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ABSTRACT  
In this work we present the architecture and a refer-
ence implementation of a software tool to automate 
the configuration and deployment of services for fault 
detection and diagnosis which can assist to improve 
operational building performance. We use an ontolo-
gy as an intermediate meta-data layer to integrate the 
BIM information and the static BMS data required to 
automate this process. The contribution aspect resides 
in the demonstration of the approach which is based 
on the core concept of a tailored pairing of a fault 
detection and diagnosis service and an ontology que-
ry specifically designed by experts. Suggestions for 
the architecture are provided on how to embed the 
ontology in the overall framework. 
We present results from a first prototype to detect 
faults in real trend data of an air handling unit using 
rule-based analytics. 

INTRODUCTION 
The building sector accounts for the largest share of 
primary energy demand in industrialised countries, 
e.g. 43% of the German primary energy demand 
(AGEB 2014). With demands of about 30-40% of the 
required final energy in non-domestic buildings (Pé-
rez-Lombard et al. 2008), HVAC systems have a 
significant impact on the overall energy efficiency of 
a building. Due to degradation of technical equip-
ment, inadequate maintenance practices or poor oper-
ation schedules, the operational performance of 
buildings tends to deteriorate over lifetime. This is 
identified as one of the main causes for deviations 
observed between predicted and actual performance 
of a building (de Wilde 2014). 
Technical Building Management (TBM) services 
such as Fault Detection and Diagnosis (FDD) use 
data gathered through a Building Management Sys-
tem (BMS) to enhance the operational performance 
of buildings. The use of these services is stipulated by 
related standards such as EN 15232 (EN 15232 
2013). Various FDD methods with different complex-
ity have been developed in the past (Venkatasubra-
manian et al. 2003a, 2003b, 2003c). Note, that in the 
rest of this paper we will use the term “analytic” for 
each instantiation of these methods. 

Typically, manual input from experts which have 
analysed the system under control is necessary to 
configure and deploy such analytics. Bruton et al. 
(2014) present a comprehensive review on automat-
ing FDD for air handling units (AHUs) and recom-
mend to improve the integration of static BMS data 
for future research activities, as often these are gath-
ered manually by surveying the site. 
In literature various meta-descriptions of Building 
Automation Systems (BAS) and facilities are report-
ed. The definition of a common vocabulary, despite 
not formally specified, for BAS is provided by 
Domingues et al. (2016). Schein (2007) presents an 
information model for BAS implemented in the mod-
elling language EXPRESS covering descriptions of 
devices, sequence of control functions and network 
topology of BAS. Ploennings et al. (2012) report an 
ontology for BAS termed “BASont” which is based 
on a concise description of BAS devices and their 
related semantics. Han et al. (2015) describe a rule-
based reasoning system for detecting energy waste 
operation status of a ventilation system. The system is 
based on a description of the building energy system 
using an ontology and energy waste contexts may be 
inferred based on the model. A set of ontologies 
related to the “representation of energy-related in-
formation in future smart homes” is presented by 
Kofler et al. (2012). Corry et al. (2015) describe a 
“performance assessment ontology” which acts as a 
middleware to link information from various sources, 
such as building topology from Building Information 
Modelling (BIM), sensor information and building 
performance simulation. Tomašević et al. (2015) 
present an ontology for infrastructure facilities. The 
model is embedded in an energy management system 
applied in an airport test case. 
The contribution of this work resides in providing a 
tool to automate the configuration and ease deploy-
ment of FDD analytics. Integral feature is the use of 
an ontology to integrate static meta-data needed to 
automate the process by integrating BIM information 
and static BMS data. The process involves the design 
of a tailored pairing of an analytic and ontology query 
based on the information requirements of each analyt-
ic. This approach is promising to circumvent error-
prone and time consuming manual gathering of build-
ing static information as described in previous work 
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(Bruton et al. 2013). This is possible as information 
available in a standardised BIM format such as the 
Industry Foundation Classes (IFC) (buildingSMART 
2015) can be linked to the ontology and retrieved 
automatically using built-in functionalities. 
In the following sections first we briefly review 
methods for FDD in buildings as these define the 
information requirements of the designed ontology. 
The domain specific ontology for automated FDD is 
presented in the subsequent section. Next we describe 
the structure and components of a software tool de-
signed to implement the prior mentioned method for 
automated configuration and deployment of TBM 
services. Finally we present insights from a pilot 
implementation and its deployment to fault detection 
in AHU operation. 

A BRIEF REVIEW ON METHODS FOR 
FAULT DETECTION AND DIAGNOSIS 
IN BUILDINGS 
FDD analytics (or services) involve the processes of 
detecting a fault (fault detection), determining the 
root cause of the fault (fault isolation) and evaluating 
the size of the fault and monitoring its impact over 
time (fault identification) (Katipamula and Brambley 
2005). 
The quality of a FDD system is determined by wheth-
er it possesses or not a set of desirable characteristics 
(Venkatasubramanian et al. 2003a), including, among 
others, quick detection of faults, isolability and 
adaptability. A plethora of methods have been devel-
oped in an effort to fulfil these characteristics, cate-
gorised in: (i) qualitative model based methods (Ven-
katasubramanian et al. 2003b); (ii) quantitative model 
based methods (Venkatasubramanian et al. 2003a); 
and (iii) process history based methods (Venka-
tasubramanian et al. 2003c).  
In qualitative model based methods, a priori 
knowledge on the process governing the relationship 
between the inputs and the outputs of the system is 
described using qualitative causal models. In essence, 
they are expert systems facilitating a large set of if-
then-else rules describing various faults.  
Quantitative model based methods model the rela-
tionship between the inputs and outputs of the system 
using a mathematical formulation, like e.g. using a 
Kalman filter. Any deviation from the fault-free be-
haviour of the system, as predicted by the model, is 
marked as a potential fault.  
In process history based methods, no expert 
knowledge is required; instead historical data describ-
ing the inputs and outputs of the system are utilised to 
construct data-driven models of the system, based on 
Pattern Recognition methods, such as Neural Net-
works. Again, any deviation from the predicted sys-
tem behaviour is considered as a potential fault. 
The intention of the methodology presented in this 
work is to enable the use of any type of the aforemen-
tioned methodologies in a transparent and laborious-

free manner. To achieve this it is necessary to provide 
relevant meta-information for automated configura-
tion, e.g. sensor type, location in building and affilia-
tion to a technical building system. 

A DOMAIN SPECIFIC ONTOLOGY FOR 
AUTOMATED FDD 

Ontologies and Semantic Web Technologies 

We use an ontology as a meta-layer to integrate the 
required information for the automated process in one 
abstract information entity. A frequently used defini-
tion of ontologies is: “An ontology is an explicit 
specification of a conceptualization.” (Gruber 1993). 
In particular, ontological modelling defines a set of 
concepts and their relationships to describe a domain 
of interest. In comparison to other information mod-
elling techniques, ontologies offer a unique advantage 
as they combine a high expressivity based on formal-
ised abstractions with support of knowledge engineer-
ing methods arising from a firm formal base in De-
scription Logic (Hitzler et al. 2010). In this work we 
use the term “ontology” to refer to an instance of a 
semantic data model. 
Technologies and methods used for semantic model-
ling in the web are encompassed by the term “Seman-
tic Web” which was introduced by Berners-Lee et al. 
(2001). The underlying data model utilised in this 
technologies is the Resource Description Framework 
(RDF) (W3C 2016a), where the smallest piece of 
information is modelled as a triplet consisting of 
subject, predicate and object, e.g. Sensor1 
isAttachedTo Wall1. A modelling language which 
provides a vocabulary to formally specify a semantic 
data model is the Web Ontology Language (OWL) 
(W3C 2016b). A language to query RDF is SPARQL 
(W3C 2016c). 

Domain Specific Ontology Description 

The ontology presented here is developed following 
the approach suggested by Noy and McGuin-
ness (2001). As a starting point, a critical review of 
existing ontologies was performed (Corry et al. 2015, 
Dibowski 2013, Domingues et al. 2016, Tomašević et 
al. 2015); four main contextual areas have been iden-
tified: 
 

1) Parts and topology of a building and its sys-
tems; 

2) Meta-data of technical building systems such 
as the technical affiliation to an automation 
entity, e.g. electric actuator to damper flap; 

3) Physical aspects of BAS entities, e.g. physi-
cal sensor device or a gateway; 

4) Virtual aspects of BAS entities, e.g. data-
point exposed through an application inter-
face. 
 



To enable exchangeability and to provide a consistent 
description of the building and its systems we inte-
grate Meta Model an upper level ontology presented 
by Morbach et al. (2007). This allows the consistent 
description of objects and typing as well as part con-
nectedness (i.e.: topology, e.g. beam 1 is connected to 
beam 2) and parthood (i.e.: mereology, e.g. room A is 
part of storey B) relationships among them. We use 
Meta Model as it provides exactly the needed upper 
level concepts while being light-weighted enough to 
be easily integrated. The integration of Meta Model 
results in a layered design of the developed ontology 
presented in Figure 1. 
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Figure 1: Layered structure of the developed ontolo-

gy with upper level concepts from Meta Model (Mor-

bach et al. 2007) and lower level concepts to de-

scribe building elements, technical systems and phys-

ical and virtual BAS abstraction. Black arrows indi-

cate the linking of the ifcOWL and BACnetOWL 

ontology via concept mapping. 

 
In the following, the taxonomy of the DomainSpecif-
ic ontology is described in more detail as depicted in 
Figure 2. In the ontology concepts are grouped in to 
AutomationSystem, BuildingTopology and Tech-

nicalBuildingSystem. In general the paradigm of 
modelling separately concepts of an object and its 
type is applied. Information about a physical BAS 
component is abstracted using concepts summarised 
in BasEntityPhysical, e.g. a sensor is of type tempera-
ture. The concept Virtual groups on a technology 
independent level BAS data objects i.e. object ab-
straction and addressing. By this the concepts are 
provided to clearly differentiate between the physical 
virtual abstraction of a BAS as demanded by 
Domingues et al. (2016). Concepts for the topology 
of a building, e.g storey and room and of technical 
building systems such as fans, duct segments or boil-
ers are specified using concepts from BuildingTopol-

ogy and TechnicalBuildingSystem. 
To integrate required BIM information and BMS data 
the DomainSpecific ontology is linked to a populated 
ifcOWL ontology (Pauwels and Terkaj 2016) and to 
a BACnetOWL, a self-developed ontology, via con-
cept mapping (owl:sameAs) statements (Figure 1). A 
set of rules defined in the Semantic Web Rule Lan-
guage (SWRL) is created to establish the necessary 
object and data property assertions by applying 

 
Figure 2: Taxonomy of DomainSpecific ontology. 

 
a reasoner (W3C 2016d). The mappings established 
between different concepts of the utilized ontologies 
are listed in Table 1. As an example, we report in 
Table 2 the SWRL rule which defines the link of 
BIM and BMS data. The rule allows a reasoner to 
assert the object properties to link a physical BAS 
entity with its virtual datapoint counterpart and vice 
versa automatically by inference. This connection is 
established if literal values of the unique identifiers 
are equal (i.e. swrlb:equal). 
  
Table 1: Mappings of ifcOWL (prefix: ifc) and BAC-

netOWL (prefix:bac) to the DomainSpecific ontology. 
ifcOWL (ifc) of BACnetOWL (bac) DomainSpecific Ontology 

ifc:IfcSensor Sensor 

ifc:IfcActuator Actuator 

ifc:IfcSensorTypeEnum SensorType 

ifc:IfcActuatorTypeEnum ActuatorType 

ifc:IfcClassificationReference UniqueIdentifierPhysical 

ifc:IfcDuctSegment Ductwork 

ifc:IfcDamper DamperFlap 

ifc:IfcFan Fan 

ifc:ifcCoil HeatExchanger 

ifc:IfcValve Valve 

ifc:IfcUnitaryEquipment AirHandlingUnit 

ifc:IfcSite Site 

ifc:IfcBuildingStorey Storey 

ifc:IfcBuilding Building 

ifc:IfcSpace Room 

bac:Object Datapoint 

bac:UniqueIdentifier UniqueIdentifierVirtual 



Table 2: SWRL rule written in Protégé 

SWRLTabSyntax (Protégé CoP 2016) to link BMS 

and BIM information via the unique identifier value. 
UniqueIdentifierPhysical(?UIp), 
UniqueIdentifierVirtual(?UIv), 
isIdentifiedBy(?BasPhys,?UIp), 
isIdentifiedBy(?BasVirt,?UIv), 
hasLiteralValue(?UIp,?IDp), 
hasLiteralValue(?UIv,?IDv), 
swrlb:equal(?IDp,?IDv) -> 
isPhysically(?BasVirt,?BasPhys), 
isVirtually(?BasPhys, ?BasVirt)  

SOFTWARE TOOL FOR AUTOMATED 
CONFIGURATION AND DEPLOYMENT 
In the following, first, we present the general work-
flow of a data integration and analytic execution tool 
with an application of the previously described ontol-
ogy and we describe in detail and discuss functionali-
ties of an analytics tool for configuring and deploying 
the respective analytics. 
The general workflow of the tool is depicted in Fig-
ure 3. To initially setup the tool both static and dy-
namic raw data needs to be Extracted, Transformed 
to the final data format and Loaded into its respective 
storage (ETL). 
 

analytics
tool

triple store

static data ETL

dynamic
data

ETL data store

report

 
Figure 3: Structure of the software tool: Data Ex-

traction, Transformation and Loading (ETL), stor-

age, analytics configuration and deployment and 

reporting. 

 
Static meta-information about the building structure 
and the installed technical building systems as well as 
their affiliated automation devices is extracted from 
raw data. The extraction of this so called BIM infor-
mation may be done using arbitrary file formats or, if 
available, by standardised BIM data formats such as 
IFC. By providing a fixed mapping between concepts 
and SWRL rules this can be automated using reason-
ing. Similarly, static meta-information about the vir-
tual objects of the automation system (e.g. the ad-
dress of a virtual data object) is extracted from files 
specifying the configuration of the BMS and loaded 
to a connector ontology which is dependent on the 
communication protocol and technology utilised. For 
storage and providing access static data is loaded to a 
data base for its target format (i.e. RDF for an OWL 
ontology) termed triple store. 
Dynamic data includes time trajectories of readings 
extracted from the BMS which can be in an arbitrary 
format depending on the BMS. This includes for 
example sensor readings or alarms. An ETL process 
extracts this data and loads it to a data store. The data 

store hosts the data and provides relevant data on 
request. 
In both cases the ETL process includes steps for pre-
processing the data, i.e. data cleansing for data quali-
ty enhancement, transformations such as unit conver-
sions or changing from a native to a target format. 
Performing the ETL process and setting up the static 
and dynamic data is a prerequisite for executing the 
analytics tool. The analytics tool actually performs 
the configuration and deployment of the analytics. 
In the following we provide an explanation of the 
procedure to automatically configure and deploy an 
analytic by using an example of the configuration of a 
rule-based analytic with a value of a temperature 
sensor as input similar to the application in the test 
case described in the next section (see Figure 4). 
 
- Step 1: Send a query to the triple store and pro-

cess the acquired information about the sensor; 
- Step 2: Join the static sensor information and its 

readings, i.e. extracting relevant time series data 
of sensor from dynamic data store; 

- Step 3: Check if according to the rule a fault 
exists in each reading of the joined data. 

- Step 4: Determine the probability of fault by 
dividing the number of occurred faults per each 
respective period of time; 

- Step 5: Generate a result from fault detection  
 
The query from the ontology and hence the retrieved 
information is specifically designed for each analytic. 
Also, the invocation of an analytic, e.g. schedule or 
event triggered, is a property of each analytic and 
needs to be specified along with the query and the job 
to execute the analytic. Multiple analytics result in a 
number of jobs each tailored according to the charac-
teristics of the analytic. Nevertheless, the overall 
structure of the jobs remains similar comprising of 
querying the ontology, joining static and dynamic 
data, processing the analytic and reporting. If multi-
ple instances of the same analytic are required, e.g. 
observation of temperature sensors in several rooms 
of a hotel, these are executed by passing parameters 
to the job templates and run each as a unique in-
stance. 
In case analytics require high performance either 
because of the amount of data processed or for per-
forming computational intense calculations, e.g. data 
driven analytics such as machine-learning, parts of an 
analytic job may be delegated for distributed analysis 
to third party data analytic platform. 
The results may be further processed for display in a 
suitable manner, e.g. energy dashboard or cost esti-
mation tool. Technology-dependent information on 
the tool may be obtained from the pilot implementa-
tion documented in the last section of this work.  



TEST CASE FOR AIR HANDLING UNIT 
OPERATION 
To evaluate the functionality of the designed architec-
ture and as a proof of principle a test case is designed 
on performing automated rule-based fault detection 
on offline AHU data. A comprehensive description of 
the general structure of AHUs as well as their modes 
of operation is provided by Schein et al. (2006). 

Description of the Test Case 

As dynamic data measurements are used of an AHU 
placed in Richland, USA available freely on the web 
(DOE 2015) gathered from July 2014 to June 2015. 
The data set contains readings for temperatures and 
set points stored with a time resolution of one minute. 
We select a period of nine days with outdoor air 
temperature below zero degrees Celsius in November 
2014 and assume the AHU is in heating mode. 
The mentioned dynamic data is shipped without addi-
tional information except a naming convention which 
allows human readers assign readings to datapoints. 
To demonstrate the automated extraction of static 

data from a BMS we use as a workaround BMS data 
of a single duct AHU installation on our premises. 
We do not expect an impact on the results generated 
reported here as the rules apply for generic single 
duct AHUs Schein et al. (2006). The installation 
utilises a BACnet automation system (ISO 16484-
5 2014). We extract the information to populate the 
prior described ontology from parsing automatically 
generated spreadsheet files of the systems configura-
tion. The BMS information, e.g. data objects and 
literal identifiers, are loaded directly to the BAC-
netOWL ontology. Required information is later 
integrated into the DomainSpecific ontology via the 
described methodology using SWRL rules and con-
cept mapping. 
We instantiate directly an ifcOWL ontology from 
parsing the spreadsheet files to extract the mereoto-
pology of the system, i.e. BAS entity to technical 
device and building topology mapping. This step is 
necessary as current state-of-the-art BIM authoring 
tools have limited support to export automation sys-
tem information unambiguously. For instance, the 
tool Revit 2016 (Autodesk 2016) exports both sen-
sors and actuators using the IFC 4 Add. 1 data model 
(buildingSMART 2015) as ifcBuildingElementProxy 
instead of ifcSensor and ifcActuator causing ambigui-
ty in the interpretation. 
An example of the populated ontology after the data 
integration process is illustrated in Figure 5. We 
present the semantic relationships of the supply air 
temperature of the AHU. Via the object properties 
hasTechnicalRelationshipTo and hasBuildingTopol-

ogyRelationshipTo the individual representing the 
physical sensor is linked to the corresponding tech-
nical building system component DuctSegmentSupply 
and to the building topology element Room16, re-
spectively. The connection to the virtual abstraction 

of the sensor covered by the individual Ob-

ject_124_AI is established via the isVirtually object 
property. This relationship and its transitive compan-
ion isPhysically are established automatically by 
inference using the SWRL rule described in Table 2.  
As an example analytic we present a fault detection 
test case, based on a simple rule for heating mode 
defined in Schein et al. (2006). Here, we only demon-
strate the presence of an anomaly in the system, in-
stead of performing symptomatic search to identify 
the root cause of faults, like e.g. in Trojanova et al. 
(2009). 
For the purpose of this work we use the following 
rule (Schein et al. 2006). 

tsassaheatheat TTu εε ≥−∧≤− ,1  (1) 

The basic logic is that if the valve opening uheat is 
nearly full opened in comparison to a threshold εheat 
and the difference between supply air temperature set 
point Tsa,s and the supply air temperature Tsa is larger 
than threshold εt (usually εt = 1.2 K, Schein et al. 
(2006)) an anomaly is implied. 
Following Trojanova et al. (2009), the rule can be 
interpreted as a symptom of a fault if the expression 
evaluates to true. Subsequently, we integrate over 
time to provide an estimate of the probability that 
there is a fault. 

Results from Tool Execution on Real Data 

Results from executing the described tool is present-
ed in Figure 6 obtained by batch processing the se-
lected time trajectories. We report the probability of 
fault for the mentioned time period of nine days. The 
probability of fault is calculated by evaluating eq. (1) 
for every minute of an hour and dividing the number 
of minutes where the expression is true by 60. We 
assume a fully open heating coil valve stipulating a 
fault when the supply air temperature deviates more 
than εt from its set point. In the analysed data set 
dissatisfying parameterization of the heating coil 
valve control causes overshooting of the supply air 
temperature, which is causes a high probability of 
fault. The end-result includes all faulty time intervals 
along with meta-information of sensors, e.g. location 
and identifier. 
We implement the execution of the automated con-
figuration of the described rule-based analytic using 
Talend Open Studio for Data Integration 
(Talend 2016). Pre-processing raw data of the time 
trajectories and static information in the sample are 
only some megabytes and have been undertaken 
using the statistical computing software environment 
R (R Core Team 2014). The populated ontology is 
stored in a Jena Fuseki server, i.e. triple store, which 
allows to query the ontology via a HTTP with 
SPARQL queries from Talend (Jena 2016). The 
execution of the tool in this test case requires on a 
standard desktop PC seconds. 
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Figure 4: Screenshot of a job implementing the configuration and deployment of a rule-based analytic (see 

eq. 1) in Talend (Talend 2016). The job comprises querying for each sensor, joining static and dynamic data, 

deploying the rule-based analytic and creating reports. Processing speed of each step in row/s. 
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Figure 5: Semantic relationships of supply air temperature. Mappings of ifcOWL (prefix: ifc) and BACnetOWL 

(prefix: bac) to the DomainSpecific ontology. 

 
Figure 6: Reported probability of fault deploying rule-based analytic (eq. 1, εt =1.2) on hourly time intervals, 

while assuming a fully opened heating coil valve. 



Discussion 

The results show a demonstration of the intended 
workflow of the tool. However, some limitations have 
been identified. 
In terms of scalability of the tool we are confident 
that it is applicable to use cases involving multiple 
buildings and analytics. Semantic web technologies 
and associated storage systems (triple stores) are well 
suited to host some millions of entries with accepta-
ble performance (Dibowski 2013). For the part of 
analytics execution and ETL processing utilised tech-
nologies (Talend 2016) are scalable and may be de-
ployed in a cloud with associated performance in-
creases. 
An unambiguous retrieval of information for the 
presented approach from standardised BIM formats 
such as the IFC remains difficult. A remedy may 
come from the development of specific exchanges, 
using the MVD (Model View Definitions) (build-
ingSMART 2016) mechanism. 
Until now the capabilities to infer implicitly stated 
knowledge termed reasoning is utilised in a rudimen-
tary manner for consistency checking and data inte-
gration. The tool could leverage on implicit 
knowledge generation in future, e.g. verify, cross-
check and supplement if necessary information from 
different information silos. An example is inferring 
the sensor typing from unit definition in BMS if BIM 
description is not complete. 

CONCLUSION 
In this work a software tool is presented which ena-
bles automated configuration of analytics for fault 
detection and diagnosis through providing contextual 
data from an ontology. A software architecture is 
presented to implement the necessary functionality to 
configure and deploy FDD analytics. For demonstra-
tion purposes, results obtained from implementing the 
tool are presented for the case of analysing real 
measurement data of an Air Handling Unit with rule-
based analytics. For a test case application of nine 
days the tool detects faults using one rule and reports 
associated meta-data. Reports include spatial infor-
mation such as location, technical affiliation of the 
sensor or actuator and period of time of the occur-
rence causing the analytic to report a fault. The in-
formation is obtained by linking a populated ifcOWL 
ontology with static BMS data in a single ontology.  
The automation aspect resides in the initial design of 
a query and analytic pairing by experts. If this is done 
once and the specified analytic may be deployed and 
configured to arbitrary many systems under the as-
sumption that static meta-information about the sys-
tem is available. 
Future work is related to further extend and revise the 
developed ontology. For this purpose it is intended to 
integrate and align with existing descriptions and 

standardisation efforts (Daniele et al. 2015, Ploennigs 
et al. 2012, Tomašević et al. 2015).  
The tool could leverage on implicit knowledge gen-
eration in future, e.g. verify and crosscheck and sup-
plement, if necessary, information from different 
information silos.  
Future versions of the tool are intended to expand in 
their capabilities to access real time data for further 
testing the methodology. 
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