
The Unsolvable Problem 

====================== 

 

Mathematicians have found a problem that is not just tough-it is 

theoretically impossible to solve. Even worse, it suggests that other 

problems, including some practical questions in physics, may fall into this 

unsolvable category as well. 

 

By Toby S. Cubitt, David Perez Garcia and Michael Wolf 

 

 

The three of us were sitting together in a café in Seefeld, a small town 

deep in the Austrian Alps. It was summer 2012, and we were stuck. Not stuck 

in the café-the sun was shining, the snow on the Alps was glistening, and 

the beautiful surroundings were sorely tempting us to abandon the 

mathematical problem we were stuck on and head outdoors. We were trying to 

explore the connections between 20th-century mathematical results by Kurt 

Gödel and Alan Turing and quantum physics. That, at least, was the dream. A 

dream that had begun back in 2010, during a quantum information semester 

organized at the Mittag-Leffler Institute near Stockholm. 

 

Some of the questions we were looking into had been explored before by 

others, but to us, this line of research was entirely new, so we were 

starting simple. Just then, we were trying to prove a small and not-very-

significant result, to get a feel for things. For months now, we had a 

proof (of sorts) of this not-very-significant result. But to make this 

proof work we had to set up the problem in an artificial and unsatisfying 

way. It felt like changing the question to suit the answer, and we were not 

very happy with it. Picking the work up again during the break after the 

first session of talks at the Seefeld workshop, we still could not see any 

way around our problems. Half-jokingly, Michael said: "Why don't we prove 

undecidability of something people really care about, like the spectral 

gap?" 

 

At the time we were very interested in whether certain problems in physics 

are "decidable" or "undedicable"-that is, can they ever be solved? We had 

gotten stuck trying to probe the decidability of a much more minor 

question, one few people care about, Michael was proposing that we instead 

tackle a problem of central importance to physics, the "spectral gap" (a 

topic we'll explain below). We did not know at the time whether this 

problem was or was not decidable (though we had a hunch it was not), nor 

whether we would be able to prove it either way. But if we could, the 

results would be of real importance to physics, not to mention a 

substantial mathematical achievement. Michael's ambitious suggestion, 

tossed off almost as a jest, launched us on a grand adventure. Three years 

and 147 pages of mathematics later, our proof of the undecidability of the 

spectral gap was published in Nature. 

 

To understand what this means, we need to go back to the beginning of the 

20th century, and trace some of the threads that gave rise to modern 

physics, mathematics and computer science. These disparate ideas all lead 

back to the German mathematician David Hilbert, often regarded as the 

greatest mathematician of the last 100 years. (Of course, no one outside of 

mathematics has heard of him. Mathematics is not a good route to fame and 

celebrity; it has its own rewards, though.) 

 

 

 

The Mathematics of Quantum Mechanics 

------------------------------------ 

 



Hilbert's influence on math was immense. In the early 20th century, he 

developed a branch of mathematics called functional analysis, in particular 

an area known as spectral theory that would end up being central to the 

question within our proof. Hilbert was interested in this area for purely 

abstract reasons. But, as so often happens, this mathematics turned out to 

be exactly what was necessary to understand something that was perplexing 

physicists at the time. 

 

If you heat a substance up, it begins to glow as the atoms in it emit 

light. (Hence the phrase "red hot") If the material is a pure element, it 

emits light at very specific frequencies unique to that element. The 

yellowy-orange light from sodium street lamps is a good example: sodium 

atoms predominantly emit light at a wavelength of 590 nanometers, in the 

yellow part of the visible spectrum. These atomic emissions are a window 

into the different energy levels of the electrons in the atom. When 

electrons jump between two energy levels, they either emit or absorb light. 

The precise frequency of that light is determined by the energy needed to 

jump between the two levels. Light is emitted when an electron drops from a 

higher to a lower energy level. To jump back up to the level it came from, 

the electron needs to absorb light of exactly the same frequency. The 

frequencies of light emitted by heated materials thus give us a "map" of 

the gaps between the atom's different energy levels. 

 

Explaining these atomic emissions was one of the problems perplexing 

physicists in the first half of the 20th century. This question led 

directly to the development of quantum mechanics, and the mathematics of 

Hilbert's spectral theory played a central role. 

 

One of these gaps between quantum energy levels is especially important. 

The lowest possible energy level of an object is called its "ground state." 

This is the energy level it will sit in when it has no heat. To get a 

material into its ground state, scientists must cool it down to extremely 

low temperatures in a laboratory. Then, if the material is to do anything 

other than sit in its ground state, something must excite it to a higher 

energy level. When things are very cold, there is not much energy around. 

The easiest way for the material to do anything is to absorb the smallest 

amount of energy it can, just enough to take it to the next energy level 

above the ground state-the "first excited state." The energy gap between 

the ground state and this first excited state is so important it is often 

just called "the spectral gap." 

 

In some materials, there is a large gap between the ground state and the 

first excited state. In other materials, the energy levels extend all the 

way down to the ground state without any gaps at all. Whether a material is 

"gapped" or "gapless" has profound consequences for its behavior at low 

temperatures. It plays a particularly important role in quantum phase 

transitions. 

 

A phase transition happens when a material undergoes a sudden and dramatic 

change in its properties. We are all very familiar with some phase 

transitions-such as water transforming from its solid form of ice into its 

liquid form when heated up. But there are more exotic quantum phase 

transitions that happen even when the temperature is kept extremely low. 

For example, changing the magnetic field around a material, perhaps, or the 

pressure it is subjected to, can cause an insulator to become a 

superconductor, or a solid to become a superfluid. 

 

But how can a material go through a phase transition at a temperature of 

absolute zero (-273.15 degrees Celsius), when there is no heat at all to 

provide energy? It comes down to the spectral gap. When the spectral gap 

disappears-when a material is gapless-the energy needed to reach an excited 



state becomes zero. The tiniest amount of energy will be enough to push the 

material through a phase transition. In fact, thanks to the weird quantum 

effects that dominate physics at these very low temperatures, the material 

can temporarily "borrow" this energy from nowhere, go through a phase 

transition, and "give" the energy back. 

 

Therefore, to understand quantum phase transitions and quantum phases, we 

need to determine when materials are gapped and when they are gapless. 

 

Because this spectral gap problem is so fundamental to understanding 

quantum phases of matter, it crops up all over the place in theoretical 

physics. Many famous and longstanding open problems in condensed matter 

physics boil down to solving this problem for a particular material. A 

closely related question even crops up in particle physics: There is very 

good evidence that the fundamental equations describing quarks and their 

interactions have a "mass gap." Experimental data from particle colliders 

such as the Large Hadron Collider support this notion, as do massive 

number-crunching results from supercomputers. But proving the idea 

rigorously from the theory seems to be extremely difficult. So difficult, 

in fact, that this problem, officially called the "Yang-Mills mass gap 

problem," has been named one of seven Millennium Prize problems by the Clay 

Institute of Mathematics, and anyone who solves it is entitled to a $1 

million prize. All these problems are particular cases of the general 

spectral gap problem. We have bad news for anyone trying to solve this type 

of problem, though. Our proof shows that the general problem is even 

trickier than thought. The reason comes down to a question called the 

"Entscheidungsproblem". 

 

 

Unanswerable Questions 

---------------------- 

 

By the 1920s, Hilbert had become concerned with putting the foundations of 

mathematics on a firm, rigorous footing-an endeavor that became known as 

Hilbert's program. Hilbert believed that whatever mathematical claim or 

conjecture one might make, it will in principle either be possible to prove 

that it is true, or that it is false. (It had better not be possible to 

prove both, or something has gone very wrong with mathematics!) This idea 

might seem obvious. But mathematics is about establishing things with 

absolute certainly, even if they seem obvious. Hilbert wanted a rigorous 

mathematical proof. 

 

In 1928, Hilbert formulated a question called the "Entscheidungsproblem." 

Although it sounds like the German sound for a sneeze, in English it 

translates as the "decision problem." It asks whether there is a 

mathematical procedure, or "algorithm," that can decide whether 

mathematical statements are true or false. 

 

For example, the statement "Multiplying any whole number by 2 gives an even 

number" can easily be proved true, using basic logic and arithmetic. Other 

statements are less obvious. What about the following example? "If you take 

any whole number and repeatedly multiply it by 3 and add 1 if it's odd, or 

divide it by 2 if it's even, you always eventually reach the number 1." 

(Have a think about it.) 

 

Unfortunately for Hilbert, his hopes were to be dashed. In 1931, the 

Austrian mathematician Kurt Gödel published a remarkable result now known 

as his "incompleteness theorem." Gödel showed that there are perfectly 

reasonable mathematical statements about whole numbers that can be neither 

proven nor disproven. In a sense, these statements are beyond the reach of 

logic and arithmetic. And Gödel proved this assertion. If that is hard to 



wrap your head around, you are in good company. Gödel's incompleteness 

theorem shook the foundations of mathematics to the core in the first half 

of the 20th century. 

 

Here is a flavor of Gödel's idea: If someone tells you, "This sentence is a 

lie," are they telling the truth or are they lying? If they are telling the 

truth, then they must be lying. But if they are lying, then the statement 

is true. This quandary is known as the Liar's Paradox. Even though it 

appears to be a perfectly reasonable English sentence, there is no way to 

determine whether it is true or false. What Gödel managed to do was to 

construct a rigorous mathematical version of the Liar's paradox using only 

basic arithmetic. 

 

What does all this have to do with Alan Turing and computer science? Turing 

is most famous among the general public for his role in breaking the German 

Enigma code during World War II. But among scientists, he is best known for 

his 1936 paper "On decidable numbers and a solution to the 

Entscheidungsproblem." Strongly influenced by Gödel's result, the young 

Turing had given a negative answer to Hilbert's Entscheidungsproblem. He 

proved that no general algorithm to decide whether mathematical statements 

are true or false can exist. (Alonzo Church also independently proved this 

just before Turing. But Turing's proof was ultimately more significant. 

Often in mathematics the proof of a result turns out to be more important 

than the result itself.) 

 

To solve the Entscheidungsproblem, Turing had to pin down precisely what it 

meant to "compute" something. Nowadays we think of computers as electronic 

devices that sit on our desks, laps, or even in our pockets. But computers 

as we know them did not exist in 1936. In fact, a "computer" originally 

meant a person who carried out calculations with pen and paper. 

Nonetheless, computing with pen and paper as you did in high school is 

mathematically no different to computing with a modern desktop computer-

just much slower and far more prone to mistakes. 

 

Turing came up with an idealized, imaginary computer called a Turing 

Machine. This very simple imaginary machine does not look anything like a 

modern computer, but it can compute everything that the most powerful 

modern computer can. In fact, anything that can ever be computed (even on 

quantum computers, or computers from the 31st century that have yet to be 

invented), could also be computed on a Turing Machine. It would just take 

the Turing Machine much longer. 

 

A Turing Machine has an infinitely long ribbon of tape, and a "head" that 

can read and write one symbol at a time on the tape, then move one step to 

the right or left along the tape. The input to the computation is whatever 

symbols are originally written on the tape, and the output is whatever is 

left written on the tape when the Turing Machine finally stops running 

(halts). 

 

The invention of the Turing Machine was more important even than the 

solution to the Entscheidungsproblem. By giving a precise, mathematically 

rigorous formulation of what it meant to compute something, Turing founded 

the modern field of computer science. 

 

Having constructed his imaginary mathematical model of a computer, Turing 

then went on to prove that there is a simple question about Turing Machines 

that no mathematical procedure can ever decide: will a Turing Machine 

running on a given input ever halt? This question is famously known as the 

"Halting Problem." 

 



At the time, this result was shocking. Nowadays, mathematicians have gotten 

used to the fact that any conjecture we are working on could be provable, 

disprovable, or could turn out to be undecidable. 

 

 

 

Where We Come In 

---------------- 

 

In our result, we had to tie all of these disparate threads back together. 

We wanted to unite the quantum mechanics of the spectral gap, the computer 

science of undecidability, and the spectral theory of Hilbert to prove 

that-like the Halting problem-the spectral gap problem was one of these 

undecidable problems that Gödel and Turing taught us about. 

 

Chatting in that café in Seefeld in 2012, we had an idea for how we might 

be able to prove a weaker mathematical result related to the spectral gap. 

We tossed this idea around, not even scribbling anything on the back of a 

napkin, and it seemed like it might work. Then the next session of talks 

started. And there we left it. 

 

A few months later, Toby visited Michael in Munich, and we did what we had 

not done in Seefeld: scribbled some equations on a scrap of paper, and 

convinced ourselves the idea worked. In the following weeks, we completed 

the argument and wrote it up properly in a private four-page note. (Nothing 

in mathematics is truly proven until it is written down-or better still, 

typed up and shown to a colleague for scrutiny by a skeptical pair of 

eyes.) Conceptually, this was a major advance. Before now, the idea of 

proving undecidability of the spectral gap was more of a joke than a 

serious prospect. Now, we had the first glimmerings that it might actually 

be possible. 

 

But there was still a very long way to go. Our initial idea could not be 

extended to prove undecidability of the spectral gap problem itself. 

 

Page count: 4 

 

 

Burning the Midnight Coffee 

--------------------------- 

 

We attempted to make the next leap by linking the spectral gap problem to 

quantum computing. 

 

In 1985, the Nobel prize-winning physicist Richard Feynman published one of 

the papers that launched the idea of quantum computers. In that paper, 

Feynman showed how to relate ground states of quantum systems to 

computation. Computation is a dynamic process: you supply the computer with 

input, it goes through several steps to compute a result, and outputs the 

answer. But ground states of quantum systems are completely static: the 

ground state is just the configuration a material sits in at zero 

temperature, doing nothing at all. So how can it make a computation? 

 

The answer comes through one of the defining features of quantum mechanics, 

called "superposition"-the ability of things to occupy many states 

simultaneously. Erwin Schrödinger's famous quantum cat can be alive and 

dead at the same time. Feynman proposed constructing a quantum state that 

is in a superposition over the entire history of a computation: initial 

input, every intermediate step of the computation, and final output, all at 

once. Alexei Kitaev at Caltech later developed this idea substantially by 



constructing an imaginary quantum material whose ground state looks exactly 

like this. 

 

If we used Kitaev's construction to put the entire history of a Turing 

Machine into the material's ground state in superposition, could we 

transform the Halting Problem into the spectral gap problem? In other 

words, could we show that any method for solving the spectral gap problem 

would also provide a way to solve the Halting Problem? Because Turing had 

already shown that the Halting Problem was undecidable, this would prove 

that the spectral gap problem must also be undecidable. 

 

Encoding the Halting problem in a quantum state wasn't a new idea. Seth 

Lloyd at MIT had proposed this almost two decades earlier to show 

undecidability of another quantum question. Daniel Gottesman and Sandy 

Irani had used a similar idea in 2009 to prove a beautiful result about the 

complexity of a line of interacting quantum particles. In fact, it was 

Gottesman and Irani's version of the Feynman-Kitaev idea that we hoped to 

make use of. 

 

But the spectral gap is a different kind of problem, and we faced some 

apparently insurmountable mathematical obstacles. The first obstacle has to 

do with supplying the input into the Turing Machine. Remember that 

undecidability of the Halting problem is about whether the Turing Machine 

halts on a given input. How could we design our imaginary quantum material 

in a way that let us choose the input to the Turing Machine to be encoded 

in the ground state? 

 

When working on that earlier problem (the one we were still stuck on in the 

café in Seefeld), we had an idea of how to do this by putting a "twist" in 

the interactions between the particles and using the angle of this rotation 

to create an input to the Turing Machine. In January 2013, we met at a 

conference in Beijing, and discussed this plan together. But we quickly 

realized that what we had to prove came very close to contradicting known 

results about quantum Turing Machines. We decided we needed a complete and 

rigorous proof that our idea worked before we pursued the project further. 

 

At this point Toby had been part of David's group at Complutense University 

Madrid for over two years. But in January 2013, he moved to Cambridge 

University. The apartment he found to rent would not become available for a 

couple of months, so a friend and colleague then in the Cambridge group, 

Ashley Montanaro, and his wife kindly offered to put him up in their house 

until the apartment was available. For those two months, he set to work 

producing a rigorous proof of this idea. Ashley would find him in the 

morning sitting at their kitchen table, a row of empty coffee mugs next to 

him, about to head to bed, having worked through the night figuring out 

details and typing them up. At the end of those two months, he sent around 

the completed proof. 

 

Page count: 29 

 

 

In Remembrance of Tilings Past 

------------------------------ 

 

This 29-page proof showed how to overcome one of the obstacles to 

connecting the ground state of a quantum material to computation with a 

Turing Machine. But there was an even bigger obstacle: the resulting 

quantum material was always gapless. If it is always gapless, the spectral 

gap problem for this particular material is very easy to solve: the answer 

is gapless! 

 



Our first idea from Seefeld, which proved a much weaker result than we 

wanted, nonetheless managed to get around this obstacle. The key was using 

"tilings." Imagine you are covering a large bathroom floor with tiles. In 

fact, imagine it is an infinitely big bathroom. The tiles have a very 

simple pattern on them: each of the four sides of the tile is a different 

color. You have various boxes of tiles, each with a different arrangement 

of colors. Now imagine there is an infinite supply of tiles in each box. 

You of course want to tile the infinite bathroom floor so that the colors 

on adjacent tiles match. Is this possible? 

 

The answer depends on what boxes of tiles you have available. With some 

sets of colored tiles, you will be able to tile the infinite bathroom 

floor. With others, you will not. Before you select which boxes of tiles to 

buy, you would like to know whether they will work or not. Unfortunately 

for you, in 1966 Robert Berger proved that this problem is undecidable. 

 

One easy way to tile the infinite bathroom floor would be to first tile a 

small rectangle so that colors on opposite sides of the rectangle match. 

You could then cover the entire floor by repeating this rectangular 

pattern. Because it repeats every few tiles, patterns like this are called 

"periodic." The reason the tiling problem is undecidable is that there also 

exist non-periodic tilings: patterns that cover the infinite floor, but 

never repeat. 

 

Back when we were discussing our first small result, we studied a 1971 

simplification of Berger's original proof made by Rafael Robinson. Robinson 

constructed a set of 56 different boxes of tiles which, when used to tile 

the floor, produce an interlocking pattern of ever-larger squares. This 

fractal pattern looks very periodic, but in fact it never quite repeats 

itself. We extensively discussed ways of using tiling results to prove 

undecidability of quantum properties. But back then, we were not even 

thinking about the spectral gap. The idea lay dormant. 

 

In April 2013, Toby payed a visit to Charlie Bennett at IBM's T. J. Watson 

research lab. Among the many things Bennett did before becoming one of the 

founding fathers of quantum information theory was his seminal 1970s work 

on Turing Machines. We wanted to quiz him about some technical details of 

our proof, to make sure we were not overlooking something. He said he had 

not thought about this stuff for 40 years, and it was high time a younger 

generation took over. (He then went on to very helpfully explain some 

subtle mathematical details of his 1970s work, which reassured us that our 

proof was OK.) 

 

Bennett has an immense store of scientific knowledge. Since we had been 

talking about Turing Machines and undecidability, he emailed copies of a 

couple of old papers on undecidability he thought might interest us. One of 

these was exactly the same 1971 paper by Robinson. Now the time was right 

for the ideas sown in our earlier discussions to spring to life. Reading 

Robinson's paper again, we realized it was exactly what we needed to 

prevent the spectral gap from vanishing. 

 

Following Feynman and Kitaev, our initial idea had been to encode one copy 

of the Turing Machine into the ground state. By carefully designing the 

interactions between the particles, we could make the ground state energy a 

bit higher if the Turing Machine halted. The spectral gap-the energy jump 

to the first excited state-would then depend on whether the Turing Machine 

halted or not. There was just one problem with this idea, and it was a big 

one. As the number of particles increased, the additional contribution to 

the ground state energy got closer and closer to zero, leading to a 

material that was always gapless. 

 



But by adapting Berger's tiling construction, we could instead encode many 

copies of exactly the same Turing Machine into the ground state. In fact, 

we could attach one copy to each square in Robinson's tiling pattern. 

Because these are identical copies of exactly the same Turing Machine, if 

one of them halts they all halt. The energy contributions from all of these 

copies add up. As the number of particles increases, the number of squares 

in the tiling pattern gets bigger. Thus the number of copies of the Turing 

Machine increases, and their energy contribution becomes huge, giving us 

the possibility of a spectral gap. 

 

Page count: 67 

 

 

Exams and Deadlines 

------------------- 

 

One significant weakness remained in the result we had proven. We could not 

say anything about how big the energy gap was when the material was gapped. 

This uncertainty left our result open to the criticism that the gap could 

be so small that it might as well not exist. We needed to prove that the 

gap, when it existed, was actually large. The first solution we found arose 

by considering materials in three dimensions, instead of the planar 

materials we had been thinking about until then. 

 

When you cannot stop thinking about a mathematical problem, progress is 

made in the most unexpected places. David worked on the details of this 

idea in his head while he was supervising an exam. Walking along the rows 

of tables in the exam hall thinking, he was totally oblivious to the 

students working feverishly around him. (Who were hopefully too engrossed 

in the exam to notice.) The exam over, he committed this part of the proof 

to paper. 

 

Page count: 74 

 

 

 

We now knew that getting a big spectral gap was possible. Could we also get 

it in 2D, or was 3D necessary? Remember the problem of tiling an infinite 

bathroom floor. What we needed to show was that, for the Robinson tiling, 

if you got one tile wrong somewhere, but the colors still matched 

everywhere else, then the pattern formed by the tiles would only be 

disrupted in a small region centered on that wrong tile. If we could show 

this "robustness" of the Robinson tiling, it would imply that there was no 

way of getting a small spectral gap by breaking the tiling only a tiny bit. 

 

By late summer 2013, we felt we had all ingredients for our proof to work. 

But there were still some important issues to be resolved, such as proving 

that the tiling robustness could be merged with all the other proof 

ingredients to give the complete result. The Isaac Newton Institute in 

Cambridge was hosting a special workshop on quantum information for the 

whole of the autumn semester of 2013. All three of us were invited to 

attend. It was the perfect opportunity to work together on finishing the 

project. But David was not able to stay in Cambridge for long. We were 

determined to complete the proof before he left. 

 

The Newton Institute has blackboards everywhere (even in the bathrooms!). 

We chose one of the blackboards in a corridor (the closest to the coffee 

machine) for our discussions. We spent long hours at the blackboard 

developing the missing ideas, then divided the task of making these ideas 

mathematically rigorous between us. This process always takes far more time 

and effort than it seems on the blackboard. As the date of David's 



departure loomed, we worked without interruption all day and most of the 

night. Just a few hours before David left for home, we finally had a 

complete proof. 

 

Page count: 99 

 

 

In physics and mathematics, researchers make most results public for the 

first time by posting a draft paper to the arXiv preprint server, before 

submitting it to a journal for peer review. However, although we were now 

fairly confident the whole argument worked and the hardest part was behind 

us, our proof was not ready to post to the arXiv. For one thing, there were 

many mathematical details to be filled in. We also wanted to completely 

rewrite and tidy up the paper (hopefully reducing the page count in the 

process, though in this we would ultimately fail completely). But, most 

importantly, although every part of the proof had been checked by at least 

one of us, none of us had gone through the entire proof from beginning to 

end yet. 

 

In summer 2014, David was on sabbatical at the Technical University of 

Munich with Michael. Toby went out to join them. The plan was to spend this 

time checking and completing the whole proof line by line. David and Toby 

were sharing an office. Each morning, David would arrive with a new sheaf 

of printout of the draft paper, copious notes and questions scribbled in 

the margins and on interleaved sheets of paper. The three of us would get 

coffee, then we would pick up where we left off the day before, discussing 

the next section of the proof at the blackboard. In the afternoon, we 

divided up the work of rewriting the paper and adding the new material, and 

going through the next section of the proof. Toby was suffering from a 

slipped disc, and could not sit down, so he worked with his laptop propped 

on top of an upturned garbage bin on top of the desk. David sat opposite, 

the growing pile of printout and notes taking up more and more of his desk. 

On a couple of occasions, we found significant gaps in the proof. These 

turned out to be surmountable, but bridging them meant adding substantial 

additional material to the proof. The page count continued to grow. 

 

After six weeks, we had checked, completed and improved every single line 

of the proof. It would take another six months to finish writing everything 

up, by which time Toby had moved from Cambridge to University College 

London. Finally, in February 2015, we uploaded the paper to the arXiv. 

 

Final page count: 147 

 

 

What It All Means 

----------------- 

 

Ultimately, what do these 147 pages of complicated mathematics tell us? 

 

Firstly, and most importantly, they give a rigorous mathematical proof that 

one of the basic questions of quantum physics cannot be solved in general. 

Note that the "in general" here is important. 

 

Even though the Halting Problem is undecidable in general, for particular 

inputs to a Turing Machine, it is often still possible to say whether it 

will halt or not. For example, if the first instruction of the input is 

"halt," the answer is pretty clear. The same goes if the first instruction 

tells the Turing Machine to loop forever. Thus, although undecidability 

implies that the spectral gap problem cannot be solved for all materials, 

it is entirely possible to solve it for certain specific materials. In 

fact, condensed matter physics is littered with examples where it has been 



solved. Nonetheless, our result proves rigorously that even a perfect, 

complete description of the microscopic interactions between a material's 

particles is not always enough to deduce its macroscopic properties. 

 

You may be asking yourself if this finding has any implications for "real 

physics." After all, scientists can always try to measure the spectral gap 

in experiments. Imagine if we could engineer the quantum material from our 

mathematical proof, and produce a piece of it in the laboratory. Its 

interactions are so extraordinarily complicated that this task is far, far 

beyond anything scientists are ever likely to be able to do. But if we 

could, if we took a piece of this material and tried to measure its 

spectral gap, the material could not simply throw up its hands and say "I 

can't tell you-it's undecidable." The experiment would have to measure 

something. 

 

The answer to this apparent paradox lies in the fact that, strictly 

speaking, the terms "gapped" and "gapless" only make mathematical sense 

when the piece of material is infinitely large. Now, the 10^23 or so atoms 

contained in even a very small piece of material are a very large number 

indeed. For normal materials, this is close enough to infinity to make no 

difference. But for the very strange material constructed in our proof, 

large is not equivalent to infinite. Perhaps with 10^23 atoms, the material 

appears in experiments to be gapless. Just to be sure, you take a sample of 

material twice the size and measure again. Still gapless. Then, late one 

night, your graduate student comes into the lab and adds just one extra 

atom. The next morning, when you measure it again, the material has become 

gapped! Our result proves that the size at which this transition occurs is 

uncomputable (in the same Gödel-Turing sense that you are now familiar 

with). 

 

This story is completely hypothetical for now, because we cannot engineer a 

material this complex. But it shows, backed by rigorous mathematical proof, 

that scientists must take special care when extrapolating experimental 

results to infer the behavior of the same material at larger sizes. 

 

And now we come back to the Yang-Mills problem-the question of whether the 

equations describing quarks and their interactions have a mass gap. 

Computer simulations hint that the answer is yes, but our proof suggests 

that determining for sure is another matter. Could it be that the computer 

simulation evidence for the Yang-Mills mass gap would vanish if we made the 

simulation just a tiny bit larger? Our result cannot say, but it does open 

the door to the intriguing possibility that the Yang-Mills problem, and 

other problems important to physicists, may be undecidable. 

 

And what of that original small and not-very-significant result we were 

trying to prove all those years ago in a cafe in the Austrian Alps? 

Actually, we are still working on it... 

 


