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a b s t r a c t 

This work addresses the multi-objective optimisation of manufacturing strategies of monoclonal antibod- 

ies under uncertainty. The chromatography sequencing and column sizing strategies, including resin at 

each chromatography step, number of columns, column diameters and bed heights, and number of cycles 

per batch, are optimised. The objective functions simultaneously minimise the cost of goods per gram 

and maximise the impurity reduction ability of the purification process. Three parameters are treated as 

uncertainties, including bioreactor titre, and chromatography yield and capability to remove impurities. 

Using chance constraint programming techniques, a multi-objective mixed integer optimisation model 

is proposed. Adapting both ε-constraint method and Dinkelbach’s algorithm, an iterative solution ap- 

proach is developed for Pareto-optimal solutions. The proposed model and approach are applied to an 

industrially-relevant example, demonstrating the benefits of the proposed model through Monte Carlo 

simulation. The sensitivity analysis of the confidence levels used in the chance constraints of the pro- 

posed model is also conducted. 

© 2018 The Authors. Published by Elsevier Ltd. 
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. Introduction 

The market of biopharmaceutical products is currently in a fast-

evelopment stage, in which the sales of monoclonal antibodies

mAbs) products, important biopharmaceutical drugs for the treat-

ent of cancer, autoimmune diseases, cardiovascular disease, etc.,

ave grown rapidly. There were approximately $90 billion global

ales in 2015, representing about 58% of the sales of all biophar-

aceuticals. It is expected that the worldwide sales will increase

o $110 billion by 2018 and $150 billion by 2021 ( Levine and

ooney, 2017 ). In the manufacturing processes of the mAb prod-

cts, chromatography operations in the downstream processing

DSP) are critical steps, which not only represent a large proportion

f the total manufacturing cost, but also play an important role in

he determination of the purity of final products. Thus, it is critical

o identify the chromatography purification process in the biophar-

aceutical manufacturing processes to produce cost-effective and

eliable high-purity biopharmaceutical drugs. 

Optimisation-based approaches exist in the literature for the

ptimal decision-making on downstream purification processes.

he optimal synthesis of protein purification processes was ad-
∗ Corresponding author. 

E-mail addresses: songsong.liu@swansea.ac.uk (S. Liu), l.papageorgiou@ucl.ac.uk 

L.G. Papageorgiou). 

c  

c  

m  

ttps://doi.org/10.1016/j.compchemeng.2018.09.015 

098-1354/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article u
ressed by developing mixed integer programming models and

olution approaches ( Vassquez-Alvarez et al., 2001; Simeonidis

t al., 2005; Natali et al., 2009; Polykarpou et al., 2011 ). A meta-

euristic optimisation approach with genetic algorithms was pro-

osed and applied to the production of mAbs to optimise pu-

ification sequences and chromatography column sizing strategies

 Simaria et al., 2012 ). Mixed integer optimisation models were also

roposed to determine the optimal development of bioprocesses,

sing a hybrid simulation-optimisation decomposition algorithm

or solution ( Brunet et al., 2012 ). Mixed integer programming tech-

iques were applied for the optimal chromatography column siz-

ng decisions in mAb manufacturing with different facility con-

gurations, to minimise the cost of goods per gram (COG/g) ( Liu

t al., 2013a,b ). The same authors further extended these mod-

ls to integrate both chromatography sequencing and column siz-

ng decisions using mixed integer linear fractional programming

MILFP), where Dinkelbach’s algorithm was adapted for solution

pproach ( Liu et al., 2014, 2015 ). Integrated decision tools com-

ining bioprocess economics and optimisation were developed for

he most cost-effective process flowsheets in allogeneic cell ther-

py manufacturing ( Simaria et al., 2014; Hassan et al., 2015 ). Re-

ently, another approach for the optimisation of biopharmaceuti-

al downstream processes was developed by integrating detailed

echanistic models and artificial neural networks to maximise the
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Nomenclature 

Indices 

r resin 

s downstream step 

Sets 

CS set of chromatography steps including capture, inter- 

mediate purification, polishing 

R s set of resins suitable to chromatography step s 

Parameters 

A 

l 
s confidence level in chance constraint for LRV at chro- 

matography step s 

A 

t confidence level in chance constraint for titre 

A 

y 
s confidence level in chance constraint for yield at chro- 

matography step s 

brv bioreactor volume, L 

cy sr yield of resin r at chromatography step s 

cyd l s lower bound of triangular distribution of yield devia- 

tion at chromatography step s 

cyd 
p 
s peak of triangular distribution of yield deviation at 

chromatography step s 

cyd u s upper bound of triangular distribution of yield devia- 

tion at chromatography step s 

dem annual demand, g 

f parameter in Dinkelbach’s algorithm representing fac- 

tion from previous iteration 

lrv sr LRV of resin r at chromatography step s 

lrv d l s lower bound of triangular distribution of LRV deviation 

at chromatography step s 

lrv d p s peak of triangular distribution of LRV deviation at 

chromatography step s 

lrv d u s upper bound of triangular distribution of LRV devia- 

tion at chromatography step s 

maxbn maximum number of batches 

ncy s yield at non-chromatography step s 

titre upstream bioreactor titre, g/L 

titre l lower limit of triangular distribution of upstream 

bioreactor titre, g/L 

titre p peak of triangular distribution of upstream bioreactor 

titre, g/L 

titre u upper bound of triangular distribution of upstream 

bioreactor titre, g/L 

TLRV 

min minimum required total LRV of the process 

TLRV 

U upper bound of total LRV of the process 

α bioreactor working volume ratio 

δ parameter in Dinkelbach’s algorithm representing tol- 

erance of objective function 

�TLRV incremental step of total LRV of the process 

σ batch success rate 

� triangular cumulative distribution function of uncer- 

tain titre 

�̄s triangular cumulative distribution function of uncer- 

tain resin yield deviation 

˜ �s triangular cumulative distribution function of uncer- 

tain resin LRV deviation 

Continuous Variables 

AP annual product output, g 

COG annual cost of goods, £

LRV s LRV at chromatography step s 

M 0 initial product mass entering downstream processes 

per batch, g 

M s product mass per batch after step s , g 

OBJ 1 objective 1: COG/g 

OBJ 2 objective 2: total LRV 

Binary Variables 

U sr 1 if resin r is selected at chromatography step s ; 0 oth- 

erwise 

Auxiliary Variables 

UM s −1 ,r ≡ U sr · M s −1 
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yield of a process with three different chromatographic columns

( Pirrung et al., 2017 ). 

In addition, dealing with uncertainty is also an important is-

sue investigated in the literature on the optimisation of biophar-

maceutical manufacturing process, which is sensitive to uncertain

process parameters. The cost-effective equipment sizing strategies

of a real purification process were addressed and a combinatorial

closed-loop optimisation problem was formulated and solved by

evolutionary algorithm, considering uncertain titre ( Allmendinger

et al., 2012, 2014a ). An optimisation framework was developed to

address the integrated optimisation of both upstream processing

(USP) and DSP of the mAb manufacturing, including bioreactor siz-

ing and chromatography sequencing and column sizing strategies,

under uncertainties in titre and chromatography yield. A chance

constrained programming (CCP) based mixed integer linear pro-

gramming (MILP) model was developed to tackle the uncertain-

ties there ( Liu et al., 2016 ). A Markov decision model was devel-

oped to identify the optimal condition-based bioreactor harvesting

policies, and the IgG 1 antibody production was investigated as a

case study ( Martagan et al., 2016 ). Ensemble modelling approach

was used to account for uncertainties in bioprocess optimisation

involving maximisation of the lower confidence bound of the de-

sired bioprocess objective, using a mean-standard deviation util-

ity function, and was applied to a mAb batch production problem

( Liu and Gunawan, 2017 ). An optimisation framework, including a
arkov decision model and state space structural analysis, was de-

eloped to deal with the trade-offs between yield and purity, start-

ng material uncertainties, purification capability limitations, and

nterlinked decisions involving multiple purification steps for engi-

eered proteins ( Martagan et al., 2018 ). 

All above works considered only single objective for optimisa-

ion, while in the real practice, there is more than one criterion to

easure the performance of manufacturing processes, which need

o be taken into account simultaneously when optimising the rel-

vant strategies, in order to achieve a balance among them. An

ptimisation framework with an evolutionary multi-objective op-

imisation algorithm was developed to consider multiple objec-

ives, including COG/g, robustness in COG/g, and impurity removal

apabilities, in the optimisation of mAb manufacturing process

 Allmendinger et al., 2014b ) Another decision-making framework

n rapid resin selection in biopharmaceutical purification process

evelopment considered both yield of purification process and pu-

ity of the target protein as objective functions, which were op-

imised by a mathematical programming model ( Liu et al., 2017 ).

ecently, a deterministic multi-objective optimisation model of a

iopharmaceutical manufacturing process was developed to opti-

ise both the cost and impurity removal capabilities of the purifi-

ation process ( Liu and Papageorgiou, 2018 ). 

In this work, the model in Liu et al. (2014) is ex-

ended to address the multi-objective optimisation of bio-
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Fig. 1. A typical mAb manufacturing process. 
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harmaceutical manufacturing processes under uncertainty. 

oth chromatography sequencing and column sizing strate-

ies of a mAb purification process are determined in or-

er to achieve optimal COG/g and impurity removal ca-

ability at the DSP. Uncertainties in titre, chromatography

esin yield and impurity reduction ability are taken into

ccount, which have a significant impact on the economic

nd production efficiency of the process, respectively. A CCP-based

ulti-objective mixed integer optimisation model is proposed

o handle the uncertainties, and efficient solution approaches

re developed for Pareto-optimal solutions. To the best of our

nowledge, it is the first attempt in the literature to develop

athematical programming-based models to solve multi-objective

ptimisation problems of biopharmaceutical manufacturing under

ncertainty. 

The remaining of this paper is organised as follows:

ection 2 describes the multi-objective optimisation problem.

he mathematical formulation of the proposed optimisation model

s given in Section 3 , followed by the proposed solution approach

n Section 4 . Section 5 presents an industrially-relevant example,

nd the computational results of optimisation and simulation are

hown and discussed in Section 6 . Finally, the concluding remarks

re drawn in Section 7 . 

. Problem statement 

In this work, a multi-objective optimisation problem of the mAb

anufacturing strategies, including the chromatography sequenc-

ng and column sizing strategies in the DSP, under uncertainty are

ddressed, to optimise both COG/g and impurity removal capability

f a mAb purification process illustrated in Fig. 1 . In this process,

fter mammalian cells cultured in bioreactors at the USP, the mAb

s recovered, purified and cleared from potential viruses and impu-

ities in the DSP with three packed-bed chromatography steps for

apture, intermediate purification and polishing, respectively. 

In each chromatography step, the resin is determined among

 number of suitable candidates, which are categorised in to dif-

erent types. It is assumed that at most one resin is allowed to

e selected from the candidates in each type into the sequence to

tilities the orthogonal separation mechanisms. Besides the chro-

atography sequencing decisions for resin selection, chromatogra-

hy column sizing strategies are also to be determined, including

he bed heights, diameters, number of chromatography columns,

s well as the number of running cycles per batch. The optimal

ecisions are chosen from a set of given discrete candidate values. 

Similar to the previous work ( Liu et al., 2013a,b, 2014, 2015 ), the

OG/g, which is equal to the annual total cost of goods (COG) di-

ided by the annual total output, is aimed to be minimised in this

ork. In addition, the impurity removal capability of the purifica-

ion process is maximised as another objective function. Therefore,
 bi-objective optimisation problem is considered in this work.

o model the impurity removal capability, the host cell proteins

HCPs), produced or encoded by the organisms and unrelated to

he intended mAb product, are investigated as the critical impu-

ity in this work, and must be removed during DSP ( Levy et al.,

014 ), due to their antigenic effects in patients. Each candidate

esin’s logarithmic removal value (LRV) of HCPs is given, a measure

f the resin’s HCPs removal capability defined as the logarithm of

he ratio of concentrations of HCPs in the outflow and inflow of

he resin. The total LRV of the process is the summation of LRVs

f all resins selected in the process, and therefore affected by the

hromatography sequencing strategies. 

The key parameters in this problem, bioreactor titre and the

hromatography yield and LRV of each resin, are associated with

ncertainty, due to the fluctuations in USP and sensitivity of op-

rating conditions. In this work, the above mentioned three uncer-

ain parameters are assumed to follow triangular probability distri-

utions ( Stonier et al., 2013; Allmendinger et al., 2012, 2014a,b ). It

s also assumed that the realised values of each uncertain parame-

er remain the same in different batches ( Liu et al., 2016 ). 

The multi-objective optimisation problem addressed in this

ork can be described as follows: 

Given are: 

• manufacturing process of a mAb product; 
• upstream bioreactor titre; 
• candidate chromatography resins at each step, and their key

characteristics, e.g., yield, linear velocity, buffer usage, dynamic

binding capacity, and LRV of HCPs; 
• key characteristics of non-chromatography steps, e.g., yield,

time and buffer usage; 
• relevant cost data, e.g., reference equipment costs, labour wage,

resin, buffer and media prices; 
• candidate column diameters and heights, numbers of columns

and cycles; 
• probability distributions of titre, chromatography yields and

LRVs of HCPs; 

To determine: 

• chromatography sequencing strategies, i.e., resin at each chro-

matography step; 
• chromatography column sizing strategies, i.e., column diameter

and bed height, number of columns, and number of cycles per

batch at each chromatography step; 
• product mass and volume, and buffer usage volume; 
• number of total completed batches; 
• annual total processing time; 

So as to: 

inimise the COG/g and maximise the total LRV of the whole mAb

urification process. 
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3. Mathematical formulation 

In this section, a CCP-based multi-objective optimisation model

for the optimal chromatography sequencing and sizing decisions is

presented, to deal with uncertainties in titre and chromatography

resin yields and LRVs of HCPs, based on the literature MILFP model

for DSP purification process optimisation ( Liu et al., 2014 ), which is

given in the Supplementary Material. There are a large number of

constraints and variables for the modelling of the highly complex

process, including the product masses and volumes, buffer volumes

and processing times in downstream operations, the calculation of

relevant cost terms, and the linearisation the nonlinear constraints

in the proposed optimisation model. Only the newly developed

constraints in this work are presented in this section. 

The uncertain upstream titre, chromatography resin yields and

LRVs of HCPs are tackled using the classic CCP approach, in which

a risk tolerance is determined by the decision maker as a per-

missible probability of violation in the constraints involving uncer-

tain parameters ( Charnes and Cooper, 1959 ). The developed chance

constraints are transformed into their deterministic equivalent for-

mulations using the expression of the inverse cumulative distribu-

tion function. The chance constraints for three parameter sets in

the CCP approach are presented next in this section. 

3.1. Chance constraints for uncertain titre 

In the deterministic model, the initial protein mass from the

upstream processes in each batch, M 0 , is determined by the biore-

actor titre, titre , and the working volume of bioreactor: 

M 0 = t it re · α · brv (1)

where α is the working volume ratio of the bioreactor, and brv

is the volume of the single bioreactor, estimated by a rule-based

method ( Simaria et al., 2012; Liu et al., 2013a,b, 2016 ), as follows: 

brv = 

dem 

α · titre · maxbn · σ · ∏ 

s ∈ CS min 

r∈ R s 
cy sr ·

∏ 

s / ∈ CS nc y s 
(2)

where dem is the target demand; maxbn is the maximum batches

allowed, determined by the number of bioreactors utilised; σ is

batch success rate; and cy sr and ncy s are the yields at chromatog-

raphy and non-chromatography steps, respectively. 

When the parameter, titre , becomes uncertain, to develop a

chance constraint to model uncertainty, Eq. (1) is firstly converted

into an inequality, as shown in Eq. (3) in which M 0 is upper-

bounded as it is maximised to achieve the minimum COG/g: 

M 0 ≤ t it re · α · brv (3)

The corresponding chance constraint is formulated by enforcing

the probability of the inequality above a certain limit, as follows:

Pr ( M 0 ≤ t it re · α · brv ) ≥ A 

t (4)

where A 

t is a minimum prespecified probability that Eq. (3) will

hold true, as confidence level taking a value between 50% and

100%. 

The above Eq. (4) can be written using the probability of the

uncertain titre: 

1 − Pr 

(
t it re ≤ M 0 

α · brv 

)
≥ A 

t (5)

Here, the upstream titre is assumed to follow a triangular

probability distribution, Tr( titre l , titre p , titre u ), where titre l , titre p 

and titre u are lower bound, peak and upper bound, respectively.

Its cumulative distribution function is denoted as �( titre ). Thus,

Eq. (5) can be rewritten as Eq. (6) : 

�
(

M 0 

α · brv 

)
≤ 1 − A 

t (6)
Using the inverse cumulative distribution function expression,

he deterministic equivalent formulation of Eq. (3) is as follows: 

 0 ≤ �−1 
(
1 − A 

t 
)

· α · brv (7)

For an isosceles triangular distribution where t it r e u − t it r e p =
 it r e p − t it r e l = �t it re , �−1 ( 1 − A 

t ) = t it r e l + 

√ 

2( 1 − A 

t ) · �t it re , if

 

t > 50%. The peak can also be used to estimate the bioreactor vol-

me in Eq. (2) . 

.2. Chance constraints for uncertain yields 

The yield at a chromatography step links the product mass

mount in the inflow and outflow of the step, determined by the

elected resin’s yield: 

 s = 

∑ 

r∈ R s 
c y sr · UM s −1 ,r , ∀ s ∈ CS (8)

here UM s −1 ,r is an auxiliary variable to represent U sr · M s −1 , in

hich U sr is a binary variable to indicate whether resin r is se-

ected at chromatography step s , and M s is the mAb mass of each

atch after step s . 

To model the uncertainty of resin yield, we introduce an uncer-

ain parameter, cyd s , to denote the deviation of the selected resin’s

ield from its standard value, cy sr , at chromatography step s . Thus,

e can convert the constraint involving the uncertainty of resin

ields into an inequality as follows: 

 s ≤
∑ 

r∈ R s 
c y sr · UM s −1 ,r · cy d s , ∀ s ∈ CS (9)

Similarly, given a confidence level of Eq. (9) being true for each

hromatography step s , A 

y 
s , its corresponding chance constraint can

e formulated as: 

r 

( 

M s ≤
∑ 

r∈ R s 
c y sr · UM s −1 ,r · cy d s 

) 

≥ A 

y 
s , ∀ s ∈ CS (10)

Here, the yield deviation, cyd s , is an uncertain parameter fol-

owing a triangular distribution, Tr ( cyd l s , cyd 
p 
s , cyd u s ) . The peak cyd 

p 
s 

s 100%, while cyd l s and cyd u s are lower and upper bounds of the

ield deviation at chromatography step s . The cumulative distribu-

ion function is denoted as �̄s ( cy d s ) . Thus, similar to the discus-

ion to titre in Section 3.1 , Eq. (10) can be reformulated as below:

 s ≤ �̄−1 
s 

(
1 − A 

y 
s 

)
·
∑ 

r∈ R s 
c y sr · UM s −1 ,r , ∀ s ∈ CS (11)

here �̄−1 
s ( 1 − A 

y 
s ) = cyd l s + 

√ 

2( 1 − A 

t ) · �c y d s , if c yd u s − c yd 
p 
s =

yd 
p 
s − cyd l s = �cy d s and A 

y 
s > 50% . 

.3. Chance constraints for uncertain LRVs 

To ensure the purity of the mAb product meets the target level

fter the purification process, HCPs, one of the critical impurities,

ust be removed during the process. The capability to remove

CPs of each resin is measured in terms of LRV, lrv sr . Thus, the LRV

t each chromatography step is determined by the selected resin:

R V s = 

∑ 

r∈ R s 
lr v sr · U sr , ∀ s ∈ CS (12)

To generate a chance constraint for uncertain LRV, Eq. (12) is

onverted into an inequality, with the introduction of an uncertain

arameter, lrvd s , to represent the deviation of the selected resin’s

RV from its standard value at chromatography step s, lrv sr : 

R V s ≤
∑ 

r∈ R s 
l r v sr · U sr · l rv d s , ∀ s ∈ CS (13)
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here LRV s is restricted by an upper bound as it is aimed to be

aximised at each step. 

Similarly, the corresponding chance constraint of Eq. (13) with

 given confidence level of its being valid, A 

l 
s , is as follows: 

r 

( 

LR V s ≤
∑ 

r∈ R s 
l r v sr · U sr · l rv d s 

) 

≥ A 

l 
s , ∀ s ∈ CS (14)

The uncertain LRV deviation, lrvd s , also follows a triangular dis-

ribution, Tr ( l rv d l s , l rv d 
p 
s , l rv d u s ) , in which the peak, lrv d p s , is also

00%, and lrv d l s and lrv d u s are the corresponding lower and upper

ounds. Given its cumulative distribution, ˜ �s ( lrv d s ) , we have the

ollowing deterministic equivalent formulation of Eq. (13) : 

R V s ≤ ˜ �−1 
s 

(
1 − A 

l 
s 

)
·
∑ 

r∈ R s 
lr v sr · U sr , ∀ s ∈ CS (15)

Here, under an isosceles triangular distribution where

 rv d u s − l rv d p s = l rv d p s − l rv d l s = �l rv d s , we have ˜ �−1 
s ( 1 − A 

l 
s ) =

 rv d l s + 

√ 

2( 1 − A 

l 
s ) · �l rv d s when A 

l 
s > 50% . 

.4. Objective functions 

This problem includes two objective functions to simultane-

usly consider both cost and impurity reduction ability of the pu-

ification process. The first objective, COG/g, i.e., the ratio of the

otal COG, COG , to the annual production, AP , is minimised: 

in OB J 1 = 

COG 

AP 
(16) 

The second objective considers the maximisation of total impu-

ity removal capability, which is represented by total LRV of the

rocess, defined as the summation of the LRVs at all three chro-

atography steps: 

ax OB J 2 = 

∑ 

s ∈ CS 

LR V s (17) 

Overall, the optimisation problem under uncertainty is for-

ulated as a CCP-based multi-objective optimisation model (de-

oted as MO 

–CCP) with chance constraints, Eqs. (7) , (11) , (15) , as

ell as other constraints, Eqs. (S.1)-(S.7), (S.9), (S.11)-(S.84) pro-

ided in the Supplementary Material, and Eqs. (16) and (17) as

he objective functions. When no uncertainty is considered, the

eterministic optimisation model (denoted as MO-DET) includes

qs. (12) , (S.1)-(S.84) in the Supplementary Material as constraints,

nd Eqs. (16) and (17) as the objective functions, which will be

ompared to the proposed MO 

–CCP model later in this work. 

. Solution approach 

To solve the proposed multi-objective optimisation model in

he above section, we adapt the classic ɛ -constraint method

 Haimes et al., 1971 ; Chankong and Haimes, 1983 ), where only one

bjective is optimised and all other objectives are converted into

onstraints by setting an upper or lower bound to each of them, to

chieve the minimum-cost solution under total LRV requirement.

he obtained solutions are proven to satisfy the Pareto optimality

 Miettinen, 1999 ). 

In the proposed multi-objective optimisation problem, between

he two objectives, the COG/g is kept as the objective function,

hile the total LRV of HCPs is transformed as a constraint lim-

ted by a lower bound. Thus, the multi-objective model MO-CCP is

eformulated as a single-objective optimisation model, SO 

–CCP, as

ollows: 

c

in 

COG 
AP 

 . t . 
∑ 

s ∈ CS 

LR V s ≥ T LR V 

min 

Eqs . ( 7 ) , ( 11 ) , ( 15 ) , ( S . 1 ) −( S . 7 ) , ( S . 9 ) , ( S . 11 ) −( S . 84 ) 

here TLRV 

min refers to the minimum required total LRV to ensure

hat the purity of final products is higher than the given target pu-

ity level. By changing the value of TLRV 

min , a set of Pareto-optimal

olutions can be achieved. The above SO 

–CCP model solved in each

teration of ɛ -constraint method is an MILFP model. Similar to the

ork of Liu et al. (2014, 2015, 2018 ), the Dinkelbach’s algorithm

 Dinkelbach, 1967 ) is applied to the MILFP model by iteratively

olving a number of MILP models, MILP-CCP, defined as follows: 

in COG − f · AP 

 . t . 
∑ 

s ∈ CS 

LR V s ≥ T LR V 

min 

Eqs . ( 7 ) , ( 11 ) , ( 15 ) , ( S . 1 ) −( S . 7 ) , ( S . 9 ) , ( S . 11 ) −( S . 84 ) 

here f is a parameter whose value is updated by iterations. 

Overall, the proposed iterative solution approach integrating

oth ɛ -constraint method and Dinkelbach’s algorithm is illustrated

n Fig. 2 . The proposed iterative solution procedure consists of

olving a number of CCP-based MILP models iteratively, result-

ng in a set of Pareto-optimal solutions of the developed multi-

bjective optimisation model under uncertainty, MO 

–CCP. Note

hat the similar procedure is also applicable to the deterministic

ulti-objective optimisation problem, MO-DET, by solving a collec-

ion of deterministic MILP models. 

. Case study 

In this section, an industrially-relevant example, based on a

Ab purification process in a biopharmaceutical company, is intro-

uced to examine the applicability of the proposed models and ap-

roaches. There are 11 candidate commercial resins in two modes,

inding-elution (BE) and flow-through (FT) and the following five

ypes: 

• affinity chromatography (AFF); 
• cation-exchange chromatography (CEX 

• anion-exchange chromatography (AEX); 
• mixed-mode chromatography (MM); 
• hydrophobic interaction chromatography (HIC). 

The characteristics of these resin candidates are shown in

able 1 , where the standard values of yield and LRV of each resin

re shown, and their actual values during production may vary

rom those. 

As to the chromatography column sizing decisions, 11 discrete

otential bed heights and 10 discrete potential diameters are avail-

ble for selection, as shown in Table 2 . There also could be up to

 parallel columns utilised at each chromatography step and each

atch could run in at most 10 cycles. 

Here, multiple USP trains could be used to feed one DSP train.

ccording to the previous work ( Liu et al., 2013a,b, 2014, 2015,

016, 2017 ), single bioreactor has higher cost efficiency than other

ases. Therefore, only one bioreactor is considered in this case

tudy, while multiple bioreactors can be easily accommodated into

he proposed models. Considering a target demand of 500 kg, the

olume of the single bioreactor can be calculated using Eq. (2) ,

hich is 25,017 L. More data in the case study are given in the

upplementary Material (Tables S1-S3). The three uncertain param-

ters considered in this work all follow isosceles triangular prob-

bility distributions, as described in Table 3 . It is assumed that

ifferent chromatography steps use the same distribution function

onsidering uncertain yield and LRV deviation. 
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Fig. 2. The proposed iterative solution approach of the proposed MO –CCP model. 

Table 1 

Characteristics of resin candidates. 

Resin Type Mode Binding 

capacity 

(g/L) 

Eluate 

volume 

(CV) 

Buffer 

volume 

(CV) 

Linear 

velocity 

(cm/h) 

Matrix 

lifetime 

(cycle) 

Matrix 

price 

(£/L) 

Standard yield Standard LRV of HCPs 

Cap. Int. Pol. Cap. Int. Pol. 

R1 AFF BE 50 2.3 37 150 100 9200 91% 95% - 3 1.5 - 

R2 AFF BE 30 2.3 37 300 100 6400 91% 95% - 3 1.5 - 

R3 AFF BE 50 2.3 37 800 100 9900 91% 95% - 3 1.5 - 

R4 AFF BE 30 2.3 37 10 0 0 100 90 0 0 91% 95% - 3 1.5 - 

R5 CEX BE 120 1.4 26 500 100 2500 86% - - 2 - - 

R6 CEX BE 40 1.4 26 300 100 400 86% 92% 92% 2 1 0.5 

R7 AEX FT 100 0 10 300 100 700 - 95% 95% - 0.5 0.3 

R8 MM FT 150 0 10 375 100 3500 - 90% 90% - 1.2 0.6 

R9 MM BE 50 1.4 26 100 100 1900 - 90% 90% - 1.5 0.8 

R10 MM BE 35 1.4 26 250 12 2700 - 90% 90% - 2 1 

R11 HIC BE 27.5 1.4 26 175 100 2500 - 89% 89% - 2 0.5 

Table 2 

Chromatography column size candidates. 

Decision Candidate values 

Bed height (cm) 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 

Diameter (cm) 50, 60, 70, 80, 90, 100, 120, 160, 180, 200 

Number of cycles 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Number of columns 1, 2, 3, 4 

Table 3 

Triangular probability distributions of uncertainty parameters. 

Parameter Lower bound Peak Upper bound 

titre 2 (g/L) 3 (g/L) 4 (g/L) 

cyd s 95% 100% 105% 

lrvd s 80% 100% 120% 
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6. Results and discussion 

In this section, the proposed optimisation model and solution

approach are applied to the above case study. Then, the obtained

optimal manufacturing strategies are examined through Monte

Carlo (MC) simulation. At last, the sensitivity analysis of confidence

level is conducted. All computational runs were implemented in

GAMS 24.7 ( GAMS Development Cooperation, 2016 ) on a 64-bit

Windows 7 based machine with Intel Core i5-3330 3.00 GHz pro-

cessor and 8.0 GB RAM, using CPLEX as MILP solver. 

6.1. Optimal results 

The proposed multi-objective optimisation model, MO 

–CCP, as

well as the deterministic model, MO-DET, as the base case for com-
arison, are solved. The confidence level of chance constraint feasi-

ility in the MO 

–CCP model is set to 95%, i.e., A 

t = A 

y 
s = A 

l 
s = 95% .

ith a 95% confidence level, �−1 ( 1 − A 

t ) in Eq. (7) , �̄−1 
s ( 1 − A 

y 
s )

n Eq. (11) and 

˜ �−1 
s ( 1 − A 

l 
s ) in Eq. (15) are approximately equal to

.32, 96.58%, and 86.32%, respectively. 

To implement the proposed solution approach, the minimum

otal LRV requirement of the purification process is initially set

o 3.4 g/L, and then is gradually increased to 5 g/L ( TLRV 

U ) with a

tep of 0.2 g/L ( �TLRV ), and therefore a Pareto curve consisting of

 Pareto-optimal solutions is obtained. The Pareto frontier of the

O 

–CCP model is compared with that of the MO-DET model in

ig. 3 , where the optimal chromatography sequence of each Pareto-

ptimal solution is also presented. Table 4 shows the optimal chro-

atography column sizing decisions under each minimum total

RV requirement. 

Firstly, the optimal chromatography decisions of the MO-DET

roblem are focused on. R5 (CEX) is selected at the capture step

hen the minimum required total LRV is low ( < 4), but R3 (AFF)

ith a higher standard LRV (3) is chosen when the minimum re-

uired total LRV increases, even it is much more expensive than

5. Meanwhile, R7 (AEX) is used for polishing at all optimal solu-

ions. The actual total standard LRV of the whole process increases

rom 3.5 to 5.3, to meet the impurity removal capability require-

ent. As to the chromatography column sizing decisions, only one

hromatography column is used at all steps in all solutions, while

he other decisions vary, except that only the column with a diam-

ter of 100 cm is always used at the capture step. With increas-

ng minimum required total LRVs, COG/g increases by 10% from

68.4/g to £75.2/g. 

Next, by comparing the solutions of MO 

–CCP to those of MO-

ET, it can be seen that, for each minimum required total LRV,
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Fig. 3. The optimal COG/g and chromatography sequences of the MO –CCP and MO-DET models. 

Table 4 

Pareto-optimal solutions of the MO –CCP and MO-DET models. 

Minimum total LRV Total standard LRV COG/g (£/g) Column diameter ∗ (cm) Column bed height ∗ (cm) No. of columns ∗ No. of cycles per batch ∗

Model MO-DET 3.4 3.5 68.4 100/50/70 15/15/17 1/1/1 4/10/6 

3.6 3.8 69.6 100/90/70 20/23/18 1/1/1 3/6/6 

3.8 3.8 69.6 100/90/70 20/23/18 1/1/1 3/6/6 

4.0 4.3 70.3 100/120/70 18/17/16 1/1/1 8/6/7 

4.2 4.3 70.3 100/120/70 18/17/16 1/1/1 8/6/7 

4.4 4.5 70.7 100/70/80 24/20/21 1/1/1 6/4/4 

4.6 4.8 72.5 100/160/60 18/23/21 1/1/1 8/2/7 

4.8 4.8 72.5 100/160/60 18/23/21 1/1/1 8/2/7 

5.0 5.3 75.2 100/180/70 16/22/18 1/1/1 9/3/6 

Model MO –CCP 3.4 4.3 97.9 100/120/60 16/19/22 1/1/1 7/4/5 

3.6 4.3 97.9 100/120/60 16/19/22 1/1/1 7/4/5 

3.8 4.5 98.9 90/70/80 23/20/20 1/1/1 6/3/3 

4.0 4.8 100.9 10 0/20 0/60 16/22/18 1/1/1 7/1/6 

4.2 5.3 104.1 100/160/60 16/21/21 1/1/1 7/3/5 

4.4 5.3 104.1 100/160/60 16/21/21 1/1/1 7/3/5 

4.6 5.5 109.1 100/160/100 16/21/19 1/1/1 7/3/5 

4.8 5.6 110.1 100/160/50 16/21/17 1/1/1 7/3/6 

5.0 5.8 112.3 100/160/160 16/21/15 1/1/1 7/3/2 

∗ values at capture/intermediate purification/polishing chromatography steps 

Fig. 4. Average COG/g in MC simulation on the solutions of the MO –CCP (95% confidence level) and MO-DET models. 
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Fig. 5. Mean total LRVs and probabilities of failing to meet LRV requirement in MC simulation on the solutions of the MO –CCP (95% confidence level) and MO-DET models. 

Fig. 6. Mean total LRVs and probabilities of failing to meet LRV requirement in MC simulation on the solutions of the MO –CCP model under confidence levels of 90%, 95% 

and 98%. 
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the MO 

–CCP model usually chooses a different chromatography se-

quence with higher total standard LRV than that of MO-DET model.

For example, when the minimum required total LRV is 3.8, the

MO 

–CCP model chooses a sequence of R3-R8-R7, which has a total

standard LRV of 4.5, in order to guarantee that the realised total

LRV is no less than the required level at the given confidence level

(95%), while the optimal sequence of the MO-DET model, R5-R3-

R7, has a total LRV of 3.8 only, which will fail to meet the require-

ment if the realisation is below expectation. Comparing the total

standard LRVs in the solutions of two models, the sequence of the

MO 

–CCP model is averagely 0.7 higher than that of the MO-DET

model, and 0.8 higher than the minimum required total LRV. More-

over, the selected sequence of the MO 

–CCP model is also more ex-

pensive. Different from the solutions of MO-DET model, R5 is no

longer a choice at the capture step, while R3 is used no matter

whether the total LRV requirement is low or high. However, at the

polishing step, although R7 (AEX) with relatively lower price and

t  
RV is chosen in most cases, resins having higher LRVs are used

hen the impurity removal capability requirement increases. Due

o the chance constraints on titre and yields, the selected column

izes of the MO 

–CCP model is smaller than the MO-DET model,

eading to lower production. Similar to the deterministic case, the

OG/g increases with increasing minimum required total LRV. Due

o the higher cost and lower production, the obtained COG/g by

ptimising the MO 

–CCP model is over 40% higher than the MO-

ET model. In the next section, we will conduct an analysis of

C simulation to highlight the benefits of the proposed CCP-based

odel. 

.2. MC simulation 

Here, a stochastic analysis is conducted to examine the im-

act of variability on the solutions by implementing MC simulation

 Kroese et al., 2011 ). MC simulation analysis was implemented on

he solutions obtained by both MO 

–CCP and MO-DET models. After
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Fig. 7. Mean COG/g in MC simulation on the solutions of the MO –CCP model under confidence levels of 90%, 95% and 98%. 
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btaining the optimal solutions of optimisation models, MC simu-

ation analysis was conducted by solving the deterministic optimi-

ation model, SO-DET, with fixed design variables, including vari-

bles for chromatography sequence, column volume and number of

olumns, to re-optimise all other operational variables, dependent

n different realisations of uncertain parameters, titre, cyd s and

rvd s . In the proposed MC simulation, a total of 10 0 0 simulation

uns is implemented for each Pareto-optimal solution. Here, for

he random realisation of each simulation run, it is firstly checked

hether the realised total LRV meet the minimum required to-

al LRV. If the realised total LRV is less the minimum required

otal LRV, the single objective optimisation model subject to the

inimum required total LRV constraint is infeasible, and the final

roduct of the generated purification process cannot meet the tar-

et purity level, which is treated as wastes. In this case, we take

10 0 0/g as COG/g of this simulation run ( Liu et al., 2016 ), which

an be considered as the cost of outsourcing purchase. Otherwise,

hen the realised total LRV is no less than the minimum required

otal LRV, we run the deterministic model, SO-DET, to minimise

he COG/g subject to the minimum total LRV and other constraints.

he performance of the MC analysis is examined using the mean

OG/g in all simulation runs, which mimics the expected value of

OG/g. In addition, the probability of failing to meet the minimum

RV requirement is examined for the robustness of the selected

hromatography strategies. The procedure of MC simulation is de-

cribed as follows: 

P 1. Fix the optimal chromatography sequences, 
column volumes and the number of columns 
obtained from the optimisation models; 
P 2. Generate random titre, yield deviations 
and LRV deviations, all following 
triangular probability distributions as 
given in Table 4 ; 

P 3. If the total LRV is lower than the minimum 
required total LRV, COG/g is set to 1000; 
Otherwise, solve the model SO-DET with the 
random parameters by the proposed solution 
approach in Section 4 to obtain the optimal
COG/g; 

P 4. Go to Steps 2 and 3 and repeat for 1000 
times. 

Fig. 4 shows the mean values of COG/g in the MC simulation.

he mean values of COG/g in the MC simulation on the solutions

f the MO 

–CCP model vary between £70/g and £90/g, which are

ower than the optimal COG/g returned by the MO 

–CCP model,

ue to the underestimation of realisation of uncertain parame-

ers in the chance constraints. Meanwhile, the mean values of

OG/g in the MC simulation on the solutions of the MO-DET model

re significantly higher by one order of magnitude, up to £560/g.

ig. 5 shows another benefit of the solutions MO 

–CCP model. The

ean values of total LRV in the simulation on both MO 

–CCP and

O-DET models’ solutions are same as the total standard LRVs ob-

ained by the optimisation models, as reported in Table 4 , which

re all no less than the corresponding minimum required total

RVs. For the MO-DET model, the mean total LRV from the sim-

lation is not significantly higher than the minimum required total

RV, with a difference of 0.3 at most and 0.1 on average. There-

ore, the realised total LRV has a lower chance to meet the LRV re-

uirement. For 9 Pareto-optimal solutions, the probabilities of total
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LRV being lower than requirement are all greater than 10%, and the

probabilities for two solutions are even more than 50% when the

mean total LRV is the same as the minimum required value (3.8

and 4.8). In the meantime, the solutions of MO 

–CCP model obtain

chromatography sequences with much higher total LRVs, at least

16% higher than the required values. Thus, there are just few sim-

ulation runs whose realised total LRV is less than the minimum

required total LRV, and the probability of failing to meet the re-

quirement is 0% except for two solutions. When the minimum re-

quired total LRV is high (4.8 and 5), only 1 or 2 simulation runs

out of 10 0 0 cannot meet the requirement. The relatively higher to-

tal LRV and lower probability of not meeting required purity level

lead to the advantage of the solutions of the MO 

–CCP model. With

smaller COG/g and lower failure rates, the MO 

–CCP model shows

higher robustness, compared to the MO-DET model, to deal with

the uncertainties in titre, resin yield and impurity removal capa-

bility. 

Overall, the proposed MO 

–CCP model is able to cope with the

uncertainties of the parameters, i.e., titre, resin yields and LRVs in

this problem, to achieve significant economic benefits than the de-

terministic counterpart. 

6.3. Sensitivity analysis of confidence levels 

In the proposed CCP-based model, the confidence levels in the

chance constraints impact the probabilities of the solutions be-

ing feasible. A risk-averse decision with a higher confidence level

makes the chance constraint to be held with higher probability.

Here, it is assumed that the same confidence level is implemented

in all chance constraints. Three different confidence levels, 90%,

95% and 98%, are considered in this section. The optimal solutions

obtained by the proposed MO 

–CCP model are examined using the

MC simulation as described in the previous section. The details

of the obtained optimal solutions with the 90% and 98% confi-

dence levels are provided in the Supplementary Material (Tables

S4 and S5). In order to cope with low LRV realisation, the optimal

solutions with higher confidence levels select chromatography se-

quences with higher total LRV, which are also more expensive, and

incur lower probabilities of being lower than the requirement, as

shown in Fig. 6 . When the confidence level is 90%, the total LRVs of

the chromatography sequence in the optimal solutions are smaller

than the other two, and there are 6 solutions (out of 9) whose

simulation runs cannot meet total LRV requirement, although the

probability is quite low, only up to 2.5%. For the confidence level

of 98%, the selected sequences have the highest total LRVs, and the

simulation runs of all solutions generate higher total LRVs than the

minimum requirement. 

Consequently, as presented in Fig. 7 , a confidence level of 90%

achieves higher mean COG/g than the other two, except when the

minimum required total LRV is 5, much more expensive resins

are selected under the conference level of 98%, resulting in higher

COG/g. The COG/g in the simulation under the conference levels

of 95% and 98% are comparable to each other. It can be observed

that the achieved mean values are quite similar. When the mini-

mum required total LRVs are high (4.8 and 5), the confidence level

of 95% gets slightly smaller mean COG/g than the conference level

of 98%, but has higher chance not to meet the minimum total LRV

requirement. Especifically for this problem, confidence levels rang-

ing from 95% to 98% are applicable to chance constraints for high

quality solutions. 

7. Concluding remarks 

This work addressed the multi-objective optimisation of down-

stream processing of mAb products, to find the optimal chromatog-

raphy sequencing and column sizing strategies. Both cost and im-
urity removal capability of the purification process are considered

s objectives. Considering uncertainties in bioreactor titre, chro-

atography yield and LRV of HCPs, a stochastic CCP-based multi-

bjective optimisation model has been developed by extending

revious work ( Liu et al., 2014 ). To solve the proposed model, ε-

onstraint method and Dinkelbach’s algorithm have been adapted

o develop an iterative solution approach to generate a set of

areto-optimal solutions with different minimum required total

RVs of the whole process. An industrially-relevant example has

een investigated. The computational results of 9 Pareto-optimal

olutions have shown that the CCP-based model deals with the

ariability of uncertain parameters in a better manner than the

eterministic model, through the valuation of MC simulation, ob-

aining much less mean COG/g. Also, a sensitivity analysis on the

onfidence level shows the effects on the selected resin LRVs and

OG/g in the MC simulation. 
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