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Abstract
In this review, we describe how different neuroimaging tools have been used to identify novel MSA biomarkers, highlight-
ing their advantages and limitations. First, we describe the main structural MRI changes frequently associated with MSA 
including the ‘hot cross-bun’ and ‘putaminal rim’ signs as well as putaminal, pontine, and middle cerebellar peduncle (MCP) 
atrophy. We discuss the sensitivity and specificity of different supra- and infratentorial changes in differentiating MSA 
from other disorders, highlighting those that can improve diagnostic accuracy, including the MCP width and MCP/superior 
cerebellar peduncle (SCP) ratio on T1-weighted imaging, raised putaminal diffusivity on diffusion-weighted imaging, and 
increased T2* signal in the putamen, striatum, and substantia nigra on susceptibility-weighted imaging. Second, we focus 
on recent advances in structural and functional MRI techniques including diffusion tensor imaging (DTI), resting-state 
functional MRI (fMRI), and arterial spin labelling (ASL) imaging. Finally, we discuss new approaches for MSA research 
such as multimodal neuroimaging strategies and how such markers may be applied in clinical trials to provide crucial data 
for accurately selecting patients and to act as secondary outcome measures.
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Introduction

Multiple system atrophy (MSA) is an adult-onset, neurode-
generative disorder characterised by parkinsonism, ataxia, 
and dysautonomia. The neuropathological hallmark is alpha-
synuclein-positive glial cytoplasmic inclusions (GCIs) with 
degeneration of the striatal, nigral, and olivopontine struc-
tures. The deposition of alpha-synuclein links MSA with 
other synucleinopathies, including idiopathic Parkinson’s 
disease (IPD) and dementia with Lewy bodies (DLB). 
However, clinically, there is more commonly overlap with 
atypical parkinsonian syndromes such as progressive supra-
nuclear palsy (PSP) and corticobasal syndrome (CBS).

Diagnostic accuracy in multiple system atrophy (MSA) 
varies greatly between different centres from as little as 29% 
up to 86% [1–4], despite well-established diagnostic criteria 
[5]. While a definite MSA diagnosis can only be reached 
with post-mortem confirmation of GCIs in a well-defined 
pattern, a probable MSA diagnosis is considered when a 
poor levodopa-responsive parkinsonian syndrome (MSA-P) 
and/or a cerebellar syndrome (MSA-C) is associated with 
autonomic failure. A possible MSA diagnosis is defined 
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when sporadic adult-onset parkinsonism (MSA-P), or a cer-
ebellar syndrome (MSA-C) is accompanied by autonomic 
dysfunction and at least one item from a list of additional 
red-flag features [5, 6]. These include structural and func-
tional neuroimaging changes that have become established 
over the last two decades as useful diagnostic markers. How-
ever, while such abnormalities are helpful diagnostically, 
brain-imaging research in MSA has expanded to examine 
a variety of post-processing techniques and more advanced 
imaging modalities that may potentially lead to much 
improved biomarkers for diagnosis and disease progression. 
In this review, we describe how different neuroimaging tools 
have been used to identify novel MSA biomarkers, highlight-
ing their advantages and limitations.

Structural MR imaging

Historically, most MSA neuroimaging research has been 
focused on the grey matter atrophy pattern seen on struc-
tural T1 MRI and signal changes seen on T2, FLAIR, and 
T2* MRI. The main aims of these studies have been to: (a) 
provide a diagnostic MSA atrophy pattern useful for consen-
sus criteria; (b) distinguish between the two clinical forms 
MSA-P and MSA-C; and (c) improve the differential diag-
nosis with other neurodegenerative conditions that mimic 
MSA, especially with IPD, DLB, PSP, and CBS.

Visualisation of T1- and T2-weighted MRI by expe-
rienced neuroradiologists has been the cornerstone of 
MSA-imaging diagnosis for many years, and a number of 

‘classical’ signs have been described. The ‘hot cross-bun’ 
sign is the most well known (Fig. 1a) and represents the 
degeneration of the pons and pontocerebellar fibres with the 
preservation of corticospinal tract. It appears as a hyperin-
tense cross in the pons on T2-weighted imaging. Despite 
being a hallmark for MSA-C with high specificity (97%), 
its sensitivity is only 50% [7]. The ‘putaminal rim’ sign is 
another well-described imaging feature of MSA that has 
acquired its own name (Fig. 1b). The presence of a hyperin-
tense rim to the putamen on T2*-weighted imaging is seen 
in MSA-P and has the highest specificity (90%) for this clini-
cal subgroup but only 72% sensitivity [8]. It can also be a 
normal finding on 3T T2-weighted MRI.

Other putaminal changes described in MSA-P include 
atrophy (seen on T1) (sensitivity 83%, specificity 87%), and 
hypointensity (sensitivity 89%, specificity 70%—Fig. 1b) 
[8], while in MSA-C, there are changes infratentorially with 
hyperintensity of the middle cerebellar peduncle (MCP) 
and atrophy of the cerebellum and brainstem (particularly 
the MCP and pons) [10] (sensitivity 100%, specificity 82% 
for brainstem atrophy) [11]. In fact, a combination of these 
signs can be seen in the majority of MSA patients at differ-
ent stages of the disease, independent of the initial clinical 
phenotype [8, 12].

While none of these signs are pathognomonic, their pres-
ence has been shown to have high specificity but lower sen-
sitivity in differentiating MSA from other disorders [13], 
e.g., the presence of MCP hyperintensity has a specificity 
of 100% and sensitivity of 85% when compared with IPD, 
PSP, and normal aging controls [14].

Fig. 1   a ‘‘Hot cross-bun sign’’ seen on an axial T2-weighted MRI in a patient with MSA-C; b putaminal hypointensity with a hyperintense 
“putaminal rim” sign on an axial T2-weighted MRI in a patient with MSA-P. Images adapted from [9]
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Simply applied quantitative measures have been shown to 
improve diagnostic accuracy. A study that measured MCP 
atrophy as a reduction of the MCP width (< 8 mm in sagit-
tal sections) showed 100% sensitivity and specificity in dif-
ferentiating MSA from IPD patients [15, 16], while another 
study investigating the MCP/superior cerebellar peduncle 
(SCP) ratio had a sensitivity of 90% and specificity of 94% 
when comparing MSA-P to PSP [17]. Adding in meas-
urements of the pons and midbrain allowed one study to 
define an MR parkinsonism index [= pontine area/midbrain 
area)*(MCP/SCP)] which differentiated MSA-P from PSP 
and IPD with high sensitivity and specificity [17].

More detailed quantitative methods of assessing cross-
sectional grey matter atrophy analyses have been applied 
in research settings. These have usually consisted of either 
Region-of-Interest (ROI) volumetric analyses (performed 
either manually or in a more automated manner), or whole 

brain analyses such as voxel-based morphometry (VBM) 
[18].

ROI studies using semiautomatic segmentation and MRI 
volumetry (MRV) techniques showed a combination of 
supra- and infratentorial volume loss including striatum, 
brainstem, and cerebellum in MSA [19, 20]. A more accu-
rate differentiation between MSA and other parkinsonian 
syndromes was achieved with the application of a stepwise 
discriminant analysis [11, 19]. Volume loss in the basal gan-
glia and infratentorial brain regions have been confirmed 
by VBM studies [21–24]. VBM is an automated method 
of measuring neuroanatomical changes in the grey matter 
using 3D volumetric T1-weighted MR imaging. Compared 
to controls, selective cortical atrophy involving the primary 
and higher order motor areas, prefrontal cortex, and insula 
was identified in MSA-P cases [21] (Fig. 2) and confirmed 
on a longitudinal VBM study [22]. A meta-analysis assessed 
the use of VBM in differentiating MSA-P, IPD, and normal 

Fig. 2   VBM in MSA-P. VBM and VBR comparison between MSA-C 
and MSA-P. Images are in the neuroradiological orientation (the 
left side of the images refers to the right side of the brain). VBM in 
MSA-P a grey matter loss, b correlation of grey matter loss with dis-
ease stage, and c increase of white matter. VBM and VBR compari-

son between MSA-C and MSA-P: the images display regions with 
more pronounced changes in MSA-C than in MSA-P. a Grey matter 
loss, b white matter loss, and c reduced relaxation rate. Images repro-
duced from [26]
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controls [25]: although a different pattern and localization 
of grey matter reduction was identified in the MSA-P versus 
IPD group (atrophy in the putamen and claustrum), the dif-
ferences were not significant in a subgroup analysis includ-
ing only patients in early stages with a mean disease duration 
of less than three years.

Longitudinal analyses of atrophy rates are limited 
(Fig. 3). These studies are important, as the atrophy rate 
is an important quantitative marker of disease progression 
that has been successfully implemented in other neurodegen-
erative conditions as an outcome measure in clinical trials 
[27–29]. Only two studies have assessed whole brain atro-
phy rate (WBAR) in MSA [30, 31]. Although these had a 
short follow-up and assessed a small number of cases, they 
showed that the WBAR was higher from the early stages of 
MSA (and PSP) compared with IPD, suggesting that this 
could be used as an unbiased outcome measure for monitor-
ing the disease course in future clinical trials. In addition, as 
MSA is a rapidly progressive disorder, using imaging meas-
urements improves reliability compared to clinical disease 
rating scores [11, 19, 30].

Measures of signal change

DWI

Diffusion-weighted imaging (DWI) uses water molecule 
movement and calculates the apparent diffusion coefficient 
(ADC) in tissue as a measure of integrity. In neurodegenera-
tion and ischemia, the random movement of water molecules 
is increased. One of the most promising DWI markers for 
MSA is raised putaminal diffusivity in MSA-P compared to 
PD, even in early stages of disease [33–36] (Fig. 4). DWI 
was also helpful in differentiating MSA-P from PSP where 
increased regional ADC in the MCP and pons in MSA-P, 
compared to PSP, had 91% sensitivity and 84% specificity 

Fig. 3   Delineating the sites and progression of in  vivo atrophy in 
multiple system atrophy using fluid-registered MRI. Coronal MRI 
scan with voxel-compression-mapping overlay to demonstrate areas 
undergoing atrophy. Greatest rates of atrophy are demonstrated in the 
pons and middle cerebellar peduncles and the immediately adjacent 
midbrain and medulla. Increased atrophy, but at a slower rate, is seen 
in the upper midbrain and lower medulla. Even slower, but definitely 
pathological atrophy rates are seen in both temporal lobes. Ventricu-
lar enlargement is also shown. Image reproduced from [32]

Fig. 4   Progression of putaminal degeneration in MSA using diffu-
sion MR. Trace (D) maps at the level of mid-striatum in individual 
patients with the Parkinson variant of multiple system atrophy (MSA-
P) (n = 2; a baseline; b follow-up in one patient; c baseline; d follow-
up in another patient) and Parkinson’s disease (PD) (e baseline; f fol-
low-up). Note the diffuse hyperintensity—corresponding to increased 
Trace (D) values—in the putamina of the patient with MSA-P 
(arrows in a–d) which are increased at follow-up (b, d) compared to 
baseline examination (a, c). The PD patient shows no increased Trace 
(D) values in the putamen, neither at baseline (e) nor at follow-up (f). 
Images reproduced from [39]
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[37]. DWI-measured progression of striatal and extrastriatal 
degeneration including the putamen, pons, and cerebellar 
white matter in MSA in a longitudinal study correlated well 
with disease duration and severity at 1-year follow-up [38].

MTR

Magnetization transfer imaging allows brain structure seg-
mentation and ratio (MTR) calculation of a specific ROI. A 
significant decrease in MTR of the globus pallidus, putamen, 
and substantia nigra has been reported in MSA compared 
to IPD [40]. Changes in the basal ganglia were reported in 
MSA-P in studies using MTR [40, 41]. Furthermore, using 
basal ganglia and substantia nigra changes in stepwise MRT 
analysis provided a good discrimination rate between PD 
cases and controls from the MSA and PSP group. However, 
the classification of individual MSA and PSP cases into dis-
ease groups was not optimal [40].

SWI

Susceptibility-weighted imaging (SWI) is a gradient echo 
image that provides information about any tissue that has a 
different magnetic susceptibility compared to its surrounding 
structures such as deoxygenated blood, hemosiderin, ferritin, 
and calcium [42]. Compared with a standard T2* sequence, 
there is increased sensitivity in detecting local changes in 
iron content [43]. This is important in MSA, as several histo-
pathological studies have revealed increased iron and ferritin 
levels in the putamen (particularly posteriorly), striatum and 
substantia nigra [44], and at a significantly higher amount 
than in IPD [45]. SWI studies have shown a much higher 
iron deposition in the putamen and pallidum of MSA-P 
compared to IPD and PSP [46, 47]. One study splitting the 
putamen into four regions suggested that the lower inner part 
is the best marker to differentiate between MSA-P and IPD 
[48]. Another study showed increasing iron accumulation 
in the putamen from posterolateral areas in the early stages 
to more anteromedial areas later [49]. Studies of the cau-
date are less clear: one study found an increased deposition 
of iron in the caudate nucleus of MSA-P compared to IPD 
[48], while a second study could not replicate these findings 
based on SWI alone [49]. These contradictory results may 
well represent differences in disease duration in the different 
sample groups.

VBR

Voxel-based relaxometry (VBR) is a morphometric method 
that analyses the relaxation rate R2 (defined as 1/T2) derived 
from multi-echo T2-weighted images on a voxel by-voxel 
basis using the exponential relationship between the actual 
transverse magnetization and the relaxation rate R2. In 

principle, decreased R2 indicates increased water content 
and, therefore, provides a measure of tissue atrophy [26]. 
VBR analysis in MSA-C patients revealed a reduced relaxa-
tion rate R2 particularly within the cerebellum, middle cer-
ebellar peduncles, and pons [19, 24, 50, 51].

QSM

Quantitative susceptibility mapping (QSM) detects local 
susceptibility changes to metals such as iron. Studies sug-
gested that QSM is a better tool for measuring iron levels 
in the tissue [52, 53]. Both the R2 and QSM are increased 
in MSA and PSP compared to PD and controls in several 
brain structures including the basal ganglia and cerebellum. 
However, compared to PSP, the MSA subgroup had different 
iron deposition patterns in the SN, thalamus, and red nucleus 
[54, 55]. A post-mortem study assessed the QSM and R2 in 
path confirmed parkinsonian disorders showing that in vivo 
increased R2 was significantly associated with alpha-synu-
clein and QSM correlated significantly with Perl’s stain for 
iron. However, neither measurement correlated with tau nor 
glial cell counts [53].

Structural and functional connectivity

Diffusion tensor imaging (DTI) uses the motion of water to 
quantify changes in the microstructure of white matter tracts 
[56]. DTI metrics commonly include fractional anisotropy 
(FA), axial diffusivity (AD), radial diffusivity (RD), and 
mean diffusivity (MD). FA is a marker of fibre structural 
integrity, being reduced when neuronal fibres are destroyed 
causing water diffusion to occur in all directions (become 
isotropic). Diffusivity measures are higher [57], with AD 
considered a reflection of axonal loss and RD of myelin 
damage [58].

Several studies have used DTI to assess white matter tract 
changes in MSA. DTI shows that the cerebellum, in particu-
lar, MCP regions, and globus pallidum of MSA patients have 
reduced FA associated with higher MD values, compared to 
IPD [59, 60] (Fig. 5).

One study compared DTI in different MSA subtypes 
using the Diffusion Trace (D) generating brain maps from 
the MD images in the three orthogonal directions. Trace (D) 
values measured in the entire and anterior putamen were sig-
nificantly higher in MSA-P than in MSA-C cases, whereas 
Trace (D) values in the cerebellum and middle cerebellar 
peduncle (MCP) were significantly higher in MSA-C than 
in MSA-P patients and controls. Furthermore, the increase 
of disease duration significantly correlated with increased 
Trace (D) values in the pons of MSA-P patients and in cer-
ebellum and MCP of MSA-C patients. Both Unified Multi-
ple System Atrophy Rating Scale (UMSARS) and Unified 
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Parkinson’s Disease Rating Scale (UPDRS) motor scores 
positively correlated with entire and posterior putaminal 
Trace (D) values in MSA-P patients [35].

The hot cross-bun sign implies that the corticospinal tract 
(CST) remains intact in the presence of degeneration of pons 
and pontocerebellar fibres. However, this contradicts patho-
logical reports that support the involvement of white matter 
CST in MSA. Using DTI CST, white matter changes have 

been shown to be present, with a marked decrease in FA and 
increase in MD observed in the transverse pontocerebellar 
fibres, the corticospinal tracts, pons, and the cerebellum. 
These observations correlate well with neuropathological 
studies [62], suggesting that DTI is much better at detect-
ing white matter structural changes than the standard MRI 
sequences.

Fig. 5   Diffusion tensor imaging in MSA. White matter maps showing 
regions of significant decreased fractional anisotropy and increased 
mean diffusivity in MSA patients when compared to healthy controls 
and PD (Bonferroni corrected alpha = 0.0167). Background image 
corresponds to the mean fractional anisotropy image of all subjects in 

the standard MNI152 space (radiological view). Fractional anisotropy 
white matter skeleton is represented by green voxels. Blue voxels rep-
resent regions of decreased FA, and yellow voxels represent regions 
of increased MD in the PSP group. Images reproduced from [61]
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Resting-state functional MRI (rsfMRI) is a relatively new 
tool that, unlike task-based fMRI, assesses brain connectiv-
ity, while the subject is at ‘rest’ (lying quietly in the scan-
ner). This technique allows the assessment of ‘functional’ 
connectivity and networks by visualising synchronised neu-
ronal activation (based on the blood oxygenation level or 
BOLD signal) between spatially distinct brain regions [63]. 
The most well-defined network is the default mode network 
[64], although multiple other ‘intrinsic connectivity net-
works’ have been described including sensorimotor, visual, 
language, attention, and salience networks [65–70]. There 
are currently only a small number of studies using rsfMRI 
in MSA. The first such study showed that the networks most 
affected in MSA are the default mode and sensorimotor net-
works [71]. 20 clinically probable MSA patients were ana-
lysed alongside 9 healthy controls, using a regional homo-
geneity (ReHo) method to investigate neuronal networks in 
resting state. ReHo changes have been described in IPD, 
including sensorimotor networks [72], but in the IPD group, 
ReHo was reduced in medial PFC and SMA, compared with 
an increase in the same areas in MSA. Although these are 
very small studies and require further replication, they could 
be significant. However, other pathways affected in MSA, 
e.g., the olivopontocerebellar and the nigrostriatal networks, 
were not assessed, so much remains to be explored.

Whole brain connectivity analysis was also used to moni-
tor response to repetitive transcranial magnetic stimulation 
(TMS) in MSA patients in a small study [73]. Patients were 
randomised to 10 sessions of TMS targeting the motor 
cortex area or sham TMS. Patients receiving active TMS 
showed changes in several networks including the default 
mode, cerebellar, and limbic networks. Interestingly, the 
positive changes in the functional networks were associated 
with improved motor symptoms in the TMS-treated group 
[73].

Measures of perfusion

Arterial spin labelling (ASL) is a new MRI technique that 
uses magnetically labelled water molecules in the blood to 
trace cerebral blood flow (CBF). As CBF is directly linked 
to metabolic activity, ASL is a good non-invasive, radiation-
free, low-cost marker of perfusion. Whole brain CBF maps 
can be calculated from the acquired data allowing group 
comparisons [74]. In PD, ASL has been shown to be an 
alternative to PET and SPECT for assessing perfusion [75, 
76]. ASL has not yet been applied to MSA, but recent expe-
rience in other neurodegenerative disorders, including vari-
ous parkinsonian syndromes, is encouraging, suggesting that 
ASL may prove a useful and safe neuroimaging tool in the 
future.

Multimodal imaging and the future

Complex molecular processes such as neurodegeneration 
require comprehensive neuroimaging protocols to accu-
rately describe and track disease progression and studies 
are now starting to combine multiple imaging modali-
ties. Combining T2* relaxation rates with DTI metrics 
has revealed significant changes in the putamen of MSA 
compared with IPD. Comparing the clinical subtypes, the 
MSA-P group showed a higher MD in the putamen com-
pared to IPD and MSA-C. Importantly, the combination 
of the two methods assessing structural integrity (T2* 
and MD) provided 96% accuracy in differentiating IPD 
cases from MSA-P [33]. In a group of early stage atypical 
parkinsonian syndrome patients with unknown diagnosis, 
a prospective study using both conventional T1/T2-MRI 
(regions of atrophy and signal changes) and DTI (MD and 
FA metrics) measures assessed the diagnostic accuracy 
when both techniques were used. A diagnosis was reached 
after clinical follow-up. As with the previous study, sig-
nificantly higher MD in the putamen was present in the 
MSA-P compared to the rest of the group, and diagnostic 
accuracy increased when the DTI metrics were added [77]. 
Similarly, adding SWI data to conventional structural MRI 
improved the accuracy of identifying the MSA cases from 
the atypical parkinsonism group [48].

Although not yet applied to MSA, a combination of 
MRI, DTI, fMRI, and ASL has improved diagnostic 
accuracy in other neurodegenerative disorders, e.g., AD 
and FTD based on structural and functional white mat-
ter involvement [78]. A similar approach could provide 
significant qualitative and quantitative markers of disease 
and progression for MSA, where the white matter tracts 
are affected early in the disease course.

Conclusion

In recent years, there has been significant progress in neu-
roimaging techniques and their application to research into 
neurodegenerative disorders. In MSA, most studies in the 
past have focused on the volumetric and structural patterns 
of the disease. However, improved diagnostic accuracy 
and novel disease progression markers have been reported 
using new connectivity and functional techniques. None 
of these tools alone are able to provide all the necessary 
quantitative and qualitative measured outcomes. However, 
a multimodal approach using these innovative technologies 
as part of the diagnostic toolkit seems likely to offer the 
best path for future progress in both clinical diagnosis and 
research into MSA.
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