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Abstract. Prediction of financial markets using neural networks and
other techniques has predominately focused on the close price. Here, in
contrast, the concept of a mid-price based on an Open, High, Low, Close
(OHLC) data structure is proposed as a prediction target and shown to
be a significantly easier target to forecast, suggesting previous works have
attempted to extract predictive power from OHLC data in the wrong con-
text. A prediction framework incorporating a factor discovery and mining
process is developed using Randomised Decision Trees, with Long Short
Term Memory Recurrent Neural Networks subsequently demonstrating
remarkable predictive capabilities of up to 50.73% better than random
(75.42% accuracy) on hourly data based on the FGBL German Bund
futures contract, and 42.5% better than random (72.04% accuracy) on a
comparison Bitcoin dataset.
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1 Introduction

The accurate prediction of an asset's direction has long been the goal of many
academics and industry practitioners, with predictive methodologies ranging
from the use of traditional technical analysis (TA) to more recent machine
learning (ML) techniques. This paper utilises ML technology in the form of
Randomised Decision Trees (RDTs) [1] and Long Short Term Memory Recur-
rent Neural Networks (LSTM RNNs) [2] as a key component in a process for
trend detection which takes advantage of the relative ease of prediction of the
mid-price (defined in terms of OHLC candlestick levels in Section 2.2) when com-
pared to the traditional close price prediction target. RDTs are used to identify
the most important factors from a rich factor universe generated from all possi-
ble combinations of OHLC lagged levels given L lags, using differences, ratios,
and pairwise operations. Within this context it is demonstrated that OHLC lev-
els have a remarkably high predictive potential, in contrast to the negative view
espoused by a majority of academics and some practitioners [3][4][5].
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2 Background

2.1 Literature Review

There exists no prior literature relating to a mid-price based on a candlestick
structure, as proposed here. The common definition of a mid-price is the price
halfway between the bid and ask; this has no relevance to the current work. There
have, however, been many studies focusing on the predictive power of candlestick
patterns. These studies have reported varying results, with most evidencing little
or no value in these patterns as predictors of close price movements.

On the negative side, Marshall, Young, and Rose (2005) [3] find that the
relationships between OHLC levels have no useful information when applied to
stocks in the Dow Jones Industrial Average. Horton (2009) [4] confirms there is
little to no value in candlestick charting. Interestingly, Fock, Klein, and Zwergel
(2005) [5] present negative results for both the DAX stock index and the FGBL
German Bund futures contract, which latter the current work conflicts with
(though it should be noted both that our target is different—mid-price rather
than close price—and that our OHLC-derived patterns are not traditional can-
dlesticks but data-mined constructions).

On the positive side, Xie et al. (2012) [6] find that candlestick patterns have
significant predictive power to forecast US equity returns. Lu et al. (2015) [7]
find predictive power in several patterns, but these are rare and the research in
addition did not sufficiently address the distinction between candlestick patterns
being able to yield profit and their being able to predict trends. One study, that
of Lu (2014) [8], finds that traditional patterns have little value but that novel
ones may do so; this finding is in line with observations made in the current
work, though it should again be emphasised that our use of the mid-price as
target creates a very different context.

Overall the evidence in the literature favours the dominant academic belief
that candlestick patterns have little value. The results presented below, albeit in
the context of mid-price prediction and utilising novel OHLC patterns as input
factors, may thus be somewhat of a surprise.

2.2 A Mid-Price Definition and Motivation

Two definitions of mid-price are used in the current work. Mid-price-1 is defined
as the price mid-way between a time interval’s high and low,

mid-price-1 =
high+ low

2
, (1)

while mid-price-2 focuses on the real body of a candlestick (area of the candle-
stick between open and close) and is defined as

mid-price-2 =
open+ close

2
. (2)

The predominant reason for investigating the use of a mid-price as a pre-
diction target was the observation that mid-price time series display far less
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noise than close price series. As an example, the time series of close price, mid-
price-1, and mid-price-2 were examined for 27,927 samples of the German Bund
futures data set used here. The standard deviation of price movements in this
example data set shows the close price has a standard deviation of 13.71 ticks1

compared to 11.64 and 10.52 ticks for mid-price-1 and mid-price-2 respectively.
Similar results were obtained for many other examples of financial time series
data, confirming the mid-price (in particular mid-price-2) as a less noisy target.

2.3 Machine Learning Models Used

Factor Importance Mining. Randomised Decision Trees [9] are used to rank
the importance of a factor to its target using the Gini impurity metric which
measures the frequency of an incorrect classification of an element in a feature
set if it was randomly allocated a classification; a higher value is thus a measure
of a more significant level of correlation between factor and target.

Mid-price Prediction. LSTM RNNs are selected as the prediction model due
to their ability to detect persistent statistical patterns in sequences while avoid-
ing issues with vanishing gradients2; the addition of LSTM units to a RNN allows
the network to selectively remember and forget information while retaining long
and short term dependencies. The LSTM RNN is here trained to minimise a
mean square error loss function using residual back-propagation (RPROP) [10].
RPROP is a first-order optimisation algorithm acting independently over each
weight and accounting only for the sign of the partial derivative (ignoring mag-
nitude); this results in a computationally cheap locally adaptive scheme allowing
fast convergence in binary classification (here, to predict whether a price move-
ment is up or down).

2.4 Performance Metrics

Normalised Percentage Better than Random (NPBR) and a simple accuracy
were used as evaluation metrics. The latter measures the proportion of cor-
rectly predicted directional movements; it has the advantage of simplicity but
the weakness of being an unreliable indicator of performance in a strongly trend-
ing market, where there may be a tendency to overpredict the majority class.
NPBR (also known as the Kappa Statistic [11]) is a more robust performance
metric for imbalanced data sets, with a range of -100% to 100%, a score of 0%
being equivalent to chance. The metric is formalised as

t = n00 + n01 + n10 + n11, (3)

1 A tick is the minimum movement in a price series, which for the FGBL futures
contract is equivalent to 10 EUR.

2 Gradient calculations in layers further from the output accumulate progressively
more fractional derivative factors, which results in weight changes tending to zero
in lower layers and thus vanishing.
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Rtotal =
(n11 + n01)(n11 + n10) + (n00 + n01)(n00 + n10))

t
, (4)

NPBR =
(n11 + n00)−Rtotal

t−Rtotal
. (5)

In this n00 represents true negatives, n01 false positives, n10 false negatives,
and n11 true positives, these four quantities summing to the total number of
predictions, t. This measure allows a comparison against random, which is a
valuable metric to state.

3 Methodology

3.1 OHLC Factor Mining

All possible combinations are generated of one hour OHLC bars using differences
and ratios given L lags. This rich factor universe is then ranked for importance
in relation to a target (mid-price direction at t+1) using Randomised Decision
Trees deriving their importance values from the Gini metric. The top N factors
are then selected. In this instance N=100 as beyond the top 100 factors the Gini
metric curve flattens, as can be observed in Figure 1.

Fig. 1. Ranked Factor Importance Curve

It is notable that the top ranked factors using this machine learning method-
ology do not include simple lags of the kind considered in the baseline experi-
ments of Section 4.1; in fact conventional lagged inputs do not appear anywhere
in the top 100 factors. This supports the later observation that factor mining in
itself, without further filtering as described below, gives rise to a large improve-
ment in prediction performance over that seen in the baseline experiments.

The top N factors are then filtered based on correlation to target and factor-
to-factor correlation, selecting factors which pass the tests |corrft| ≤ c1 and
|corrff| ≥ c2 respectively, with c1 and c2 optimised on the training set.
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3.2 Mid-price Directional Prediction

Once the optimal factors have been selected they were standardised and used to
train the LSTM RNN with outputs in the range [−1,+1] and targets of -1 (down)
and +1 (up). The net used to produce the results of the next section had eight
hidden units and a 2% weight decay; experiments were carried out using other
numbers of hidden units and differing amounts of weight decay, but results were
found to be robust to reasonable variations of these parameters. It was decided
to avoid the risk of overfitting by not optimising these network parameters; the
results below, for an out-of-sample dataset, may thus be regarded as generally
indicative of the level of predictive power that can be achieved.

4 Results

4.1 Baseline Performance: Use of Close and OHLC Lags as Inputs

A baseline performance was established by investigating the prediction of both
close and mid (see Table 1) from close price lags and OHLC lags (defined as a
full set of OHLC lags, for two preceding time steps, a total of eight factors in
all). Lagged inputs are defined by the equation below,

δi =
(pi − pi−1)

pi−1
, (6)

where pi is the current price and pi-1 is the previous price.

Table 1. Baseline Performance Results

I/O Configuration Accuracy NPBR

Close from Close Lags 51.74% 1.89%
Mid-1 from Close Lags 66.15% 32.27%
Mid-2 from Close Lags 69.64% 39.25%
Close from OHLC Lags 51.44% 0.60%
Mid-2 from OHLC Lags 71.34% 42.69%

The first line of Table 1 corresponds to traditional directional prediction; as
can be seen from the table results are poor, with only a 51.74% accuracy. However
it should be noted that the poor performance derives primarily from the use of
close price as a target rather than as a single lagged input. Replacing the target
at t+1 by either of the mid-prices, but retaining the simple close lag as input,
results in an immediate and large improvement in directional accuracy, with an
accuracy of 66.15% and 69.64% for mid-price-1 and mid-price-2 respectively. It
is thus possible to predict a mid-price to a high accuracy while continuing to use
traditional baseline close price lags as factors.

It can also be seen from the table that using additional open, high, and low
(OHL) lagged inputs has only a very small effect on the network’s ability to
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predict close direction; this may well explain why many traditional candlestick
patterns appear not to be predictive [3][4][5]. There is however a somewhat more
noticeable improvement in mid-price-2 prediction when additional OHL lagged
inputs are used; this suggests that mid-price-2 predictions might be improved
by a more intelligent selection of OHLC based factors.

At this point only two lags have been considered. The number of lags of
OHLC data could have an impact on predictive power and certainly has an
impact on the complexity of the model (fewer parameters being preferred).

Fig. 2. Factor Lag Experimental Results

Figure 2 shows training data NPBR peaks at three, six and nine OHLC lags.
However the maximum is reached at three, implying three lags of OHLC data is
sufficient in this context. (Interestingly, many candlestick patterns are created
from three lags of OHLC data, such as the Three Line Strike.)

4.2 Use of Mined OHLC Factors as Inputs

Table 1 was suggestive of the possibility that suitably configured OHLC data
might enhance mid-price-2 prediction. In the experiments below mined data as
described in Section 3.1 were used. The term Importance Mining in Table 2 refers
to test results using the top 100 importance-ranked factors, and Correlation
Subset to a reduced input set with those same factors now filtered.

Table 2. Factor Mining Performance Results

I/O Configuration Accuracy NPBR

Mid-2: Importance Mining 74.48% 48.75%
Mid-2: Correlation Subset 75.42% 50.73%

It can be seen from Table 2 that factor importance mining does substantially
improve the LSTM RNN net’s performance, resulting in an increase in NPBR
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from 42.69% (see OHLC input result in Table 1) to 48.75%. However from Table
2 correlation based filtering adds only a further 1.98% to the NPBR. In ad-
dition the optimal values of the correlation thresholds c1 and c2 (see Section
3.1) were found to be 0.2 and 1.0, respectively. These observations indicate both
that it is the use of the mined factors per se that is predominantly leading to
the improvement in performance, and that the LSTM RNN is able to operate
effectively without correlation based input screening.

At this point it might appear that the mid-price predictive power could be an
artifact of the FGBL futures contract. To allay this concern we apply the same
methodology to predict mid-price-2 (with no additional parameter optimisation).
Bitcoin was chosen due to its having very different dynamics, being an emerging
market highly sensitive to news, exhibiting high volatility, showing the effects of
price manipulation, and with low liquidity constraints.

Table 3. German Bund vs. Bitcoin Performance

Close from
Close Lags

Mid-2 from
Correlation Subset

I/O Configuration Accuracy NPBR Accuracy NPBR

FGBL Futures 51.74% 1.89% 75.42% 50.73%
Bitcoin 51.47% 0.64% 72.04% 42.5%

As can be seen in Table 3 the performance of Close from Close Lags is simi-
larly poor for Bitcoin as for FGBL futures. However the factor mining method-
ology (incorporating correlation based filtering with the same thresholds c1 and
c2 as for FGBL futures) produces a remarkable 42.5% NPBR on Bitcoin, even
though it was threshold-optimised on FGBL futures. Thus the predictive value
of the mid-price appears to be consistent across vastly different markets.

5 Discussion

It has been shown that use of the proposed mid-price (Equation 2) as target can
result in up to a 75.42% prediction accuracy (50.73% NPBR) using appropriate
machine learning techniques. OHLC data was used to generate candlestick fac-
tors via Randomised Decision Trees which increased the predictive power of an
LSTM RNN from an initial 39.25% (Mid-2 from Close Lags) to this maximum
of 50.73% NPBR, showing OHLC data does have a high predictive value in re-
lation to the mid-price. However it was demonstrated also that OHLC data did
not increase predictive power when forecasting the traditional close price target,
which is in line with [3][4][5]. Hence the results here, while they may be surpris-
ing, are not at odds with the conclusions drawn in other work. The usefulness
of OHLC data is not in predicting the close price, but predicting the mid-price,
which has been neglected in past research.

The discovery of the high predictive power of the mid-price is in itself a
significant result given the prevailing sentiment that no aspect of an asset’s price
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behaviour can be predicted substantially above random. It is not immediately
obvious how to harness this high predictive power within a trading strategy,
as a mid-price prediction is not located at a specific moment in time but only
within an interval. However a trading strategy built around the mid-price is by
no means impossible, though it would necessarily require more for its execution
than the simple prediction of this value.
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