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The previous research work in the literature for capacity planning and scheduling of biopharmaceutical 

manufacture focused mostly on the use of mixed integer linear programming (MILP). This paper presents 

fast genetic algorithm (GA) approaches for solving discrete-time MILP problems of capacity planning and 

scheduling in the biopharmaceutical industry. The proposed approach is validated on two case studies 

from the literature and compared with MILP models. In case study 1, a medium-term capacity planning 

problem of a single-site, multi-suite, multi-product biopharmaceutical manufacture is presented. The GA 

is shown to achieve the global optimum on average 3.6 times faster than a MILP model. In case study 

2, a larger long-term planning problem of multi-site, multi-product bio-manufacture is solved. Using the 

rolling horizon strategy, the GA is demonstrated to achieve near-optimal solutions (1% away from the 

global optimum) as fast as a MILP model. 

© 2018 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

Biopharmaceutical drug development requires substantial in-

vestments of capital, human resources, and technological expertise.

The cost of development of a single drug entering human trials

between 1989 and 2002 was estimated to be in excess of $800M

( DiMasi et al., 2003 ). The development costs have been rising sub-

stantially for years. In an analysis by Paul et al. (2010) , the cost of

a new molecular entity was reported to be $1.8B. The likelihood of

a new biopharmaceutical drug product gaining approval for mar-

keting and the rate of approval for new products has been get-

ting lower over the years. According to Kaitin and DiMasi (2010) ,

only one in six new drugs that entered clinical trials in the United

States during 1993–98 and the 1999–2004 sub-periods were suc-

cessfully approved for marketing. Shanley (2014) reported that

only 12% of the candidate drugs get approved for use. Given the

high costs and the uncertainty of the biopharmaceutical devel-

opment process, building new capacity for products which may

or may not reach the market is not the most desirable option.

Therefore, it is essential to optimise the manufacturing capac-
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ty in an existing multi-product facility or a network of facilities.

ansohoff (2004) suggested that a typical mammalian cell-culture

acility could increase annual revenues by $380M with a 25% in-

rease in plant utilisation. 

Biopharmaceutical production planning is a complex combina-

orial optimisation problem complicated by the unique features

f biomanufacture. Biopharmaceutical companies typically have a

ortfolio of various products manufactured across a network of

wned and contract manufacturing facilities with wide-ranging

roduction capabilities. Biopharmaceutical products tend to be un-

table and thus have specialised and costly transportation and

torage requirements. Biopharmaceutical companies are also re-

uired to meet high-quality standards and prove they can deliver

 consistent manufacturing process. The high-quality standards are

chieved by rigorous cleaning and sterilisation between individual

roduction campaigns. 

The research work in the literature for capacity planning

nd scheduling of biopharmaceutical manufacture has focused on

iscrete-time MILP formulations adapted from the pharmaceu-

ical and chemical engineering industries ( Papageorgiou et al.,

001 ). The first medium-term capacity planning model for a multi-

roduct, multi-suite biopharmaceutical facility was presented by

akhdar et al. (2005) . Their approach helped to determine the op-

imal durations and sequence of production campaigns together
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://core.ac.uk/display/195312134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.compchemeng.2018.09.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2018.09.019&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:karolis.jankauskas.10@ucl.ac.uk
mailto:s.farid@ucl.ac.uk
https://doi.org/10.1016/j.compchemeng.2018.09.019
http://creativecommons.org/licenses/by/4.0/


K. Jankauskas et al. / Computers and Chemical Engineering 121 (2019) 212–223 213 
Notation for case study 1 

Indices 

i USP suites 

j DSP suites 

p products 

t, θ time periods 

Parameters 

H t available production time horizon over time period 

t , [days] 

C p USP storage capacity of product p, [batches] 

F p DSP storage capacity of product p, [batches] 

CR p USP production rate of product p, [batches/day] 

FR p DSP production rate of product p, [batches/day] 

CT min 
p min production time for product p in USP suite i , 

[days] 

CT max 
p max production time for product p in USP suite i, 

[days] 

F T min 
p min production time for product p in DSP suite j , 

[days] 

F T max 
p max production time for product p in DSP suite j, 

[days] 

αp USP lead time of product p, [days] 

βp DSP lead time of product p, [days] 

ρp USP storage cost, [RMU/batch] 

ω p DSP storage cost, [RMU/batch] 

ζ p USP shelf-life of product p, [time periods] 

σ p DSP shelf-life of product p, [time periods] 

λp production correspondence factor for USP to DSP 

production of product p 

ηp manufacturing cost, [RMU/batch] 

ψ p changeover cost, [RMU] 

T p waste disposal cost, [RMU/batch] 

νp sales prices, [RMU/batch] 

δp lateness penalty, [RMU/batch] 

D pt demand of product p at time period t, [batches] 

Integer variables 

product it part of the chromosome containing product labels 

allocated at time period t to USP suite i 

product jt part of the chromosome containing product labels 

allocated at time period t to DSP suite j 

time it part of the chromosome containing the number of 

production days allocated at time period t to USP 

suite i 

time jt part of the chromosome containing the number of 

production days allocated at time period t to DSP 

suite i 

B ipt number of batches of product p produced at time 

period t in USP suite i 

B jpt number of batches of product p produced at time 

period t in DSP suite j 

CI pt number of batches of USP product p stored at time 

period t 

FI pt number of batches of DSP product p stored at time 

period t 

CW pt number of batches of USP product p wasted at time 

period t 

FW pt number of batches of DSP product p wasted at time 

period t 

S pt number of batches of product p sold at time period 

t 
�pt number of batches of product p in backlog at time 

period p 

Binary variables 

Y ipt 1 if product p is produced in USP suite i at time pe- 

riod t ; 0 otherwise 

Y jpt 1 if product p is produced in DSP suite j at time pe- 

riod t ; 0 otherwise 

Z ipt 1 if a new campaign of product p is produced in USP 

suite i at time period t ; 0 otherwise 

Z jpt 1 if a new campaign of product p is produced in DSP 

suite j at time period t ; 0 otherwise 

Continuous variables 

CT ipt production time for product p in USP suite i during 

time period t , [days] 

FT jpt production time for product p in DSP suite j during 

time period t , [days] 

Profit total profit – objective function, [RMU] 

Notation for case study 2 

Indices 

i facilities 

p products 

t, θ , ξ time periods 

Sets 

PI i set of products that can be produced by facility i 

TI i set of time periods in which facility i is available 

Parameters 

H t available production time horizon over time period 

t , [days] 

C p storage capacity of product p, [kg] 

T min 
ip 

min production time for product p in facility i , 

[days] 

T max 
ip 

max production time for product p in facility i, 

[days] 

r ip production rate of product p at facility i, 

[batches/day] 

αip lead time for product p at facility i, [days] 

ζ p shelf-life of product p, [time periods] 

ηip manufacturing cost of product p at facility i , 

[RMU/batch] 

ρp storage cost of product p , [RMU/kg] 

ψ p changeover cost of product p , [RMU] 

νp sales prices, [RMU/kg] 

δp lateness penalty, [RMU/kg] 

ζ p shelf-life of product p, [time periods] 

πp backlog decay factor of product p 

yd ip yield conversion factor for product p in facility i, 

[kg/batch] 

D pt demand of product p at time period t, [kg] 

Integer variables 

product it part of the chromosome containing product labels 

allocated at time period t to facility i 

time it part of the chromosome containing the number of 

production days allocated at time period t to facility 

i 

B ipt number of batches of product p produced at time 

period t in facility i 
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Binary variables 

Y ipt 1 if product p is produced in facility i at time period 

t ; 0 otherwise 

Z ipt 1 if a new campaign of product p is produced in 

facility i at time period t ; 0 otherwise 

Continuous variables 

T ipt production time for product p at facility i during 

time period t , [days] 

K ipt amount of product p produced in facility i at time 

period t, [kg] 

I pt amount of product p stored at time period t, [kg] 

W pt amount of product p wasted in at time period t, [kg] 

S pt amount of product p sold at time period t, [kg] 

�pt amount of product p in backlog at time period p, 

[kg] 

Profit total profit – objective function, [RMU] 

with product inventory, sales, and late deliveries profiles. Further-

more, the proposed MILP based optimisation method was shown

to find more optimal solutions than the industrial rule-based ap-

proach. 

The randomness of the biopharmaceutical manufacturing en-

vironment can cause significant scheduling and planning difficul-

ties for the biopharmaceutical manufacturing campaigns. To ad-

dress this, Lakhdar and Papageorgiou (2006) applied MILP and

two-stage programming for medium-term planning of biopharma-

ceutical manufacture under uncertain fermentation titres. The pro-

posed methodology achieved better results than the deterministic

MILP model. 

The optimisation of biopharmaceutical manufacturing capacity

often involves many multiple conflicting criteria and objectives to

be considered. George et al. (2007) presented a multi-criteria de-

cision framework for the selection of strategies for acquiring bio-

pharmaceutical manufacturing capacity. Lakhdar et al. (2007) ad-

dressed the challenge of making long-term, multi-site capacity

planning decisions given multiple strategic criteria such as risk,

cost, and customer service levels. Using goal programming, they

developed a mathematical model that could optimise multiple ob-

jectives. 

The vast part of the research on biopharmaceutical manufacture

planning has been limited to either batch or fed-batch processes.

However, a more recent, large-scale discrete-time MILP model was

presented by Siganporia et al. (2014) to optimise long-term capac-

ity plans for a portfolio of biopharmaceutical products, with either

batch or perfusion bioprocesses, across multiple facilities to meet

quarterly demands. 

Genetic algorithms are stochastic, population-based search al-

gorithms that follow the naïve laws of evolution and natural selec-

tion. Unlike most other conventional optimisation algorithms, GAs

start from a pool of usually randomly generated solutions (also

known as chromosomes). Chromosomes with a higher objective

function value are selected for reproduction (crossover and muta-

tion) to generate new and hopefully better solutions for each new

iteration of the algorithm (also known as a generation). Since a

population of solutions is processed in each iteration of the GA,

the outcome is also a population of solutions. If an optimisation

problem has a global optimum, then all chromosomes can be ex-

pected to converge to it. Alternatively, if an optimisation prob-

lem has multiple optimal solutions, GAs can capture them in its

final population ( Deb, 2001 ). Unlike classical optimisation meth-

ods which make assumptions about the relationships between the

variables, constraints, and the objective, GAs are flexible optimisers

making minimal assumptions about the problem. Therefore, de-

spite the lack of guarantee of finding global optimum and the dif-
culty of designing the objective function, chromosome structure,

nd operators, GAs have been used to obtain approximate solu-

ions to a wide range of complex linear and non-linear problem

uch as training neural networks ( Chen and Liao, 1998 ), finding

he optimal number, types, and positions of wireless transmitters

 Ting et al., 2009 ), and creating a program capable of solving plan-

ing problems described in Planning Domain Definition Language

PDDL) ( Brie and Morignot, 2005 ). 

At the time of writing, the literature on the use of alterna-

ive optimisation methods such as genetic algorithms (GAs) in

he biopharmaceutical industry was somewhat limited. Most of

he publications focused on the management of product portfolios

nd the optimisation of process design. On the portfolio manage-

ent front, George and Farid (2008) developed a stochastic, multi-

bjective optimisation framework based on probabilistic, model-

uilding genetic algorithms for the optimisation of the structure

nd development pathway of biopharmaceutical drug portfolios.

ie et al. (2012) presented a stochastic, GA-based decision-support

ool to address the decisions involved in portfolio management at

oth the drug development process level and the portfolio level.

n the process design front, Simaria et al. (2012) proposed a multi-

bjective GA-based approach for the selection and optimisation of

urification sequences and chromatography column sizing strate-

ies. Allmendinger et al. (2012) presented a GA for the discovery

f chromatography equipment sizing strategies for antibody purifi-

ation processes under uncertainty. 

The performance of the GA depends on its hyperparameter val-

es. For example, the rate of crossover controls the capability of

he GA in exploiting the known parts of the search space, whereas

he mutation rate controls the speed of the GA in exploring of

ew areas ( Lin et al., 2003 ). The values of these parameters are

uite often tuned one by one, i.e. by trial and error. However, this

an be a time consuming process leading to suboptimal results,

ince the interactions between the parameters are ignored this way

 Eiben et al., 1999 ). There has been a number of suggestions and

heoretical investigations into the optimal values of crossover, mu-

ation, and population size ( Back, 1993; Chipperfield and Fleming,

995; Goldberg and Deb, 1991; Schaffer and Morishima, 1987 ). The

ypical values of crossover and mutation rate have been reported

o lie in the range 0.5–1.0 and 0.001–0.05 respectively. However,

ost investigations were based on simple function optimisation

roblems with traditional chromosome encoding strategies and ge-

etic operators. Therefore, their applicability for other types of

roblems and custom genetic operators is quite limited. An alter-

ative to manual parameter tuning is meta-optimisation, i.e. the

se of another optimisation algorithm to tune the GA hyperparam-

ters. For example, Grefenstette (1986) applied a meta-GA to op-

imise the hyperparameters of another GA. In this work, we use a

article swarm optimisation (PSO) algorithm to tune the GA. PSO is

n evolutionary, stochastic optimisation technique modelled after

warming and flocking behaviours in animals, developed by James

ennedy and Russel Eberhart in the mid-1990s ( James and Rus-

ell, 1995; Luke, 2013 ). PSO is similar to a GA since it is also a

opulation-based algorithm. However, in PSO every solution is also

ssigned a randomised velocity vector and the potential solutions

re called particles. A more detailed description of PSO algorithm

an be found in an overview by Poli et al. (2007) . A PSO algorithm

as chosen due to its simplicity and relatively low computational

verhead (compared to using another GA) ( Pandey et al., 2010 ) and

uitability for the optimisation of functions with continuous inputs

 Hassan et al., 2004 ). 

This paper presents a fast GA-based approach to both medium-

nd long-term capacity planning and scheduling of single-

nd multi-site biopharmaceutical manufacture using discrete-time

odels. The proposed GA is demonstrated as a valid alternative

o MILP to obtain near-exact solutions to close to real-world in-
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Table 1 

The comparison of MILP model complexity between case 

study 1 and 2. 

Case Study 1 Case Study 2 

Single equations 535 19,430 

Single variables 457 25,018 

Discrete variables 252 9382 

Non-zero elements 1750 72,244 
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Meta-Optimisation Algorithm
(Particle Swarm Optimisation)

Meta-Optimisation Problem
(find optimal GA crossover and mutation values)

Genetic Algorithm

Capacity Planning Problem
(e.g. maximise operating profit)

Fig. 1. The meta-optimisation framework. Adapted from Camilleri et al. (2014) . 

Table 2 

Meta-optimisation parameters used in case study 1 and 2 to find the GA optimal 

crossover and mutation parameter values. 

Case study 1 Case study 2 

PSO inertia weight, w 0.729 

PSO local weight, c 1 1.494 

PSO global weight, c 2 1.494 

PSO swarm size (number of particles) 20 

Number of PSO epochs 200 

Number of GA runs 100 50 

GA population size 100 200 

s  

t  

a  

t  

s  

u  

t  

t  

w  

S

2

m

 

g  

t  

L

 

ustrial case studies of capacity planning and scheduling of bio-

harmaceutical manufacture. Other contributions of this paper in-

lude the chromosome encoding strategy, the algorithms describ-

ng the multi-suite and multi-site biopharmaceutical manufacture,

he rolling horizon approach for solving larger, long-term capacity

lanning problems, and a PSO-based meta-optimisation approach

or tuning the GA hyperparameters. 

The details of the proposed approach and two case studies are

utlined in Section 2 of this paper. Section 3 is dedicated to the

iscussion of the results and the comparison between the GA and

ILP. Conclusions and future work are provided in Section 4. 

. Methods 

In this section, the case studies of capacity planning and

cheduling of biopharmaceutical manufacture from two dif-

erent literature sources are described. In case study 1, a

edium-term capacity planning and scheduling problem of a

ulti-suite, multi-product biopharmaceutical manufacture from 

akhdar et al. (2005) is presented. In case study 2, a long-term

apacity planning and scheduling problem of multi-site, multi-

roduct bio-manufacture from Lakhdar et al. (2007) is solved. The

athematical models are summarised in the Appendix; however,

he reader is advised to refer to the original papers for a more in-

epth explanation. 

In this paper, the MILP models were recreated in GAMS 23.9.5

nd solved with a CPLEX 12.4.0.1 solver. GA and PSO algorithms

ere implemented using C ++ programming language. The imple-

entation of mathematical models using algebraic modelling sys-

ems such as GAMS is entirely different compared to the general-

urpose programming languages. GAMS allows the mathematical

odels to be implemented in a way that is very similar to their

athematical description, while the general-purpose programming

anguages require an explicit definition of every expression. An-

ther critical challenge of developing an efficient GA-based ap-

roach was identifying the smallest number of independent vari-

bles and the shortest sequence of steps needed to evaluate the

andidate solutions for the case studies. 

In this section, the structure of the proposed approach and the

teps of the algorithms that captured capacity planning objectives

or multiple products across multiple suites and facilities are out-

ined. Most of the proposed GA-based approach is detailed in the

ethods section for case study 1. In case study 2, the focus is

laced on the rolling horizon strategy taken to improve the perfor-

ance of the standard GA for solving the long-term capacity plan-

ing problem. The relative complexity of the optimisation prob-

ems is illustrated by the summary of the MILP model statistics

hown in Table 1 . Both case studies were performed on an Intel

5-6500 based system with 16GB of RAM. 

The process of identifying the optimal parameters for an op-

imization algorithm or a machine learning one is usually costly

nvolves the search of a large, possibly infinite, space of candidate

arameter sets, and may not guarantee optimality ( Camilleri et al.,

014 ). In this work, a simple PSO algorithm is implemented as a

eta-optimiser to automatically tune the crossover and mutation

arameter values in both case studies. Each particle, i.e. a potential
olution, is initiated with randomised position and velocity vec-

ors. A position vector holds the parameter values for the crossover

nd mutation. The fitness of each particle is assessed by running

he GA using the parameter values from the position vector for a

pecified number of independent algorithm runs with fixed pop-

lation size and measuring the average of the best objective func-

ion values achieved. The concept of the meta-optimisation is illus-

rated in Fig. 1 . The parameter values of PSO algorithm ( Table 2 )

ere chosen based on the studies performed by Eberhart and

hi (20 0 0) and Trelea (20 03) . 

.1. Case study 1 – Medium-term capacity planning of a multi-suite, 

ulti-product biopharmaceutical facility 

The objective of the planning problem presented here is to

enerate a yearlong production schedule that would maximise

he manufacturing profits. The problem statement adapted from

akhdar et al. (2005) is as follows: 

• Given: 

◦ Biopharmaceutical products P = {p1, p2, p3} 

◦ USP suites I = {i1, i2} and DSP suites J = {j1, j2} 

◦ A planning horizon of 360 days made of equal time periods 

T = {t1, t2, …, t6} 

◦ Product-dependent production rates, lead times, and pro-

duction throughputs (correspondence factors) 

◦ USP and DSP product shelf-life, storage capacities and costs 

◦ Product demands, sales price and backlog penalty costs 

◦ Manufacturing and campaign changeover costs 

◦ Minimum and maximum campaign durations 
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t1 t2 t3 t4 t5 t6 … tn

U
S

P
su

it
es

i1 (p, CTipt) (p, CTipt) (p, CTipt) (p, CTipt) (p, CTipt) (p, CTipt) … (p, CTipt) 
i2 (p, CTipt) (p, CTipt) (p, CTipt) (p, CTipt) (p, CTipt) (p, CTipt) … (p, CTipt) 
… … … … … … … … … 
in (p, CTipt) (p, CTipt) (p, CTipt) (p, CTipt) (p, CTipt) (p, CTipt) … (p, CTipt) 

Fig. 2. Chromosome encoding strategy for case study 1. Each “(p, CT ipt ) ” pair represents a gene with the information regarding which product p and how many days CT ipt 

have been allocated to each USP suite i at a time period t. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Case study 1 results and model statistics for 

MILP and GA models. 

MILP GA 

Max obj. function value 490 490 a 

Solution time (s) 0.22 0.07 b 

Optimality gap 0% 0% c 

Avg. obj. function value d – 490 ± 0 

Population size – 100 

Crossover rate, pC e – 0.710 

Mutation rate, pM 

e – 0.070 

Termination f – 100 

a Max objective function value obtained from 

100 independent GA runs. 
b An average solution time of a single GA run. 
c An optimality estimate relative to the global 

optimal obtained using the recreated MILP 

model, i.e. 1 – obj. function value / global opti- 

mum. 
d Average of best objective function values 

from 100 independent GA runs (mean ± 1 stan- 

dard deviation). 
e The parameter values were selected using 

the PSO algorithm. 
f If the best objective function value remained 

the same for 100 consecutive generations, the 

GA was terminated. 
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• Determine: 

◦ Duration and sequence of campaigns 

◦ Production quantities along with inventory profiles 

◦ Product sales and late deliveries profile 
• To: 

◦ Maximise manufacturing profits 

2.1.1. Chromosome structure 

In both case study 1 and case study 2, the chromosomes use

the direct encoding of the key variables from the mathematical

models. Compared to the traditional form of binary encoding, e.g.

Holland (1975) , real-coded GAs have been shown to be more con-

sistent from run to run and provide faster, more precise perfor-

mance ( Gaffney et al., 2010; Janikow and Michalewicz, 1991 ). In

case study 1, each chromosome is an |I|-by-|T| array of tuples

where I is a set of USP suites, and T represents a set of discrete-

time periods (illustrated in Fig. 2 ). Each tuple comprises a product

label p and the length of production in USP suite i at time period

t, CT ipt , measured in days both of which are randomly generated at

the beginning of the GA. 

2.1.2. Genetic algorithm 

The GA comprises the following critical steps: fitness evalua-

tion, tournament selection, reproduction (i.e. crossover and muta-

tion), and replacement. In case study 1, chromosomes for crossover

and mutation are selected using a binary tournament with replace-

ment strategy which favours individuals with a higher objective

function value, i.e. schedules with a larger profit value. Tournament

selection has been shown to be computationally more efficient and

have better or equivalent convergence when compared to other se-

lection methods that are available in the literature ( Goldberg and

Deb, 1991; Melanie, 1996 ). A uniform crossover operator with a

probability pC ( Table 3 ) is used to exchange the tuples between

the chromosomes. Each tuple is also mutated with a small prob-

ability pM ( Table 3 ) to avoid premature convergence and improve

the quality of the final solution. During mutation, the product la-

bel is changed by replacing it with a random value from the set of

available products P. The length of production is varied by adding

or subtracting a random number of days, ensuring the allocated

campaign time is within the constrained range, CT min 
ip and CT max 

ip . 

In both case studies, the GA is augmented with elitism which is

a highly exploitative method of preserving the fittest chromosomes

from the previous population ( Luke, 2013 ). In case study 1, a single

best chromosome is re-inserted into the population whenever it is

lost. Finally, the GA is set to terminate early if the fitness of the

best individual has not improved for 100 consecutive generations. 

2.1.3. Fitness evaluation 

The fitness evaluation procedures of case study 1 and case

study 2 are adapted from the MILP models ( Lakhdar et al., 2007,

2005 ) of multi-product biopharmaceutical manufacture. In case

study 1, the fitness evaluation procedure generates a complete pro-

duction schedule which is used to estimate the objective function

value, i.e. profit. The pseudo algorithm of the fitness evaluation

procedure for case study 1 is presented in Table 4 . 
In Table 4 , Lines 3 and 4 retrieve the product label p and the

umber of production days allocated to USP suite i at time period t,

T ipt , from the chromosome which is an |I|-by-|T| array where I is a

et of upstream suites and T is a set of time periods. Lines 5 and 6

alculate the number of changeovers and batches produced in USP

uite i at time period t . In Line 5, the value of the changeover vari-

ble Z ipt will be equal to 1 only if product p has not been produced

n USP suite i at a previous time period t – 1. Line 7 accumulates

he production from all USP suites. Lines 9 and 10 estimate the

mount of product p wasted in USP suites at time period t which

s equal to the number of batches that was left unprocessed from

p periods ago. The amount of USP inventory of product p at time

eriod t is calculated in Line 11 by adding the cumulative value ob-

ained in Line 7 from time period t – 1 and subtracting the amount

f waste, CW pt . 

Line 13 ensures that the assignment of product p to DSP suite

 at time period t is performed only once. Lines 14 and 15 assign

roduct p to DSP suite j and calculate how many batches will be

roduced in that suite at time period t . This is performed by mul-

iplying the USP inventory value CI pt by the production correspon-

ence factor λp which specifies the respective throughputs from

SP and DSP suites. For example, a factor of 0.5 signifies that for

very two USP batches one DSP batch is produced. Line 15 eval-

ates the number of changeovers in DSP suites similarly to Line

. Line 16 checks whether the length of production of product p in

SP suite j at time period t does not exceed the allowed maximum.

f it does, the value of variable B jpt is iteratively decremented until

he production time FT jpt is below or equal the value of the con-

traint, F T max 
p . Line 17 updates the value of USP inventory of prod-

ct p at time period t by subtracting the number of batches that
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Table 4 

Pseudocode for fitness evaluation in case study 1. 

1 for each time period t 24 if t > σ p 

2 for each upstream suite i 25 FW pt = FI p,t- σp-1 − ( 
∑ σp 

θ= t−σp 
S pθ + 

∑ σp 

θ= t−σp 
F W pθ ) 

3 p = products it 26 FI pt = FI pt + FI p,t-1 − FW pt 

4 CT ipt = time it 27 if D pt > 0 

5 Z ipt = 1 − (t > 0 and p == products i,t-1 ) 28 if D pt ≤ FI pt 

6 B ipt = Z ipt + CR p (CT ipt −αp Z ipt ) 29 S pt = D pt 

7 CI pt = CI pt + B ipt 30 FI pt = FI pt − S pt 

8 for each product p 31 else 

9 if t > ζ p 32 S pt = FI pt 

10 CW pt = CI p,t- ζp-1 − ( 
∑ 

j 

∑ ζp 

θ= t−ζp 
B jpθ + 

∑ ζp 

θ= t−ζp 
C W pθ ) 33 FI pt = 0 

11 CI pt = CI pt + CI p,t-1 − CW pt 34 �pt = D pt − S pt 

12 for each downstream suite j 35 if �p,t- 1 > 0 

13 if products jt = = 0 36 if �p,t- 1 ≤ FI pt 

14 B jpt = λp CI pt 37 S pt = S pt + �p,t-1 

15 Z jpt = 1 − (t > 0 and p == products j,t-1 ) 38 FI pt = FI pt −�p,t-1 

16 while ( F T ipt = βp Z jpt + 

B jpt −Z jpt 

F R p 
) > F T max 

p do B jpt = B jpt − 1 39 else 

17 C I pt = C I pt − B jpt 

λp 
40 S pt = S pt + FI pt 

18 FI pt = FI pt + B jpt 41 FI pt = 0 

19 products jt = p 42 �pt = �pt + �p,t-1 − S pt 

20 time jt = FT jpt 43 if FI pt > F p 
21 if CI pt > C p 44 FW pt = FW pt + FI pt − F p 
22 CW pt = CW pt + CI pt − C p 45 FI pt = F p 
23 CI pt = C p 
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t  
re processed in DSP suite j. Line 18 accumulates the production

rom all DSP suites. Lines 19 and 20 assign the product p and DSP

roduction time FT jpt to the DSP part of the chromosome. Lines 21–

3 ensure that the levels of USP inventory do not exceed the stor-

ge limit. Any excess inventory of product p during time period t

s calculated as waste, CW pt . 

The amount of DSP waste, FW pt , and inventory levels of product

 at time period t , FI pt , are calculated in Lines 24–26 similarly to

ines 9–11. In Line 27, if there is a demand, D pt , for product p at

ime period t , then the amount of product sold, S pt , is calculated

ased on the number of batches stored in DSP inventory FI pt . If

here are more batches in storage than there are in demand (Line

8), the variable S pt will be equal to the value of demand (Line 29).

therwise, Line 32 assigns the value of DSP storage FI pt to S pt , and

he backlog is recorded using variable �pt for that time period in

ine 34. If the inventory allows it, the backlog from a previous time

eriod �p,t-1 is sold in Lines 35–41. Otherwise, it is accumulated in

ine 42. Lines 43–45 ensure that DSP storage capacity, F p , is not

xceeded by discarding any extra, unsold batches. 

The fitness of each chromosome is assessed by calculating the

rofit achieved by the schedule using the same objective function

1) as presented by Lakhdar et al. (2005) . The objective function

alue is equal to the difference between the total sales and the

osts of manufacturing, product changeovers, intermediate and fi-

al product storage, waste disposal, and late deliveries. 

 rof it = 

∑ 

p 

∑ 

t 

( 

νp S pt −
∑ 

i 

ηp B ipt −
∑ 

i 

ψ p Z ipt −
∑ 

j 

ηp B jpt 

−
∑ 

j 

ψ p Z jpt −ρp CI pt −ω p F I pt −δp �pt −τp 

(
CW pt + F W pt 

)) 

(1) 

.2. Case study 2 – Long-term capacity planning and scheduling 

roblem of multi-site, multi-product bio-manufacture 

The goal of the planning problem presented in this case study is

o generate a 15-yearlong production schedule to maximise manu-

acturing profits. The problems presented here is a single-objective

roblem adapted from Lakhdar et al. (2007) . The following is a

roblem statement: 
● Given: 

◦ A network of multi-product facilities I = {i1, i2, …, i15} 

◦ Biopharmaceutical products P = {p1, p2, …, p10} 

◦ A planning horizon of 15 years with equal time periods 

T = {t1, t2, …, t60} 

◦ Production rates, yields, and lead times 

◦ Product lifetimes and storage capacities 

◦ Product demands and sales prices 

◦ Backlog decay factor 

◦ Manufacturing, changeover, storage costs, and late delivery

penalties 

◦ Minimum and maximum campaign durations 

● Determine: 

◦ Campaign durations and sequence of campaigns 

◦ Production quantities along with inventory profiles 

◦ Product sales and late deliveries profile 

● To: 

◦ Maximise manufacturing profits 

In their paper, Lakhdar et al. (2007) stated that the presented

ILP model was an extension of the one already discussed in case

tudy 1 of this paper. The core mathematical formulation for the

ingle-objective problem remained mostly the same with the only

ost noticeable change being the lack of the explicit model of sep-

rate USP and DSP suites. Nevertheless, the complexity of the prob-

em in case study 2 is much higher compared to case study 1 due

o a greater number of products, facilities, and time periods. Each

ndividual time period t is limited to a maximum of 87 days com-

ared to 60 in case study 1, and there are 10 products which need

o be allocated to 15 facilities. Additional subsets are introduced to

efine facility availability and manufacturing capability: PI i , the set

f products that can be manufactured in facility i , and TI i , the set

f time periods during which facility i is available for use. Further-

ore, the production yield, as well as manufacturing costs of each

roduct p, also depend on the facility i it is being manufactured in.

.2.1. Chromosome structure 

The increased complexity of the planning problem in case study

 presented a challenge for the GA-based approach. Encoding the

hromosomes as full-scale |I|-by-|T| arrays was found to be com-

utationally costly. A rolling horizon method was taken to explore

he large search space in a more efficient manner by dividing the
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Table 5 

Pseudocode for the dynamic GA in case study 2. 

1 for each subproblem 

2 parents = GeneratePopulation() 

3 EvaluateFitness(parents) 

4 subproblem_best = max(parents) 

5 gen = 0, not_restarted = true 

6 while gen < max_gens 

7 offspring = Select(parents) 

8 Reproduce(offspring, pC, pMutP, pMutT) 

9 EvaluateFitness(offspring) 

10 Replace(parents, offspring) 

11 current best = max(parents) 

12 if current_best > subproblem_best 

13 subproblem best = current_best 

14 if subproblem_best = = subproblem_best from 20 generations ago 

15 if not_restarted 

16 parents = RestartSubproblem() 

17 not_restarted = false 

18 else 

19 break 

20 gen = gen + 1 

21 ExtendFinalSolution(subproblem_best) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. An illustration of how the long-term capacity planning problem from case 

study 2 can be divided into smaller sub-problems. The full solution and each sub- 

problem (Year n) are |I|-by-|T| and |I|-by-|T| arrays respectively. The sub-problems 

overlap with one another on the parts that are shaded in grey. 
15-yearlong planning problem into 15 equal sub-problems which

were solved consecutively. In order to accomplish this, each chro-

mosome encoded a sub-problem as an |I|-by-|T| array of product p

and the length of production, T ipt , values where T ⊂ T and |T| = 4. T

represents the extent of the rolling horizon, i.e. a dynamic subset

of 4 time periods which correspond to the timeline of the sub-

problem being solved. For example, T = {t1, t2, t3, t4} and T = {t57,

t58, t59, t60} contain the time periods for the first and last sub-

problems, respectively. The best solution from each sub-problem

is stored in the final, full-scale |I|-by-|T| solution, before proceed-

ing to solve the following sub-problem. The values of the variables

corresponding to the best solution such as the number of batches

of product p produced in each facility i during time period t, B ipt ,

are fixed so they would not need to be recalculated for the next

sub-problem. To distinguish the rolling horizon approach-based GA

from the standard one, it will be referred to it as the dynamic GA.

The concept of the dynamic GA is illustrated in Fig. 3. The pseudo-

algorithm for the dynamic GA is listed in Table 5 . 

A new parent population is generated for every sub-problem

with the values of product p for each facility i selected randomly

from the set of allowable products for that facility, PI i , making sure

the facility i is also available for use at time period t ∈ TI i . A prod-

uct label with a value of 0 is also included in the set to denote an

idle state of the facility i during a time period t when no product

is being manufactured. 

2.2.2. Genetic algorithm 

A uniform crossover operator with a probability pC ( Table 6 )

is used to create two offspring from two parent chromosomes. T

noise into the system, the mutation of the values of p and T is

made independent, i.e. the probabilities pMutP and pMutT ( Table 6 )

associated with each step are independent of one another. Pro-

vided that the facility i is available for use at time period t , the

value of product label p is mutated by assigning 0 or a random

value from the subset PI i . The value of T ipt is mutated by adding

or subtracting a random number of days, ensuring the allowable

range for T ipt is not exceeded. 

The parent population of gen + 1 is made up of the recombined

and mutated offspring. If no better solutions are found, then the

top 5% of the previous parent population replace the worst per-

formers of the latest generation. A completely new parent popula-

tion is generated when the best fitness value remains unchanged

for a specified number of consecutive generations (Lines 14–16,

Table 5 ) and the previous top 5% chromosomes are added. When
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Table 6 

Case study 2 results and model statistics for MILP and GA models. 

MILP GA 

Global optimum Relaxed Dynamic Standard 

Max obj. function value 66,360 65,940 65,849 a 61,880 a 

Time (s) 10 0 0.36 8.77 8.09 b 21.56 b 

Optimality gap 0% 0.6% 0.8% c 6.8% c 

Avg. obj. function value d – 65,652 ± 112 61,186 ± 437 

Population size – 200 200 

Crossover rate, pC e – 0.686 0.597 

Mutation rate, pMutP e – 0.004 0.001 

Mutation rate, pMutT e – 0.295 0.295 

Elitism – 5% 5% 

Termination – 25 f 10 0 0 g 

a Max obj. function value obtained from 50 independent GA runs. 
b An average solution time of a single GA run. 
c An optimality estimate relative to the global optimum obtained using the recreated MILP 

model, i.e. 1 – obj. function value / global optimum. 
d Average of best objective function values from 50 independent GA runs (mean ± 1 stan- 

dard deviation) 
e The parameter values were selected using the PSO algorithm. 
f If the best objective function value remained unchanged for 25 consecutive generations, 

the GA was restarted with a new parent population. The second time the best objective 

function value stayed the same for the same number of generations, the GA was terminated. 
g Terminated after 10 0 0 generations had elapsed irrespective of the best objective function 

value achieved. 

Table 7 

Case study 2 results and model statistics for the dynamic GA model using different early stopping values and 

population sizes. 

Avg. obj. function value a Max obj. function value b Avg. solution time Population size Termination c 

65,399 ± 131 65,653 3.91 s 100 25 

65,518 ± 144 65,799 6.11 s 100 50 

65,543 ± 144 65,818 8.30 s 100 75 

65,652 ± 112 65,849 8.09 s 200 25 

65,755 ± 105 65,934 12.87 s 200 50 

65,797 ± 92 65,987 17.20 s 200 75 

65,806 ± 66 65,921 12.66 s 300 25 

65,855 ± 86 65,997 19.86 s 300 50 

65,883 ± 92 66,068 26.85 s 300 75 

a Average of best objective function values from 50 independent GA runs (mean ± 1 standard deviation). 
b Max objective function value obtained from 50 independent GA runs. 
c If the best objective function value remains unchanged for a given number of consecutive generations, the GA 

is restarted with a new parent population. The second time the best objective function value stays the same for 

the same number of generations, the GA is terminated. 

Table 8 

Pseudocode for fitness evaluation in case study 2. 

1 ξ = 0 15 if D pt > 0 

2 for each time period t in sub_problem 16 if D pt ≤ I pt 

3 for each facility i 17 S pt = D pt 

4 p = products i ξ 18 I pt = I pt − S pt 

5 T ipt = time i ξ 19 else 

6 Z ipt = 1 − (t > 0 and B ip,t- 1 = = 0) 20 S pt = I pt 

7 B ipt = Z ipt + r ip (T ipt −αp Z ipt ) 21 I pt = 0 

8 K ipt = B ipt yd ip 22 �pt = D pt − S pt 

9 I pt = I pt + K ipt 23 if �p,t- 1 ≥ 0 

10 ξ = ξ + 1 24 if �p,t- 1 ≤ I pt 

11 for each product p 25 S pt = S pt + �p,t-1 

12 if t > ζ p 26 I pt = I pt −�p,t −1 

13 W pt = I p,t- ζp-1 − ( 
∑ ζp 

θ= t−ζp 
S pθ + 

∑ ζp 

θ= t−ζp 
W pθ ) 27 else 

14 I pt = I pt + I ip,t −1 − W pt 28 S pt = S pt + I pt 

29 I pt = 0 

30 �pt = �pt + π�p,t −1 − S pt 

t  

a  

t  

t

2

 

u  

p  
his repeats, the best sub-problem is added to the full solution, and

 new sub-problem is started (Lines 14, 17–20, Table 5 ). We tested

erminating the GA after 25, 50, and 75 generations with popula-

ion sizes of 100, 200, and 300 chromosomes ( Table 7 ). 
c  

v  

b  
.2.3. Fitness evaluation 

In Table 8 , the variable ξ is used to iterate through the val-

es of the |I|-by-|T| array contained within each chromosome . The

roduct label p and production length T ipt are retrieved from the

hromosomes in Lines 4 and 5 . The value of the binary changeover

ariable Z ipt is set to 1 in Line 6 if variable B ip,t -1 , the number of

atches of product p produced in facility i in the previous time
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Fig. 4. Production schedule for case study 1 with an objective function value of 490 

RMU and 0% optimality gap. Both the MILP model and the proposed GA generated 

the same schedule. The first number in each cell denotes the number of batches 

produced which is followed by the production time [days] in brackets. The shading 

of the box indicates which product is being manufactured. 
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period slot, is 0. The value of the number of batches variable B ipt 

during time period t is calculated in Line 7 and converted into

kilograms K ipt using the yield conversion factor yd ip in Line 8. The

value of yd ip depends the facility i which the product p is being

manufactured in. Line 9 accumulates the value of K ipt into the vari-

able I pt – the amount of product p in kilograms stored at time pe-

riod t. The amount of product waste W pt is estimated in Line 12

and 13. The value of this variable is equal to the amount of prod-

uct p that was not sold and remained in storage for more than ζ p 

time periods. The rest of the pseudocode in Table 8 (from Line 14

and onwards) is nearly identical to the Lines 27-45 from the pseu-

docode for the fitness evaluation in case study 1 ( Table 3 ). The only

notable differences are the lack of storage capacity constraint and

the addition of backlog decay factor π which diminishes the im-

portance of the backlogged orders during the fitness evaluation in

case study 2. 

The fitness of each chromosome is evaluated using the

objective function of profit maximisation (2) defined by

Lakhdar et al. (2007) . The objective function value is equal to

the difference between the total sales, with each batch sold at a

price νp , and the total operating costs which include the costs of

manufacturing, product changeovers, storage, and late deliveries. 

Profit = 

∑ 

p 

∑ 

t∈ T I i 

( 

νp S pt − ρp I pt − δp �pt 

−
∑ 

i ∈ IP i 

(
ηp B ipt + ψ p Z ipt 

)) 

(2)

3. Results and Discussion 

In this section, the results to the case studies of capacity plan-

ning and scheduling of biomanufacture from the literature are pre-

sented. In case study 1, the problem consists of a multi-suite facil-

ity, with 2 USP ( I = {i 1 , i 2 } ) and 2 DSP ( J = {j 1 , j 2 } ) suites to produce

3 products ( P = {p 1 , p 2 , p 3 } ) with multiple intermediate demand

dates due during a 360-day long production time horizon. The

horizon is discretised into 6 time periods ( T = {t 1 , t 2 , …, t 6 } ) of 60

days. In case study 2, the problem consists of 10 facilities ( I = {i 1 ,

i 2 , …, i 10 } ) with different manufacturing capabilities PI i (subset of

facilities capable of producing product p ) and availability TI i (sub-

set of facilities available at time period t ) to produce 15 products

( P = {p 1 , p 2 , …, p 15 } ) due annually during a 15-yearlong produc-

tion time horizon. The horizon consists of 60 discrete time periods

( T = {t 1 , t 2 , …, t 60 } ) of 87 days. 

The GAs discussed in the previous sections for case study 1 and

case study 2 are used to solve the respective scheduling problems,

and the results are compared with the recreated MILP models (see

Tables 3 and 6 ). A comparison between the production schedules

generated using MILP, and a GA is also provided in Figs. 4 and 5 .

The reader is advised to refer to the original papers ( Lakhdar et al.,

20 07, 20 05 ) for the input data used. 

3.1. Case study 1 results 

The proposed GA developed in this research was first applied

to case study 1 on medium-term capacity planning for a single-

site, multi-suite, multi-product biopharmaceutical facility. Initially,

a MILP model was developed for the problem as a benchmark

for comparison with the GA performance. In their original MILP

work, Lakhdar et al. (2005) reported an objective function value of

487 relative monetary units (RMU) with a 5% optimality gap for

this problem, while using the reproduced MILP model an objective

function value of 490 RMU was achieved with 0% optimality gap

indicating a global optimum. 
The proposed PSO-based meta-optimisation approach was used

o tune the crossover and mutation parameter values, pC and

M . Using this approach, the optimal values of crossover rate

 pC = 0.710 ) and mutation rate ( pM = 0.070 ) were identified, and

he GA achieved the global optimum of 490 RMU for 100 consecu-

ive, independent algorithm runs. The GA also generated a produc-

ion schedule with the product allocation pattern identical to the

ne from the recreated MILP model ( Fig. 4 ). The average solution

ime of the GA was 0.07 s compared to MILP which took an aver-

ge of 0.22 s to find the global optimum (the MILP model was run

0 times to evaluate the running time). 

Given the fast performance of the proposed GA-based method

nd the optimality of the results, it can be considered as a vi-

ble alternative for addressing medium-term capacity planning and

cheduling problems similar in structure and complexity to case

tudy 1. 

.2. Case study 2 results 

Having tackled medium-term, single-site facility scheduling, the

A was then extended to address long-term planning across multi-

ite, multi-product biopharmaceutical manufacturing facilities in

ase study 2. To set the benchmark for the GA, the recreated

ingle-objective MILP model was used to achieve an objective func-

ion value of 66,360 RMU with a 0% optimality gap for this prob-

em. It took approximately 16.7 min to find the global optimum.

ith the optimality gap increased to 1%, the MILP model achieved

n objective function value of 65,940 RMU in 8.77 s. 

As discussed earlier, two versions of a GA ( standard and dy-

amic ) were applied to solve the long-term capacity planning

roblem presented in case study 2. Using the standard version,

ach chromosome encoded the full-scale problem as an |I|-by-|T|

rray (where | I| = 10 and |T| = 60), and the GA was set to termi-

ate after 10 0 0 generations had elapsed. In the dynamic version, a

olling horizon approach was utilised to break down the full-scale

5-yearlong scheduling problem into 15 sub-problems. Each chro-

osome encoded only a part of the full schedule as an |I|-by-|T|

rray (where T ∈ T and |T| = 4 ) corresponding to the sub-problem

eing solved. Additionally, the dynamic GA was restarted once the

tness value remained unchanged for a set number of consecutive

enerations. The crossover, mutation and elitism steps were iden-

ical in both standard and dynamic versions. 

The comparison of the results between the MILP and GA is

ummarised in Table 6 . For a fair comparison, the PSO-based meta-

ptimisation was applied to tune both GA versions. After 50 runs,

he average best objective function value using the standard GA

as 61,186 ± 437 while the dynamic GA achieved 65,652 ± 112 . Ad-

itionally , the solution time of the dynamic GA was approximately

.7 times faster than that of the standard version (8.09 s vs 21.56 s)

nd slightly faster than that of the relaxed MILP model (8.09 s vs
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Fig. 5. Production schedules for case study 2. Each product p n (where n = 1, 2, …, 15) is denoted by a colour label displayed in the legend below the schedules. The numbers 

of batches of each product produced have been removed for clarity purposes. 

A) Generated using the MILP model. An objective function value of 65,940 RMU was obtained with 0.6% optimality margin (based on the known global optimum as the 

upper bound). 

B) Generated using the dynamic GA. An objective function value of 65,849 RMU was obtained (0.8% estimated optimality margin). 
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.77 s). Using the known global optimum of 66,360 RMU as an up-

er bound, the average and the lowest optimality gaps achieved

sing the dynamic GA were estimated to be 1.0% and 0.8%, respec-

ively. In comparison, the relaxed MILP model returned an objec-

ive function value of 65,940 with a 0.6% optimality gap 

The pattern of the most profitable production schedule pro-

uced by the dynamic GA ( Fig. 5 B) holds a close resemblance to

he MILP-generated one ( Fig. 5 A), for example: 

• Facilities i 1 and i 2 run with little to no idle time and with a

variety of different products allocated to them. 
• Facility i 3 is busier in the first half of the scheduling table with

more product allocations. 
• Product p 4 is almost exclusively produced in the facility i 4 . 
• Facility i 4 has no idle time periods. 
• Certain facilities such as i 5 and i 10 are completely idle. 

Nevertheless, the production schedule generated with MILP is

ore systematic and has more products allocated overall. For ex-

mple, in Fig. 5 A, the product allocation in the facility i 8 is more

onsistent than in Fig. 5 B, in which the production is scheduled as

ate as possible thus saving storage costs. 

. Conclusions 

In this work, novel GA-based optimisation approaches were de-

eloped for medium and long-term, discrete-time, mixed-integer

apacity planning models of biopharmaceutical manufacture. The

ey enabling features of the GA-based approaches included a

hromosome encoding strategy, a dynamic, rolling horizon ap-

roach to improving the performance of the GA for tackling the

ong-term capacity planning and scheduling problem, and algo-

ithms that captured capacity planning objectives for multiple

roducts across multiple suites and facilities. A PSO-based meta-

ptimisation method was also presented for automatic tuning of

rossover and mutation parameter values as an alternative to man-

al tuning. The feasibility of the novel GA-based optimisation algo-

ithms was demonstrated on two case studies from the literature. 

In case study 1, a medium-term capacity planning problem of

 single-site, multi-suite biopharmaceutical facility was solved. The
roposed GA obtained the global optimum with less CPU time than

 MILP model. 

In case study 2, a more computationally complex, long-term ca-

acity planning problem of a multi-site biopharmaceutical manu-

acture was solved. Using the rolling horizon approach, the full-

cale problem was divided into 15 sub-problems which were

olved consecutively. Based on the known global optimum, the av-

rage optimality gap of the solution generated using the dynamic

A was 1.0%. 

In this paper, the GA-based approaches were demonstrated to

e capable of achieving the exact or very similar performance com-

ared to MILP in terms of the objective function optimality and

peed. This paper serves as a starting point for tackling even more

omplex capacity planning and scheduling problems of biophar-

aceutical manufacture using GA-based approaches. In the future,

he work presented in this paper could be extended to address

tochastic planning problems with uncertain parameters, e.g. fer-

entation titres or product demand, as well as multi-objective

roblems. 
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ppendix A 

This appendix summarises the mathematical model presented

y Lakhdar et al. (2005) . 

roduction constraints 

Constraints 1 and 2 represent the manufacture of product in

SP and DSP suites. Upstream production, B ipt , and downstream
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production, B jpt , are represented by continuous rates of produc-

tion, CR p and FR p , which are combined with their respective USP

and DSP lead times, αp and βp , and USP and DSP production times,

CT ipt and FT jpt . Constraints 3 and 4 activate lead time in USP suite

i and DSP suite j if the same product p has not been manufactured

in the preceding time period, t – 1. Constraints 5 and 6 ensures

that only one product p is produced in any USP suite i and DSP

suite j at any time period t . 

B ipt = Z ipt + C R p 

(
C T ipt − αp Z ipt 

) ∀ i, p, t (1)

B jpt = Z jpt + F R p 

(
F T jpt − βp Z jpt 

) ∀ j, p, t (2)

Z ipt ≥ Y ipt − Y ip,t−1 ∀ i, p, t (3)

Z jpt ≥ Y jpt − Y jp,t−1 ∀ j, p, t (4)

∑ 

p 
Y ipt ≤ 1 ∀ i, t (5)

∑ 

p 
Y jpt ≤ 1 ∀ j, t (6)

Timing constraints 

Constraints 7 and 8 represent the appropriate minimum and

maximum production times for USP and DSP suites, which are only

activated when Y ipt and Y jpt are equal to 1. Constraints 9 and 10 en-

sure that the total USP or DSP time does not exceed the specified

production time horizon, H t . 

 T min 
p Y ipt ≤ C T ipt ≤ C T max 

p Y ipt ∀ i, p, t (7)

F T min 
p Y jpt ≤ F T jpt ≤ F T max 

p Y jpt ∀ j, p, t (8)

∑ 

p 
C T ipt ≤ H t ∀ i, t (9)

∑ 

p 
F T jpt ≤ H t ∀ j, t (10)

Storage constraints 

Constraints 11 and 12 enforce an inventory balance in upstream

and downstream production and force the total downstream pro-

duction to meet the product demand. Constraints 13 and 14 ensure

that the amount of upstream and downstream product stored over

timer period t is positive and below the maximum available stor-

age capacities, C p and F p . Both upstream and downstream prod-

uct inventory is constrained by the limited product shelf-life. Con-

straints 15 and 16 ensure the total amount of stored upstream

product and downstream product is used after the next ζ p or σ p 

time periods, respectively. 

 I pt = C I p,t−1 + 

∑ 

i 
B ipt −

1 

λp 

∑ 

j 
B jpt − C W pt ∀ p, t (11)

F I pt = F I p,t−1 + 

∑ 

j 
B jpt − S pt − F W pt ∀ p, t (12)

0 ≤ C I pt ≤ C p ∀ p, t (13)

0 ≤ F I pt ≤ F p ∀ p, t (14)

 I pt ≤
∑ 

j 

∑ t+ ζp 

θ= t+1 
B jpθ ∀ p, t (15)

F I ≤
∑ t+ σp 

S ∀ p, t (16)
pt 
θ= t+1 

pθ I  
acklog constraints 

Constraint 17 penalises the amount of product p that was late

or delivery at time period t, �pt . 

pt = �p, t−1 + D pt − S pt ∀ p, t (17)

bjective function 

The objective function is to maximise profit which is equal to

he difference between total sales and total operating costs. All

osts and prices are in relative monetary units (RMU). 

ax P rof it = 

∑ 

p 

∑ 

t 
( νp S pt −

∑ 

i 
ηp B ipt −

∑ 

i 
ψ p Z ipt −

∑ 

j 
ηp B jp

−
∑ 

j 
ψ p Z jpt − ρp C I pt − ω p F I pt − δp �pt 

− τp (C W pt + F W pt )) (18

ppendix B 

This appendix summarises the mathematical model presented

y Lakhdar et al. (2007) . 

roduction constraints 

Constraint 1 represents biopharmaceutical production. The

umber of batches produced in facility i of product p at time pe-

iod t, B ipt , is represented by a continuous production rate, r ip , pro-

uction lead time, αip , and production time T ipt . Constraint 2 con-

erts the integer number of batches , B ipt , into kilograms, K ipt , us-

ng a yield conversion factor , yd ip . Constraint 3 activates lead time

n facility i if the same product p has not been manufactured in

he preceding time period, t − 1. Constraint 4 ensures that only one

roduct p is produced in any facility i at any time period t . 

 ipt = Z ipt + r pt 

(
T ipt − αip Z ipt 

) ∀ i, p ∈ P I i , t ∈ T I i (1)

 ipt = B ipt y d ip ∀ i, p ∈ P I i , t ∈ T I i (2)

 ipt ≥ Y ipt − Y ip,t−1 ∀ i, p ∈ P I i , t ∈ T I i (3)

 

p∈ P I i 
Y ipt ≤ 1 ∀ i, t ∈ T I i (4)

iming constraints 

Constraints 5 and 6 represent the appropriate minimum and

aximum campaign durations, T min 
ip 

and T max 
ip 

, which are only acti-

ated when Y ipt is equal to 1. 

 

min 
ip Y ipt ≤ T ipt ∀ i, p ∈ P I i , t ∈ T I i (5)

 ipt ≤ min 

{
T max 

ip , H t 

}
Y ipt ∀ i, p ∈ P I i , t ∈ T I i (6)

torage xonstraints 

Constraint 7 enforces inventory balance for production and

orces the total production to meet the product demand. Constraint

 enforces that the amount of product p in inventory at time pe-

iod t is below the maximum storage capacity, C p , while the con-

traint 10 ensures that the global storage capacity, C tot 
p , is not ex-

eeded. The duration a product can be is stored in inventory is lim-

ted by the constraint 10. 

 pt = I p,t−1 + 

∑ 

K ipt − S pt − W pt ∀ p ∈ P I i , t ∈ T I i (7)

i 
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 ≤ I pt ≤ C p ∀ p, t (8) 

 ≤
∑ 

p 
I pt ≤ C tot 

p ∀ t (9) 

 pt ≤
∑ t+ ζp 

θ= t+1 
S pθ ∀ p, t (10) 

acklog constraints 

Constraint 11 penalises the amount of product p that was late

or delivery at time period t, �pt . 

pt = πp �p, t−1 + D pt − S pt ∀ p, t (11)

bjective function 

The objective function is to maximise profit which is equal to

he difference between total sales and total operating costs. All

osts and prices are in relative monetary units (RMU). 

ax P rof it = 

∑ 

p 

∑ 

t∈ T I i 
( νp S pt − ρp I pt − δp �pt 

−
∑ 

i ∈ I P p 

(
ηip B ipt + ψ ip Z ipt 

)
) (12) 
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