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Abstract

This paper presents an optimisation-based approach for the multi-�oor process plant

layout problem. The multi-�oor process plant layout problem involves determining

the most e�cient - based on prede�ned criteria - spatial arrangement of a set of pro-

cess plant equipment with associated connectivity. A number of cost and manage-

ment/engineering drivers (e.g. connectivity, operations, land area, safety, construction,

retro�t, maintenance, production organisation) have been considered over the last two

decades in order to achieve potential savings in the overall plant design process.

This work constitutes an extension of the previous work by Patsiatzis and Papageor-

giou 1 to address the multi-�oor process plant layout problem. New features introduced

modelled tall equipment with heights greater than the typical �oor height in chemical

process plants, with connection point at a design-speci�ed height for each equipment.
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The number of �oors, land area, allocation of each equipment to a �oor and the over-

all layout of each �oor were determined by the optimisation model whilst preventing

overlap of equipment. The connection costs, horizontal and vertical, as well the con-

struction costs were accounted for with an overall objective to minimize the total cost.

The overall problem was formulated as a mixed-integer linear programming (MILP)

model based on a continuous domain representation and its applicability demonstrated

by a number of illustrative examples. Results showed an increase in the number of

equipment handled by the proposed models in modest computational times. Finally,

symmetry breaking constraints were included to increase computational e�ciency, and

their performance tested with the last example.
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1 Introduction

Over the past two decades, the layout of equipment in process plants have gained increasing

relevance, from an economic, safety, operational and maintenance-related point of view.2,3

Layout design generally involves obtaining a suitable arrangement of items and their connec-

tions within a prede�ned area based on pre-speci�ed criteria. These items may be process

vessels and equipment, work centres or departments within an organisation; with connections

by pipes, conveyors, vehicular transport or any suitable material handling equipment.3,4

Layout designs have been found to have a tremendous impact on the costs and productivity

of any system involved2, as such researchers have constantly sought out methods to �nd the

best solution to such design problems - generally referred to as the layout problem. When

concerned with items that are needed for the production of goods or delivery of services, it

has been referred to as the facility layout problem.4 Amidst the classes of the facility layout

problem (see Drira et al. for a detailed review) is the process plant layout problem, on which

this work primarily focuses. Process plant layout problem addresses the layout problem for

items in a typical chemical process plant.5

Previous approaches to process plant layout design were from a practical point of view, where

decisions were made based on engineering judgement6, but especially from the late 90s,

more scienti�c approaches in terms of mathematical modelling have been adopted to solve

the problem1,7�12. Most of the previous research have focused on a cost-reducing objective,

with a varying number of scenarios. Georgiadis and Macchietto9 proposed a mathematical

programming approach with an objective to minimize cost - pumping, pipe connection and

�oor construction - and was formulated as a mixed integer linear programming (MILP) prob-

lem. Results showed the model was computationally e�cient for a small number of units.

Papageorgiou and Rotstein12 further solved the process plant layout problem over a continu-

ous spatial domain whilst introducing more realistic constraints for single-�oor case studies.

Barbosa-Povoa et al.7,8 accounted for di�erent inputs and outputs for each equipment, irreg-

ular shapes, a 3-dimensional representation, allowed for di�erent production sections, and
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safety and operability factors. These problems were all formulated as an MILP giving com-

putationally e�cient solutions for a small number of units.

Formulations to address scenarios with multiple �oors have also been considered. Patsiatzis

and Papageorgiou10 developed an MILP formulation to allow for a multi-�oor layout with

�oor construction costs (�xed and area-dependent) and vertical pumping costs. The model

successfully handled up to 11 units within a modest CPU time. For larger number of units,

Patsiatzis and Papageorgiou 1 proposed a rigorous decomposition approach and an iterative

solution scheme, with the later producing a solution with a higher degree of optimality. An

improvement-type algorithm was proposed by Xu and Papageorgiou13 applicable to a single

�oor.

Apart from a cost minimisation objective, other authors have introduced other criteria to the

objective function. Penteado and Ciric 5 presented a mixed integer non-linear programming

(MINLP) problem not only to minimize piping cost, land allocation cost, but also �nancial

risk and safety costs. Other factors have been the routing and layout of pipes6, safety and

risk assessment11,14�17, long-length equipment17�19, area minimisation20; with varying solu-

tion techniques17,21�25.

This paper proposes a generic model to the multi-�oor process plant layout problem, initially

proposed by Patsiatzis and Papageorgiou 1 (an improvement on Patsiatzis and Papageor-

giou 10) but extended to account for long-length equipment, i.e. equipment typically span-

ning multiple �oors, with connection points at design-speci�ed heights for each equipment.

Ku et al. 18 presented a MINLP model and accounted for tall equipment, minimizing total

layout area with a hybrid optimisation method. This work seeks to propose a more e�cient

MILP model to handle a larger number of units than previously recorded. Symmetry break-

ing constraints are also introduced to reduce solution search over multiple optimal solutions.

The rest of this paper is structured as follows: the problem is described in section 2 with

underlying assumptions; mathematical models are then proposed in section 3 to address the

problem; case studies to show model performance and applicability are presented in section
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4, where additional symmetry breaking constraints are also introduced and tested. Finally,

concluding remarks are given in section 5.

2 Problem Description

The following assumptions are made in the model formulation. Equipment items are de-

scribed by rectangular shapes. In all cases, rectilinear distances are assumed, with connec-

tions between equipment taken from their respective geometrical centres in the x-y plane.

Vertical distances are measured from a design-speci�ed height of each equipment. Each

equipment is allowed to rotate in 90o angles in the x-y plane, and must start from the base

of each available �oor. The �oor height is �xed across all �oors and if an equipment exceeds

such height, it is allowed to extend through available �oors.

The problem description for the process layout problem is as follows.

Given:

• a set of N equipment items and their dimensions (length, breadth and height);

• a set of K potential �oors for layout;

• connectivity network amongst equipment;

• cost data (connection, pumping, land, and construction);

• �oor height;

• space and equipment allocation limitations;

• minimum safety distances between equipment items;

determine:

• the total number of required �oors for the layout;

• the base land area occupied;
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• the area of �oors;

• spatial equipment allocation to �oors;

so as to: minimise the total plant layout cost.

3 Mathematical Formulation

The mathematical formulation constitutes an extension to the work of Patsiatzis and Papageor-

giou 1. A full description of the model proposed by Patsiatzis and Papageorgiou 1 is available

in the supporting information. Two formulations (A & B) are proposed, primarily di�ering

in the manner tall equipment (which span multiple �oors) are handled. The �rst handles

multi-�oor equipment as is, by a set of constraints as summarised in Table 1 for each of the

three models proposed. The second formulation is a linearised form of the model proposed by

Ku et al. 18 (a direct extension of Patsiatzis and Papageorgiou 1), with multi-�oor equipment

divided into pseudo-single �oor units equivalent to the number of consecutive �oors they

require.

Table 1: Summary of equations adopted in models A.1 - A.3

Constraints
Formulation A model

A.1 A.2 A.3
Floor 1 - 4, 5 - 6 1 - 4, 5 - 6 1 - 4, 5 - 6
Equipment orientation 9, 7 - 8 9, 7 - 8 9, 7 - 8
Multi-�oor equipment 10-14 15 12, 13 and 16
Distance 24,21, 22, 10, 12, 24 and 24,21, 22,

and 23 21, 22, 23, and 23
Non-overlapping 17 - 20 17 - 20 17 - 20
Area 31 - 36 31 - 36 31 - 36
Layout design 30, 25 - 29 30, 25 - 29 30, 25 - 29
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Nomenclature

Indices

i,j equipment item in models A.1 - A.3

i′,j′ equipment item in model B

k, k′ �oor number

p pseudo units

s rectangular area sizes

Sets

I set of equipment item for models A.1- A.3

I ′ set of equipment item for model B

MF set of multi-�oor equipments

Pi sets of pseudo units for equipment i

Parameters

αi, βi,γi dimensions of item i

Mi number of �oors required by item i

fij 1 if �ow direction between i and j is positive; 0, otherwise

OPij distance between the base and output point on equipment i

IPij distance between the base and input point on equipment j

BM a large number

FH �oor height

LC land cost

FC1 �xed �oor construction cost

FC2 area-dependent �oor construction cost

Cc
ij connection/piping costs
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Ch
ij horizontal pumping costs

Cv
ij vertical pumping costs

Integer variables

NF number of �oors required for layout

Binary variables

Oi 1 if length of item i is equal to αi; 0, otherwise

Wk 1 if �oor k is occupied; 0, otherwise

nijk 1 if items i and j are assigned to �oor k; 0, otherwise

Nij 1 if items i and j are assigned to the same �oor; 0, otherwise

Vik 1 if item i is assigned to �oor k

Qs 1 if rectangular area s is selected for the layout; 0, otherwise

E1ij, E2ij non-overlapping binary, a set of values of which prevents equipment

overlap in one direction in the x-y plane

Ssik 1 if item i spans more than one �oor and begins at �oor k;

0, otherwise

Sfik 1 if item i spans more than one �oor and terminates at �oor k;

0, otherwise

Continuous variables

li length of item i

di breadth of item i

hi height of item i

xi, yi, zi coordinates of the geometrical centre of item i

Rij relative distance in x coordinates between items i and j,
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if i is to the right of j

Lij relative distance in x coordinates between items i and j,

if i is to the left of j

Aij relative distance in y coordinates between items i and j,

if i is above j

Bij relative distance in y coordinates between items i and j,

if i is below j

Uij relative distance in z coordinates between items i and j,

if i is higher than j

Dij relative distance in z coordinates between items i and j,

if i is lower than j

TDij total rectilinear distance between items i and j

NQs linearisation variable expressing the product of NF and Qs

ARs prede�ned rectangular �oor area s

FA �oor area

Xmax, Y max dimensions of �oor area

3.1 Formulation A

In formulation A, multi-�oor equipments are treated as a single unit starting on one �oor

k, spanning through consecutive �oors and terminating at a higher �oor k′. Floors are

numbered from bottom to top. Three equivalent models - A.1, A.2 and A.3 are described

which only di�er by the sets of constraints used to model the multi-�oor equipment.

3.1.1 Floor constraints

Every equipment i available is assigned to an equivalent number of �oors, Mi.
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∑
k

Vik =Mi ∀ i (1)

where Vik is a binary variable which determines if an equipment i is assigned to �oor k. A

variable, nijk, is introduced to determine if equipment i and j are assigned to �oor k, given

by:

nijk ≥ Vik + Vjk − 1 ∀ i = 1, ..., N − 1, j 6= i, k = 1, ..., K (2)

Nij ≥ nijk ∀ i = 1, ..., N − 1, j 6= i, k = 1, ..., K (3)

The variable Nij takes the value of 1 if and only if items i and j are on any same �oor.

Furthermore, a �oor will only exist if an equipment starts on it. For this, new variables Ssik

and Sfik′ are introduced taking values of 1 if an equipment i starts at �oor k and terminates

at �oor k′ respectively. Thus:

Ssik ≤ Wk ∀ i, k (4)

Also, a �oor should exist only if an equipment is assigned to it, and not just pasing through

it (for multi-�oor equipment), and that the preceding �oor is also occupied. This constraint

is obtained from Patsiatzis and Papageorgiou 1:

Wk ≤ Wk−1 ∀ k = 2, ..., K (5)

The number of �oors required is then determined by equation 61.

NF ≥
∑
k

Wk (6)
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3.1.2 Equipment orientation constraints

A 90◦ rotation of equipment orientation is allowed in the x-y plane. This is represented by

equations 7 and 81.

li = αiOi + βi(1−Oi) ∀ i (7)

di = αi + βi − li ∀ i (8)

Rotation in the z-axis is deemed unrealistic as such equipment orientation is �xed for con-

struction in virtually all cases.

hi = γi ∀ i (9)

3.1.3 Multi-�oor equipment constraints

In order for equipment items requiring more than one �oor to span across successive �oors,

the constraints below are introduced. Three alternative models are shown (Models A.1, A.2

and A.3).

Model A.1 includes equations 10 - 14.

−Vik + Vi,k−1 + Ssik ≥ 0 ∀ i, k (10)

−Vik + Vi,k+1 + Sfik ≥ 0 ∀ i, k (11)

Equations 10 and 11 ensures that the binary variables Ssik and Sfik take a value of 1 if an

equipment starts and ends on a particular �oor, with each equipment being restricted to

start and end on only one �oor by:

∑
k

Ssik = 1 ∀ i (12)

∑
k

Sfik = 1 ∀ i (13)
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The constraint to restrict equipment to occupy successive �oors is then given as:

k+Mi∑
k′=k

Vik′ ≥Mi.S
s
ik ∀ i, k (14)

Model A.2 models the multi-�oor equipment constraint by the equation below:

Mi−1∑
θ=1

Vi,k+θ ≥ (M i − 1).(Vik − Vi,k−1) ∀ i, k (15)

Equation 15 ensures that multi-�oor equipment occupy consecutive �oors, the total number

equalling the required number of �oors Mi.

Model A.3makes use of the binary variables Ssik and S
f
ik and is described using equations

12, 13 and 16 below.

Vik − Vi,k−1 = Ssik − S
f
i,k−1 ∀ i, k (16)

In all cases (models A.1, A.2, and A.3) for the multi-�oor equipment, every equipment

item i spanning more than one �oor starts on a single �oor (Ssik = 1) and terminates on

another �oor (Sfik′ = 1), occupying successive �oors, the sum of which is equal to its required

number of �oors (Mi).
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3.1.4 Non-overlapping constraints

To prevent two or more equipment to occupy the same space within a �oor, constraints 17

- 20 are introduced1:

xi − xj +BM(1−Ni,j + E1ij + E2ij) ≥
li + lj
2

∀ i = 1, ..., N − 1, j = 2, ..., N

(17)

xj − xi +BM(2−Ni,j − E1ij + E2ij) ≥
li + lj
2

∀ i = 1, ..., N − 1, j = 2, ..., N

(18)

yi − yj +BM(2−Ni,j + E1ij − E2ij) ≥
di + dj

2
∀ i = 1, ..., N − 1, j = 2, ..., N

(19)

yj − yi +BM(3−Nij − E1ij − E2ij) ≥
di + dj

2
∀ i = 1, ..., N − 1, j = 2, ..., N

(20)

3.1.5 Distance constraints

Distance constraints are described by equations 21, 22 and 231, to determine the relative

distances in the x and y coordinates respectively.

Rij − Lij = xi − xj ∀(i, j) : fij = 1 (21)

Aij −Bij = yi − yj ∀(i, j) : fij = 1 (22)

TDij = Rij + Lij + Aij +Bij + Uij +Dij ∀(i, j) : fij = 1 (23)

Provision is made for connection between equipment i and j at design-speci�ed heights of

either equipment as described by equation 24;

Uij −Dij = FH
∑
k

(k − 1)(Ssik − Ssjk) + OPij − IPij ∀(i, j) : fij = 1 (24)

where OPij represents the vertical distance from the base of equipment i to its output point,
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and IPij represents the vertical distance from the base of equipment j to its input point for

connection i-j (Figure 1).

Figure 1: Multi-point connection illustration

3.1.6 Layout design constraints

Layout design constraints, 25 - 291, ensure that equipment are placed within the boundaries

of a �oor:

xi ≥
li
2

∀ i (25)

yi ≥
di
2

∀ i (26)

and the upper bound:

xi +
li
2
≤ Xmax ∀ i (27)

yi +
di
2
≤ Y max ∀ i (28)
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The land area is then calculated as:

FA = XmaxY max (29)

An additional layout design constraint is included for the z-coordinates to de�ne its geomet-

rical centre, given by:

zi =
hi
2

∀ i (30)

Equation 30 also ensures equipment i starts from the base of the �oor k where it is placed.

3.1.7 Area Constraints

In order to avoid bilinear terms in calculating the �oor area, FA (eq. 29), equations 31 - 361

are introduced. The area of each �oor is determined from a set of S prede�ned rectangular

area sizes, ARs, with dimensions (Xs, Y s).

FA =
∑
s

ARsQs (31)

∑
s

Qs = 1 (32)

The �oor length and breadth is selected from the chosen rectangular area size dimensions:

Xmax =
∑
s

XsQs (33)

Y max =
∑
s

Y sQs (34)
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Also, a new term NQs is introduced in order to linearise the cost term associated with the

number of �oors:

NQs ≤ KQs ∀ s (35)

NF =
∑
s

NQs (36)

3.1.8 Objective function

The objective function is the same for each model - to minimize the total cost associated

with the connection cost, pumping cost, land area cost, �oor construction cost and �oor-area

dependent cost. This is given as:

min
∑
i

∑
j 6=i:fij=1

[Cc
ijTDij + Cv

ijDij + Ch
ij(Rij + Lij + Aij +Bij)]

+FC1 ·NF + FC2
∑
s

ARs ·NQs + LC · FA
(37)

3.2 Formulation B

Formulation B is a linearised model of Ku et al. 18 with adaptations from Patsiatzis and

Papageorgiou 1 as described in the supporting information. The following additional con-

straints are included to account for the multi-�oor equipment and design-speci�ed connection

height.

3.2.1 Multi-�oor equipment constraint

Multi-�oor equipment are split into pseudo units equivalent to the number of �oors they

occupy (Figure 2). This approach presents a more accurate representation for multi-�oor

equipment that have varying sizes along its height - due to a range (in type and size) of

auxiliary units placed by such equipment. The drawback, however, is that an increase in

the number of units in the MILP model is realised which can lead to larger computational
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times.

For all multi-�oor equipment, i ε MF , requiring Mi number of �oors, each is split into Mi

pseudo units. The �rst Mi − 1 units have heights equal to the �oor height, and the last

pseudo unit with the remainder. So, for each i ε MF , there exists pseudo units, p ε Pi; and

the modi�ed set of all equipments, I ′, becomes:

I ′ = (I ∧ (¬MF )) ∨ Pi

Figure 2: Pseudo-unit illustration

Subsequent pseudo units, p + 1, for each pseudo unit set, Pi, are then made to occupy

successive �oors by the constraint:

Vp,k = Vp−1,k−1 ∀ pεPi, k (38)
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And for pseudo units to be placed directly above it's preceding counterpart:

xp = xp+1 ∀ pεPi (39)

yp = yp+1 ∀ pεPi (40)

and �nally, consistency in 90o rotation is ensured for all pseudo units of a multi-�oor equip-

ment:

Op = Op+1 ∀ pεPi (41)

3.2.2 Distance constraints

For connection between equipment i′ and j′ at design-speci�ed heights of either equipment,

the constraint below is used;

Ui′j′ −Di′j′ = FH
∑
k

(k− 1)(Vi′k−Vj′k)+ OPi′j′ − IPi′j′ ∀(i′, j′)εI ′ : fi′j′ = 1 (42)

The resulting model (B) thus consists of constraints 38 - 42; and equations S1-S15;

S17-S28 in the original model of Patsiatzis and Papageorgiou described in the supporting

information ∀ i′, j′ ε I ′; and objective function:

min
∑
i′

∑
j′ 6=i′:fi′j′=1

[Cc
i′j′TDi′j′ + Cv

i′j′Di′j′ + Ch
i′j′(Ri′j′ + Li′j′ + Ai′j′ +Bi′j′)]

+FC1 ·NF + FC2
∑
s

ARs ·NQs + LC · FA
(43)

4 Case Studies

In this section, a description of the case studies applied to each formulation is shown. Each

example was modelled using GAMS26 modelling system v24.7.1 with the CPLEX v12.6

solver on an Intel R© Xeon R© E5-1650 CPU with 32GB RAM, and the layout plotted using

Autodesk AutoCAD R© 2017. Each run was solved to global optimality. For the �oor area,
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�ve alternative sizes (10m, 20m, 30m, 40m and 50m) were used in examples 1 and 2, seven

alternative sizes (10m, 20m, 30m, 40m, 50m, 60m and 70m) in example 3, giving a total

of 25 and 49 possible area sizes respectively, except otherwise stated. Data on connectivity

costs can be obtained from process simulation results of a case study. Pipe sizing values are

obtained from design equations, matched with commercially available pipe sizes and the costs

estimated per unit length for a selected material of construction based on the components in

each stream. Pumping costs are estimated based on current electricity prices and material

�ow rate in each stream, and construction costs are extrapolated from past data on similar

plant design based on structural engineering calculations. For all case studies, data on

equipment dimensions, connectivity and construction costs, and vertical connection points

are included in the supporting information. For all three examples investigated in this work,

both formulations A and B yield equivalent optimal plant layouts and the same objective

value, with main di�erences in layout orientation and re�ection. Thus, only the optimal

layout result for model A.1 is presented for each example. Layout results for the other

models are available in the supporting information.

4.1 Example 1

Example 1 is an Ethylene oxide plant used in the work of Patsiatzis and Papageorgiou 10,

originally presented by Penteado and Ciric 5. The plant consists of 7 units with process

�ow diagram shown in Figure 3. The summary of the model statistics and computational

performance is shown in Table 2 and the optimal layout in Figure 4.

The results obtained gave a total cost of 66,262.0 rmu - 22% connection costs, 44%

pumping costs and 34% construction costs. Each �oor had an area measuring 20mx20m,

totalling two �oors selected for construction out of four provided to the model. Table 2

shows that the models in formulation A are more computationally e�cient. Formulation B

was inherently larger in size for each case study, as a greater number of units needed to be

handled than in formulations A.



4 CASE STUDIES 20

Figure 3: Flow diagram of Ethylene Oxide plant

The layout of equipment in Figure 4 showed that the two multi-�oor equipment (3 and

5) started on the �rst �oor and terminated on the second �oor for all models, as they

require two �oors based on their height. The total cost - 66,262.0 rmu - is also greater

than the value obtained by Patsiatzis and Papageorgiou 1 (50,817 rmu). The 30% increase

in cost is attributed to the additional consideration of the connection points being measured

from the design-speci�ed heights, and the consequent change in equipment layout. Previous

considerations assumed a connection from the mid-point of an equipment height, but current

results show that such assumption is not realistic as re�ected in the cost di�erence.

Table 2: Summary of model statistics and computational performance for Example 1

EO plant (7 units)
A.1 A.2 A.3 B

Total Cost (rmu) 66,262.0
CPU (s) 1.5 1.4 1.7 3.0
Number of binary variables 112 112 112 167
Number of continuous variables 225 204 225 130
Number of equations 424 381 382 633
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Figure 4: Example 1 layout results

4.2 Example 2

Example 2 is an Urea production plant, simulated with Aspen PLUS R© v8.0. It consists of

8 units, 2 of which exceed the �oor height of 8m. The process �ow diagram of the plant is

shown in Figure 5. A total of 25 possible area sizes were used ranging from 5m - 45m. Each

unit had to be placed a minimum of 4m from another in either direction. The summary of

the model statistics and computational performance is shown in Table 3.

The layout result is shown in Figure 6. All 4 �oors were assigned units, with each �oor

having an area measuring 15mx5m, and a total cost of 117,431.0 rmu - 6% connection, 26%

pumping and 68% construction costs. The two multi-�oor units (units 2 and 4) occupied

successive �oors proportional to their height (�oors 1-4 and 2-3 respectively). Computational

results showed global optimality was achieved by all models in a relatively short time (under

5s). Overall results show that the model is capable of handling process-speci�c conditions

whilst deciding �oor placement even for multi-�oor units.
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Figure 5: Flow diagram of Urea Production

Table 3: Summary of model statistics and computational performance for Example 2

Urea Production (8 units)
A.1 A.2 A.3 B

Total Cost (rmu) 117,431.0
CPU (s) 4.8 4.9 2.9 4.0
Number of binary variables 145 145 1453 281
Number of continuous variables 315 283 315 159
Number of equations 611 547 547 1,279
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Figure 6: Example 2 layout results
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4.3 Example 3

Example 3 is a Crude Distillation plant with preheating train, simulated with Aspen HYSYS R©

v8.0. It consists of 17 units, with 5 (pre-�ash drum (unit 5), atmospheric distillation tower

(unit 7), �red heaters 1 and 2 (unit 6 and 12), and debutaniser(unit 15)) exceeding the �oor

height of 5m. The process �ow diagram of the plant is shown in Figure 7.

An additional condition that each of the multi-�oor equipment starts from the ground �oor

Figure 7: Flow diagram of Crude Distillation Plant with Preheating train

was imposed, as such represents a realistic representation from a construction point of view.

The summary of the model statistics and computational performance is shown in Table 4

and the optimal layout in Figure 8.

The results obtained gave a total of four(4) possible �oors, out of an available seven (7)

which each �oor measuring 20mx20m. A total cost of 749,691.4 rmu was obtained across all

formulations as seen in Table 4. The higher relative pumping costs (50%) when compared
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with previous examples is attributed to the greater number of units considered. Connection

and construction costs constituted 6% and 44% of the total cost respectively.

Table 4: Summary of model statistics and computational performance for Example 3

CDU Plant (17 units)
A.1 A.2 A.3 B

Total Cost (rmu) 749,691.4
CPU (s) 292.3 105.0 44.1 131.6
Number of binary variables 568 568 568 1,569
Number of continuous variables 1,507 1,388 1,507 387
Number of equations 3,213 2,993 2,975 11,483

The layout of equipment is shown in Figure 8. As all the multi-�oor equipment (5, 6,

7, 12 and 15) starting �oors were prede�ned, they all started from the �rst �oor through

the number of �oors required based on their height. It is worthy of noting that although

equipment 14 required 5 �oors based on its height, a total of 4 �oors was decided by all

formulations. This is because the construction of a �fth �oor was deemed unnecessary as no

other equipment other than equipment 14 was to be placed on such �oor in order to obtain

an optimal solution, and the additional construction cost for a �fth �oor was eliminated. So,

although a multi-�oor equipment can span a speci�ed number of �oors based on its height,

not every one of those �oors need to be constructed. Practical examples include multi-�oor

layouts about �red heaters with long stacks, distillation columns and �are stacks.

Figure 8: Example 3 layout results
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4.3.1 Symmetry breaking constraints

For each of the case studies solved, it becomes evident from the layout results (presented

above and in supporting information) that there can exist multiple optimal solutions for

each problem. These multiple optimal solutions di�er only in layout orientation/re�ection

and/or translation of equipment on the layout area, resulting in ine�cient CPU usage27,

especially for larger problem instances. In order to increase computational e�ciency and

reduce symmetry, additional constraints, adapted from Westerlund and Papageorgiou 27 are

introduced:

xi + yi − xj − yj ≥ α ·Nij (44)

E1ij = 0 (45)

where α = min
(
li
2
, di

2

)
+min

(
lj
2
,
dj
2

)
. These �x the relative position of i and j as well as one

of the non-overlapping binary variables, E1ij = 0. The latter enforces either of xi−xj ≥ li+lj
2

or yi− yj ≥ di+dj
2

according to equations 17 - 20, i.e., unit i is relatively locked in a compass

point North East of unit j hence breaking the symmetry.

The above symmetry breaking constraints were applied to example 3 - Crude distillation

plant with pre-heating train - by incorporating equations 44 and 45 in Model A.1 where the

choice of equipment i and j are among multi-�oor units only, based on the following three

criteria27:

a - Equipment i and j having the highest connection cost: units 5 and 6;

b - Two equipment with the largest area: units 7 and 15;

c - Two equipment with the smallest area: units 6 and 12.

The resulting models were solved to global optimality and a solution of 749,691.4 rmu was

obtained in all alternative choices of equipment, the same as model A.1 without these con-

straints. Their computational CPU times are shown in Table 5 - where for each unit selection
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alternative, the resulting model is named appropriately - model A.1a for model A.1 with sym-

metry breaking constraints with equipment i and j chosen by criterion a, having the highest

connection cost, and so on. The results show that the new symmetry breaking constraints has

improved computational e�ciency by one order of magnitude. Computational improvements

were also found for the other models developed and examples presented in this work.

Table 5: Summary of computational performance for Example 3; Model A.1 with symmetry
breaking contraints

Model CPU (s)
A.1 292.3
A.1a 31.2
A.1b 33.7
A.1c 71.2

5 Concluding remarks

An extension of the MILP model by Patsiatzis and Papageorgiou 1 was proposed to address

new concerns in the multi-�oor process plant layout problem. These concerns included the

presence of multi-�oor equipment in certain process plants with design-speci�ed input and

output connection points along the height of an equipment.

A total of four (4) models were proposed, grouped in two broad classes. The �rst class

handled multi-�oor equipment as they were (single tall units) having constraints to ensure

multi-�oor equipment were assigned to consecutive �oors, with three (3) alternative models

resulting. For the second class, multi-�oor equipment were broken up to single-�oor-pseudo-

units and the layout solved based on a linearised model of Ku et al. 18.

Each of the four (4) models were validated with case studies and model performance were

ascertained and compared. All models solved problems of up to 17 units well under 7 minutes,

as compared to previous work1 which only handled a maximum of 11 units simultaneously.

Total cost distribution were consistent with expected values - construction and pumping

costs taken up the larger portion, with connection costs following. All models were able to
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handle multi-�oor equipment, and decide whether a �oor be constructed and used even if a

multi-�oor equipment were assigned to it. In most cases though, formulations A was found

to be more computationally e�cient than B.

Finally, symmetry breaking constraints were introduced reducing the availability of multiple

optimal solutions that lead to greater CPU usage. These constraints �xed the relative

positions of two units i and j. The choice of units i and j were based on three criteria: largest

connection, largest areas or smallest area amongst multi-�oor equipment. A reduction in

computational time up to 31.2s was obtained for example 3, as compared to 292.3s without

symmetry breaking.

Further work will entail model validation with larger case studies and the development of

e�cient computational methods, e.g. decomposition techniques.
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