.9 6 2.0 years, 151 (22%) patients
showed clinical progression to MCI or any type of dementia
(Table 1). Patients who showed progression were older, more
frequent APOE ε4 carriers, performed somewhat worse on

http://www.predictnd.eu


Fig. 1. The visualization of group-wise volume differences between stable subjective cognitive decline (SCD) and progressive SCD groups. The map visualizes

the relative volume difference:
Vp2Vs

0:5!ðVp1VsÞ, where Vp andVs are themean volumes for progressive and stable groups, respectively. Blue indicates the structures on

MRI that were larger in the progressive group, and red indicates the structures that were smaller.
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neuropsychological tests, and had smaller hippocampal
volumes and more abnormal CSF biomarkers. Patients in
ADC were younger as compared with Barcelona and
DCN. Patients in Barcelona were more often female, had
less education, and showed less progression as compared
with ADC and DCN. Duration of follow-up was longest in
Barcelona and shortest in DCN. There were no
differences in percentage of APOE ε4 carriers and baseline
Mini–Mental State Examination across the centers.
3.2. Development and internal validation of the model

Table 2 shows performance of the DSI using the different
data sources, for progression to MCI or dementia. As single
data source, CSF showed highest balanced accuracy,
followed by the automatic MRI features. Fig. 1 shows the
group-wise volume differences between stable SCD and
progressive SCD groups, with the clearest differences
observed in the medial temporal region.

When we used all the data sources together, performance
improved (balanced accuracy: 74.06 5.5%). The model had
high NPV (93.3 6 2.8), whereas PPV was only
modest (37.7 6 5.5). This indicates that the DSI
classifier was most useful to identify patients who remained
stable. When we repeated the analyses for progression
to MCI or dementia due to AD (excluding other
dementias) as an outcome measure, results were comparable
(Supplementary Table A2).

Table 2 also presents performance of the DSI classifier for
subgroups having high or lowDSI values, to aid the clinician
on how to interpret the DSI values. We observed extreme
DSI values, that is, below 0.3 or above 0.7, in 48 6 6% of
the patients. When DSI , 0.3, NPV was 97.0 6 2.6,
indicating that the probability of progression is very low in



Fig. 2. Examples of DSI fingerprints: patient A and patient C remained stable, and patient B progressed toMCI. The DSI fingerprint combines all data available

from one patient and displays it in a visually attractive format to the clinician. The DSI value is presented both numerically and visually with color. The color

changes from blue to red when DSI increases from zero (high similarity to the stable group) to one (high similarity to the progressive group). The relevance is

visualized by the size of the box. The larger the box, the better the specific marker discriminates the stable and progressive SCD patients. Abbreviations:

MMSE, Mini–Mental State Examination; TMT, Trail Making Test; cGCA: computed cortical atrophy score, estimated using gray matter concentration;

cMTA, computed medial temporal lobe atrophy score, (left 1 right)/2, derived from volumes of hippocampus and lateral ventricles; Amyloid b, amyloid-b

1–42; Phosphorylated tau, tau phosphorylated at threonine 181; DSI, Disease State Index.
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this subset and the clinician could reassure these patients
with high confidence. For comparison, if NPV is computed
for all patients without using any prediction model, it is
82.0 [291/(291 1 63)], showing that DSI can clearly help
in stratifying patients. When DSI . 0.7, PPV was not very
high, only 50.8 6 12.9. Although the progression of an
individual cannot be predicted accurately even in this
subgroup, the risk of conversion is clearly elevated. The
risk ratio is 2.8 in this subgroup compared with the whole
patient population meaning that the clinician might start
applying more rigorous follow-up and lifestyle intervention
measures to these patients. This means that for roughly half
of SCD patients, the DSI could have practical use to aid in
individualized prognosis.

Fig. 2 shows the DSI fingerprints for three example
patients to illustrate how the tool integrates and visualizes
available data. Patient A is a 60-year-old female, with a
DSI of 0.20, meaning the clinician can reassure her with
high accuracy. Nearly all the boxes in the fingerprint are
blue, which fits with the good outcome in this patient; she
remained stable during three years of follow-up. Patient B
is a 74-year-old female with a DSI value of 0.83, mainly
attributable to her values on MRI and CSF (visible as red
boxes). This implies her risk of progression is clearly
elevated, and follow-up should be discussed. This patient
progressed to MCI after 3 years. Patient C is a 66-year-old
female, who remained stable during a follow-up period of
4 years. The fingerprint shows both red and blue boxes,
implying that interpretation is inconclusive and a reliable
prognosis cannot be made, further illustrated by an inconclu-
sive DSI value of 0.47.
3.3. External validation

When we externally validated our model by testing it in
pooled data of Barcelona and DCN, we found an overall
lower performance (balanced accuracy 65.1, NPV 83.7;
Table 3). Balanced accuracy increased to 78.5 in the more
extreme DSI values. To evaluate what caused the lower per-
formance on external validation, we also trained the model
on pooled data of Barcelona and DCN and tested it in
ADC data (Supplementary Table A3). Even when we devel-
oped the model in Barcelona and DCN cohorts, performance
was still better in ADC (balanced accuracy 73.3, NPV 92.4).
3.4. Comparison to other machine-learning algorithms

For comparison, other machine-learning algorithms were
also tested. The performance of the Na€ıve Bayes classifier
was corresponding to and the Random Forest classifier lower
than what was obtained by the DSI classifier (Supplementary
Table A4).



Table 2

Performance of DSI to predict conversion to MCI or any type of dementia in the ADC cohort, for the total cohort and for patients with extreme DSI values

Variable % Stable SCD, n

Progressive

SCD, n AUC

Balanced

accuracy Sensitivity Specificity PPV NPV

Demographics 291 63 0.74 6 0.04 66.0 6 5.0 66.0 6 11.7 65.9 6 6.1 29.7 6 3.8 90.1 6 2.8

APOE 267 50 0.60 6 0.05 59.7 6 4.9 53.9 6 8.4 65.5 6 4.5 22.7 6 4.4 88.4 6 2.4

Neuropsychology 290 62 0.69 6 0.06 62.7 6 4.4 61.6 6 10.8 64.3 6 5.3 26.9 6 3.3 88.7 6 2.4

CSF 194 33 0.77 6 0.07 69.9 6 5.0 66.1 6 11.3 73.6 6 6.5 30.3 6 5.8 92.8 6 2.6

MRI (1 T, 1.5 T, 3 T) 277 55 0.68 6 0.05 61.4 6 4.3 80.1 6 10.1 42.8 6 6.8 21.8 6 2.5 91.9 6 3.5

MRI (.1 T) 123 25 0.73 6 0.09 69.1 6 7.8 64.9 6 15.2 73.3 6 7.6 33.6 6 9.6 91.3 6 4.0

Demographics 1 APOE 1 Neuropsychology 1 CSF 1 MRI (1 T, 1.5 T, 3 T) 291 63 0.80 6 0.05 74.0 6 4.2 82.9 6 8.4 65.1 6 5.8 34.2 6 3.8 94.7 6 2.4

Demographics 1 APOE 1 Neuropsychology 1 CSF 1 MRI (.1 T) 291 63 0.81 6 0.06 74.1 6 5.8 75.7 6 11.2 72.6 6 4.8 37.7 6 5.5 93.3 6 2.8

DSI , 0.2 or DSI . 0.8

Demographics 1 APOE 1 Neuropsychology 1 CSF 1 MRI (1 T, 1.5 T, 3 T) 14 6 4 12 6 5 5 6 2 0.81 6 0.10 83.3 6 7.4 98.9 6 4.2 67.7 6 13.6 59.0 6 17.4 99.4 6 2.3

Demographics 1 APOE 1 Neuropsychology 1 CSF 1 MRI (.1 T) 21 6 6 20 6 8 5 6 2 0.83 6 0.11 84.1 6 9.6 85.4 6 17.6 82.8 6 7.1 56.2 6 17.1 96.3 6 4.6

DSI , 0.3 or DSI . 0.7

Demographics 1 APOE 1 Neuropsychology 1 CSF 1 MRI (1 T, 1.5 T, 3 T) 37 6 6 34 6 7 10 6 3 0.84 6 0.06 80.7 6 6.0 89.6 6 11.4 71.8 6 9.4 47.8 6 10.9 96.8 6 3.0

Demographics 1 APOE 1 Neuropsychology 1 CSF 1 MRI (.1 T) 48 6 6 47 6 7 9 6 3 0.84 6 0.09 84.1 6 7.3 84.9 6 14.2 83.3 6 5.5 50.8 6 12.9 97.0 6 2.6

Abbreviations: AUC, area under the receiver operating characteristic curve; SCD, subjective cognitive decline; PPV, positive predictive value; NPV, negative predictive value; APOE, apolipoprotein E; DSI,

Disease State Index.

NOTE. For the extreme DSI values, n: number of patients in a cross-validation fold having the DSI value in the given range; %: percentage of patients in a test set (n5 118) of a cross-validation fold having the

DSI value in the given range. Values are presented as mean 6 standard deviation over 10 iterations of three-fold cross-validation.

Table 3

External validation: Performance of DSI to predict conversion toMCI or any type of dementia when tested in the pooled data of Barcelona and DCN cohorts, for the total cohort and for patients with extreme values

Variable % Stable SCD, n Progressive SCD, n AUC Balanced accuracy Sensitivity Specificity PPV NPV

Demographics 232 88 0.63 57.8 61.4 54.3 33.8 78.8

APOE 203 72 0.57 57.4 47.2 67.5 34.0 78.3

Neuropsychology 232 88 0.69 63.9 63.6 64.2 40.3 82.3

CSF 90 39 0.69 61.7 59.0 64.4 41.8 78.4

MRI 100 42 0.77 67.4 73.8 61.0 44.3 84.7

Demographics 1 APOE 1 Neuropsychology 1 CSF 1 MRI 232 88 0.72 65.1 68.2 62.1 40.5 83.7

DSI , 0.2 or DSI . 0.8

Demographics 1 APOE 1 Neuropsychology 1 CSF 1 MRI 21 38 30 0.81 78.5 83.3 73.7 71.4 84.8

DSI , 0.3 or DSI . 0.7

Demographics 1 APOE 1 Neuropsychology 1 CSF 1 MRI 45 94 50 0.79 74.2 76.0 72.3 59.4 85.0

Abbreviations: AUC: area under the receiver operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value; APOE, apolipoprotein E; DSI, Disease State Index; SCD, subjective

cognitive decline.

NOTE. For the extreme DSI values, n: number of patients having the DSI value in the given range; %: percentage of patients having the DSI value in the given range. Values are presented as mean.
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4. Discussion

In this large memory clinic study, we found that after an
average follow-up of almost 3 years, 22% of the individuals
with SCD showed clinical progression to MCI or dementia.
The DSI classifier combining cognitive test results,
automated MRI features, and CSF biomarkers accurately
classified 74% of the patients, with especially high NPV.
Nearly half of the patients had a clearly positive or negative
DSI of ,0.3 or .0.7, where balanced accuracy was as high
as 84%.

Although many individuals with SCD may indeed be
“worried well,” a minority visits the memory clinic because
they actually experience cognitive decline, which the
clinician is not yet able to verify. We show that a
computer-aided decision tool could support clinicians in
identifying that minority of individuals who are at high
risk of clinical progression. Moreover, for a larger group
of individuals, reassurance can be even more explicit,
backed up by negative findings on a combination of
diagnostic tests. For daily clinical routine, this could imply
a paradigm shift; it is current practice to reassure patients
with SCD but not disclose results of their particular
diagnostic tests. Our results provide support for the notion,
however, that we approach an era of personalized
medicine, where individuals’ results on diagnostic tests
can be used to obtain individualized predictions. Our
classifier may aid in providing prognosis or decide to
follow up individuals at increased risk for progression.
On further scrutinizing the data, we observed that
performance was particularly good for roughly half of the
population, with a high or low DSI (,0.3 or .0.7), while
prognostic performance was suboptimal for those with a
medium DSI (0.4-0.6) (data not shown). Yet, overall
NPV was very high, reaching up to 97.0 for the cases
with DSI , 0.3. This implies that patients with a DSI
, 0.3 can be reassured and do not need follow-up. For
patients with a DSI . 0.7, a certain prognosis cannot be
made, but the risk of clinical progression is clearly elevated
and follow-up is warranted. The fingerprint could further
aid in this interpretation by visualizing how each of the
determinants contributed to the prognosis. Of note, in the
present study, we focused on patients who present to a
memory clinic with the clinical question whether they
have an underlying neurodegenerative disease. In further
work, tools like this could also be used for screening
patients at risk in the general population, for example, by
using blood-based biomarkers [47].

The overall balanced accuracy of the DSI was highest
when we combined all different data sources. The
discriminative effect of MRI and CSF biomarkers are in
line with the additive model, indicating patients with SCD
at risk of progression already have more AD-like biomarkers
at baseline [48]. Also, neuropsychological assessment at
baseline improved the performance of the DSI. It is
conceivable that even within normal boundaries, a slight
decline in cognitive performance is associated with
progression, which is particularly appreciated when
analyzed together with data from other sources. The
classifier also provided fully automatically computed MRI
features enabling the clinician to extract more information
from the images than when using visual interpretation
only [19].

The strength of this study was the large size of the
cohort in which the model was developed, and the
availability of two independent cohorts for external
validation. All patients underwent thorough examination
and were only included if cognitive complaints could not
be confirmed by cognitive testing. We used data that
were typical of memory clinics, varied and incomplete.
Because we aimed to develop a tool that should be able
to support clinicians in daily practice, it is essential the
tool can deal with missing data.

However, several potential limitations also need to be
discussed. In general, when developing prediction models
based on classifiers, comparing training and testing results
can be challenging for several reasons. In this study we
trained the tool on the ADC data and found that on validation
in the Barcelona and DCN data, performance was less
optimal. This might indicate that generalizability is limited.
When we trained the tool in the Barcelona and DCN data and
then performed external validation in ADC, we still found
that performance was better in ADC than in the Barcelona
and DCN data. This suggests that not the model itself
hampers generalizability, but the lower performance is
caused by heterogeneity in cohorts. Overall, the following
sources can affect generalizability of prediction models:
(1) patients in different memory clinics are different (i.e.,
both referral and definition of SCD), (2) heterogeneity in
outcome, (3) patient measurements are done in different
ways, and (4) prediction models are not able to generalize.
In the field of SCD, heterogeneity between cohorts is an
important hurdle [2,5,49]. The field is acknowledging this
and working toward more harmonization of research
efforts. Nonetheless, it is of the utmost importance to
actually perform studies on multiple data sets, both to get
to know the differences and how this influences results,
and to start harmonizing and bridging data. In this study,
we feel there are several important cohort differences:
first, patients showed substantial baseline differences
between the three memory clinic cohorts. We found
differences regarding progression rates and definition of
progression; ADC and Barcelona used the Petersen criteria
for MCI, whereas DCN used the Jak-Bondi criteria for
MCI [28,30]. Also those who remained stable in Barcelona
and DCN were older than those in ADC. Second, although
follow-up duration in VUmc was longer, more patients
showed progression in Barcelona 1 DCN. Third, although
all patients underwent a harmonized work-up, the work-up
differed between the centers. We tried to eliminate these
differences as much as possible. For the neuropsychology
tests, we selected tests that overlapped or resembled each
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other. Also, CSF analyses of ADC, DCN, and Barcelona
were performed in the two laboratories, as part of the
Euro-SCD collaboration, minimizing, but not excluding,
interlaboratory variability. MRI scans were acquired on
systems with different field strengths, yet the automatic
analyses of these scans were all performed by the same
software [19]. However, 1.0 T images have worse gray
matter–white matter contrast than 1.5 T and 3.0 T images.
Consequently, we decided to use only 1.5 Tand 3.0 T images
in training to have a robust classifier and then reported the
results separately for different field strengths to demonstrate
the differences between 1.0 T and .1.0 T images with
roughly similar performance. In this study, we did not
perform feature selection and choose a set of features
maximizing prediction accuracy. We included diagnostics
tests and features that are either familiar to clinicians or
which we found to be good features in other studies. Had
we used an optimal set of features, this would probably
increase the performance of our model, at the risk of
overfitting.

In conclusion, this study shows that it is feasible to extract
and combine information from routine diagnostic tests into a
measure that can be used within a clinical decision support
system, supporting clinicians to identify individuals at risk
of progression who need follow-up and individuals who
are likely to remain stable and can be reassured and
discharged. This implies that it is possible to think about a
personalized medicine approach, also in patients with
SCD. Recent research has shown that patients would like
to be actively involved in decisions about prognostic testing,
but they feel they often lack important information on the
implication of the tests [15,50]. Tools such as the DSI
classifier can provide a first step in taking personalized
medicine in SCD to a next level.
Acknowledgments

Research of the VUmc Alzheimer Center is part of the
neurodegeneration research program of the Amsterdam
Neuroscience. The VUmc Alzheimer Center is supported
by Alzheimer Nederland and Stichting VUmc Fonds. The
clinical database structure was developed with funding
from Stichting Dioraphte. For the development of the
PredictAD tool, the VTT Technical Research Centre of
Finland has received funding from European Union’s
Seventh Framework Programme for research, technological
development, and demonstration under grant agreements
601055 (VPH-DARE@IT), 224328 (PredictAD), and
611005 (PredictND). The Euro-SCD project has been funded
by the EU Joint Program–Neurodegenerative Disease
Research (JPND_PS_FP-689-019). DCN has been funded
by a grant from the German Federal Ministry of Education
and Research (BMBF): Kompetenznetz Demenzen
(01GI0420). Hanneke FM Rhodius-Meester is appointed on
PredictND, a grant from the European Seventh Framework
Program project PredictND under grant agreement 611005.
Frederik Barkhof is supported by the NIHR UCLH
Biomedical Research Center. Sietske AM Sikkes is
supported by an Off Road grant (ZonMw #451001010).
Wiesje M. van der Flier is a recipient of a research grant
from Gieskes-Strijbis Fonds. Betty M. Tijms receives grant
support from ZonMw (#73305056 and #733050824).
Author disclosures: Hanneke F.M. Rhodius-Meester, Hilkka
Liedes, Steffen Wolfsgruber, Nina Coll-Padros, Johannes
Kornhuber, Luca Kleineidam, Lorena Rami, Sietske A.
Sikkes, Linda MP Wesselman, Rosalinde E.R. Slot, Sander
C.J. Verfaillie, and Betty Tijms report no disclosures. Juha
Koikkalainen and Jyrki L€otj€onen all report that the VTT
Technical Research Center of Finland owns the following
IPR related to the article: (1) J. Koikkalainen and J.
Lotjonen—a method for inferring the state of a system,
US7,840,510 B2, PCT/FI2007/050277; and (2) J. Lotjonen,
J. Koikkalainen, and J. Mattila—state inference in a
heterogeneous system, PCT/FI2010/050545, FI20125177.
Juha Koikkalainen and Jyrki L€otj€onen are shareholders in
Combinostics Oy. Oliver Peters has received speaker
honoraria from Eli Lilly & Company, Novartis, Affiris,
and Roche and has received research support from Axon,
Axovant, Biogen, Eli Lilly and Company, Lundbeck,
Pharmatrophix, Probiodrug, Novartis, Roche, Janssen,
Piramal, Takeda, and TRX Pharmaceuticals. Frank Jessen
has received fees for advisory boards of Eli Lilly, Biogene,
MSD, Janssen Cilag, Roche, AC Immune, and Novartis.
Jos�e Luis Molinuevo is the PI of trials funded by Roche,
Merck, Novartis, and Janssen and has received speaker or
consultant fees from Roche, Roche diagnostics, Biogen,
Merck, Novartis, Oryzon, IBL, Axovant, Lundbeck,
and Lilly. Charlotte E. Teunissen is a member of the
Innogenetics International Advisory Boards of Fujirebio/
Innogenetics and Roche. Frederik Barkhof serves/has served
on the advisory boards of Bayer-Schering Pharma, Sanofi-
Aventis, Biogen-Idec, TEVA, Merck-Serono, Novartis,
Roche, Synthon BV, Jansen Research, and Genzyme. He
received funding from the Dutch MS Society and EU-FP7
and has been a speaker at symposia organized by the Serono
Symposia Foundation and Medscape. Philip Scheltens has
served as a consultant for Wyeth-Elan, Genentech, Danone,
and Novartis and received funding for travel from Pfizer,
Elan, Janssen, and Danone Research. Wiesje M. van der
Flier performs contract research for Biogen. Research
programs of Wiesje M. van der Flier have been funded
by ZonMw, NWO, EU-FP7, Alzheimer Nederland,
CardioVascular Onderzoek Nederland, Stichting Dioraphte,
Gieskes-Strijbis Fonds, Boehringer Ingelheim, Piramal
Neuroimaging, Combinostics, Roche BV, and Janssen
Stellar. She has been an invited speaker at Boehringer
Ingelheim and Biogen. All funding is paid to her institution.
Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.dadm.2018.09.001.

https://doi.org/10.1016/j.dadm.2018.09.001


H.F.M. Rhodius-Meester et al. / Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 10 (2018) 726-736 735
RESEARCH IN CONTEXT

1. Systematic review: An increasing number of studies
focus on biomarkers that can help identifying pa-
tients with subjective cognitive decline (SCD) at
risk of progression. Translation to clinical practice
is hampered because it remains unclear what the
diagnostic workup and follow-up for SCD should
look like and what results should be disclosed in
daily practice. We cited relevant citations.

2. Interpretation: We used a clinical decision support
system to identify patients with SCD at risk for pro-
gression. Clinical decision support systems can
weigh and combine different diagnostic tests; this
multivariate model showed especially a high nega-
tive predictive value, meaning the classifier identified
patients who will remain stable and can thus be reas-
sured.

3. Future directions: Clinical decision support systems
could be useful to aid clinicians in interpreting diag-
nostic test results and discuss results of these tests
with patients with SCD. To take diagnosis and prog-
nosis in SCD to the next level, further knowledge on
shared decision-making in SCD is needed.
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