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1  |  INTRODUCTION

Sequences suitable for fMRI with short TRs, such as simul-
taneous multislice excitation which allows for several slices 
of MRI data to be obtained at the same time,1‒5 have become 

widely available. This makes it possible to maintain volume 
coverage and TE while reducing TR for gradient EPI (GE‐
EPI) that is typically used for fMRI.

Of particular importance in the assessment of improve-
ments in fMRI results is the appropriate control of false 
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Purpose: Short TRs are increasingly used for fMRI as fast sequences such as simultane-
ous multislice excitation become available. These have been associated with apparent 
sensitivity improvements, although greater temporal autocorrelation at shorter TRs can 
inflate sensitivity measurements leading to uncertainty regarding the optimal approach.
Methods: In volunteers (n = 10), the optimal TR was assessed at the single subject 
level for event‐related designs (visual stimulation) with 4 frequencies of presentation 
at 4 TR values (412‐2550 ms). T‐values in the visual cortex localized in each indi-
vidual were obtained and receiver operating characteristics (ROC) analysis was per-
formed by counting voxels within and outside expected task active regions at different 
thresholds. This analysis was repeated using 4 different autoregressive (AR) models; 
SPM AR(1) and SPM AR(fast) which globally estimate autocorrelation, and fM-
RIstat AR(1) and AR(5) that use a local estimate.
Results: The use of modest multiband factors of 2 or 3 with a reduction in TR to 
1000 ± 200 ms had greater sensitivity and specificity as shown by higher T‐values in 
visual cortex and ROC analysis. At these TRs, the ROC analysis demonstrated that a 
local AR model fit improved performance while high order AR models were 
unnecessary.
Conclusions: Modest TR reductions (to 1000 ± 200 ms) optimally improved event‐
related fMRI performance independent of design frequency. Autoregressive models 
with a local as opposed to global fit performed better, while low order autoregressive 
models were sufficient at the optimal TR.
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positives. Reduced TR sequences with much greater tem-
poral sampling can inflate statistical results because the de-
grees of freedom of the data can appear much larger than 
standard TR sequences. However, typical analyses (e.g., 
based on the general linear model) assume that each data 
point is independent of the next, (i.e., noise found at 1 time 
point is uncorrelated with noise at the next time point). This 
assumption is clearly violated in fMRI data and so auto-
correlations are modelled. However, as the TR decreases 
(TR<<hemodynamic response function) the degree of au-
tocorrelation increases and may become more complex both 
temporally (e.g., due to physiological noise) and spatially 
(e.g., due to g‐factor related noise enhancement). It is, there-
fore, imperative to control for this autocorrelation in the data 
which will increase as the TR is reduced. A recent study by 
Sahib et al6 found that stable statistics were dependent on 
the TR and AR model order. However, this study focused 
on sensitivity by means of t‐values for a single event‐related 
design based on a single patient with epilepsy and did not 
evaluate false positives.

In this study, we investigated the effect of TR and event 
rate on fMRI sensitivity using a visual stimulus paradigm. 
We sought to establish optimal TRs at the single subject level 
for event‐related designs with differing frequency of fMRI 
events by estimating false positive rates and performing an 
receiver operating characteristics (ROC) curve analysis. In 
addition, we evaluated the impact of autoregressive models 
on these results.

2 |  METHODS

2.1 | Subjects

Ten healthy adult volunteers (6 male, 3 female; average age, 
32 years; range, 22‐48 years) participated in this study after 
providing informed consent.

2.2 | fMRI paradigm

To simulate varying event rates, a paradigm was used that 
comprised of rest blocks viewing a fixation cross, and 4 event 
blocks consisting of viewing the fixation cross interspersed 
with a checkerboard pattern which was presented with a du-
ration of 300 ms at pseudorandom intervals. Pseudorandom 
intervals were generated in Matlab using a random number 
generator with the same seed value for each session. The 
checkerboard pattern is shown in Figure 1.

The paradigm consisted of a rest block of 30 s, followed al-
ternately by four 120‐s event blocks and four 30‐s rest blocks. 
Each event block had a different event presentation rate (PR) of 
1/60 s, 13/60 s, 26/60 s, 39/60 s presented in the same order of 
26/60 s, 13/60 s, 1/60 s, and 39/60 s for each session. The range 
of event rates was based on epileptic discharge patterns seen 
in previously scanned epileptic patients,7,8 and was an average 
rate over the event block as the checkerboard was presented at 
pseudorandom intervals. The checkerboard was presented on an 
liquid crystal display screen (NNL, Bergen, Norway) situated 
at the head end of the scanner bore which was viewed by the 
subject using a mirror attached to the head coil.

F I G U R E  1  Paradigm design diagram showing checkerboard pattern used and the visual stimulus PR (top row), this is convolved with the 
canonical hemodynamic response function (second row) to form a model of expected signal changes. Based on the sequence parameters these signal 
changes are sampled at different rates (bottom 4 rows). TR is the repetition rate in milliseconds, FA is the flip angle, vols is the number of imaging 
volumes
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2.3 | Image acquisition
Imaging data was acquired with a 3T scanner and 64‐chan-
nel head/neck coil (Siemens Prisma, Erlangen, Germany). 
Structural T1‐weighted images were obtained with an MP‐
RAGE sequence (TR 2300 ms, TE 2.74 ms, inversion time 
909 ms, voxel size 1 × 1 × 1 mm3). Event‐related fMRI data 
were obtained with GE‐EPI, and a voxel size of 2.5 × 2.5 
in‐plane and 2.5 mm3 slices with a 0.5‐mm gap, matrix 80 × 
80, 40 slices. Four sessions of 10 min with different simul-
taneous multislice speed up or multiband (MB) factors were 
used (see Figure 1).

We used a maximum MB = 4 based on previous work that 
demonstrated increased false positives due to aliasing arte-
facts at higher MB factors.9 The flip angle for each session 
was calculated as the Ernst angle with a T1 of 1000 ms as a 
reasonable average value between measured white and gray 
matter T1 values.10

2.3.1 | Localization of the primary 
visual cortex
To independently define the location of the maximum re-
sponse in the visual cortex of each volunteer, a 2‐min V1 
localizer (TR 2550 ms, TE 27 ms, flip angle 90°, 60 vol) was 
first acquired with two 40‐s blocks, alternated with 20‐s rest 
blocks (60 events, checkerboard as above).

2.4 | Image processing / general linear 
model analysis
All images were first preprocessed using statistical para-
metric mapping software (SPMv12,11,12 https://www.fil.
ion.ucl.ac.uk/spm) for use with both SPM and fMRIstat. 
Preprocessing included image realignment, which consisted 
of co‐registration of fMRI time series data from each session 
to the mean, and then smoothing with a Gaussian filter using 
the default SPM value (8 mm FWHM). A high‐pass filter 
with a cutoff frequency of 1/128 Hz was used in all analyses 
to mitigate low‐frequency signal components.

2.4.1 | Localization of the primary 
visual cortex
The localizer was analyzed first. The visual stimulus was 
modelled in a standard block design using the default canoni-
cal hemodynamic response function and default autoregres-
sive model of SPM AR(1). The global maximum from the 
positive t‐contrast of the visual stimulus blocks was exam-
ined and the spatial location recorded. This location for each 
individual was used in all subsequent analysis. Any subjects 
without a global maximum within visual cortex for the local-
izer were not considered in subsequent analysis.

2.4.2 | Variable TR and stimulus 
frequency analysis
Analysis was performed both in SPM and fMRIstat13 (https://
www.math.mcgill.ca/keith/fmristat/). In both cases, the 6 re-
alignment parameters were used as effects of no interest and 
the smoothed realigned images were the input data. Separate 
GLM models were built for each of the 4 sessions (as the 
data had differing TRs) with 4 separate conditions (i.e., 1 
regressor for each presentation frequency) using the timing 
of individual checkerboard presentations as an event relate 
design. These were convolved with the canonical hemody-
namic response function using the default model within SPM 
and fMRIstat.

2.5 | Autoregressive models
We wished to investigate how t‐values were influenced by 
different autoregressive models. SPM provides an AR(1) 
model for standard TR values and AR(fast) for use with 
shorter TRs. SPMs AR(1) model uses an 1st order expan-
sion (approximately ω = 0.2) that is fitted globally to the 
covariance. SPMs AR(fast) uses a dictionary of exponential 
covariance components that are fitted globally to the covari-
ance. We compared these with 2 AR models available within 
fMRIstat, which allows the order of the AR model to be se-
lected. We chose fMRIstat AR(1) to provide a comparison of 
consistency with the SPM AR(1), and AR(5) based on Sahib 
et al.6 The second difference is that fMRIstat uses a local 
(per voxel) fit of AR coefficients and noise (ω) from least 
square residuals using Yule‐Walker‐equations.13 Therefore, 
the 4 imaging sessions were analyzed with 4 different AR 
models; (1) SPM AR(1), (2) SPM AR(fast), (3) fMRIstat 
AR(1), and (4) fMRIstat AR(5). The resulting SPM and fM-
RIstat maps of all t‐values in all voxels within the brain were 
then co‐registered by taking the mean of each session and 
co‐registering it to the mean of the V1 localizer and applying 
the transformation to the corresponding t‐value maps. The 
t‐value at each PR, TR, and frequency was determined at the 
subject specific location of V1 (the global maximum from the 
separate localizer session).

2.6 | Statistical analysis
The V1 t‐value at each PR, TR, and AR model was entered 
into the statistical analysis. The mean and standard deviation 
of the t‐value across subjects for each TR and presentation 
frequency combination was calculated.

A second level analysis using a 2‐way repeated measures 
analysis of variance with factors TR and frequency was used 
to evaluate their effect on the t‐values using SPSS version 
24 (https://www.ibm.com/pk-en/marketplace/spss-statistics). 
To test the effect of TR reduction with conservative control 

https://www.fil.ion.ucl.ac.uk/spm
https://www.fil.ion.ucl.ac.uk/spm
https://www.math.mcgill.ca/keith/fmristat/
https://www.math.mcgill.ca/keith/fmristat/
https://www.ibm.com/pk-en/marketplace/spss-statistics
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of potential t‐value inflation at shorter TRs,6 the 2‐way anal-
ysis of variance compared t‐values obtained with the stan-
dard SPM AR1 model for the standard TR value (2550 ms) 
and t‐values obtained using the fMRIstat AR(5) model at 
shorter TRs (412, 842, and 1250 ms). Significance for a fac-
tor or interaction was taken to be P < 0.05. Mauchly’s Test 
of Sphericity was used to test that the variances of the differ-
ences between all combinations of related groups were equal. 
Posthoc paired t‐tests were run to compare t‐values obtained 
at each TR. Significance was again taken to be P < 0.05 after 
Bonferroni correction.

An analysis of sensitivity and specificity at each TR, fre-
quency and AR model was performed. All subjects/sessions 
were normalized to MNI space using the ICBM template 
(European) in SPM. Brain areas were defined as task posi-
tive using the group response, evaluated at 2 inclusive levels 
of significance (p < 0.01 and p < 0.001 uncorrected, >20 
contiguous voxels), and applied as a mask to each individ-
ual’s map. Individuals activation maps were thresholded at 
a range of P‐values (from P < 0.0001‐P < 0.5). For each 
individual, session and threshold the group level mask was 
applied to voxels within the brain, and a voxel count was per-
formed. True positive voxels were those with t‐values above 
the threshold within the mask; false negatives were all other 
voxels within the mask; true negatives were voxels outside 
the mask below the threshold; false positives were all other 

voxels within the brain outside the mask. Voxel counts were 
averaged across subjects and turned into percentage ROC 
curves plotted and fitted using a 4th order Taylor series in 
Matlab’s curve fitting toolbox (https://uk.mathworks.com), 
and areas under the curve (AUC) were then calculated.

3 |  RESULTS

Of the 10 volunteers, 9/10 showed clear activation to the 
visual localizer with the global maxima in an anatomical lo-
cation consistent with primary visual cortex, met the criteria 
for the study, and so were included in subsequent analysis. 
Figure 2 shows activation for each TR value and autoregres-
sive model.

Figure 3 shows the t‐values in V1 across all subjects for 
each TR and frequency combination tested with different au-
toregressive models.

The effect of frequency and TR on the t‐values in V1 was 
tested with a repeated measured analysis of variance. The as-
sumption of sphericity using Mauchly’s Test was met for TR, 
χ2(2) = 4.28, P = 0.515, and frequency of presentation χ2(2) 
= 3.9, P = 0.56. The main effects of TR and presentation fre-
quency showed statistically significant differences in t‐value 
across subjects, F(3, 24) = 6.69, P = 0.002, and F(3,24) = 
34.497, P = <0.001, respectively. There was no interaction 

F I G U R E  2  Activation in the visual cortex is illustrated in 1 subject at a threshold of 20 overlaid on their T1 volume. Each image shows the 
same sagittal slice through the global maximum location. Each panel represents analysis of the same data using different autoregressive models (left 
to right) and TR (top to bottom)

https://uk.mathworks.com
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between TR and frequency of presentation, F(9,72) = 1.446, 
P = 0.185.

To determine the optimal TR value, posthoc paired t‐tests 
were performed with the results shown in Table 1. In general, 
using TRs < 2550 ms increased t‐values. When using a con-
servative correction for temporal autocorrelation (fMRIstat 
AR(5)), the t‐value was always increased compared with TR 
= 2550 ms; an 842‐ms TR increased t‐values by 75% on aver-
age. While the 842‐ms TR improved the t‐value compared with 
1250 ms, there was no statistical significant increase in t‐value 
at 412 ms TR compared with either 842 ms or 1250 ms.

Choice of autoregressive model made a substantial 
difference to the measured t‐values as expected. All AR 
models gave consistent results at the standard TR (2550 
ms). The SPM AR(1) model had larger t‐values at shorter 
TR values. Interestingly, this effect was not solely attribut-
able to the low AR model order, because both the fMRIstat 
AR(1) and AR(5) models showed a more modest t‐values 
increase at shorter TR values while the use of the higher 
order SPM AR(fast) model did not reduce the t‐values to 
those seen with either fMRIstat model. The AR model 
coefficients for fMRIstat AR(1) and fMRIstat AR(5) are 
displayed in Supporting Information Table S1, which is 
available online.

ROC curves for each TR with the most conservative model 
(fMRIstat AR(5)) are shown in Figure 4A,B for the low and 

high PR, respectively. AUC values (Supporting Information 
Table S2) were greatest using a TR of 1250 ms at the highest 
event frequency, and using a TR of 842 ms at the lowest event 
frequency.

ROC curves are shown for different autoregressive mod-
els at a fixed TR (842 ms) at the lowest (Figure 4C) and high-
est rate of presentation (Figure 4D). The fMRIstat (AR1/5) 
autoregressive models gave a similar AUC curve at both pre-
sentation frequencies. These curves were consistently above 
the SPM (AR1 and “fast”) autoregressive models indicating 
improved performance.

These results were generated with a group level mask of 
task activated brain regions defined using P < 0.001. Similar 
results in terms of optimal TR/ autoregressive model were 
obtained using P < 0.01 (Supporting Information Figure S1).

4 |  DISCUSSION

In this study, we evaluated the improvement in event‐related 
fMRI sensitivity from using shorter TR, 2D‐SMS sequences. 
Compared with a standard TR (2550 ms), shorter TRs in-
creased the t‐value for all autoregressive models; with a con-
servative model (fMRIstat AR(5)) the largest t‐value increase 
of 75% (Table 1) was found at TR = 842 ms (MB factor 3). 
ROC curve analysis (Figure 4A,B) demonstrated that a TR 

F I G U R E  3  Global maximum t‐values for each TR at PRs of 1/60 (top left), 13/60 (top right), 26/60 (bottom left) and 39/60 (bottom right) for 
each AR model provided by SPM (AR 1 and fast) and fMRIstat (AR 1 and 5). Error bars are the standard deviation
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of 842‐1250 ms was optimal. At a 5% FPR, there was a clear 
increase in sensitivity at these TRs. A local fit of autocorrela-
tion was found to be optimal at these TRs with a low order 
AR model being sufficient.

At shorter TRs image signal is exponentially reduced due 
to reduced T1 recovery within the TR. Therefore, it might 
be expected that imaging with a shorter TR has a punitive 
effect on image signal levels that in turn, will reduce fMRI 
sensitivity, which is consistent with our findings. Our find-
ings demonstrate a more moderate reduction in TR is optimal 
compared with some previous studies even when a similar 
autoregressive model was used.6 This might be due to dif-
ferences in the event‐related design, although we found that 
similar results at different PRs. Slightly different measures 
of sensitivity were used in the 2 studies (peak t‐values and 
ROC curves as opposed to mean t‐values). This previous 
work showed that while a large increase in sensitivity was 
found using an MB factor of 2 compared with 1, the sub-
sequent increase in performance was modest in comparison 
(at MB 3‐8), therefore, relatively small experimental differ-
ences could result in slight differences in optimal TR. Based 
on both our ROC curve analysis and previous studies,9 higher 
MB factors/shorter TRs are associated with greater false pos-
itives. As expected, the effect of TR on t‐values was found to 
be highly dependent on the choice of autoregressive model. 
Performing a local fit of autoregressive coefficients as imple-
mented in fMRIstat provided a much more conservative de-
termination of t‐values irrespective of autoregressive model 
order. These findings are consistent with Sahib et al,6 who 
also showed that for TRs above 330 ms an AR(1) model 
with a local fit yielded a stable and conservative statistical 
result. SPM uses a global autoregressive model fit leading 
to increased t‐values at shorter TRs with both the AR(1) and 
AR(fast) variants. It is not possible to determine the underly-
ing “true” t‐value, however, for many clinical and neuroscien-
tific applications a conservative estimate to control for false 
positive results may be preferable. To overcome this limita-
tion, a ROC curve analysis was performed and it showed that 
the autoregressive models using a local fit (fMRIstat AR(1 
and 5)) performed better.

Our results might indicate a subtle effect of stimulation 
frequency on the optimal TR (Figure 4A,B where the low 
frequency stimulus showed slightly higher sensitivity at 1250 
ms than 842 ms with the opposite for a high frequency stim-
ulus). However, the interaction between TR and stimulus fre-
quency was not significant.

Our study tested the visual cortex and stimuli within a cer-
tain frequency range. Other brain regions, particularly those 
affected by cardiac noise may have a greater advantage from 
faster acquisitions. We did not test the effect of noise mod-
els on our results. However, improved noise modelling is un-
likely to significantly alter our findings, because it is likely to 
cause a greater decrement in statistical significance when the T
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noise sources are not well sampled (at longer TRs). The im-
pact of subject motion on sensitivity at different TRs remains 
unclear and shorter TRs could be beneficial in this context 
although image reconstruction is typically also reliant on cal-
ibration data that does not account for subject motion.

There have been several studies investigating the effi-
cacy of SMS sequences for fMRI at the group level; Todd 
et al9 found that higher MB factors showed false activation 
artefacts due to signal leakage from the simultaneously ex-
cited slices, though these were reduced by the use of a Split 
Slice‐GRAPPA reconstruction, concluding that the MB ac-
celeration factor should be 4 or less for stable behavior which 
motivated the maximum MB factor used here. Therefore, in 
addition to providing improved sensitivity, the use of an MB 
factor of 3 with a TR of  ~800 ms should also provide images 
without strong local noise enhancement and aliasing artefacts 
as confirmed by our ROC analysis.

Our findings suggest that increasing the speed of data ac-
quisition is beneficial for modest TR reductions (1000 ± 200 
ms) and MB factors (2‐3); however, likely owing to the rapid 
loss of image signal, there are not large advantages for acquisi-
tions with a TR below 800 ms for event‐related fMRI designs 
at 3T. In the context of increasing artifact levels for greater 
reduction factors,9 this suggests a relatively conservative 
level of TR reduction is optimal in event‐related applications 

where single subject results are important. Group studies are 
less sensitive to improved single subject sensitivity owing to 
inter‐subject variability.
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FIGURE S1 ROC curves for each TR for the lowest (A) and 
highest (B) rate of presentation obtained with conservative 
autocorrelation estimates (fMRIstat AR5). ROC curves were 
also calculated for each autoregressive model at a TR of 842 
ms for the lowest (C) and highest rate of presentation (D). All 
ROC curves were produced using a group level mask (P < 
0.01, 20 voxels) to determine true/false positives
TABLE S1 Autoregressive model coefficients (AR + ) used 
by fMRIstat in AR(1) with one coefficient, and AR(5) with 
five coefficients demonstrating the weighting of the coeffi-
cients at higher AR orders by TR
TABLE S2 Area under the curve values for all models and 
TR values at the highest and lowest rates of presentation pro-
duced using a group level mask (p < 0.001, 20 voxels)
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