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Abstract—Large-scale wireless sensor networks (WSNs) and
Internet-of-Things (IoT) applications involve diverse sensing
devices collecting and transmitting massive amounts of hetero-
geneous data. In this paper, we propose a novel compressive
data aggregation and recovery mechanism that reduces the global
communication cost without introducing computational overhead
at the network nodes. Following the principles of compressive
demixing, each node of the network collects measurement read-
ings from multiple sources and mixes them with readings from
other nodes into a single low-dimensional measurement vector,
which is then relayed to other nodes; the constituent signals
are recovered at the sink using convex optimization. Our design
achieves significant reduction in the overall network data rates
compared to prior schemes based on (distributed) compressed
sensing or compressed sensing with (multiple) side information.
Experiments using real large-scale air-quality data demonstrate
the superior performance of the proposed framework against
state-of-the-art solutions, with and without the presence of
measurement and transmission noise.

Index Terms—Compressive demixing, wireless sensor net-
works, Internet of things, air-pollution monitoring, smart cities.

I. INTRODUCTION

W IRELESS sensor network (WSN) technology lies in

the crux of various Internet-of-Things (IoT) applica-

tions [1], where myriads of wireless nodes monitor ambient

conditions in an area, such as temperature, humidity, and

concentration of air pollution particles. Consider a WSN com-

prising N nodes, each measuring L data types; for instance,

the concentration of CO2, SO2 and NO in the air. How can we

efficiently gather all the data from the distributed nodes and

recover it at the sink? The design needs to minimize the data

rates, maintain the power consumption at the sensor nodes,

and account for the effect of measurement and transmission

noise. Power savings can be achieved by decreasing the

encoding complexity at the node and/or by reducing the radio

emission. Furthermore, in such large-scale setups, multi-hop
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transmission over small distances is preferable so as to keep

the transmission power as low as possible [1].

Prior studies on data gathering propose collaborative

wavelet transform coding [2] and clustered data aggrega-

tion [3], [4] techniques that require excessive transmission of

overhead information—and hence additional encoding com-

plexity. Distributed source coding (DSC) [5] and multiterminal

coding [6] provides an alternative strategy that leverages inter-

sensor data correlation at the decoder side, but performs well

only for a limited number of nodes. Haupt et al. focussed on

large-scale WSNs proposing an intelligent design where com-

pressed sensing (CS) is used to balance the power consumption

of the sensing devices [7]. A similar gathering scheme that

considers multi-hop routing and includes a network capacity

analysis was presented in [8]. This method provides significant

rate reductions compared to traditional multi-hop solutions.

Both [7], [8] leverage spatial dependencies among sensor data

to obtain sparse signal representations; independent recovery

of single modal data is performed at the sink. Leveraging

spatiotemporal compressibilty, a dynamic compression scheme

followed by a recovery algorithm was proposed in [9]. In

[10], [11], another compressive gathering scheme based on

compressed sensing with (multiple) side information [12] was

introduced. This work leverages both the spatial dependencies

between sensor readings of the same source, as well as

the dependence structure among sensor readings of different

sources. The number of transmissions Ml required for each

source l is smaller than in [7], [8] as recovery accounts for

multiple side information signals at the data recovery stage.

Finally, distributed compressed sensing (DCS) [13] provides

an alternative solution that uses spatiotemporal dependencies

among sensor data to succeed joint recovery. Using a so-

phisticated model to describe the joint sparsity among sensor

signals, DCS requires a total number of transmissions similar

to [7] for high mean-squared error (MSE) and similar to [10]

when improved reconstruction quality is needed.

Although these compressive gathering designs focus on

improving the reconstruction quality at the sink, they actually
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disregard the significant amount of energy consumed due to

gathering readings of different sources separately. In this paper,

we follow a different approach: instead of developing another

recovery algorithm, we introduce a mechanism that jointly

aggregates sensor readings from all data sources into a single

measurement vector. To this end, we use the compressive

demixing paradigm [14], [15], which allows reconstructing a

set of structured signals only from their sum. This enables

us to perform both joint gathering and joint recovery of the

sensor signals, and thus significantly reduce the total amount

of communication. Moreover, the proposed algorithm is robust

against measurement and communication noise and requires

little computation from the sensor nodes.

The paper is organized as follows. Section II presents an

overview of compressed sensing and compressive demixing

theory, and the design for single modal data collection in [8].

Section III includes the proposed scheme for multiple source

heterogeneous data collection. In Section IV, we demonstrate

experimental results employing large-scale air-pollution data.

II. BACKGROUND

A. Compressed Sensing

Compressed Sensing (CS) builds upon the fact that many

signals x ∈ R
N have sparse representations, i.e., they can be

written as x = Ψs, where Ψ ∈ R
N×N is an orthogonal basis,

and s ∈ R
N is a k-sparse vector (it has at most k nonzero

entries). Suppose we observe M ≪ N linear measurements

from x: y = Φx = As, where Φ ∈ R
M×N is a sensing

(or encoding) matrix, and A := ΦΨ, A ∈ R
M×N . CS

theory states that if A satisfies the mutual coherence property

[16], the Restricted Isometry Property [17], or the Null Space

Property [18], then s (and thus x) can be recovered by solving

ŝ = argmin
s

‖s‖1 s.t. y = As. (1)

In particular, s is the only solution to (1) whenever the

number of measurements M is sufficiently large. When the

measurements are noisy, i.e., y = As + η, where η ∈ R
M

represents additive noise, s can be recovered by solving

instead

ŝ = argmin
s

1

2
‖y −As‖22+λ‖s‖1, (2)

where λ > 0 controls the trade-off between sparsity and

reconstruction fidelity. Instead of assuming that s is strictly

sparse (i.e., ‖s‖0= k), several works, e.g. [19] (including

this one) focus on compressible signals, i.e., signals whose

coefficients decay exponentially, when sorted in order of

decreasing magnitude.

B. Compressive Data Gathering for WSNs

The compressive data gathering (CDG) approach in [7],

[8] adheres to a multi-hop communication scenario in which

each node relays a weighted sum of sensor readings to a

neighboring node. Specifically, consider a network of N
nodes and let xi ∈ R denote a scalar reading of node

i ∈ {1, 2, . . . , N}. As shown in Fig. 1, node 1 generates a

1 2 3

· · ·

N sink

φj,1 x1 φj,1 x1 + φj,2 x2

· · ·
y(j) =

N∑

i=1

φj,ixi

M repetitions

Fig. 1. Multi-hop transmission in a large-scale WSN using CS [8].

pseudorandom number φj,1 and transmits the value φj,1x1 to

node 2. Subsequently, node 2 generates φj,2, computes the

weighted sum φj,1x1+φj,2x2 and sends it to node 3. In sum,

node n generates φj,n, computes the value φj,nxn, adds it to

the sum of the previous relayed values, and sends
∑n

i=1 φj,ixi

to node n+1. The sink node thus receives y(j) =
∑N

i=1 φj,ixi.

After repeating the procedure M times, for j = 1, . . . ,M , the

sink obtains

y =
[
φ1 · · · φi · · · φN

]T
x = Φx , (3)

where y = (y(1), . . . , y(j), . . . , y(M))
T

is the vector of

measurements, φi = (φ1,i, . . . , φj,i, . . . , φM,i) is the row

vector of pseudorandom numbers generated by node i, and

x = (x1, . . . , xi, . . . , xN )T is the vector of the node readings.

Considering the spatial correlation of the sensor readings in

a densely deployed sensor network, the source signal x can

be represented by a sparse signal with respect to a suitable

basis. Then, the sink can recover x using standard CS recovery

algorithms [19]–[21].

In a multi-hop network comprising N nodes, a message

is delivered to the sink after O(N) transmissions. The con-

ventional approach in which each node conveys the previous

nodes’ messages together with its own results in an overall

communication cost of O(N2). Employing CDG, each node

sends exactly M measurements, reducing the overall commu-

nication cost to O(NM). The number of measurements M
is dictated by CS theory; for an N -dimensional signal with

sparsity level equal to κ, M is O(κ log(N/κ)) [17], [18], [22],

and the overall number of transmissions is O(Nκ log(N/κ)).
CDG can be extended to transmit multiple signals acquired

from L different sources in two ways. We can either apply

it separately for every source signal or treat the measure-

ments at the i-th node as a vector xi = (x
(1)
i , . . . , x

(L)
i )

T
,

i ∈ {1, 2, . . . , N}. If we assume a similar sparsity level for all

source signals, i.e., κl ≈ κ, l ∈ {1, 2, . . . , L}, in both cases,

the overall number of transmissions is O(LNκ log(N/κ)).

C. Compressive Demixing

Demixing or source separation is the process of extracting

multiple components entangled within a signal [14], [15], [23],

[24]. According to the basic model for mixed signals, we

observe a signal z ∈ R
N

z = x1 + x2, (4)

and wish to determine the component signals x1,x2 ∈ R
N .

Demixing is based on prior information about the signal struc-

tures, many of which can be encoded by a convex function.



For example, assume x1 (resp. x2) is sparse in the basis

Ψ(1) ∈ R
N×N (resp. Ψ(2) ∈ R

N×N ). Then, x1,x2 can be

demixed by solving

[x̂1, x̂2] = arg min
x1,x2

‖Ψ(1)x1‖1+α‖Ψ(2)x2‖1

s.t. z = x1 + x2 .
(5)

Specifically, if Ψ(1) and Ψ(2) are incoherent in the sense

that Ψ(1)(Ψ(2))
−1

[or Ψ(2)(Ψ(1))
−1

] can be modeled as a

uniform random orthogonal basis, and the sum of the statistical

dimensions of the ℓ1-norm at Ψ(1)x1 and Ψ(2)x2 is smaller

than N then, with high probability, there exists α > 0 such

that (5) has a unique solution [15, Thm. 1], [14]. This means

that x1 and x2 can be perfectly separated via (5).

When the mixed signal x1 + x2 is partially observed, then

we obtain the paradigm of compressive demixing [15], that is,

y = Φ(x1 + x2), (6)

where Φ ∈ R
M×N , M ≪ N , is a matrix representing

the linear subsampling mechanism. The strategy used for

demixing uncompressed signals can be easily extended to the

compressed case. Assuming again that the signals have sparse

representations in Ψ(1) and Ψ(2), we would solve

[x̂1, x̂2] = arg min
x1,x2

‖Ψ(1)x1‖1+α‖Ψ(2)x2‖1

s.t. y = Φ(x1 + x2).
(7)

Clearly, the above models in (4), (6) can be extended to

more than two signals. The reader is referred to [14], [15],

[25] and the references therein for more details.

III. PROPOSED SCHEME

Existing compressive data gathering techniques [7], [8],

[26], [27] have successfully employed CS by leveraging the

spatiotemporal correlation among sensor readings collected

from a single source. CS solutions are popular as they reduce

transmission cost without incurring additional computation

or communication control overhead over the network nodes.

However, current WSN and IoT setups involve diverse sensing

devices gathering heterogeneous data; for instance, different

air pollution measurements (CO, NO2, O3, SO2) are collected

in an environmental monitoring setup. While CS is a well-

suited solution to homogeneous data compression and trans-

mission, efficient sensing of multiple heterogeneous signals

naturally leads to compressive demixing. The basic model

of compressively mixed signals allows the formulation of a

sensing mechanism that encodes multiple signals into a single

low-dimensional measurement vector, and a recovery process

that extracts the constituent signals using convex optimization.

Our experimental results show that the proposed scheme

significantly reduces the acquired sensor data measurements

and minimizes the transmission data rates, while being robust

to measurement and transmission noise.

Consider a large-scale WSN comprising N wireless de-

vices (nodes), each of which equipped with L sensors that

monitor diverse, but statistically dependent, data types; for

example, if the sensors measure the concentration of CO,

NO2, O3, and SO2, then L = 4. The wireless nodes form

a multi-hop route to the sink, as depicted in Fig. 2. Each

node i ∈ {1, 2, . . . , N} observes realizations of the cor-

related sources X1, X2, . . . , XL, which take values in their

corresponding continuous alphabets X1,X2, . . . ,XL. Let x
(l)
i

denote the reading at node i ∈ {1, 2, . . . , N} of data type

l ∈ {1, 2, . . . , L}. We denote by xi = (x
(1)
i , . . . , x

(L)
i )

T

the L-dimensional vector collecting the readings of all data

types at node i, and x(l) = (x
(l)
1 , . . . , x

(l)
i , . . . , x

(l)
N )

T
the N -

dimensional vector collecting the readings from the source Xl

at all nodes.

A. Joint Data Aggregation

The proposed design encodes the sensor readings of L
sources collected by N nodes in the network into a single

M -dimensional measurement vector. More particularly, the

readings of different sources are aggregated using random

weights and transmitted as a single mixed measurement; the

process is repeated M times until the sink receives M mixed

measurements.

In the j-th transmission, the gathering procedure is ini-

tiated by node 1, which collects x1 = (x
(1)
1 , . . . , x

(L)
1 )

T
,

generates the pseudo-random numbers (φ
(1)
j,1 , . . . , φ

(L)
j,1 ), and

transmits the sum φ
(1)
j,1x

(1)
1 + · · ·+φ

(L)
j,1 x

(L)
1 to node 2. Subse-

quently, node 2 collects x2 = (x
(1)
2 , . . . , x

(L)
2 )

T
, generates the

pseudo-random numbers (φ
(1)
j,2 , . . . , φ

(L)
j,2 ) and sends the sum∑2

i=1 φ
(1)
j,i x

(1)
i +· · ·+

∑2
i=1 φ

(L)
j,i x

(L)
i to node 3. To generalize,

each device n collects L readings xn = (x
(1)
n , . . . , x

(L)
n )

T
that

correspond to different sources, then generates the numbers

(φ
(1)
j,n, . . . , φ

(L)
j,n ), and transmits the value

∑n

i=1 φ
(1)
j,i x

(1)
i +· · ·+∑n

i=1 φ
(L)
j,i x

(L)
i to device n+ 1.

The procedure continues until the N -th node sends its

information to the sink; therefore, in the j-th transmission,

the sink receives the weighted sum

y(j) =

N∑

i=1

φ
(1)
j,i x

(1)
i + · · ·+

N∑

i=1

φ
(L)
j,i x

(L)
i

= φ
(1)
j x(1) + · · ·+ φ

(L)
j x(L), (8)

where φ
(l)
j = (φ

(l)
j,1 . . . φ

(l)
j,i . . . φ

(l)
j,N ) is the row vector with

the randomly generated numbers from all devices regarding

source Xl. Recall that x(l) = (x
(l)
1 , . . . , x

(l)
i , . . . , x

(l)
N )

T
is the

signal that contains readings of the same source Xl collected

by all nodes.

The aforementioned procedure is repeated M times, each

indexed by j = 1, . . . ,M , acquiring M measurements

y(1) = φ
(1)
1 x(1) + · · ·+ φ

(L)
1 x(L),

y(2) = φ
(1)
2 x(1) + · · ·+ φ

(L)
2 x(L),

...

y(M) = φ
(1)
M x(1) + · · ·+ φ

(L)
M x(L).

Let us denote by Φ(l) = [φ
(l)
1 ,φ

(l)
2 , . . . .,φ

(l)
M ]

T
the M × N

sensing matrix that corresponds to the source Xl; the j-th row
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+
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+
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Fig. 2. Proposed scheme for joint data aggregation and recovery via compressive demixing.

of this matrix contains the random weights generated for the

j-th transmission of the related sensor signal collected by N
nodes. Then, the above equations can be written in a matrix

form as

y = Φ(1)x(1) + · · ·+Φ(L)x(L), (9)

where y = (y(1), y(2), . . . , y(M))
T

is the vector contain-

ing the M mixed measurements. This procedure results in

O (MN) transmissions in the network. Similar to [8], the

generation of the sensing matrices at each node is based on a

random seed broadcasted by the sink. The sink can reproduce

Φ(l), l ∈ {1, 2, . . . , L}, using the nodes’ identifications.

Although the proposed data gathering strategy is based

on a direct multi-hop route, it can readily address networks

organized in a tree-based structure, similarly to [7], [8], [10].

B. Joint Data Recovery via Compressive Demixing

The second stage deals with joint recovery of the sensor sig-

nals x(l), l ∈ {1, 2, . . . , L} at the sink, using the measurements

y and the sensing matrices Φ(l). We assume that every signal

x(l) has a sparse representation s(l) on the discrete cosine

transform (DCT) domain, that is, x(l) = Ψs(l), where Ψ is

the DCT matrix1. Defining A(l) := Φ(l)Ψ, the measurement

vector given by (9) can be written as

y = A(1)s(1) + · · ·+A(L)s(L). (10)

In order to apply compressive demixing to recover the con-

stituent sparse signals s(l), l ∈ {1, 2, . . . , L}, these should

be incoherent. Assuming the same sparsifying basis Ψ for

every source signal x(l), incoherence is satisfied as long as

the columns of the employed measurement matrices Φ(1),

. . . , Φ(L) are weakly correlated [14]. The use of random

Gaussian measurement matrices ensures that the structures in

the involved signals are oriented generically with respect to

1DCT is chosen so as to align with prior work [8], [10]. As it was shown
in [11], DCT is a good sparsifying basis for air pollution data resulting in
compressible data representations.

each other. Then, the sink can recover s(l), l ∈ {1, 2, . . . , L},

by solving the compressive demixing problem

[ŝ(1), . . . , ŝ(L)] = arg min
{s(l)}

L∑

l=1

αl‖s
(l)‖1

s.t. y =

L∑

l=1

A(l)s(l),

(11)

where αl > 0 are regularization parameters that trade the

relative sparsity of solutions. Here, we assume that αl = 1,

for all l ∈ {1, 2, . . . , L}. After solving Problem (11), the final

estimates of the signal vectors are calculated as: x̂(l) = Ψŝ(l),

l ∈ {1, 2, . . . , L}.

To the best of our knowledge, there are no sharp recovery

bounds for Problem (11). A related problem, however, has

been studied in [25]. More particularly, the authors of [25]

consider a constrained compressive demixing problem of the

form

[ŝ(1), . . . , ŝ(L)] = arg min
{s(l)}

∥∥∥∥∥

L∑

l=1

A(l) · s(l) − y

∥∥∥∥∥

2

2

s.t. ‖s(l)‖1≤ ‖s̃(l)‖1, for all l ∈ {1, . . . , L},

(12)

where A(l) ∈ R
M×N are sub-sampling matrices with el-

ements drawn i.i.d. from a Gaussian distribution, and s̃(l),

l ∈ {1, 2, . . . , L} are the signals we aim to reconstruct. We

refer to (12) as the oracle problem. Note that (12) requires

access to the ℓ1-norms of these signals, not necessarily access

to the signals themselves. Theorem A in [25] states that (12)

succeeds in recovering the signal, if the number of measure-

ments M is slightly larger than the sums of the statistical

dimensions of the ℓ1-norms evaluated at s̃(1), s̃(2), ..., s̃(L).

Using results from [18], it can be shown that the total statistical

dimension for L sparse signals with similar sparsity level equal

to κ is O(Lκ log(N/κ)). In a multi-hop routing scenario, this

would result in an overall number of transmissions of the

order O(NLκ log(N/κ)). Although this number is of the same

order as the communication cost of CDG [8] when applied to



multiple signals (see Section II-B), our experiments show that

(12) significantly outperforms CDG.

Recall that the above bound on the number of measurements

applies to the oracle problem, and not exactly to the problem

we propose to solve, (11). Nevertheless, it can be used as an

indication of the number of measurements for (11). In the next

section, however, our experiments will show not only that this

bound can be quite loose, but also that our method outperforms

the prior state of the art.

IV. EXPERIMENTS

To evaluate the performance of our framework, we consider

the problem of air-pollution monitoring based on actual air-

pollution sensor readings taken from a database of the United

States Environmental Protection Agency (EPA) [28]. In par-

ticular, we use 6 × 105 actual sensor readings of three air

pollutants, namely, carbon monoxide (CO), nitrogen dioxide

(NO2) and sulfur dioxide (SO2), measured during 2015. We

consider a multi-hop network architecture with N = 1000
nodes2. The transmission of the sensor values is assumed

to be conducted via the Long Range Wide Area Network

(LoRaWAN) protocol [29], the most recent low-power wireless

networking protocol, specifically designed for IoT architec-

tures, which allows for extremely low-rate data transmission

to long ranges. In addition, we assume that the signals sent

between sensors are discretized using an analog-to-digital

converter, where the bit-depth is 16 bits, and all signals are

assumed sparse in the DCT domain (see [11, Sec. VI-B.1]).

A. Performance Comparison in the Noiseless Case

We compare the proposed design against (i) independent

signal recovery proposed in [8] (baseline system), (ii) the

extended ℓ1 − ℓ1 reconstruction algorithm that uses (multiple)

side information developed in [10], (iii) the solution given

by the DCS system [13], and (iv) the solution of the oracle

problem (12). As mentioned in Section III-B, the latter system

cannot be practically applied in our setting; it is included in

our comparison just for illustration.

Figure 3 shows the results of our experiments and depicts

the achieved reconstruction quality versus the total number

of transmissions. The reconstruction quality is computed as

the total relative error3
∑L

l=1
‖x(l)−x̂

(l)‖2

‖x(l)‖2
, and, for the multi-

hop routing scenario, the number of transmissions equals the

number of measurements at every node multiplied by the

number of nodes (N = 1000). The maximum possible number

of measurements for the proposed method and the oracle

problem then equals M = N = 1000.

We compare the performance of the tested methods by

examining the number of the transmissions required to achieve

a similar reconstruction quality. According to Fig. 3, the

proposed method outperforms the state of the art, when high

quality reconstruction is considered, i.e., the total relative error

is smaller than 2.2. In this case, compared to the DCS and the

2A typical large-scale WSN comprises thousands of sensor nodes [7], [9].
3The error floor in Fig. 3 is relatively large because pollution signals are

not exactly sparse in the DCT domain, only compressible.
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Fig. 3. Performance evaluation of the proposed method against the baseline
and the DCS systems using actual measurements from the EPA database.

baseline approach, the proposed method achieves a reduction

in the total number of transmissions up to 45% and 60%,

respectively. This means that the transmissions among the

nodes are also reduced by the same factor, thereby leading

to significant power savings and, hence, a prolonged WSN

lifetime. The results obtained for the proposed method are

similar to the results of the oracle problem and significantly

better than the results of the baseline system [8]. For low

quality reconstruction requirements (total relative error > 2.2),

the extended ℓ1 − ℓ1 algorithm requires less transmissions

than its competitors. The better performance of the ℓ1 − ℓ1
method when the number of measurements is low has also

been reported in [10], [12]. However, when high reconstruc-

tion quality is required, the proposed method dramatically

improves and outperforms all other methods.

B. Performance Comparison under Noise

We perform the same comparison under the assumption that

the measurements are corrupted by noise. The noise can be

attributed to both the sensing and the transmission steps, and

can be modelled as additive white Gaussian noise (AWGN):

y =
∑L

l=1 A
(l)s(l) + η, where η ∈ R

M is drawn i.i.d. from

N (0, ση), with ση denoting standard deviation of the noise.

We varied ση = 2, 5, 10 so as to include weak, moderate

and strong noise corruption on the measurements. Results

are presented in Fig. 4. For a similar reconstruction quality,

the proposed method provides a significant reduction in the

number of total transmissions compared to the baseline and the

DCS system, even when the noise level increases. Recovery

via the extended ℓ1 − ℓ1 method still performs better for low

reconstruction quality. It is, however, less robust compared

to all others methods [10]. Moreover, unlike the DCS and

baseline systems, the proposed scheme provides more robust

recovery against measurement and communication noise of

various levels. Compared to the noiseless case, the relative

error increases on average by 0.5% (ση = 2), 2.1% (ση = 5)

and 4.2% (ση = 10).
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Fig. 4. Performance evaluation of the proposed method, the baseline and the
DCS systems for various noise standard deviations: ση = 2, 5, 10.

V. CONCLUSIONS

We have proposed a novel design for joint acquisition and

recovery of multiple heterogeneous signals, well-suited for

large-scale Internet-of-Things applications. Specifically, in this

work, we have addressed the efficient transmission of diverse

types of data collected from different sources by all nodes in

the network. Heterogeneous data are encoded into a single

low-dimensional measurement vector and recovered at the

sink using the compressive demixing paradigm [14], [15].

Compared to existing designs that are based on compressed

acquisition of multi-modal data, our method achieves a sig-

nificant reduction of the total number of transmissions in the

network. This gain translates into power savings at the wireless

nodes or IoT devices. The proposed scheme was evaluated on a

real dataset concerning an air-pollution monitoring application.

The experimental results showed that our method significantly

reduces (up to 60%) the required transmission rate against

prior art [7], [10], [13], for high quality reconstruction. For

increased levels of noise, our design is more robust than the

prior state of the art.
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