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In a network meta-analysis, between-study heterogeneity variances are often
very imprecisely estimated because data are sparse, so standard errors of treat-
ment differences can be highly unstable. External evidence can provide infor-
mative prior distributions for heterogeneity and, hence, improve inferences. We
explore approaches for specifying informative priors for multiple heterogeneity
variances in a network meta-analysis.

First, we assume equal heterogeneity variances across all pairwise inter-
vention comparisons (approach 1); incorporating an informative prior for the
common variance is then straightforward. Models allowing unequal heterogene-
ity variances are more realistic; however, care must be taken to ensure implied
variance-covariance matrices remain valid. We consider three strategies for spec-
ifying informative priors for multiple unequal heterogeneity variances. Initially,
we choose different informative priors according to intervention comparison
type and assume heterogeneity to be proportional across comparison types and
equal within comparison type (approach 2). Next, we allow all heterogeneity
variances in the network to differ, while specifying a common informative prior
for each. We explore two different approaches to this: placing priors on variances
and correlations separately (approach 3) or using an informative inverse Wishart
distribution (approach 4).

Our methods are exemplified through application to two network meta-
analyses. Appropriate informative priors are obtained from previously published
evidence-based distributions for heterogeneity.

Relevant prior information on between-study heterogeneity can be incorpo-
rated into network meta-analyses, without needing to assume equal heterogene-
ity across treatment comparisons. The approaches proposed will be beneficial in
sparse data sets and provide more appropriate intervals for treatment differences
than those based on imprecise heterogeneity estimates.
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1 INTRODUCTION

In a network meta-analysis, the results from studies evaluating multiple different treatment comparisons are modelled
simultaneously, and summary findings for each comparison are based on a combination of direct and indirect evidence.
Network meta-analysis enables estimation of treatment differences for which no direct evidence is available and may pro-
vide increased precision where little direct evidence is available. In addition, a network meta-analysis allows calculation
of probabilities that each treatment is best with respect to effectiveness or safety. When clinicians or health policy makers
need to choose between several available treatments, findings from a network meta-analysis are considerably more useful
than the findings from a collection of separate pairwise meta-analyses. Network meta-analyses are increasingly widely
reported in systematic reviews of health care interventions.1

It is common to assume that underlying treatment differences corresponding to each pairwise comparison are similar
amongst the studies included in a network meta-analysis, rather than identical. Between-study heterogeneity may arise
from differing study populations, differences in the conduct of the research, and biases caused by methodological flaws.
A random-effects network meta-analysis model is often considered appropriate for allowing for this variability and leads
to estimation of average treatment differences and between-study heterogeneity variances for each pairwise comparison.
The heterogeneity variances corresponding to multiple treatment comparisons may be assumed equal or unequal across
comparisons. An assumption of equal heterogeneity variances simplifies the model and is commonly used but will not
always be realistic. Networks may include several treatments of the same type (for example, various forms of radiother-
apy (RT) or similar pharmacological treatments), in addition to treatments of a different type (for example, surgery) and
a control treatment. Between-study heterogeneity within a comparison of two pharmacological treatments, for example,
might be expected to be lower than that within a pharmacological vs surgery comparison or a pharmacological vs con-
trol comparison.2 Lu and Ades have proposed models that allow heterogeneity variances to be unequal across treatment
comparisons.3

Heterogeneity variances are often imprecisely estimated in pairwise meta-analyses because many meta-analyses in
health research contain only a small number of studies.4 In a review of network meta-analyses, the median num-
ber of studies per network was found to be 21 (inter-quartile range 13 to 40) and the median number of studies per
comparison was 2 (inter-quartile range 1 to 4).5 Heterogeneity variances corresponding to individual treatment compar-
isons are therefore extremely likely to be imprecisely estimated. If heterogeneity is assumed equal across comparisons,
increased precision is available for estimating the common heterogeneity variance but remains low in the many network
meta-analyses including few studies in total. Standard errors and confidence intervals for treatment differences depend
directly on estimated heterogeneity variances, so imprecisely estimated heterogeneity could lead to misleading results and
conclusions. When decisions are informed by predictive distributions for treatment effects, which allow for heterogeneity,
an imprecise overestimate could exaggerate the uncertainty in the decision.

In previous work, we have presented predictive distributions for heterogeneity in a range of settings, constructed
from meta-analyses within the Cochrane Database of Systematic Reviews.2,6,7 When performing meta-analysis within a
Bayesian framework, we can specify such predictive distributions as informative prior distributions for heterogeneity and
potentially gain in precision. In network meta-analyses, estimation of heterogeneity for individual treatment comparisons
is often even more difficult than in pairwise meta-analyses. The aim of this paper is to explore the use of informative priors
for the multiple heterogeneity variances corresponding to different treatment comparisons in a network meta-analysis.
We will use predictive distributions obtained from pairwise meta-analyses because we have no reason to believe that
between-study heterogeneity would be different for treatment comparisons included in a network.

The layout of the paper is as follows. The basic structure of the random-effects network meta-analysis model is described
in Section 2. In Section 3, we present four different approaches to specifying informative priors for multiple heterogeneity
variances. In Section 4, the methods are applied to two example data sets. We conclude with a discussion in Section 5.

2 NETWORK META-ANALYSIS MODEL

We assume a random-effects model for pairwise comparisons of multiple treatments, as proposed initially by Higgins
and Whitehead,8 and later extended by Lu and Ades.9 We use a contrast-based approach to modelling between-study
variability, in which assumptions of exchangeability are made for pairwise treatment differences rather than for treatment
arms, as in conventional pairwise meta-analysis models.10 We focus on models for binary outcome data. All models are
fitted within a Bayesian framework.
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In a random-effects network meta-analysis model, we denote the underlying treatment difference in study j by 𝛿jXY,
for comparison of treatment Y vs treatment X. For each comparison, treatment differences are assumed exchangeable
across studies and drawn from a normal distribution, with mean dXY and between-study heterogeneity variance 𝜏2

𝑋𝑌
. In

each study, one treatment is regarded as the baseline treatment, against which treatment differences are defined. For the
binomial data in study j under treatment k, the full model is

r𝑗𝑘 ∼Bin
(
𝜋𝑗𝑘,n𝑗𝑘

)
logit

(
𝜋𝑗𝑘

)
=

{
𝜇𝑗, k = b𝑗

𝜇𝑗 + 𝛿𝑗𝑏𝑘, k > b𝑗 ,
(1)

where bj (written as b in subscripts, for clarity) indicates the baseline treatment in study j. The 𝜇j represent the baseline
log odds in each study, assumed unrelated to each other and treated as fixed effects. We choose vague Normal(0, 104)
priors for the 𝜇j. The assumptions made about the random effects 𝛿jbk are described below.

Throughout this paper, we assume consistency for the evidence available from a network meta-analysis, meaning that
we assume agreement between the direct and indirect evidence informing each treatment comparison.11 Suppose the
network includes a total of p + 1 treatments, where treatment 0 is regarded as the overall reference treatment (usu-
ally representing control or standard care). Following Lu and Ades,11 the contrasts with the reference treatment, d01,d02,
… ,d0p, are referred to as the basic parameters in model (1). Under the assumption of consistency, the remaining treatment
contrasts are referred to as functional parameters that can be expressed in terms of the basic parameters, for example,
d12 = d02 − d01, d13 = d03 − d01, and so on. These relationships are referred to as the consistency equations. We choose
vague Normal(0, 104) priors for the basic parameters d01,d02, … ,d0p.

We now write the random part of model (1) in vector form as follows:

𝜹j ∼ N(d,𝚺) ,

where 𝜹j = (𝛿j01, 𝛿j02, … , 𝛿j0p) is the vector of contrasts with the reference treatment in study j and d is the vector of basic
parameters. The diagonal entries Σkk of 𝚺 are the heterogeneity variances 𝜏2

01, 𝜏
2
02,…, 𝜏2

0p corresponding to contrasts with
the reference treatment. Heterogeneity variances corresponding to contrasts not involving the reference treatment are
given by 𝜏2

𝑘𝑙
= Var(𝛿𝑗0k−𝛿𝑗0l) = Σ𝑘𝑘+Σ𝑙𝑙−2Σ𝑘𝑙. When choosing priors for𝚺, it is important to ensure sensible relationships

amongst the heterogeneity variances. Lu and Ades show that second-order consistency should hold for the heterogeneity
variances relating to the three treatment contrasts amongst any treatment triple {A,B,C}.3 We will ensure this, for any net-
work size, by requiring that 𝚺 is positive semidefinite. We note that this requirement is more conceptual than technical.
Models which do not ensure second-order consistency can be fitted and estimation can be achieved without any compu-
tational problems, but the validity of the resulting inference would be questionable and the estimates would be difficult
to interpret. Therefore, we believe it is better to fit models which are conceptually plausible.

3 SPECIFYING INFORMATIVE PRIORS FOR BETWEEN-STUDY
HETEROGENEITY

We will consider several alternative strategies for specifying informative priors for multiple heterogeneity variances in a
network meta-analysis. The assumptions made under these strategies are summarised in Table 1.

3.1 Equal heterogeneity variances (approach 1)
The simplest approach to ensuring second-order consistency is to assume that heterogeneity variances 𝜏2

𝑘𝑙
for all treatment

comparisons in the network are equal. Under this assumption,Σ= 𝜏2P, where P is the p×p matrix with 1's on the diagonal
and 0.5's off the diagonal, so Σ is guaranteed to be positive semidefinite. We can then choose a single informative prior
for the common heterogeneity variance 𝜏2.

When assuming equal heterogeneity variances, we assume log(𝜏2)∼N(m, s2), where choice of the mean m and vari-
ance s2 for log heterogeneity is based on external data.2,7 In previous work, we have presented data-based log-Normal
distributions as informative prior distributions for between-study heterogeneity in binary outcome meta-analyses, for a
variety of settings defined by outcome type and intervention comparison type.2,7 If there are several different types of
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intervention comparison in the network, it might be reasonable to choose the prior that best matches the majority of
intervention comparisons or to choose the widest of the priors as the common prior, as a conservative approach.

Although practical, the assumption that all heterogeneity variances are equal is a strong assumption, which we would
like to relax, using the models discussed in the following sections. However, we note that this assumption may be
considered plausible in some networks.

3.2 Proportional heterogeneity variances with different informative priors (approach 2)
We now consider how we could specify different informative priors for some heterogeneity variances within a network.
Informed by previous empirical evidence,7 we would like to select priors according to whether the treatments compared
were both active, or active and placebo/control, and whether the active treatments were pharmacological or nonpharma-
cological. This categorisation of intervention comparison types leads to five different possible priors, with different means
and variances, for each contrast within a meta-analysis (Table S1).

The simplest way to allow different informative priors across the network is to assume the heterogeneity variances to be
proportional rather than equal. We consider allowing the prior means mkl (on the log heterogeneity scale) to be unequal
across treatment comparisons, while still assuming equality for the prior variances, as follows:

𝜏2 ∼ log-N
(
0, s2) and 𝜏2

𝑘𝑙
= 𝜏2exp (m𝑘𝑙) ∀k, l. (2)

Under (2), the variances for the log(𝜏2
𝑘𝑙
) are equal to s2 for all k, l, whereas the means mkl differ.

In Supplementary Appendix A1, we explore the conditions under which separate priors for 𝜏2
𝑘𝑙

of the form (2) result in
positive semidefiniteness for 𝚺, for the specific priors presented in Table S1. We note that this investigation would need to
be repeated if a different set of data-based priors was used. We have considered networks including up to p = 100 active
treatments, although higher values in this range are very unlikely to occur in clinical research. For up to p = 4 active
treatments, we find that 𝚺 is positive semidefinite for all network types. For larger networks, positive semidefiniteness
holds for all networks in which all treatments are pharmacological or nonpharmacological. However, when the reference
treatment is placebo/control and p > 4, positive semidefiniteness holds for only a minority of network types: when all
active treatments are pharmacological, when all or all but one active treatments are nonpharmacological, or when all but
two active treatments are nonpharmacological if p≤ 88. For example, a simple network in which positive semidefiniteness
does not hold is a network comparing four pharmacological treatments and one nonpharmacological treatment, with a
placebo as reference treatment. In networks for which assuming proportional heterogeneity variances does not ensure
positive semidefiniteness for 𝚺, we recommend using the approach described in Section 3.3.

3.3 Unequal heterogeneity variances with a common informative prior (approach 3)
We now explore how to specify informative priors for heterogeneity while allowing the heterogeneity variances 𝜏2

𝑘𝑙
to

differ across treatment comparisons. Lu and Ades3 have previously proposed a model which allows unequal 𝜏2
𝑘𝑙

while
ensuring that the covariance matrix 𝚺 remains positive semidefinite, so that second-order consistency holds. Under their
approach, the marginal priors implied for the heterogeneity variances are not immediately apparent, and therefore, it is
not straightforward to specify informative priors. We follow their approach and propose how to incorporate informative
priors.

To ensure that appropriate constraints are met, Lu and Ades introduced some additional parameters 𝜏2
k , defined by the

following relationships:
𝜏2
𝑘𝑙
= 𝜏2

k + 𝜏2
l − 2𝜌𝑘𝑙𝜏k𝜏l, (3)

where 𝜏2
k and 𝜏2

l are, respectively, regarded as variances of random quantities 𝜃jk and 𝜃jl that can be interpreted as the
random effects of corresponding treatment arms k and l up to a common unknown constant.3 Care must be taken over
choice of priors for the correlations 𝜌kl, to ensure a valid between-arm correlation matrix R.

Following this approach, we need to place priors directly on the treatment arm-specific variance parameters 𝜏2
k .

However, the data-based predictive distributions that we plan to use as informative priors are available for variances cor-
responding to treatment comparisons rather than treatment arms, that is, for the original model (1) parameters 𝜏2

𝑘𝑙
. We

aim to choose suitable informative priors for the arm-specific variances 𝜏2
k , which will imply our target data-based priors

for the comparison-specific variances 𝜏2
𝑘𝑙

. We do this by considering the relationship between the priors specified for the
𝜏2

k and the 𝜌kl in (3), and the resulting implied priors for the 𝜏2
𝑘𝑙

.
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We plan to specify a common data-based log-Normal prior for all 𝜏2
𝑘𝑙

, for practical reasons; in the Discussion, we explain
why it would be considerably more difficult to implement this approach if using multiple different informative priors.
Because the target data-based priors for the 𝜏2

𝑘𝑙
are log-Normal, we also consider specifying log-Normal priors for the 𝜏2

k .
To ensure a common prior for the 𝜏2

𝑘𝑙
, we will choose identical priors for each 𝜏2

k .
To find a suitable log-Normal prior for the 𝜏2

k , we propose matching the moments of the implied prior for 𝜏2
𝑘𝑙

based
on expression (3) with the known moments of a chosen data-based informative prior 𝜏2

𝑘𝑙
∼ log-N(mD, s2

D). We assume
log - N(m, s2) priors for each of the 𝜏2

k . Independently of 𝜏2
k and 𝜏2

l , we assume a generic prior distribution for the correlation
𝜌kl in (3), with mean m𝜌 and variance s2

𝜌. By equating the mean and variance of the implied prior for 𝜏2
𝑘𝑙

with the mean
and variance of the data-based prior (details given in supplementary appendix A2), we obtain the following:

E
(
𝜏2
𝑘𝑙

)
= emD es2

D∕2 = 2emes2∕4
(

es2∕4 − m𝜌

)
Var

(
𝜏2
𝑘𝑙

)
= e2mD es2

D

(
es2

D − 1
)
= 2e2mes2

(
es2 − 1 + 2s2

𝜌

)
+ 4m2

𝜌e2mes2∕2
(

es2∕2 − 1
)

− 8m𝜌e2me3s2∕4
(

es2∕2 + 1
)
.

(4)

For mD and sD corresponding to a chosen data-based prior for 𝜏2
𝑘𝑙

and given the mean and variance {m𝜌, s2
𝜌} of the prior

specified for 𝜌kl, we can solve the above equations for m and s, using numerical methods (for example, using the package
nleqslv in R12), and find solutions m = mA and s = sA. We can now declare log-N(mA, s2

A) priors for all 𝜏2
k , in order that the

implied priors for the 𝜏2
𝑘𝑙

will have the target data-based mean mD and variance s2
D. However, the implied priors will not

be log-Normal and do not follow a known distribution.
For example, if our chosen data-based prior for the 𝜏2

𝑘𝑙
is log-N(−4.28, 1.612) and we use a prior for 𝜌kl with mean

m𝜌 = 0.5 and variance s2
𝜌 = 0.07, we solve (4) and find solutions m = −4.83 and s = 1.69. We would therefore declare

log-N(−4.83, 1.692) priors for all 𝜏2
k , in order that the implied priors for the 𝜏2

𝑘𝑙
have the target data-based mean and

variance.
To provide suitable prior distributions for the correlation matrix R in Section 3.2.1, Lu and Ades used a Cholesky decom-

position to write R = LTL, where L is an upper-triangular matrix and, then, used a spherical parameterization.13 For
example, in a network with three treatments,

𝜌12 = cos (𝜙12)
𝜌13 = cos (𝜙13)
𝜌23 = cos (𝜙12) cos (𝜙13) + sin (𝜙12) sin (𝜙13) cos (𝜙23) .

(5)

In Supplementary Appendix A3, we provide details of the priors chosen for the cos(𝜙kl).

3.3.1 Implementation
To assist with implementation of the approach described above, we will use (4) to find priors suitable for the arm-specific
variance parameters 𝜏2

k , which correspond to a set of data-based priors for the 𝜏2
𝑘𝑙

. In approach 3, we allow the 𝜏2
𝑘𝑙

to
vary across treatment comparisons but specify a common informative prior for all 𝜏2

𝑘𝑙
. It would be convenient to have

data-based predictive distributions for 𝜏2
𝑘𝑙

, which do not depend on comparison type, for use in approach 3 and in approach
1 where equal heterogeneity variances are assumed. We have therefore fitted a revised model to meta-analyses from the
Cochrane Database of Systematic Reviews, based on the models fitted by Turner et al,7 in which only outcome type is
used as a predictor of between-study heterogeneity. Table 2 presents the predictive distributions obtained from this model.
These would be suitable as informative priors for networks including a mixture of treatment comparison types, but if the
majority of comparisons were of the same type (eg, pharmacological vs pharmacological), it would be preferable to use the
predictive distribution available for that particular comparison. Next, we used numerical methods to solve the equations
in (4) for each predictive distribution for the 𝜏2

𝑘𝑙
, to find distributions suitable as log-normal priors for the 𝜏2

k in (3), which
will imply the chosen data-based priors.

In order to solve (4), we needed to assume values for the mean 𝜇𝜌 and variance 𝜎2
𝜌 of the prior distributions for the

correlations 𝜌kl. The 𝜌kl represent correlations between sets of random effects for treatment arms k and l. Given that
all 𝜌kl are equal to 0.5 in the common heterogeneity variances model (approach 1) and assuming that the 𝜌kl are very
likely to be positive, we consider a Uniform(0, 1) distribution to be a suitable choice of prior. We have chosen to assume
m𝜌 = 0.5 and s2

𝜌 = 0.07 because these values approximate the mean and variance of a correlation coefficient under a
Uniform(0, 1) distribution, conditional on positive semidefiniteness. We have identified Beta priors for the cos(𝜙kl) in (S4)
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TABLE 2 Data-based predictive distributions for heterogeneity variances 𝜏2
𝑘𝑙

, by outcome type, and corresponding distributions
for the 𝜏2

k

Predictive Distribution for the 𝝉𝟐kl Corresponding Distribution for the 𝝉𝟐k,
Based on Matching Moments in (6)a

All-cause mortality LN(−4.28, 1.612) LN(−4.83, 1.692)
Obstetric outcomes LN(−3.33, 1.602) LN(−3.88, 1.692)
Cause-specific mortality/major morbidity LN(−3.52, 1.612) LN(−4.08, 1.702)
event/composite (mortality or morbidity)
Resource use/hospital stay/process LN(−2.21, 1.602) LN(−2.76, 1.692)
Surgical/device-related success/failure LN(−1.86, 1.612) LN(−2.42, 1.702)
Withdrawals/dropouts LN(−2.85, 1.602) LN(−3.40, 1.692)
Internal/external structure-related outcomes LN(−2.53, 1.612) LN(−3.09, 1.702)
General physical health indicators LN(−2.37, 1.612) LN(−2.93, 1.702)
Adverse events LN(−1.97, 1.602) LN(−2.52, 1.692)
Infection/onset of new disease LN(−2.55, 1.602) LN(−3.10, 1.692)
Signs/symptoms reflecting continuation/ LN(−2.13, 1.602) LN(−2.68, 1.692)
end of condition
Pain LN(−1.85, 1.602) LN(−2.40, 1.692)
Quality of life/functioning (dichotomised) LN(−2.59, 1.622) LN(−3.15, 1.712)
Mental health indicators LN(−2.20, 1.622) LN(−2.76, 1.712)
Biological markers (dichotomised) LN(−1.83, 1.602) LN(−2.38, 1.692)
Subjective outcomes (various) LN(−2.75, 1.612) LN(−3.31, 1.702)

aAssuming that priors for the correlations 𝜌km have mean 0.5 and variance 0.07, as when using the priors listed in Table 3.

TABLE 3 Prior distributions for the cos(𝜙kl) in (S4), for use with the
distributions given for the 𝜏2

k in Table 2

Number of Treatments in Network Beta Prior for the cos(𝜙km)

4 Beta(0.93, 1.07)
5 Beta(0.82, 0.98)
6 Beta(0.81, 0.99)
7 Beta(0.71, 0.89)
8 Beta(0.71, 0.89)
9 Beta(0.62, 0.78)

10 Beta(0.62, 0.78)

(see Supplementary Appendix A3), which will imply priors for the 𝜌kl with these moments, for given network sizes up to
10 (Table 3).

3.4 Informative inverse Wishart priors (approach 4)
The inverse Wishart distribution is a common choice of prior distribution for a covariance matrix and ensures positive
semidefiniteness.14 Here, we explore how to choose informative inverse Wishart prior distributions for which the marginal
priors for the heterogeneity variances 𝜏2

𝑘𝑙
approximately match specified data-based priors.

We first consider declaring an inverse Wishart distribution for 𝚺 in model (1), of the form 𝚺−1 ∼Wishart(S, t), where S
is a p×p matrix and t represents degrees of freedom. Heterogeneity variances representing contrasts with the reference
treatment are the diagonal elements of 𝚺, say,Σkk. The marginal distribution for eachΣkk is an inverse gamma distribution:
Σkk ∼ IG((t − p + 1)/2, Skk/2).15 Selection of S and t can be informed by considering the moments of the implied priors for
the log heterogeneity variances, log(Σkk).

If we were to use a standard inverse Wishart distribution, 𝚺−1 ∼Wishart(S, t), the variance for log(Σkk) would be fixed
at 𝜓1((t − p + 1)/2) for all S, where 𝜓1 is the trigamma function, so it would not be possible to match the variance for
log(Σkk) to a chosen data-based value. We therefore instead use a scaled inverse Wishart distribution. We use a scaling
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parameter 𝜆 and assume 𝚺−1 ∼M/𝜆, where M∼Wishart(S, t) and log(𝜆) ∼ Normal(m𝜆, s2
𝜆
). By considering the resulting

mean and variance for log(Σkk), we find that we can match these to a target data-based prior distribution, log (Σ𝑘𝑘) ∼
N(mD, s2

D), by setting

m𝜆 = mD − log (S𝑘𝑘∕2) + 𝜓 ((t − p + 1) ∕2) s2
𝜆
= s2

D − 𝜓1 ((t − p + 1) ∕2) , (6)

where 𝜓 is the digamma function.
We need to choose a value for the degrees of freedom t, which must be greater than or equal to the dimension p. Matching

to the target variances s2
D in Table S1 would not be possible if t = p, since 𝜓1(1/2) is then greater than all values of s2

D. As
the degrees of freedom of the Wishart distribution increase, the prior correlations between the heterogeneity variances 𝜏2

𝑘𝑙

also increase. By assuming higher prior correlations between the 𝜏2
𝑘𝑙

, we would increase the amount of borrowing across
treatment comparisons. We choose to set t = p + 1, which leads to the lowest correlations and thus the lowest amount of
borrowing across comparisons under this approach, while allowing matching to the target variances s2

D.
The magnitude of Skk is inconsequential and does not affect the mean of log(Σkk) because we adjust for this value

when choosing m𝜆; we set Skk = 1. Heterogeneity variances representing contrasts between two nonreference treatments
k and l are given by Σkk + Σll − 2Σkl. The value for Skl is set to Skk/2 = 0.5 to ensure that the implied distributions for
these heterogeneity variances are identical to those for heterogeneity variances representing contrasts with the reference
treatment (see Supplementary Appendix A4).

4 APPLICATION TO EXAMPLE NETWORK META-ANALYSES

4.1 Network of treatments for smoking cessation
To illustrate the above methods, we first reanalyse a commonly used network meta-analysis data set including 24 trials
comparing treatments for smoking cessation counselling: no intervention (A), self-help (B), individual counselling (C),
and group counselling (D) (Figure 1).16 The outcome reported is successful cessation of smoking at 6 to 12 months. Direct
evidence is available on all six pairwise comparisons: AB (three trials), AC (15 trials), AD (two trials), BC (two trials),
BD (two trials), CD (four trials). There are two three-arm trials in the data set.

Initially, we assumed heterogeneity variances corresponding to all treatment comparisons in the network to be equal
(approach 1). We first chose a vague Uniform(0, 2) prior for the common between-study standard deviation 𝜏 (given that
analyses are on the log odds ratio scale), and subsequently specified an informative log-Normal(−2.75, 1.612) prior for 𝜏2.
This distribution represents a data-based predictive distribution for heterogeneity in a meta-analysis examining subjective
outcomes (Table 2). Under model (1), each three-arm trial j produces two correlated random effects 𝛿jbX and 𝛿jbY. We
have allowed for this by assuming the second, 𝛿jbY, to be randomly distributed conditional on the first, 𝛿jbX, following the
approach proposed by Dias et al.17

In approach 2, we first used vague priors by assuming 𝜏2
0l = 𝜏2 for all l and 𝜏2

𝑘𝑙
= 𝜏2exp (m) for k ≠ 0, with 𝜏 ∼Uni-

form(0, 2) and m∼N(0, 0.52), thus assuming that heterogeneity is different (and proportional) for active vs control and

Group 
counselling (D)

Individual 
counselling (C)

Self-help (B)

3

2

15

No intervention (A)

2

2

4

FIGURE 1 Network meta-analysis comparing treatments for smoking cessation counselling [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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active vs active comparisons. We then chose separate informative priors for heterogeneity variances corresponding to
nonpharmacological vs nonpharmacological comparisons (log-Normal(−2.26, 1.452)) and nonpharmacological vs control
comparisons (log-Normal(−2.92, 1.712)) (Table S1), which have medians of 0.32 and 0.23, respectively, where treatments
B, C, and D are nonpharmacological and treatment A is a control treatment. As standard deviation of the prior for 𝜏2 in
(2), we used a weighted average of the standard deviations from the two predictive distributions, using the number of
study comparisons of each type as weights.

We then allowed heterogeneity variances to vary across treatment comparisons (approach 3). We first declared vague
Uniform(0, 2) priors for 𝜏0, 𝜏1, 𝜏2, 𝜏3 and, then, log-Normal(−3.31, 1.702) priors for 𝜏2

0 , 𝜏
2
1 , 𝜏

2
2 , 𝜏

2
3 , which imply priors with

the same mean and variance as the chosen log-Normal(−2.75, 1.612) priors for the 𝜏2
𝑘𝑙

(Table 2). Next, we used a scaled
inverse Wishart distribution with four degrees of freedom (approach 4), with the prior for the scaling parameter chosen
to match the marginal priors for the 𝜏2

𝑘𝑙
to a log-Normal(−2.75, 1.612) distribution.

Approaches 1, 2, and 4 were implemented in WinBUGS18 and approach 3 was implemented in OpenBUGS19 (since the
updating algorithm required was only available in OpenBUGS). We based results on 100 000 Markov chain Monte Carlo
iterations, following a burn-in period of 20 000 iterations, which was sufficient to achieve convergence. Code to implement
approaches 1 to 4 is provided in Supplementary Appendix A5.

Using informative log-Normal priors rather than vague priors in the equal and unequal variance models (approaches
1 and 3) has led to smaller heterogeneity estimates, with narrower credible intervals (Table 4). This has caused small
changes to the central estimates (posterior medians) of the log odds ratios, and their 95% credible intervals have narrowed.
The changes are greater in the unequal variances model (approach 3), in which few trials contributed to the estimation of
between-study heterogeneity variances corresponding to most comparisons (except AC). We note that the heterogeneity
standard deviations for comparisons BC, BD, and CD are substantially smaller under the unequal variances model than
under the equal variances model and close to the prior median of 0.25, and the corresponding log odds ratios for com-
parisons BC, BD, and CD (not shown) therefore have much narrower intervals than under the equal variances model.
Although the heterogeneity variance for comparison AD is slightly higher under the unequal variances model, the contri-
bution of more precise indirect evidence has caused the interval for the log odds ratio for AD to narrow. The heterogeneity
variance for AC is estimated with most precision because this comparison has the largest amount of evidence (15 trials).

When assuming proportional heterogeneity variances (approach 2), the impact of using informative rather than vague
priors is different because we now assume the heterogeneity variance for active vs active comparisons to be larger than
that for active vs control comparisons, based on external evidence (Table S1). Pooling information across three compar-
isons leads to a narrower interval for the heterogeneity standard deviation than under than the unequal variances model
(approach 3), and for the active vs active comparisons, the central estimate for heterogeneity is now much further from
the prior median.

When using scaled inverse Wishart distributions (approach 4), the prior correlation between two different heterogene-
ity variances (on the log scale) is 0.71 when the two comparisons include a common treatment and 0.64 otherwise. These
correlations are substantially higher than under approach 3 where the prior correlation is 0.39 when the two comparisons
include a common treatment or 0 otherwise, and therefore, more information on heterogeneity is borrowed across com-
parisons and the heterogeneity variance results are closer. Changes to estimated heterogeneity variances have resulted in
changes to the central estimates and intervals for the log odds ratios. In particular, the heterogeneity variance for com-
parison AB is much lower under approach 4, and this has led to much narrower intervals for the corresponding log odds
ratio and a shift in the central estimates towards the null effect.

The conclusions about relative effectiveness of the four treatments are the same under all models fitted.

4.2 Network of treatments for localised prostate cancer
As a second illustrative example, we reanalysed a network meta-analysis comparing eight treatments for localised prostate
cancer, including five different RT regimes: observational management (A), prostatectomy (B), conventional RT (C), con-
ventional RT hypofractionated (D), conformal low-dose RT (E), conformal high-dose RT (F), conformal low-dose RT
hypofractionated (G), and cryotherapy (H) (Figure 2).20 The outcome is all-cause mortality and data from 17 trials are
included (Table 5).

In the equal variances model (approach 1), the central estimate for heterogeneity is low at 0.09 (95% credible interval
0.005, 0.36). As an informative prior for 𝜏2, we chose a log-Normal(−4.28, 1.612) prior for 𝜏2, which represents a predictive
distribution for heterogeneity in meta-analyses with an all-cause mortality outcome. When this prior was specified, the
95% credible interval for 𝜏2 narrowed, which caused small changes to the central estimates for the log odds ratios and
narrowing of their 95% credible intervals (Table 6).
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Prostatectomy (B) Cryotherapy (H)

Conformal LD 
Radiotherapy (E)

Conformal LD 
Radiotherapy -
hypofract. (G)

Conventional 
Radiotherapy (C)

Conformal HD 
Radiotherapy (F)

Observational 
care (A)

3

1

2

2

1 1

4

2
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Conventional 
Radiotherapy -
hypofract. (D)

FIGURE 2 Network meta-analysis comparing treatments for localised prostate cancer. LD indicates low dose and HD indicates high dose
[Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Data from network meta-analysis comparing eight treatmentsa for
localised prostate cancer with respect to all-cause mortality20

Study Arm 1 Events/Total in Arm 1 Arm 2 Events/Total in Arm 2

1 A 36/46 B 36/49
2 A 183/367 B 171/364
3 A 106/348 B 83/347
4 A 74/107 E 64/107
5 B 15/46 C 19/49
6 C 17/109 D 15/108
7 C 89/470 D 77/466
8 C 40/111 E 39/114
9 C 17/150 F 15/151
10 C 3/31 H 3/33
11 C 13/114 H 12/117
12 E 10/197 F 8/195
13 E 45/421 F 49/422
14 E 13/153 F 13/153
15 E 49/331 F 43/333
16 F 1/44 G 1/47
17 F 3/85 G 2/83

aObservational management (A); prostatectomy (B); conventional radiotherapy (C); con-
ventional radiotherapy hypofractionated (D); conformal low-dose radiotherapy (E); con-
formal high-dose radiotherapy (F); conformal low-dose radiotherapy hypofractionated (G);
cryotherapy (H).

Next, we declared separate priors for heterogeneity variances corresponding to active vs active comparisons and
active vs control comparisons (approach 2). The data-based predictive distributions are log-Normal(−3.50, 1.262) for non-
pharmacological vs nonpharmacological comparisons and log-Normal(−4.17, 1.552) for nonpharmacological vs control
comparisons (Table S1), which have medians of 0.17 and 0.12, respectively. Under this model, heterogeneity is estimated
as slightly higher for the active vs active comparisons (Tables 6 and S2), influenced strongly by the prior distribution. The
central estimates and 95% credible intervals for the log odds ratios are similar to those obtained under the equal variances
model when using a single informative prior.

In this data set, many treatment comparisons are not directly informed by trial data, whereas those with data are
informed by only 1 or 2 trials. Imprecision is therefore high for all heterogeneity variances in the unequal variances model
(approach 3), when declaring vague Uniform(0, 2) priors for the 𝜏k. The implied priors for the contrast-specific standard
deviations 𝜏kl have a higher median of 1.21 and 95% range of (0.25, 2.08) than under a Uniform(0, 2) prior, which also

http://wileyonlinelibrary.com
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leads to higher central estimates and wider intervals for the 𝜏kl than in the equal variances model. Next, we specified
log-Normal(−4.83, 1.692) priors for the 𝜏2

k (Table 2), to imply priors with mean and standard deviation matching those of
the chosen log-Normal(−4.28, 1.612) priors for the 𝜏2

𝑘𝑙
. The informative prior is very influential in the unequal variances

model; posterior medians for all heterogeneity standard deviations are close to the prior median of 0.12, and their 95%
credible intervals are similar to each other and to the prior 95% interval of (0.03, 0.57). The 95% credible intervals for the log
odds ratios are substantially narrower when informative priors are used, whereas the central estimates are little changed.

As for the smoking cessation example, the prior correlation between two different heterogeneity variances (on the log
scale) is 0.71 when there is a common comparator and 0.64 otherwise under approach 4, compared to 0.39 when there is
a common comparator and 0 otherwise under approach 3. In the prostate cancer example, borrowing more information
on heterogeneity across comparisons has resulted in narrower 95% credible intervals for the heterogeneity standard devi-
ations and a small shift in the central estimates away from the prior median. These changes have led to slightly narrower
95% credible intervals for the log odds ratios.

In this network, there is no evidence of differences between the eight treatments; this conclusion is the same under all
models fitted.

5 DISCUSSION

External evidence on the likely magnitude of heterogeneity variances has been published for various meta-analysis set-
tings, based on the Cochrane Database of Systematic Reviews. We have explored how to use this evidence to inform
estimation of multiple heterogeneity variances in network meta-analysis. If it is considered realistic to assume hetero-
geneity to be equal across all treatment comparisons, using an informative prior for the common heterogeneity variance in
approach 1 is straightforward. Approach 2 allows us to specify separate informative priors for different intervention com-
parison types, under the assumption of equal heterogeneity within each comparison type and fixed heterogeneity ratios
across types. To allow heterogeneity variances to be unequal across all treatment comparisons, we can use approaches 3 or
4. Approach 3 assumes minimal correlation between different heterogeneity variances, and thus, very little information
on heterogeneity is borrowed across comparisons. Under this approach, inference about heterogeneity for comparisons
informed by few studies is based primarily on the prior distribution. When using approach 4, higher prior correlations
are assumed between the multiple heterogeneity variances, and thus, information is borrowed across comparisons. This
approach provides a compromise between assuming all heterogeneity variances to be equal in approach 1 and assuming
them to be unequal and minimally correlated in approach 3. The amount of information borrowed across comparisons
in approach 4 could be increased by using an inverse Wishart distribution with higher degrees of freedom. Increasing the
amount of borrowing could be particularly useful in a sparse network in which few trials inform each comparison, such
as the prostate cancer treatments example.

Throughout this paper, we presented models assuming consistency across the network meta-analysis, meaning that
indirect evidence on treatment differences is assumed to agree with direct evidence. However, the informative priors
proposed for heterogeneity could be used in inconsistency models, which relax this assumption. If a consistency model is
used in a network in which inconsistency is present, the heterogeneity variances model both between-trial heterogeneity
and inconsistency, and the data-based informative priors may not then be appropriate. The same approaches to specifying
informative priors for heterogeneity could also be used in network meta-regression models. However, it is unlikely that
any prior evidence would be available for the residual heterogeneity remaining after adjustment for a specific combination
of study covariates. If empirical distributions based on random-effects meta-analyses are used to inform a prior, this could
be viewed as a conservative choice, which supports larger values of heterogeneity than necessary. We have presented
models for binary outcomes, but the approaches can be applied directly to network meta-analyses evaluating continuous
outcomes on the standardised mean difference scale, for which relevant data-based priors for heterogeneity are available.6

The approaches proposed have some limitations. When using approach 2, we should check that the separate priors
chosen result in a positive semidefinite covariance matrix for the vector of contrasts with the reference treatment. In
practice, however, we expect that using priors that do not guarantee positive semidefiniteness will be problematic only in
networks that include a trial comparing five treatments or more because the covariance matrix assumed may be invalid
for that trial. If a network comparing five treatments or more includes only pairwise, three-arm and four-arm trials, the
covariance matrix for any one trial will be positive semidefinite, although the covariance matrix across the whole network
may not be. Approaches 3 and 4 are based on approximating proposed forms of prior to target priors, using the method
of moments, so these approaches involve using priors that are not identical to the published data-based priors. Amongst
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all the approaches considered, implementation is particularly complicated for approach 3, so this approach may be less
useful than the others in practice.

Incorporating external evidence about expected between-study heterogeneity will not be appropriate in all network
meta-analyses. In some networks, an assumption of common heterogeneity across comparisons may be entirely plausible
and the combined set of studies may then provide sufficient precision for estimating heterogeneity. In other networks,
even where heterogeneity is expected to differ somewhat amongst comparisons, it could be preferable to make an
assumption of common heterogeneity and borrow information internally across the network rather than to borrow infor-
mation from external sources. The choice between different possible approaches should be informed by the similarity of
the treatment comparisons in the network and the relevance of available external data. We note that network structure
does not affect the potential for updating prior distributions for heterogeneity with evidence and, therefore, should not
influence choice between approaches. Indirect evidence arising within a loop of treatments (for example, ABC in Figure 1)
informs estimation of average treatment differences for each comparison in the loop but does not inform the estimation
of heterogeneity variances because the heterogeneity variance matrix includes a separate parameter for every comparison
in the network.

We have not included an approach assuming exchangeability for the heterogeneity variances across treatment compar-
isons. This could be useful in allowing more information to be borrowed amongst comparisons, but it is not clear how to
assume exchangeability while meeting the requirement of second-order consistency. It would also be desirable to find an
approach allowing unequal heterogeneity variances across treatment comparisons, for which different informative priors
may be chosen. In approach 4, it is not possible to match moments to target priors separately for different heterogeneity
variances in the network. In approach 3, matching moments to multiple data-based priors would be possible in principle
and would require us to solve an extended set of nonlinear equations. However, as we were able to solve Equation (4)
once and then present informative priors facilitating implementation of approach 3 in any future network, a different set
of extended equations would need to be solved separately for each individual network, which would be very unappealing
in practice.

Thorlund et al21 explored modelling approaches for heterogeneity variances in network meta-analysis. Data-based
informative priors were used in a model allowing unrestricted unequal heterogeneity variances across comparisons, in
which second-order consistency was not guaranteed. Separately, they implemented a second-order consistency model
based on the Lu and Ades approach and a model assuming exchangeability of heterogeneity variances, using vague pri-
ors for heterogeneity in both. Thorlund et al21 recommended improving estimation of heterogeneity variances in network
meta-analysis by incorporating external information through data-based priors or by borrowing information across the
network through assuming exchangeability or second-order consistency. Our work goes further by proposing approaches
for using data-based priors for heterogeneity while also ensuring that second-order consistency holds. Ren et al22 proposed
truncating empirical data-based log-normal distributions for heterogeneity using elicited opinion and reducing prior sup-
port for extremely high values. Truncated log-normal priors could be used directly in approach 1, and could also be used
in approach 2 if priors for different intervention comparison types were truncated at a common quantile. Approaches 3
and 4 assume log-normality and would need to be revised if truncated distributions were used.

In conclusion, incorporating informative priors in network meta-analysis models assuming equal heterogeneity vari-
ances is straightforward, but this assumption is not always plausible. We have proposed several approaches for using
data-based priors for multiple unequal heterogeneity variances. If it is reasonable to assume equality within intervention
comparison types and fixed heterogeneity ratios across types, we recommend approach 2. If it is desired to model all het-
erogeneity variances in the network as unequal, we recommend approach 4, which is simpler to implement than approach
3. These methods would be useful in sparse data sets and may increase precision for estimating treatment differences.
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