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Abstract

The success of osseointegrated transcutaneous prostheses depends on a soft-tissue seal

forming at the skin-implant interface in order to prevent infection. Current designs include a

flange with drilled holes or a subdermal barrier with a porous coating in an attempt to pro-

mote soft-tissue attachment. However, the soft-tissue seal is not reliably achieved despite

these designs and infection remains a significant problem. This study investigated soft-tis-

sue integration into fully porous titanium alloy structures with interconnected pores. The

study aimed to determine the effect of altering pore and strut size combinations on soft-tis-

sue ingrowth into porous titanium alloy structures in vivo. It was hypothesized that implants

with a more open porous structure with larger pore sizes would increase soft-tissue ingrowth

more than less open porous structures. Porous titanium alloy cylinders were inserted into

sheep paparaspinal muscles (n = 6) and left in situ for four weeks. A histological assessment

of soft-tissue ingrowth was performed. Percentage soft-tissue pore fill, cell nuclei density

and blood vessel density were quantified. The results showed that larger pore sizes were

supportive of soft-tissue ingrowth. A structure with a pore size of 700μm and a strut size of

300μm supported revascularisation to the greatest degree. A flange with this structure may

be used in future studies of osseointegrated transcutaneous prostheses in order to enhance

the soft-tissue seal.

Introduction

In the United Kingdom, the number of new referrals to prosthetic services annually has

increased from 4957 in 2007 to 5988 in 2011[1]. Conventionally, amputees are fitted with a

socket, to which an artificial limb is attached. However, the stump-socket interface may cause

problems that restrict socket use. Uneven pressure distribution over the stump may lead to

pain, tissue abrasion, pressure sores, necrosis and limb disuse. Additionally, the unnatural

microbial environment allows the development of infection [2,3]. Skin-penetrating
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osseointegrated implants are an alternative way of attaching the external prosthetic device to

the body [4]. They aim to provide a stable attachment for prosthetic limbs, allowing the trans-

fer of weight through the skeleton, eliminating the pressure on the stump-socket interface [5].

Crucially, functionality of these devices requires a tight soft-tissue seal at the transcutaneous

interface, by promoting attachment of the dermal and epithelial tissues [5,6,7]. Osseointegra-

tion has been successfully achieved, however infection due to failure of the soft tissues sealing

the transcutaneous interface hamper clinical longevity [8].

Titanium alloy (Ti6Al4V) is frequently used in orthopaedics because it is highly biocompat-

ible and corrosion resistant [9]. Implants, in combination with hydroxyapatite (HA) coatings,

are successful as endoprostheses requiring bony fixation, however these implants do not pro-

mote soft-tissue attachment or ingrowth [10]. Porous structures can act as a mechanical scaf-

fold to aid cell attachment for implant biomaterials. Inter-pore connections allow cells to in-

grow through implants. This benefits load-bearing implants, promoting osseointegration

through bio-fixation and mechanical attachment of bone. High volumetric porosity of

implants can also positively influence biological tissue integration at the soft-tissue level. The

permeability of an open structure can facilitate transport of body fluid through the implant

promoting ingrowth of well-vascularised soft tissue in a short period of time [9, 11, 12, 13].

Osseointegrated transcutaneous implants have been modelled on the deer antler pedicle.

These naturally occurring structures support a soft-hard tissue interface due the porous nature

of the subcutaneous bone allowing the soft tissues of the dermis and epidermis to infiltrate and

attach forming a tight seal. This prevents any motion between the soft tissue and the bone that

may occur if these tissues were not attached to the bone surface. Measurement of the pores

size in deer antlers suggests a mean pore diameter of 217μm (+/-19.07μm) [6]. Current models

of osseointegrated transcutaneous prostheses have used a flange with drilled holes or a porous-

coated subdermal barrier rather than a fully porous design with interconnected pores [5, 14].

Research on integration of a variety of soft tissues types has been conducted with conflicting

evidence relating to optimal pore sizes [5, 15, 16, 17, 18]. This study assessed soft-tissue inte-

gration into a range of porous Ti6Al4V implants fabricated by electron beam manufacturing,

with pore sizes up to 1000 μm in diameter, inserted into the paraspinal muscles in an ovine

model. The aim of the study was to determine the optimum pore and strut size combination to

promote soft-tissue integration. It was hypothesized that more open porous structures would

lead to greater soft-tissue ingrowth and vascularisation. The optimum porous structure identi-

fied may be applied to the subdermal flange of osseointegrated transcutaneous prostheses to

support dermal tissue integration in order to seal the interface and reduce the risk of infection.

Materials and methods

Cylindrical, surgical grade Ti6V4Al implants, 20mm in height and 10mm in diameter, were

manufactured using Electron Beam Manufacturing (EBM) (EOS GmbH Electro Optical Sys-

tems, Germany). Nine implant groups were tested using different combinations of pore and

strut sizes (Table 1). These implants were surgically implanted into the paraspinal muscles of

skeletally mature female sheep.

Ethical statement

The project and animal facilities were approved by the United Kingdom Home Office Licens-

ing Authority. The study was conducted in accordance with the United Kingdom Animal

Scientific Procedures Act 1986 and the procedures were performed under the Home Office

Project Licence (70/6964).
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Animal husbandry

One week prior to surgery six adult female sheep (cross bred mules), three to four years of age,

were group housed on straw in a large pen located undercover with up to 12 animals in each

group. The animals were sourced from the Royal Veterinary College, Hertfordshire, United

Kingdom. One day prior to surgery animals were transferred to an individual pen in the same

barn. Analgesia was maintained with fentanyl transdermal patches (75μm/hour) (Duragesic,

Janssen Pharmaceuticals, NJ, USA) applied to the shaved operative site 12 hours preopera-

tively. Animals were starved for 12 hours prior to surgery. Postoperatively, the animals were

returned to the pen, kept on straw and given food and water ad libitum. The fentanyl patch

was changed three days after applying the first patch, providing analgesic cover for five days

post-operatively. Animals were assessed twice daily by an experienced stock-man and were

reviewed by a veterinary surgeon twice a week. Criteria to assess animal health and well-being

were vital observations i.e. heart rate, respiratory rate and temperature as well as monitoring

for signs of animal behaviour that could indicate pain or distress e.g. lethargy, inappetence and

a change in facial expression, stance or lying position. After a minimum of four days recovery,

animals were returned to the group.

Surgical procedure

Premedication and anaesthesia. 0.2 mg/kg of 2% xylazine (Bayer HealthCare, Berkshire,

UK) was administered as premedication to each animal. Anaesthesia was induced with 2mg/

kg of intravenous Ketamine Hydrochloride (Ketaset, Fort Dodge Animal Health Ltd., UK) and

2.5mg of Midazolam (Hypnovel, Roche Products Ltd., UK) and maintained with 2% inhaled

isofluorane. 5ml of Cefalexin Ceporex (Schering-Plough Animal Health, UK) was adminis-

tered to achieve antibiotic prophylaxis.

Operative details. The anesthetised animals were positioned lying prone. The spinal

region was shaved pre-operatively approximately from the level of the twelfth thoracic vertebra

to the sacrum. The width of the shaved area was approximately 15 cm positioned centrally

over the spine. The shaved area was prepared with povidone iodine solution and then with

antiseptic chlorhexidine solution. 2 cm longitudinal incisions were made through the skin,

subcutaneous fat and fascia paraspinally and the cylinders were implanted within the para-

spinal muscles. 3–0 vicryl sutures were used to close the fascia and subcutaneous tissues and

a continuous subcuticular 3–0 vicryl suture was used to close the skin. Four implants were

implanted through separate incisions on both sides of the spine.

Table 1. Implant group dimensions.

Group Pore Size/ μm2 Strut Size/ μm2

1 1000 400

2 1000 200

3 700 400

4 700 300

5 700 200

6 500 400

7 500 300

8 500 200

9 200 300

Table showing pore and strut size combinations for each implant group.

https://doi.org/10.1371/journal.pone.0206228.t001
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Removal of implants. Four weeks post implantation; animal subjects were euthanized by

intravenous injection of 0.7mg/kg Sodium Pentobarbitone (Pharmasol Ltd., Andover UK). All

implants were dissected out en bloc and placed in 10% formal saline for one week.

Histological procedure

The samples were serially dehydrated with industrial methylated spirits and defatted in chloro-

form over a five-week period. Hard Grade Acrylic Resin (London Resin Company Ltd., Lon-

don, UK) was given time to penetrate each sample before being embedded. Transverse

sections were made through the centre of each implant using an Exact E310 diamond edged

band saw (Mederex, Frome, UK). Sections were ground evenly using Exact-Micro-Grinding

System (Mederex, Frome, UK) to a thickness of 100μm. All sections were stained with Tolui-

dine Blue, photographed with Carl Zeiss photomicroscope (KS300, Carl Zeiss, Oberkochen,

Germany) and digital image processing software (Axiovision Rel 4.5, Carl Zeiss, Oberkochen,

Germany).

Histological analysis

The cross-section was then divided in three zones: both outer edges (zones 1 and 2) and the

central region (zone 3). This was to ensure data was collected across the entire implant. Each

outer zone had data collected from two separate points and the average calculated. One data

collection point was taken in the central zone. A semi-quantitative percentage score (%Fill)

was assigned at each data point, based on soft tissue outside the implant. A percentage for soft-

tissue fill was assigned based on the percentage of the pore that was filled with soft tissue as

well as taking into account the density, quality and maturity of the tissue within the pore com-

pared with the appearance of the tissue outside the implant. A score of 100% would be assigned

to a pore infiltrated completely with dense, well-ordered fibrous-connective tissue that was in

intimate contact with the pore edge. 0% would indicate a pore devoid of soft tissue. This was

scored by two independent assessors. These data were substantiated with a count of blood ves-

sels (BV/mm2) to assess re-vascularisation and a cell nuclei count (CN/mm2) to assess the re-

cellularisation.

Statistical analysis

The data were analysed using SPSS, version 21.0 for Windows (Chicago, US). Nonparametric

tests were performed. The Kruskall Wallis test was used to determine if differences existed

between the groups. Pair-wise Mann-Whitney tests were used to determine differences

between two porous structures. A p value of less than 0.05 was considered to be a statistically

significant result. The intraclass correlation coefficient for agreement between the two asses-

sors of the percentage soft-tissue semi-quantitative score was calculated.

Results

All the quantitative data collected is summarised in Table 2. Of particular interest are the data

collected from zone 3, the innermost zone. The data collected from this zone gives the stron-

gest indication of soft-tissue ingrowth throughout the entire implant.

Percentage soft-tissue fill

%Fill data from all zones were not from the same population distribution (p<0.05). The intra-

class correlation coefficient for agreement between the two independent assessors for the per-

centage soft-tissue fill semi-quantitative score was 0.870 (95% confidence interval 0.822 to
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0.906). Groups 1, 2 and 4 observed highest %Fill (Fig 1 and Table 2). There were significant

differences between groups 1 and 3 (p<0.05), and 3 and 4 (p<0.05). No significant differences

were observed between groups 1 and 2 (p = 0.176), or 4 and 5 (p = 0.205). Dense, well-ordered

soft tissues filled the entirety of the pores of implants from Groups 1, 2 and 4. Extensive

ingrowth across the entire implant was observed with little open space visible. Intimate

contact at the tissue implant interface suggested stable integration (Figs 2 and 3). Moreover,

Table 2. Median values for all collection variables for each group.

Group Pore Size/

μm2
Strut Size/

μm2
%fill

Zone1

%fill

Zone2

%fill

Zone3

CN/mm2

Zone1

CN/mm2

Zone2

CN/mm2

Zone3

BV/mm2

Zone1

BV/mm2

Zone2

BV/mm2

Zone3

1 1000 400 100 98.50 100 3440.50 2846 3586.50 4 5.20 2

2 1000 200 100 100 100 5059 4527 5000 8 10 8

3 700 400 40 35 25 1190 700 584.50 4.50 1 2.5

4 700 300 100 95 100 1389 1243 1306 15 6 11

5 700 200 88 87.50 90 815 604 551.50 3 1.5 0

6 500 400 27.50 22.50 10 250 268.50 251 0 0 0

7 500 300 60 45 40 1390 1199 821 9 4 0

8 500 200 60 63 60 890 645 720 8 4 4

9 200 300 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Median values for percentage soft-tissue fill, cell nuclei density and blood vessel density for each implant group.

https://doi.org/10.1371/journal.pone.0206228.t002

Fig 1. Percentage soft-tissue fill for each porous implant group within the innermost zone, Zone 3. Box plot demonstrating the percentage soft-tissue fill for

each porous implant group within the innermost zone, Zone 3.

https://doi.org/10.1371/journal.pone.0206228.g001

Porous structures and soft-tissue ingrowth

PLOS ONE | https://doi.org/10.1371/journal.pone.0206228 October 29, 2018 5 / 17

https://doi.org/10.1371/journal.pone.0206228.t002
https://doi.org/10.1371/journal.pone.0206228.g001
https://doi.org/10.1371/journal.pone.0206228


preferential collagen deposition appeared evident around interconnecting struts in these

implants groups (Figs 4 and 5). Soft-tissue ingrowth was not observed with implants from

Group 9.

Cell nuclei density

CN/mm2 data from all zones were not from the same population distribution (p<0.05). CN/

mm2 data from the inner most zone, zone 3 suggested similar relationships as %Fill data

(Table 2). Groups 1, 2 and 4 facilitated the highest CN/mm2. Group 2 implants demonstrated

significantly greater CN/mm2 compared with all other Groups (p< 0.05) (Fig 6). Large num-

bers of individual cells populated pores across the entire implant in Groups 1, 2 and 4, in sup-

port of the quantitative data (Table 2, Figs 5 and 6). Figs 7 and 8 show less dense soft tissue.

These observations were associated with implant groups with a less open structure, which also

corresponded to those with lower CN/mm2 (Table 2). Tissue integration within these groups

showed gaps with little interface formation between tissue and pore edge (Fig 7). Fig 9 shows

dense soft tissue within the pore of an implant from Group 4.

Fig 2. Soft-tissue infiltration in Zone 1 of Group 4. Histological section of Group 4 (Zone 1) demonstrating dense, well-ordered soft-tissue infiltration.

https://doi.org/10.1371/journal.pone.0206228.g002
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Blood vessel density

The data for BV/mm2 across all zones were not from the same population distribution (p

<0.05). Group 2 and 4 demonstrated greater re-vascularisation in zone 3 compared with all

other implants (Fig 3). The number of BV/mm2 in Group 4 was significantly higher compared

with Group 5 and 7 (p<0.05). Significantly higher numbers of BV/mm2 were observed in

Group 2 compared with Group 5 (p<0.05). Group 4 was associated with significantly higher

BV/mm2 compared to all other groups in zone 1 (Fig 10). Blood vessels were visible with endo-

thelial nuclei punctuating in a ring creating a lumen. More of these vessels were observed in

more open structures associated with Groups 2 and 4 (Table 2, Fig 10), suggestive of a capillary

network throughout the implant. No necrotic tissue or degradation was evidenced (Fig 8). Re-

vascularisation was not observed throughout implants in Groups 5, 6, and 7, supportive of the

BV/mm2 data (Table 2, Fig 9).

Fig 3. Soft-tissue infiltration in Zone 2 of Group 1. Histological section of Group 1 (Zone 2) demonstrating intimate contact (arrows) between pore edge and soft

tissues.

https://doi.org/10.1371/journal.pone.0206228.g003
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Discussion

Subcutaneous soft tissue infiltrated throughout all porous implants groups after four weeks in
vivo except Group 9. It has previously been hypothesised that the anatomical and physiological

characteristics associated with soft tissues would require a more open structure to maintain

viable tissue compared with bone tissues [15]. Group 9 pore diameter was 250μm and there-

fore may have been too small to allow tissue infiltration. This is in keeping with the findings of

LaBerge et al [16] who observed fibrous encapsulation of implants with pore diameters of

300μm rather than infiltration. However, in contrast to our results, others have observed soft

tissues infiltrating structures with similarly small diameters [15, 17, 19]. Bone tissue has also

been shown to infiltrate into pores below this diameter [20, 21]. Ponader et al [9] suggest suc-

cessful infiltration with bone tissue can be achieved with a pore diameter of 450μm, which is

significantly smaller than the 1000μm and 700μm diameter pores successful in this study. By

comparison, there are obvious differences in tissue type between this study and ours. The

Fig 4. Soft-tissue infiltration in Zone 3 of Group 2. Histological section of Group 2 (Zone 3) demonstrating soft tissue preferentially depositing collagen around

interconnecting struts (arrows).

https://doi.org/10.1371/journal.pone.0206228.g004
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authors did discuss that there could be a minimum size requirement to facilitate the influx of

tissue. A much larger pore diameter may support vascularisation, allowing tissue perfusion

with oxygen and promoting osteogenesis [9]. This is important particular for extensive porous

structures where tissue migration into the centre of the implant is required. The factors gov-

erning bone ingrowth into porous coatings on the surface of orthopaedic implants where min-

imal ingrowth is required, may be very different from those associated with tissue ingrowth

deep into extensively porous structures and may be different with different tissue types. A con-

tributing factor that may explain these conflicting results is the relative movement of the

implant structures in vivo. Bobyn et al secured implants into the subcutaneous soft tissue by

suturing, thereby decreasing relative movement in situ and allowing cell and tissue infiltration

into significantly smaller pore dimensions [17]. This was not performed in our study, nor by

LaBerge et al [16] where little or no soft-tissue infiltration was observed with smaller dimen-

sions. It is possible that when implants are incorporated into an osseointegrated prostheses,

Fig 5. Soft-tissue infiltration in Zone 1 of Group 3. Histological section of Group 3 (Zone 1) demonstrating preferential deposition of collagen around

interconnecting struts (arrows) with distinct cell nuclei populating the implant pore.

https://doi.org/10.1371/journal.pone.0206228.g005
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the degree of soft-tissue tissue infiltration may be increased, as the bone-anchored stem will

limit relative implant movement in vivo.

Pore diameters greater than 700μm supported extensive tissue infiltration compared with

less open structures. Groups 1, 2 and 4 (pore size:strut size being 1000:400, 1000:200 and

700:300 respectively) demonstrated superior tissue infiltration across their entire structure

when compared with other groups The open structure in these implant groups facilitated the

invasion of blood vessels into the structure which supported early attachment of cells. Group 3

implant structures appeared not to follow the trend, observing lower soft-tissue infiltration

despite possessing a large pore diameter of 700μm. The interconnecting strut dimension of

400μm in Group 3 implants may have detrimentally influenced tissue infiltration due to the

fact that the larger strut size reduces the volumetric porosity preventing migration between

pores and limiting the total volume of available pore space for the entire implant.

Hacking et al observed soft-tissue infiltration throughout porous tantalum implants at

four weeks [15]. They also noted an increase in tissue infiltration over time and an associated

increase in attachment strength by mechanical testing. If the degree of tissue infiltration is

directly linked to tissue attachment strength, it suggests that the dimensions of Groups 1, 2

and 4 in our study would support increased soft tissue attachment strength. A patient with an

osseointegrated implant reports near normal functionality as a result of the treatment [7]. This

increases the physical demand on the soft tissue implant interface and subsequently, a device

that supports increased tissue attachment strength would be more favourable.

Collagen appeared to preferentially deposit at the pore edges and interconnecting struts,

extensively in Groups 1, 2 and 4. These features are indicative of soft-tissue integration.

Fig 6. Cell nuclei density for each porous implant group within the innermost zone, Zone 3. Box plot demonstrating the cell nuclei/mm2 for each porous

implant group within the innermost zone, Zone 3.

https://doi.org/10.1371/journal.pone.0206228.g006
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Albrektsson et al define tissue implant integration as the interaction of collagen and metal

oxide [22]. Howe et al also noted these features in collagen deposition around pore edges at

the bone implant interface [20]. Using a biomimetic example of a bone percutaneous interface,

Pendegrass et al showed collagenous ‘Sharpey-like’ fibres anchoring dermal tissue to the deer

antler pedicle where the soft-tissue interface is linked with the bone by collagen fibres that pass

from the bone into the soft tissue [6].

The cellular component of the many soft tissues, especially the subcutaneous tissue in this

study, are fibroblasts [23] and are identifiable in the histological analysis as the Toluidine blue

stains nucleic acids within the cell nuclei. Groups 1 and 2 showed significantly increased cell

nuclei density compared with other implant groups. Group 4 also exhibited a high level of cell

nuclei density compared with Group 3 implants, significantly so in zone 3, despite both pos-

sessing the same pore dimensions. The increases in cell nuclei density may result in an increase

in collagen deposition, as discussed earlier, because if the majority of cells are fibroblasts they

would be expected to produce an extracellular matrix rich in collagen [23]. The observed

Fig 7. Cell density in Zone 1, Group 8. Histological section of Group 8 (Zone 1) demonstrating less dense soft tissues with poor contact (arrows) between pore edge

and soft tissues.

https://doi.org/10.1371/journal.pone.0206228.g007
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increases in cell nuclei density (seen in Groups 1 and 2, and to a lesser degree 4) can be linked

to the structural dimensions possessed by the implant groups. The structural environment

may support the movement of fibroblasts across the entire implant. Fibroblast migration

across porous titanium alloy has been demonstrated, in limited fashion, in vitro [24] and can

be controlled in vivo by decreasing the free space between pores [25]. Cell nuclei densities

between Zone 1 and 3 were not significantly different for Groups 1, 2 or 4. This suggests a

more uniform movement of cells across the entire implant structures.

Blood vessel formation within the pores was observed across the entire implant structure in

Groups 1, 2, 3, 4 and 8. Groups 2 and 4 saw the highest blood vessels densities, with no signifi-

cant differences between zones. The 400μm strut dimension, of Groups 1 and 3 was associated

with reduced vascularisation in these implant groups by lowering the overall volume within

the implant, taking up free space. Re-vascularisation provides nutrients and facilitates the

removal of metabolic products, supporting healthy soft tissue [19]. Porous titanium implants

with much smaller inter-porous spaces (150μm) fail to support blood vessel formation [18].

Fig 8. Cell density and blood vessel formation in Zone 1, Group 7. Histological section of Group 7 (Zone 1) demonstrating less dense soft tissue with poor contact

(arrows) between pore edge and soft tissues.

https://doi.org/10.1371/journal.pone.0206228.g008
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Long-term in vivo success relies on the early formation of an extensive vascular network [26].

Hypoxic conditions associated with the lack of blood vessels may have detrimentally affected

soft-tissue ingrowth within less open structures, conversely, the more open structures of

implant Groups 2 and 4 allow soft tissue to flourish as a well-oxygenated environment was

present.

The novel aspect of this study is that it quantifies soft tissue infiltration into a series of

extensively porous structures made by EBM. The EBM technique employed in this study cre-

ated continuous 3-D porous structures rather than a porous coating consisting of a single layer

[16] or several [17] layers of pores. This study has assessed the effect of altering pore and strut

size and has quantified the tissue within the implant structures, whereas other studies have

generally qualitatively described this. It could be argued that the use of a semiquantitative

assessment of percentage soft-tissue fill is a limitation of this study as different assessors could

potentially interpret findings differently. In order to estimate the likelihood of this, the assess-

ment was carried out by two independent observers. The intraclass correlation coefficient of

Fig 9. Cell density in Zone 1, Group 4. Histological section of Group 4 (Zone 1) demonstrating dense, well ordered soft tissue with extensive blood vessel formation

(arrows).

https://doi.org/10.1371/journal.pone.0206228.g009
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0.870 for agreement between the two assessors indicated that the semi-quantitative score had a

high level of interobserver reliability. Furthermore, quantitative assessments of cell nuclei den-

sity and blood vessel density were carried out. A further limitation of this study is that mechan-

ical testing on the strength of tissue attachment to the implant was not performed, whereas

other groups have assessed this [15,16,17]. Mechanical strength of attachment positively corre-

lates with pore size [17] and time in vivo [16]. Therefore it is postulated that in the groups

where significant increases in subcutaneous soft-tissue infiltration and vascularisation have

been observed, it is likely that attachment strength would also be improved.

Conclusions

The results from this study allow soft-tissue infiltration to be optimised as a function of pore

and strut diameter. These implant dimensions were made possible by the EBM process, which

would otherwise be unachievable in our laboratory. Group 4 exhibited significantly higher

blood vessel densities across the entire implant structure compared with other implant groups.

The formation of blood vessels, re-vascularising the soft tissues surrounding the skin implant

interface would be expected to be beneficial in the long-term stability of the skin seal. Thus,

the incorporation of a porous flange structure, with 700μm pore and 300μm strut dimensions

to an ITAP device may provide an opportunity to control the soft tissue interface and in turn

develop a stable, biological seal. The ultimate goal for osseointegrated transcutaneous devices

is clinical longevity and the seal is of paramount importance to prevent infection of the soft

Fig 10. Blood vessel density for each porous implant group within the innermost zone, Zone 3. Box plot demonstrating the blood vessels/mm2 for each porous

implant group within the innermost zone, Zone 3.

https://doi.org/10.1371/journal.pone.0206228.g010
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tissues adjacent to the implant. Infection at the interface between the skin and the implant

has the potential to track down to bone where it may cause osteomyelitis and necessitate the

removal of the implants with disastrous consequences for the patient. The use of porous struc-

tures to encourage soft-tissue ingrowth requires long-term in vivo assessment and ultimately

evaluation in clinical trials to characterise the transcutaneous implant interface.
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