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Abstract

Pitch is a fundamental and salient perceptual attribute of many behaviourally im-

portant sounds, including animal calls, human speech and music. Human listeners

perceive pitch without conscious effort or attention. These and similar observations

have prompted a search for mappings from acoustic stimulus to percept that can be

easily computed from peripheral neural responses at early stages of the central audi-

tory pathway. This tenet however is not supported by physiological evidence: how the

percept of pitch is encoded in neural firing patterns across the brain, and where – if at

all – such a representation may be localised remain as yet unsolved questions.

Here, instead of seeking an explanation guided by putative mechanisms, we take a more

abstract stance in developing a model by asking, what computational goal the audi-

tory system is set up to achieve during pitch perception. Many natural pitch-evoking

sounds are approximately periodic within short observation time windows. We posit

that pitch reflects a near-optimal estimate of the underlying periodicity of sounds from

noisy evoked responses in the auditory nerve, exploiting statistical knowledge about

the regularities and irregularities occurring during sound generation and transduction.

We compute (or approximate) the statistically optimal estimate using a Bayesian prob-

abilistic framework.

Model predictions match the pitch reported by human listeners for a wide range of well-

documented, pitch-evoking stimuli, both periodic and aperiodic. We then present new

psychophysical data on octave biases and pitch-timbre interactions in human percep-

tion which further demonstrates the validity of our approach, while posing difficulties

for alternative models based on autocorrelation analysis or simple spectral pattern

matching.

Our model embodies the concept of perception as unconscious inference, originally

proposed by von Helmholtz as an interface bridging optics and vision. Our results

support the view that even apparently primitive acoustic percepts may derive from

subtle statistical inference, suggesting that such inferential processes operate at all

levels across our sensory systems.
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Chapter 1

Introduction

1.1 Motivation, methodology and aims

1.1.1 The relevance of pitch

A common property of many behaviourally-significant sounds in our natural acoustic

environment is the percept of pitch which they evoke in human listeners and, pre-

sumably, several animal species. Animals, even invertebrates, use pitched sounds as

an integral part of their territorial and mating behaviour. The sophisticated social

behaviour found in some mammalian species would be impossible without the use of

shared systems of acoustic communication, human speech being the most richly struc-

tured amongst them. For most communication sounds, pitch — rather than being

purely epiphenomenal — conveys information of interest to the listener, ranging from

cues regarding the species, gender and size of the sound source to the intended seman-

tic content. In all spoken languages, pitch carries prosodic information, i.e. additional

semantic connotations beyond the written words (Bolinger, 1978). Tonal languages

(such as Mandarin Chinese) use pitch also to distinguish lexical items and grammat-

ical categories. In music, the definitions of musical scales, melody and harmony are

unthinkable without reference to our percept of pitch. There is also evidence for a role

of pitch in solving the “cocktail party problem”, the ubiquitous challenge of separating

sound sources in cluttered acoustic environments: differences in pitch can induce stream

segregation between otherwise spectrally similar sounds (Vliegen and Oxenham, 1999),

and they have been shown to substantially improve identification of simultaneously-
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presented vowels (de Cheveigné et al., 1997) and speech utterances (Brokx and Noote-

boom, 1982). The fundamental nature of pitch perception is further highlighted by

the fact that human listeners are seemingly able to hear the pitch of complex sounds

without need for conscious effort or attention.

1.1.2 The puzzle about pitch

The phenomenon of pitch, fundamental as it may appear, nevertheless continues to

evade a definitive explanation. What makes pitch difficult to study and grasp is the

somewhat tautological observation that it does not constitute an objective, physical

attribute of a sound, but a subjective aspect of the listener’s perceptual experience.

While this rules out a physical definition of pitch, one may nevertheless investigate

the relationship between the physical attributes of sounds and the percept evoked in

listeners. In order to do so, we first need to define an objective behavioural measure

to quantify this elusive percept. Roughly speaking, the pitch of a target sound is

commensurate to the frequency of a sinus tone which is judged as equal in pitch by a

listener. Owing to its subjective nature, this judgement need not be the same across

different listeners, or even across multiple stimulus repetitions for a single listener.

The beginnings of the modern era in the psychophysical and physiological study of

pitch can be traced back to the siren experiments of August Seebeck and the following

debate with Georg Ohm in the mid-nineteenth century (Turner, 1977). Since then,

considerable effort has been spent to uncover the relationship between acoustic stimuli

and perceptual experience, as well as the underlying physiological processes in the

ear and the brain. On the one hand, the resulting body of experimental results is

almost overwhelming in its breadth and detail. On the other hand, scientific consensus

regarding the interpretation of these results seems almost as far out of reach today as

it did in the days of Ohm’s and Seebeck’s initial debate.

Even long before the nineteenth century, it had been known that the pitch of a peri-

odic sound1 typically corresponds to the inverse of its period. A continued source of

both puzzlement and insight are artificially-designed sounds that evoke a pitch percept

despite being highly aperiodic. Consider for example a white-noise signal — entirely

aperiodic and unpitched — that is multiplied with a sinusoidal envelope: the resul-

tant sound has a pitch, albeit weak, equal to the envelope frequency, even though no

1i.e. a sound consisting of exact repetitions of a single, short waveform segment



Motivation, methodology and aims 14

segment of the waveform ever repeats. Its envelope, however, is perfectly periodic by

construction, just like the envelope of a truly periodic sound. Might pitch therefore be

related to the periodicity of the waveform envelope, rather than the full waveform with

all its fine structure? Firstly, this alone would not explain the faintness of the percept

in the latter example compared to that of sinus tone or any other truly periodic sound.

Secondly, if we multiply the same sinusoidal envelope with a high-frequency sinusoidal

carrier instead of noise, the resultant sound again has a pitch, but it equals neither the

frequency of the envelope nor that of the carrier. We will postpone further discussion

until later — suffice it to say that there appears to be no single physical feature of

sounds to which the percept of pitch is simply and consistently related. Accepting that

a purely signal-based, “obvious” explanation is unlikely to exist, how else can or should

one approach this difficult modelling problem? How does the central auditory system

integrate signals arriving from a great number of peripheral sound receptors, driven by

periodic or aperiodic sounds, over time into our unified percept of pitch?

1.1.3 Modelling methodologies

David Marr, in his seminal book on human vision, distinguishes three complementary

levels at which information processing systems (such as the visual or auditory system)

can be described and studied (Marr, 1982, chap. 1) :

1. computational theory, primarily concerned with identifying the goal or purpose

of the system under study, and the strategy employed to achieve it;

2. algorithm and representation, studying what algorithms underlie the system’s

input-output transformation in order to achieve its goal, and the nature of their

internal representation;

3. hardware implementation, the mechanisms by which these algorithms and repre-

sentation are realised in the actual, physical system under study.

Considering the variety of proposed models of the human “pitch processor”, there seems

to be a bias for solutions that can be readily computed from peripheral neural responses

at early stages of the central auditory pathway. This bias may stem from the apparent

automaticity and ease with which human listeners can perceive pitch, or perhaps from

the common use of pitched sounds for the purpose of acoustic communication even by
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much simpler, non-mammalian species lacking the advanced computational resources

of the mammalian or human brain. However, this bias is not well supported by physi-

ological evidence. Even today, investigations into the neural basis of pitch perception

using electrophysiology, EEG/MEG or functional imaging techniques have not been

able to establish conclusively, what biophysical mechanisms give rise to pitch, how it

is encoded by neural firing patterns across the brain, and where — if at all — such

a representation may be localised. Implementational and algorithmic considerations,

in the sense of Marr’s hierarchy, may therefore be of limited value as a starting point

for developing models of human pitch perception. In this thesis, we present a model

derived from computational principles instead: we define pitch as the optimal solution

to a putative computational goal of the auditory system during listening.

1.1.4 Pitch as inference

What then is the goal of the auditory system? One of the most influential, computa-

tional theories of human perception even nowadays predates Marr’s analysis by more

than a century2. Hermann von Helmholtz proposed that perception reflects a process of

unconscious inference about physical quantities of interest in the environment from im-

perfect and incomplete incoming sensory signals (von Helmholtz, 1867). Most natural,

pitch-evoking sounds are approximately, though not perfectly, periodic within short ob-

servation time windows. Building on previous work by Goldstein (1973), we hypothesise

that the auditory system is trying to estimate their periodicity, based only on indirect

observations through the noisy, evoked neural response in the auditory nerve. Since

the physical process of sound generation, transmission and sensorineural transduction

is inherently stochastic, optimal inference requires knowledge about the underlying sta-

tistical regularities and irregularities. We formulate our model within the framework of

Bayesian probabilistic inference (e.g. MacKay, 2003), which provides both the formal

language to define this inference problem rigorously, and the algorithmic tools to com-

pute (or approximate) its optimal solution. It is worth pointing out that our approach

is not “blindly” computational in the sense that it disregards the algorithmic and phys-

ical levels in Marr’s hierarchy entirely. By incorporating a statistical description of the

peripheral neural response, on which inference in the model is based, our computational

account does in fact explicitly obey fundamental, biophysically-warranted representa-

2Like Marr’s theory, it was originally formulated in the context of vision.
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tional constraints. We do, however, remain agnostic with regard to the algorithmic and

biophysical implementation of the process of inference itself.

Pitch, as a correlate of periodicity estimation, is sometimes conceived of as a “primi-

tive”, purely data-driven bottom-up cue that serves to support the more interesting and

challenging “schema-driven” tasks of auditory scene analysis and beyond3, which are

influenced by learnt knowledge, prior expectations and other sources of top-down mod-

ulation (Bregman, 1990). Conversely, we will argue in this thesis that even a seemingly

primitive auditory percept like pitch already reflects the outcome of a sophisticated

inferential process, efficiently combining bottom-up sensory evidence with top-down

expectations derived from long-term natural scene statistics.

1.2 Thesis overview

Chapter 2 establishes the background knowledge required for subsequent chapters. In

particular, we will review and discuss key aspects of:

• the psychophysics of pitch perception,

• the physiology of the peripheral and central auditory system as pertains to the

processing and representation of pitch, and

• existing theories and models of pitch perception.

In chapter 3, we present the formal definition of a generative, probabilistic model of

near-periodic sounds and evoked responses in the auditory nerve. Two variants will

be discussed that differ in their treatment of the relationship between periodicity and

spectral envelope features of sounds. We will introduce the concept of pitch perception

as Bayesian inference and present two algorithms for the approximate computation

of optimal periodicity estimates based on the statistical assumptions embodied in our

generative model.

Chapter 4 demonstrates the basic consistency of our model estimates with human

psychophysics for a representative range of well-documented pitch-evoking sounds. We

will show that the model accounts not only for the pitch of naturalistic, periodic sounds

but also for that of unnatural, aperiodic sounds despite being poorly described by the

3such as segregation and identification of sound sources from mixtures, or semantic parsing
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assumed generative process. We also discuss several phenomena which the model fails

to capture. In particular, human pitch perception of harmonic sounds appears to be

sensitive to spectral features other than their harmonicity, whereas no corresponding

effects are evident in the model behaviour.

In chapter 5, we will review the evidence for a dependency between pitch and timbre,

both in the statistics of natural, pitch-evoking sounds and in their perception by human

listeners. We go on to extend the acoustic component of our generative model to account

for this dependency and use a database of natural sounds to fit the parameters of this

newly-introduced coupling. We then design and conduct a psychophysical experiment

to test the predictions of the extended model regarding the influence of timbral features

on the pitch of non-uniform pulse trains, a class of periodic sounds with a controllable

degree of octave ambiguity. Behavioural effects observed in human listeners are well-

predicted by our Bayesian model, while posing a difficult challenge to alternative, non-

inferential models as well as our earlier, uncoupled model. Finally, we demonstrate

that the extended model also provides a parsimonious solution to some of the issues

raised in chapter 4.

Chapter 6 concludes this thesis with a discussion of the contributions achieved by our

work so far and by pointing out several promising directions for future research.



Chapter 2

Background

2.1 Fundamentals of pitch perception

Pitch is a prominent subjective attribute of our perceptual experience of certain types

of sounds, for example the voiced parts of human speech or those produced by many

musical instruments. Despite being subjective, the relationship between physical stim-

ulus and its evoked percept is nevertheless far from arbitrary. Otherwise, the core

constructs of classical music theory1 could not feasibly exist. The definitions of musical

scales and intervals are based on the concept of pitch. Rules regarding the sequential

and simultaneous arrangement of notes with different pitches (i.e. melody, harmony

and counterpoint), meant to differentiate between what sounds pleasant or unpleasant

to a listener, could hardly be effective if the pitches perceived during a musical perfor-

mance varied arbitrarily from one listener to the next. But what are the fundamental,

preserved features of pitch? First and foremost, pitch is most strongly evoked by peri-

odic sounds and is largely determined by their periodicity. Second and corollary, pitch

is invariant to a variety of substantial changes in the acoustic signal: two instruments

can produce distinctly different sounds that nevertheless give rise to the same pitch

despite gross differences in loudness and “tone colour”, or timbre2 (for example the

mellow, husky quality of a flute in its low register or the sharp, piercing sound of a

distorted electric guitar). Not only can listeners tell if a sound has a pitch or not, and

whether the pitches evoked by two sounds are the same or different: there also appears

1Western, Indian, Chinese, Arab-Persian and others
2Timbre is often treated as that perceptual attribute sounds which allows us to distinguish sounds

of equal loudness, duration and pitch (ANSI, 1994). See also our discussion of timbre in section 5.1.1.
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to be the general notion of an ordering amongst different pitches along some internal

dimension. If we label, somewhat arbitrarily, the two extremes of this dimension as

“low” and “high” (see e.g. Ashley (2004) for a discussion of alternative metaphors

used in other cultural communities), then we can ask whether one pitch is higher than

another. This is reflected in the definition of pitch according to the American National

Standards Institute (ANSI, 1994):

“Pitch is that attribute of auditory sensation in terms of which sounds may

be ordered on a scale extending from low to high.”

In this section, we will examine and review (rather descriptively) some key findings

regarding the dependence of our subjective percept on physical parameters of the stim-

ulus. Despite its strong dependence on periodicity, we will find that pitch is not simply

related to a single, well-defined physical stimulus parameter. We will discuss past and

present attempts to synthesise these diverse psychophysical findings into a coherent

theory of the mapping between stimulus and percept later on in section 2.4.

The ANSI definition above makes no reference to the fundamental role of pitch in

music. This was, in fact, made explicit in an earlier definition by the American Stan-

dards Association (ASA, 1960), whereby pitch “is that attribute of auditory sensation

in terms of which sounds may be ordered on a musical scale”. Of course, this is a

problematic definition, considering that musical scales in turn are defined in terms of

the pitches from which they are constructed. However, it points towards an impor-

tant additional requirement for a sound-evoked sensation to classify as pitch, which is

(tacitly or overtly) made by many psychoacousticians: that the sensation be able to

support the recognition of musical intervals and melodies (e.g. Attneave and Olson,

1971; Burns and Viemeister, 1976; Semal and Demany, 1990; Pressnitzer et al., 2001).

This requirement is of practical value as is sets an approximate lower limit for the

accuracy of the perceptual ordering of sounds: the smallest musical interval in Western

classical music is a semitone, corresponding to a frequency ratio of approximately 12
√

2.

If the accuracy of the ordering drops below this limit, interval and melody recognition

are bound to be impaired.

Let us assume then, in agreement with both the ASA and ANSI definitions above, that

the pitch of a sound can be assigned a position, or magnitude, along an internal scale.

A major obstacle in the psychophysical study of pitch is that most listeners are unable
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to assign consistent verbal labels to the magnitude of their percept without external

reference. This rare ability called “absolute pitch” is prevalent in as little as 0.01% of

the general population3 (Levitin and Rogers, 2005). The remainder of listeners may

still be able to remember, recognise and produce absolute pitch magnitudes to some

degree even without explicit labels (e.g. Bachem, 1937; Lockhead and Byrd, 1981),

but their precision lacks greatly in comparison to possessors of genuine absolute pitch.

Instead, they can report reliably only the relative change in pitch from one note to

the other: whether the first pitch was higher or lower than the second. In addition,

musically-trained listeners will typically be able to determine and label the magnitude

of the change in terms of a musical interval, but we will not consider this ability of

interval recognition any further for the remainder of this thesis.

The overwhelming majority of pitch-evoking sounds encountered naturally are pe-

riodic up to small deviations. Any periodic sound x(t) with a period duration

of Ω can be uniquely decomposed into a sum of constituent sinusoidal vibrations,

x(t) =
∑∞

k=0 ak sin(2πk
Ω t+ θk), according to Fourier’s famous theorem (e.g. Hartmann,

1997). Here, ak is the amplitude of the k-th Fourier component, θk is its phase at t = 0

and k
Ω its frequency, which is the k-th integer multiple of the repetition rate 1

Ω =: f0 of

the original sound x(t). In this Fourier representation, the simplest possible periodic

sound is itself a sinusoid, as it cannot be further decomposed via Fourier analysis. If we

fix its amplitude and phase to some arbitrary values, it is effectively parameterised only

by its frequency. If one asks listeners to judge to relative pitches of two sinusoids with

different frequencies, one will find their pitches are monotonically related to their fre-

quencies: the sinusoid with the higher frequency will be judged higher in pitch. In this

way, we can construct a frequency-labelled pitch scale, which is related to the listener’s

internal scale via some unknown, monotonically increasing mapping function. With

this frequency-labelled scale at hand4, one can now determine the pitch of (almost) any

other pitch-evoking target sound, again up to this unknown monotonic mapping, simply

by matching the adjustable frequency of a pure tone to the target. The outcome of this

matching is the “pure-tone equivalent” pitch of the target, measured in Hz. Variants of

this procedure are amongst the most commonly used methods to quantify a listener’s

pitch percept. The choice of using pure tones as the initial reference point is admittedly

arbitrary. However, as we will soon discuss, the pitch of the large majority of periodic

3but seemingly higher amongst Asians
4as for example noted in an addendum to the ASA definition of pitch (ASA, 1960)
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sounds with period Ω is in fact equal to 1
Ω . Thus, many periodic sounds can serve as a

reference in the matching procedure almost equivalently. This can be extremely useful

in cases where a gross difference in timbre between the target sound and a pure tone

could otherwise impair the listener’s matching performance. Furthermore, the use of

complex stimuli helps to avoid covariation of other salient perceptual stimulus features

with pitch that are unavoidable when using pure tones (see also de Cheveigné, 2010 for

a more detailed discussion of this topic).

For all our intents and purposes, this matching-based definition of pitch will be suffi-

cient. Nevertheless, several researchers have attempted to further quantify the implicit

mapping between the listener’s internal pitch scale and the pure-tone frequency scale

in Hz. The results of these studies are not entirely consistent. Assuming that listeners

can numerically compare values on their internal pitch scale, Stevens et al. (1937) had

their subjects adjust the frequency of a pure tone, such that its subjective pitch was half

that of a reference tone with a certain fixed frequency. This procedure was repeated

for a range of reference frequencies and the resultant “fractionations” were averaged

across subjects. From these average fractionations, a perceptual pitch scale in units of

“mel” (as in “melody”) was constructed: first, 1000 mel was simply defined as the pitch

value of a 1000 Hz tone. Next, the frequency corresponding to a pitch of 500 mel was

determined as the frequency that was deemed half as high in pitch as 1000 mel, and

similarly for 250 mel and so on. The resultant curve of pitch in mel plotted against

frequency in Hz is shown in Figure 2.1. Similar relationships between frequency and

subjective pitch magnitude have been found using other methods, such as equisection

(Stevens and Volkmann, 1940) and magnitude estimation (Beck and Shaw, 1961; see

Stevens, 1971 for a methods overview). The derived scales, however, seem to be at odds

with the commonly held notion that musical intervals correspond to certain, fixed dis-

tances between pitches. In music, the melodic distance or interval between two notes is

determined by the ratio between the frequencies: a ratio of 1.5, for example, will almost

always be heard as a “fifth”, independent of the absolute frequencies. Two melodies

will be recognised as the same, as long as the frequency ratios between successive notes

remain preserved — independent of the starting note5. This suggests that a certain

difference in subjective pitch corresponds to a fixed frequency ratio or equivalently:

a logarithmic relationship between subjective pitch and frequency. Indeed, Attneave

5Possessors of absolute pitch will notice that it has been transposed, but can nevertheless identify
it.
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Figure 2.1: The mel scale of pitch (from Stevens et al., 1937).

and Olson (1971) obtained essentially this result in an experiment, where subjects were

required to transpose pairs of pure tones, separated by a musical interval smaller than

an octave, into a different frequency region by (continuous) adjustment of a frequency

dial6. The reasons for this discrepancy between the mel-scale and the logarithmic scale

of musical pitch are not entirely clear (see e.g. van Norden, 1982). The subjects in the

latter experiment could have deliberately made their judgements so as to preserve the

musical interval, instead of taking equidistant steps on their internal pitch scale. Alter-

natively, the subjects of Stevens et al. (1937), given no “melodic” context whatsoever,

may have made their judgement not based on pitch but on the unavoidably covarying

spectral centre of mass, which is regarded as a salient aspect of timbre. Whatever the

resolution may be, we will content ourselves with the operational definition of pitch as

the pitch-matched frequency of a pure tone, measured in units of Hz, throughout the

remainder of this thesis unless explicitly stated otherwise.

In considering pitch as a percept along a single, monotonic dimension, we (and the

ANSI) may have disregarded a further important aspect of pitch perception. Seemingly,

pitch similarity is not simply determined by the magnitude of the pitch difference (be

it on a linear, logarithmic or mel-scale). Instead, we perceive two pitches as highly

6Logarithmic scaling broke down for frequencies higher than approximately 5 kHz.
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similar if their frequencies are related by one or even several octaves, i.e. when the

frequency ratio is an integer power of 2. In pitch matching paradigms, subjects are often

observed to make octave mistakes (e.g. Riker, 1946; cf. chapter 5), and even possessors

of absolute pitch are prone to this kind of confusion (e.g. Bachem, 1937). Octave

equivalence is a cross-culturally shared feature in many musical systems. The scales in

Western classical music are based on subdivisions of the octave into smaller intervals

up to approximately one twelfth of an octave (on a logarithmic scale, corresponding to

a frequency ratio of 12
√

2), and notes separated by one or several octaves are denoted by

the same letter. Similarly, the scales of Indian, Arab-Persian and Chinese classical music

(amongst others) are based on subdivisions of the octave, albeit different from those

in classical Western scales (Burns, 1998). This has led to the concept of the position

within an octave as a second, circular dimension called tone chroma, in addition to

our first dimension, which scales monotonically with frequency and which is called

tone height in contexts where this distinction is made (Bachem, 1950). Shepard (1982)

proposed a simple spatial representation of pitch in these two dimensions in the shape

of a helix, where the chroma dimension winds around a tone-height axis (see Figure

2.2).

Figure 2.2: Helical representation of pitch height and chroma (from Shepard,
1982).
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There are doubts as to whether perceived octave similarity is truly attributable to the

pitch relation per se, or whether it might rather reflect our sense of musical consonance,

i.e. the pleasantness of the sensation of two or more musical notes played simultane-

ously. The spectra of octave-related natural pitch-evoking sounds, composed of many

near-harmonic frequency components, overlap to a higher degree than in any other

interval relationship without creating perceptual “beats”. Such beats — for lack of

a better description: a “wha-wha”-like sensation of slow amplitude modulations due

to the physical interaction of nearby spectral components in the peripheral auditory

system (cf. section 2.2.3.2) — are held to be a major determinant of our sense of conso-

nance (von Helmholtz, 1863; Plomp and Levelt, 1965; McDermott et al., 2010). Thus,

we may perceive harmonic sounds in octave intervals as similar because they are equally

consonant as sounds in unison. At face value, experiments by Riker (1946) seem to

argue against this hypothesis: Riker observed that octave matching-mistakes were in

fact more common for pure tones than for notes played on a piano, even though there is

nothing supremely consonant about pure-tone spectra at octave intervals. However, the

discussion is complicated by the fact that non-linear distortions in the middle or inner

ear (see 2.2.3.2) can artificially introduce spectral components at multiples of the pure-

tone frequencies, effectively rendering them into harmonic complex tones. Furthermore,

our sense of octave equivalence could be acquired through repeated exposure to natural

stimuli but subsequently influence our judgement of other pitch-evoking stimuli such

as pure tones. In any case, even if tone chroma is a second dimension of pitch, it would

appear that it is always uniquely determined by tone height (while the reverse is not

true). We will consider pitch only as varying along a single monotonic dimension, as

suggested by the ANSI definition and following the majority of psychophysical studies

of pitch to date.

It should be pointed out that a stimulus, strictly speaking, does not “have” a pitch.

Nevertheless, we will often use this imprecise but convenient terminology. The pitch

evoked by one and the same physical stimulus may be different from one presentation

to the next. What we typically mean when we say that a stimulus “has a certain pitch”,

is that the stimulus reliably evokes a near-identical percept over many trials and across

many listeners. A sound which leads to a broad distribution of pitch estimates in each

listener can be said to have weak pitch. Sounds which lead to a distinctly multimodal

distribution of pitches can be said to have an ambiguous pitch. We will consider such
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a class of stimuli, namely non-uniform periodic click trains (Flanagan et al., 1962),

later on in chapter 5. Shepard tones (Shepard, 1964) are another (much-studied) ex-

ample of ambiguous pitch stimuli: complex tones with octave-spaced harmonics and a

bell-shaped spectral envelope centred around some spectral centroid frequency, which

have a clearly identifiable chroma and a highly ambiguous tone height. The source of

perceptual inter-trial variability in these cases is not simply the stochastic nature of

sensorineural transduction or differences in the peripheral gain due to either random

fluctuations or loudness changes (cf. section 2.2). Instead, there is strong evidence

that the pitch of a single such stimulus is substantially influenced perceptually by the

sequence of preceding stimuli, presumably on the basis of their pitch (Dawe et al., 1998;

Giangrand et al., 2003; Repp and Thompson, 2010; Chambers and Pressnitzer, 2011).

Context effects are not limited solely to biases in octave judgements, but can also result

in more accurate interval matching (Attneave and Olson, 1971) or pitch discrimination

(Warrier and Zatorre, 2002) in the presence of an extended melodic context.

2.1.1 The pitch of periodic sounds

2.1.1.1 Pure tones

Given our matching-based procedure of measuring pitch above, this section may seem

superfluous at first sight. Is not the pitch of a pure tone its own frequency by definition?

Not quite. Firstly, there are limits to the range of frequencies over which pure tones can

be frequency matched. Guttman and Pruzansky (1962) found that listeners were able

to do so down to frequencies around 20 Hz, i.e. the lower limit of the human hearing

range. Musical pitch, however, did not extend to such low frequencies. When asking

listeners to transpose a reference tone up or down by an octave, Guttman and Pruzan-

sky (1962) discovered that listeners’ average deviation from the mathematical octave

frequency increased to over a semitone for reference frequencies between approximately

39 and 46 Hz. More importantly, their response variability increased dramatically from

around 60 Hz downwards. The upper limit of musical pure-tone pitch has been inves-

tigated in several studies (Ward, 1954; Attneave and Olson, 1971; Semal and Demany,

1990), all of them revealing a break-down of the percept in the range between 4–5 kHz.

This coincides also with the limit of note-naming ability in possessors of absolute pitch

found by Bachem (1948). Within these outer limits, the ability to discriminate small
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Figure 2.3: Pure-tone frequency difference limens for different stimulus frequen-
cies and durations (different curves are labelled by duration in ms; data from
Moore, 1973; figure adapted from Moore, 2003).

differences in frequency depends non-monotonically on frequency. Moore (1973) found

that frequency difference limens — the smallest difference in frequency for which sub-

jects can reliably determine (e.g. with 75% correct) which of two tones is higher —

were smallest at around 2 kHz and increased monotonically for frequencies above and

below7 (see Figure 2.3). Discriminability also improved with tone duration.

The pitch of a pure tone depends to some degree on its loudness. When pitch-matching

an 80 dB pure tone with an adjustable 40 dB tone, one would find that the two frequen-

cies are not identical. While the level-dependence of pure-tone pitch is generally found

to be negligible (≤ 1%) in the range between 1–2 kHz, some studies (e.g. Stevens,

1935; Morgan et al., 1951), but not all, have found more substantial effects outside

this range (see e.g. Moore, 2003 for a discussion). The direction of the pitch-shift

is frequency-dependent. As a general rule, pitch below 2000 Hz decreases for higher

levels and increases with level above 4000 Hz (ibid.). This effect calls for a specification

of the reference level in matching-based measurement of pitch. To further complicate

matters, the pitch evoked by the same stimulus can differ between the left and right

ear of a single listener by several percent, a phenomenon known as diplacusis binauralis

7Stimuli were presented via loudness-calibrated headphones.
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(Burns, 1982).

2.1.1.2 Harmonic complex tones

The vast majority of natural pitch-evoking sounds are approximately periodic, i.e. they

can be (approximately) decomposed via Fourier analysis into a sum of sinusoids with

frequencies equal to integer multiples of the sound periodicity rate, or fundamental

frequency f0 = 1
Ω , where Ω is the period duration (see above). Sounds of this kind are

produced by the vocal tracts of humans and animals and by many musical instruments.

By and large, the pitch of such a harmonic complex tone (HCT) with many harmonics

is equal to its f0.

The lower limit of the f0-range over which HCTs evoke a pitch percept has been found

to coincide with the limits of pure-tone pitch reasonably well. In a task where listeners

were required to detect a semitone-difference between two four-tone melodies, Press-

nitzer et al. (2001) determined the lower limit of melodic HCT pitch as somewhere

within the range of 32–40 Hz. Krumbholz et al. (2000) found a similar limit in terms of

f0-discriminability, suggesting that the limits of matching-based and musical pitch are

very similar for HCTs. The upper limit of melodic HCT pitch is commonly assumed to

coincide with the limit of pure-tone pitch, but this is based on indirect evidence. The

highest pitches on the piano and piccolo flute (the highest orchestral instrument) fall

into the range of 4–5 kHz, and due to the physiological limitations of the peripheral

auditory system, auditory nerve fibres can presumably maintain periodic, synchronised

firing activity only up to comparable rates8.

A particular type of HCT, which has attracted much attention and controversy in the

related literature (cf. section 2.4), are HCTs with missing fundamental, i.e. in which

the amplitude of the Fourier component with frequency f0 is 0. Even in this case,

a pitch equal to the missing fundamental is heard — at least within certain limits

depending on the total number of Fourier components in the stimulus, their respective

ranks (i.e. their factors with respect to f0) and to some degree their phase relationships

(see e.g. Ritsma, 1962, 1963; Houtsma and Goldstein, 1971; Houtsma and Smurzynski,

1990; Shackleton and Carlyon, 1994; Renken et al., 2004). Various terms have been

used to describe the pitch of the missing fundamental: tonal residue (Schouten, 1940;

8Note though, that the exact physiological limit in humans isn’t known (cf. sections 2.2.3.2 and
3.2.2).
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Schouten et al., 1962), periodicity pitch (Plomp, 1967), low pitch (Smoorenburg, 1970)

or virtual pitch (Terhardt, 1974). As a general rule of thumb, missing-f0 pitch is

strongest when the HCT contains many low-rank harmonics. Nevertheless, Houtsma

and Goldstein (1971, 1972) showed that even a HCT with only two components can

elicit missing-f0 pitch. The pitch of a HCT notably weakens when the lowest harmonic

has a rank above approximately 8 to 10. When only few and high harmonics are

present in the spectrum, the pitch corresponding to the f0 vanishes and instead one

or several pitches corresponding to the individual component frequencies can be heard.

The pitch of HCTs with only high harmonics is susceptible to manipulations in the

component phases, whereas phase manipulations amongst low-rank harmonics leave

the pitch (both pitch frequency and strength) largely unaffected. This can be observed,

for example, in the doubling of the perceived pitch of a high-harmonic HCT when the

phases are adjusted so as to double the periodicity of the waveform envelope while

leaving the periodicity of the actual, fine-structured waveform and its f0 unchanged

(Shackleton and Carlyon, 1994). It has previously been suggested (ibid.) that both

the weakening of missing-f0 pitch with increasing lowest harmonic number and its

phase dependence are caused by the limited frequency resolution of the peripheral

auditory system (cf. sections 2.2.3.2 and 3.2.1). The frequency separation between

high harmonics (starting approximately around the 10th, somewhat dependent on f0;

see e.g. Moore and Gockel, 2011) is insufficient to evoke discernable peaks in the

average firing-rate profile of the auditory nerve, eliminating a potentially important

cue regarding the harmonicity (or periodicity) of the stimulus. At the same time,

high harmonics exciting the same peripheral filter cause amplitude modulations in

the filter output, the depth and (in extreme cases) the rate of which depend on the

relative component phases. However, more recent evidence suggests that two different

mechanisms underlie the weakening and increased phase-dependence of high-harmonic

missing-f0 pitch respectively. While peripheral resolution is indeed the likely cause

for phase-related effects, it seems that the weakening of the pitch has a more central

underlying mechanism and is more closely related to harmonic number per se, rather

than peripheral resolvability: pitch discriminability of high-harmonic HCTs remains

poor even when the harmonics are made resolvable by dichotic presentation of odd

and even harmonics to opposite ears (Bernstein and Oxenham, 2003). The theoretical

implications of these findings regarding the role of resolved, unresolved, low and high

harmonics will be further discussed in section 2.4.
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Experiments by Ritsma (1962) give us an indication regarding the limits of missing-

f0 pitch perception, albeit only for a restricted class of stimuli. Using sinusoidally

amplitude-modulated (SAM) tones, i.e. complex tones with only three adjacent spectral

components9, he found that the pitch sensation generally deteriorated for f0s of 800 Hz

and above, independent of the frequency range of the partials. Furthermore, no pitch

of f0 could be heard if all component frequencies were above 5 to 6 kHz independent of

the fundamental. Recently, however, Oxenham et al. (2011) showed that genuine, even

musical missing-f0 pitch can be evoked for f0s up to at 2 kHz and partial frequencies

wholly outside the traditionally-assumed existence region up to 6 kHz (using HCTs

with up to 12 harmonics, considerably more than Ritsma (1962)).

If one adds a sufficient number N of harmonically-related sinusoids of equal amplitude

in cosine phase, i.e. such that their peaks all coincide at the same point in time, the

resultant waveform x(t) =
∑

i ai cos(2πf0it) takes the shape of a periodic train of

narrow, unipolar pulses or “clicks”, spaced at intervals of Ω = 1/f0. As N → ∞, x(t)

turns into sum of infinitely narrow Dirac pulses:

x(t)→
∑

i

δ(t − iΩ) , (2.1)

where

δ(t) = lim
∆t→0





1
2∆t if t ∈ [−∆t; ∆t]

0 otherwise

(2.2)

is the Dirac δ-function10 (e.g. Hartmann, 1997). Any periodic sound with period dura-

tion Ω can be written as the convolution of a Ω-spaced Dirac pulse train with a finite

impulse response that equals the shape of single waveform-period between pulses. This

is the basis for the source-filter model of human vocal production (Fant, 1960), and will

similarly form the basis of our own statistical model of naturalistic sounds in chapter 3.

The pitch of periodic pulse trains with finite pulse durations, produced by mechanical

sirens, was the subject matter of a scientific debate between Ohm and Seebeck (Ohm,

1843; Seebeck, 1843) that shaped theories of pitch perception for almost a century (see

9Note that SAM tones are not harmonic in general. Two spectral side-band components are equally
spaced in linear frequency around a central carrier frequency, the component spacing being determined
to the modulation rate. A SAM tone is only harmonic, if the carrier frequency is an integer multiple
of the modulation rate. The energy in the side bands is controlled by the modulation depth.

10or rather: one of its many representations
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section 2.4). Seebeck doubled the periodicity of an isochronous pulse train by shifting

the time of every other pulse by a small, constant amount. The perceived pitch halved,

even though the sound contained only very little energy at the new, lower f0, explicitly

suggesting that the physical presence of the fundamental may be not be necessary in

order to perceive a pitch at its frequency. Flanagan and Guttman (1960), Flanagan

et al. (1962) and Guttman and Flanagan (1964) conducted related experiments using

electronically generated pulse trains and investigated the dependence of pitch on stim-

ulus parameters such as pulse timing, polarity and amplitude. In chapter 5, we will

use trains of bipolar pulses with periodically alternating amplitudes in a psychophys-

ical experiment regarding the dependence of pitch not only periodicity but also other

spectral (or timbral) properties of sounds.

When listening to a complex sound, some listeners are more likely to “hear out” in-

dividual harmonics, each with a pitch equal to its frequency, rather than perceiving a

single, compound sound with a pitch equal to the fundamental. von Helmholtz (1863)

called these two modes of listening as “analytic” and “synthetic”. Many listeners, es-

pecially those without musical training, find it difficult to listen analytically at all and

listen synthetically by default. As Helmholtz points out, “a certain amount of undis-

turbed concentration is always necessary for analysing musical tones by ear alone”

(ibid.). Aside from analytic listening being amenable to practice, listeners’ preference

for analytic or synthetic listening can to some degree be influenced by the experimenter

by careful priming11. Furthermore, the presentation of stimuli in a noisy background

appears to bias listeners to adopt a synthetic listening mode (see Moore, 2003 for a

more detailed discussion). In our model (cf. chapter 3), only synthetic listening will be

considered explicitly.

2.1.2 Non-periodic sounds

Sounds do not need to be periodic in order to elicit a pitch. We can, for example, add

random noise to a periodic sound with period Ω — a pitch corresponding to Ω will

still be heard, typically as soon as the HCT can be reliably detected within the noise

background (Gockel et al., 2006). In this case, every successive stimulus segment of

11see e.g. Houtsma and Goldstein (1971) for a discussion of a study by D. Cross and H. Lane, Atten-
tion to Single Stimulus Properties in the Identification of Complex Tones in Experimental Analysis of
the Control of Speech Production and Perception, ORA Report No. 05613-1-P, University of Michigan,
Ann Arbor, 1963
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duration Ω still bears some resemblance to one and the same underlying, average period

“template”. But even sounds where this is no longer the case can evoke a sensation

of pitch, strong enough allow for both rate discrimination and recognition of musical

intervals or melodies.

If a high-frequency pure tone of frequency fc is sinusoidally amplitude modulated

(SAM) with an envelope of lower frequency g, the resultant SAM tone has a spec-

trum with three discrete frequency components: one at fc and two side-bands at fc±g.

The waveform may still be periodic, if fc and g share a common integer submultiple, but

even if this is not the case, a pitch can be heard as long as fc and g fall within a certain

range (Ritsma, 1962, 1963; cf. our discussion regarding the limits of missing-f0 pitch

above). Except in special cases however, its matched frequency equals neither fc, g or

the periodicity of the SAM waveform as a whole. The pitch of this type of sound has

been extensively studied by Schouten (1938, 1940) and collaborators (Schouten et al.,

1962). To a first approximation, the pitch of SAM tones can be described in terms of

fc and g by considering the spectral components as shifted harmonics of a missing-f0

HCT with fundamental g (see Figure 2.4). Let n be the rank of the harmonic of g that

is closest in frequency to fc and ∆f the frequency difference between the two. The

pitch fp of the SAM tone is approximately equal to

fp = g +
∆f

n
, (2.3)

i.e. its frequency is approximately proportional to the amount of shift with respect to

the harmonic stack {g, 2g, . . .}. Interestingly, the pitch of SAM tones is ambiguous:

fcff -g c f +g c0 g 2g

�f

frequency [Hz]

am
pl

itu
de

Figure 2.4: Amplitude spectrum of a sinusoidally amplitude-modulated tone.
Dotted lines indicate multiples of the modulator frequency g (not present in the
spectrum).

as if listeners “misjudged” the value of n, i.e. the rank of the harmonic of g that is

closest to fc, they sometimes perceive the pitch as either higher or lower by one or
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several discrete steps. For example, the pitch of a SAM tone with fc = 2040 Hz and

g = 200 Hz is typically heard as 204 Hz (n = 10), but sometimes also as 227 Hz (n = 9)

or 185 Hz (n = 11) (Schouten, 1940). We will discuss the historic and theoretical

importance of these findings in section 2.4. Quantitatively similar pitch shifts have also

been observed for complex sounds with more than three (de Boer, 1956b; Patterson,

1973, 1976) or only two adjacent frequency components (Smoorenburg, 1970; Houtsma

and Goldstein, 1972).

Rather than shifting all components of a HCT by the same amount simultaneously, a

HCT can also be rendered inharmonic by mistuning a single frequency component. In

this case, the “synthetic” pitch of the entire sound shifts to a small degree (up to about

1%) in the direction of the component mistuning (Moore et al., 1985). However, as

the mistuning of the component exceeds approximately 3%, the pitch shift gradually

vanishes and instead the percept segregates: the mistuned component can be heard as a

separate, second pitch in addition to the fundamental pitch of the remaining harmonic

components. Moore et al. (1985) found that harmonics between the second and fifth

yielded the greatest overall effect, but inter-subject variability was high. Other studies,

in which multiple harmonics were mistuned at a time, either congruently (Plomp, 1967;

Ritsma, 1967) or incongruently (Dai, 2000), have generally come to the conclusion that

mistunings of low-rank harmonics up to maximally the sixth have the greatest effect on

pitch. This has led to the notion of dominance of some low-rank components over the

pitch of the entire complex — qualitatively in agreement with our earlier observation

that the pitch of missing-f0 HCTs is strongest when they contain at least some low-rank

partials (see section 2.1.1.2).

Amongst the most surprising examples of pitch-evoking, non-periodic sounds are those

that are obtained not by simple manipulations of an originally periodic sound (such as

the examples above), but instead by imposing weak spectral or temporal structure on

otherwise perfectly aperiodic, uncorrelated noise. A much-studied example of this type

of sound is rippled noise (Bilsen, 1966). Rippled noise is generated by delaying and

adding a white noise signal back to itself with a time-delay of d and some multiplicative

gain g. If this process is repeated more than once with identical delay and gain, iterated

rippled noise (IRN) is obtained (Yost et al., 1996; Yost, 1996)12. We will denote IRN

12See Hartmann (1997) for an account of the discovery of an IRN-like pitch phenomenon by Dutch
physicist Christiaan Huygens in 1693, generated by the sound of a water fountain being reflected off a
flight of stairs in a court-yard.
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with a positive gain of g = 1 as “IRNn+”, where n is the number of iterations, and IRN

with a negative gain g = −1 as “IRNn−”. For IRNn+, a pitch is heard corresponding

to the inverse delay 1
d . This pitch is weak for n = 1 but becomes stronger as the

number of delay-add iterations increases. The pitch of IRNn− depends on n: for a

single iteration, pitch matches are broadly distributed around two peaks at frequencies

of approximately 1
d ± 10% with a distinct lack of matches at 1

d . For higher number

of iterations, the pitch drops to a frequency of 1
2d , i.e. half the pitch of IRNn+, with

a unimodal distribution around this mean (Yost, 1996). For n > 1, the pitch of IRN

stimuli, as well as its increasing strength with n, is intuitively explicable by considering

the delay-and-add/subtract procedure as a filtering operation. A single delay-and-

add iteration can be expressed as a convolution of the original signal with an impulse

response h+(t) = δ(0) + δ(d), the power spectrum of which is periodically modulated

at a (spectral) rate of 1
d and peaks at frequencies i

d , i = 0, 1, . . . (Figure 2.5 B, top).

Assuming that the spectral envelope of the source signal is flat, the spectral envelope of

the filter output will have the same shape as the filter itself. Iterating the delay-and-add

process as in Figure 2.5A introduces additional, shifted δ-peaks to h(t), which leads to

a progressive sharpening of the spectral modulations in the filter output. For n→∞,

the spectrum is a perfect comb-spectrum, just like that of a Dirac pulse-train (see

above). The delay-and-subtract operation can be implemented as a filter with impulse

response h−(t) = δ(0) − δ(d), the power spectrum of which is also modulated at a

rate of 1
d , but with a first peak at 1

2d (Figure 2.5 B, bottom). Iterating this procedure

also sharpens the spectrum, but it will more and more resemble that of an HCT with

f0 = 1
2d and odd-numbered harmonics only13. As the spectrum of IRN with many

iterations becomes effectively harmonic, the pitch of IRN is most “interesting” in the

low-n regime. In these cases, IRN provides only weak spectral cues (particularly after

filtering by the peripheral auditory system). Furthermore, the dichotomy between the

bimodal pitch of IRN 1− and the unimodal pitch of IRN 1+ is not obvious from our

simple spectral intuition above (cf. Figure 2.5).

Sinusoidally amplitude-modulated (SAM) noise, i.e. a white noise carrier signal multi-

plied with a sinusoidal envelope, is a pitch-evoking stimulus that lacks spectral features

altogether. Even though the signal envelope is clearly periodic, the power spectrum

of the signal altogether is perfectly flat in expectation, just as that of the noise car-

13The fundamental frequency is counted as the first harmonic



Fundamentals of pitch perception 34

A

d g d g

+ +
ξ(t)

IRN 1 IRN 2

B

(d)

0 2 4 6

0

a
m

p
lit

u
d

e

Impulse response

0 0.25 0.5 0.75 1 1.25
−100

−90

−80

−70

P
S

D
 

[d
B

/H
z]

0 2 4 6

0

t  [ms]

a
m

p
lit

u
d

e

0 0.25 0.5 0.75 1 1.25
−100

−90

−80

−70

f  [kHz]

P
S

D
 

[d
B

/H
z
]

Power spectrum

IRN 1+

IRN 1-

Figure 2.5: A: Schematic circuit for the generation of IRN up to n = 2. Uncorre-
lated Gaussian noise ξ(t) is fed into two adders that receive progressively delayed
and gain-modulated copies of ξ(t) (after Yost, 1996). B: Impulse response (left)
and power spectrum (right) of the filters corresponding to a single iteration in the
generation of IRN 1+ (top) and IRN 1− (bottom).

rier itself. Nevertheless, a faint pitch corresponding to the envelope modulation rate

can be heard for modulation rates up to 850-1000 Hz that allows for the recognition of

rhythm-less musical melodies (closed-set and open-set), melody dictation and interval

recognition and production (Burns and Viemeister, 1976, 1981). The accuracy of the

pitch of SAM noise is on the order of one semitone (even with practice), i.e. barely

sufficient for the use in a musical context.

High-pass or low-pass filtered white noise also gives rise to a weak pitch (Small and

Daniloff, 1967; Fastl, 1971). When the filter slopes are steep, a pitch close to the

cut-off frequency can be heard for low-pass frequencies below approximately 5-10 kHz

(depending on the study) and high-pass frequencies above 500-600 Hz. When noise is
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band-pass filtered with a passband wider than about one fifth of an octave, two pitches

corresponding to the two spectral edges can be heard. For narrower passbands, a single

pitch is perceived around the centre frequency (Fastl, 1971; see also Fastl and Zwicker,

2007). Small and Daniloff (1967) speculated that the pitch in these cases may be

caused by lateral, neural inhibition between adjacent peripheral frequency channels (cf.

sections 2.2.3.2 and 2.3.1), creating an excitation peak around the noise edge frequency

where inhibition can act only from one side, rather than both sides along the tonotopic

axis (see also von Békésy, 1963 and Houtgast, 1972).

2.1.3 Binaural pitch

Pitch can even be evoked by dichotic stimuli, where the waveform at either ear alone

has the statistics of pure white noise. Cramer and Huggins (1958) were the first to

describe a binaural stimulus that is obtained from diotic white noise by introducing a

360◦ phase rotation between the left- and right-ear signal within a narrow frequency

band (Figure 2.6, left). A pitch is evoked corresponding to the centre frequency of

this phase-rotation band up to frequencies of about 1600 Hz (as determined by pitch-

discriminability). Similarly, a pitch can be evoked by the introduction of a binaural

“phase edge” between two otherwise identical tokens of white noise, such that all phases

above a certain edge frequency are rotated by 180◦(Klein and Hartmann, 1981). The

authors reported a bimodal distribution of pitch matches around the edge frequency,

but some subsequent studies have found a unimodal distribution instead (Culling et al.,

1998; see also Akeroyd et al., 2001). Hartmann and McMillon (2001) found that even

a binaural phase coherence edge is sufficient to generate a pitch (Figure 2.6, middle

and right) slightly above the transition frequency above which the interaural phases

switch from coherent to random. Akeroyd et al. (2001) showed that all three of these

binaural stimuli can convey musical melodies, with Huggins pitch yielding the high-

est identification scores and binaural coherence-edge pitch the lowest. Astonishingly,

Bilsen (1977) demonstrated that even missing-f0 pitch can be evoked by a Huggins-

like stimulus: when listening to dichotic noise with two 360◦ phase-rotation frequency

bands with harmonically related centre frequencies (e.g. 600 and 800 Hz), a pitch equal

to their f0 (i.e. 200 Hz) can be heard. As all these (and more) phenomena evidently

require the combination of signals from both ears, the earliest possible stage in the

ascending auditory pathway, at which the formation of the percept may begin is the
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Figure 2.6: Binaural pitch-evoking stimuli. Interaural phase difference between
two otherwise identical tokens of noise, presented to opposite ears, as a function
of frequency: Huggins pitch (left), binaural edge pitch (middle) and binaural co-
herence edge pitch (right). From Akeroyd et al. (2001).

superior olivary complex in the brain stem (see section 2.3.1). The same is also true

for the pitch of dichotically presented two-component HCTs (Houtsma and Goldstein,

1972) and dichotic variants of rippled noise (Bilsen, 1977). Fascinating and puzzling as

these phenomena may be we will only consider monaural pitch effects when we develop

our model in chapter 3.

2.2 The peripheral auditory system

2.2.1 The external ear

The external ear comprises the pinna and the external ear canal, or meatus, which is

delimited medially by the ear drum, or tympanum, a flexible membrane that defines

the boundary between external and middle ear (Figure 2.7). The pinna is made of

soft, skin-covered cartilage tissue that is irregularly folded into a pattern of ridges and

valleys. Owing to its large surface area in comparison to the diameter of the ear canal,

it is well suited to amplify incoming air pressure waves prior to their mechanical trans-

duction onto the middle and inner ear, improving our overall sensitivity to acoustic

stimulation. The folds on the pinna surface cause air pressure oscillations of different

frequency and direction to be differentially deflected, delayed and absorbed before en-

tering the ear canal. Combined with the acoustic head-shadow, these effects give rise to

an individually characteristic filtering pattern, referred to as the head-related transfer

function (HRTF). Sounds, filtered in this manner, enter the ear canal through the con-

cha, a cone-shaped depression of the pinna that acts as an acoustic funnel. In humans,
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the ear canal itself is approximately 2.5 cm long. Similar to an air-filled cylindrical

tube with one closed end (such as a clarinet or stopped organ pipe), it is preferentially

set into resonance by sound frequencies with corresponding wavelengths close to four

times its own length (Gough, 2007), i.e. 10 cm in case of the (human) ear canal. Since

sounds propagate through air at a speed of about 340 m s–1, we can estimate the funda-

mental resonance frequency of the ear canal as approximately 3400 Hz. This enhanced

resonance for frequencies around 3–4 kHz further shapes the overall frequency-response

characteristics of the external ear, and presumably contributes to our enhanced per-

ceptual sensitivity to frequencies in this range (e.g. Robinson and Dadson, 1956).

Figure 2.7: Anatomy of the human outer, middle and inner ear (from Flanagan,
1972).

2.2.2 The middle ear

The middle ear is an air-filled cavity, extending from the ear drum on the lateral side

to the bony surface of the inner ear on the medial side. Its medial wall contains

two membrane-covered openings, the oval and round window. Three minute ossicles –

malleus (hammer), incus (anvil) and stapes (stirrup) – are delicately arranged as a lever

system that mechanically transfers motions of the ear drum onto the oval window (and

vice versa). Their purpose is to overcome the impedance mismatch between the air-

filled outer and middle ear and the fluid-filled inner ear, i.e. to convert high-amplitude,

low-pressure air vibrations into low-amplitude, high-pressure fluid vibrations. Akin to

airborne sounds being largely reflected by a water surface, air vibrations in the inner

ear would fail to transfer their energy onto the inner ear fluid if the two compart-
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ments were simply separated by a flexible membrane. Two factors contribute to the

impedance-matching process performed by the middle ear ossicles. Firstly, their lever

action reduces the motion amplitude by a factor of 1.3 in humans (Hemilä et al., 1995).

Secondly, and more importantly, the area of the human ear drum is about 23-fold larger

than that of the oval window (ibid.). Thus, the expected effective pressure gain at the

oval window for an ideal transformer is close to 30-fold (approximately 30 dB). In real-

ity however, the gain is generally lower and frequency-dependent, reaching a maximum

of 20 dB for frequencies around 1 kHz (as measured in human cadavers). The ossicles

are held in place by ligaments and the effectiveness of the entire lever mechanism is

influenced by two muscles: the stapedius and tensor tympani which act to dynamically

regulate the middle ear gain. During vocal production, jaw movement and in reaction

to loud sound (exceeding 80 dB SPL), the stapedius reflex causes an involuntary muscle

contraction that reduces the middle ear gain by up to 20 dB (Zakrisson, 1979). Effective

mechanical transmission also requires the air pressure on both sides of the ear drum to

be identical in the absence a sound. The Eustachian tube, a canal linking the middle

ear to the pharynx, serves this purpose by equalising the barometric pressure in the

middle ear cavity and the outside atmosphere (see Figure 2.7).

2.2.3 The inner ear

2.2.3.1 Anatomy

The inner ear is a complex bony structure containing both the vestibular system and

the cochlea – the actual site of mechano-neural transduction of sound. The cochlea (lat.

“snail”) is a fluid-filled, helically coiled tube with an unrolled length of approximately

3.5cm in humans. Encased in a hard bone shell, the membranes of the oval and round

window are the only flexible parts of the cochlear surface. Inside, the tube is tripartite

along its entire length, containing three ducts separated by flexible membranes: the

central scala media (or cochlear duct) including the actual cochlear sensory epithelium,

surrounded by the scala vestibuli and scala tympani (see Figure 2.8). The scala media

is separated from the scala vestibuli by Reissner’s membrane, and separated from the

scala tympani by the basilar membrane. Towards the tip (apex ) of the cochlea, there

is a direct connection, the helicotrema, between the scalae vestibuli and tympani, so

that the two effectively form one long compartment that folds back onto itself, with the
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scala media enclosed in-between (Figure 2.8A). An important property of the basilar

membrane with respect to its passive, mechanical response to stapes motion is its

stiffness: it decreases, roughly exponentially, from the base to the apex by several

orders of magnitude (von Békésy, 1960). While the scalae vestibuli and tympani are

filled with perilymph, a fluid with a low concentration of potassium (K+) ions, the

scala media is filled with high-potassium endolymph. The ionic concentration gradient

between these two fluids is a crucial driving-force for the active response of the cochlea

under physiological conditions, as will be further detailed in section 2.2.3.2.

The sensory epithelium (organ of Corti) of the inner ear is located on the surface

of the basilar membrane, containing some 15000 mechanoreceptor cells: 3000 inner

(IHC) and 12000 outer hair cells (OHC). Attached to their cell bodies are stereocilia,

fine bundles of filament to which the hair cells owe their name. Above their tips rests a

glutinous sheet, the tectorial membrane. Displacement of the basilar membrane leads

to a shearing between the organ of Corti and the tectorial membrane that deflects the

hair bundles from their resting position. This causes either a de- or hyperpolarisation

of the hair cells, depending on the direction of motion: deflections towards the lateral

wall of the cochlear coil cause depolarisation, deflection towards the centre result in

hyperpolarisation. Inner and outer hair cells are distinguished by their anatomical

location, their physiological properties and their innervation patterns. A single row of

IHCs extends along the central side (with respect to the coil) of the organ of Corti.

Despite being fewer in numbers, IHCs are the major source of afferent signals to the

central auditory system. They receive afferent innervation from so-called type 1 fibres

– dendritic neural processes of up to 30 cells situated in the spiral ganglion (Moser

et al., 2006). The spiral ganglion is an aggregation of nerve cells that extends along

the central axis of the cochlear helix. Axons of the spiral ganglion cells (SGCs) form

the auditory nerve which projects onto neurons in the cochlear nucleus of the auditory

brainstem. Depolarisation of an IHC following deflection of the stereocilia causes the

initiation of action potentials in SGC dendrites. IHC afferent signals are modulated

by the efferent fibres of the lateral olivocochlear bundle (LOC), which originate from

the lateral superior olivary complex (SOC) in the ipsilateral midbrain and terminate

directly onto SGC type 1 dendrites.

The outer hair cells are arranged in three rows along the lateral side of the organ of

Corti. A key physiological property of the OHCs is their electromotility, owing to the
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Figure 2.8: Schematic anatomy of an unrolled cochlea (after von Békésy, 1960).
A: Longitudinal section. B: Radial section.
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presence of the motor protein prestin in the plasma membrane (Brownell et al., 1985;

Zheng et al., 2000): de- and hyperpolarisation of the OHC soma causes the cell body

to rapidly stretch and contract, respectively, thereby interfering actively with the fluid-

driven motions of the basilar membrane. OHCs receive afferent innervation from type

2 SGC fibres. Despite the large number of OHCs, type 2 fibres constitute only 5% of

all SGC afferents and their functional role within the ascending auditory system is not

well understood. OHCs receive strong efferent innervation from fibers of the medial

olivocochlear bundle (MOC), originating largely from midbrain nuclei surrounding the

contralateral medial SOC and terminating onto the OHC bodies.

2.2.3.2 Function

As the footplate of the stapes, covering the oval window, moves inwards and outwards,

the cochlear fluids themselves are set into motion. Since the fluids are almost incom-

pressible and the walls of the labyrinth are rigid, an inward motion of the stapes must

ultimately be compensated by an outward movement of the flexible membrane covering

the round window at the base of the scala tympani, and vice versa. As part of this

process, the membranes of the cochlear duct are being deflected up and down in a way

that has led to the common notion of the basilar membrane as a spatial frequency

analyser or “acoustic prism” (Zweig, 1976). When the stapes movement is sinusoidal,

a travelling wave forms on the basilar membrane, starting at the base and propagating

towards the apex. Initially, the propagation speed and wavelength are high, but as the

membrane stiffness decreases away from the base, wavelength and speed drop while

the wave amplitude builds up, until the wave reaches a critical point along the mem-

brane. Beyond this point, frictional losses grow quickly as the wavelength decreases

further, causing the wave to subside (see Figure 2.9). The point of maximal amplitude

is determined by the frequency of the mechanical stimulus at the oval window, which

sets the initial wavelength of the travelling wave. High-frequency stimulation generates

a wave that peaks close to the base, whereas waves elicited by increasingly lower fre-

quencies peak at increasingly apical positions on the basilar membrane (Figure 2.10).

Conversely, each site along the BM has its own characteristic frequency (CF) for which

its sensitivity is greatest. CFs decrease from the base to the apex.

Due to a shearing motion between the basilar and tectorial membrane, the stereocilia of

the hair cells are alternately deflected towards and away from the centre of the cochlear
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Figure 2.9: Cochlear travelling wave in response to a 200 Hz sinusoidal displace-
ment of the stapes, depicted at four different stages of the phase cycle. From von
Békésy (1960, chap. 12).

A

B

Figure 2.10: Mechanical frequency tuning of the cochlea. A: Vibration amplitude
measured at six points on the basilar membrane (different curves), as a function
of mechanical stimulation frequency. B: Vibration amplitude (top) and phase
(bottom), measured along the length of the basilar membrane in response to stapes
vibration at rates of 50, 100, 200 and 300 Hz. From (von Békésy, 1960, chap. 11).
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Figure 2.11: Electromotility of an outer hair cell: change in OHC length in
response to voltage steps from a holding potential of -68.4 mV(from Santos-Sacchi,
1992)

coil, either by way of direct contact between their tips and the tectorial membrane or,

for shorter bundles, through the viscosity of the surrounding medium. Deflections

towards the centre open mechanically gated ion channels that enable the influx of

potassium (K+) ions from the K+-rich endolymph of the scala media into the hair cell

soma. During opposite deflection, these channels close, while at the same time, K+

ions are excreted from the hair cell into the low-K+ perilymphatic fluid of the scala

tympani through voltage-gated K+ channels. This results in an alternating de- and

repolarisation of the hair cell.

IHCs and OHCs react differently to somatic depolarisation. In OHCs, the somatic

potential induces a mechanical response of prestin molecules in the cell membrane:

depolarisation results in a longitudinal contraction, hyperpolarisation in an elongation

of the OHC body (see figure 2.11). The consequences of this electromechanical feedback

in shaping the overall basilar membrane response will be discussed in further detail

in section 2.2.3.3. In IHCs, the initial depolarisation effects the further, voltage-gated

influx of calcium (Ca2+) ions from the scala media endolymph. Increased Ca2+ triggers

the calcium-dependent release of glutamate (and possibly other neurotransmitters) into

the cleft between IHC and the afferent synapses of type 1 SGC fibres. Excitatory post-

synaptic potentials (EPSCs) in the SGC dendrites are mediated by AMPA receptors

and may result in the generation of action potentials that propagate along the SGC

axons to the cochlear nucleus of the brainstem.

The influence of the efferent system (comprising the MOC and LOC bundles, cf. section
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2.2.3.1) on the mechanical and neural response to sounds is far from fully understood,

but experimental evidence points towards an inhibitory role. BM displacement am-

plitudes were found to be reduced around and above CF during electrical stimulation

of efferent MOC fibres synapsing onto OHCs (Russell and Murugasu, 1997). Reduc-

tions were strongest for medium-intensity tones, qualitatively consistent with earlier

observation made in the auditory nerve (Guinan and Stankovic, 1996). These effects

are presumably mediated by a hyperpolarisation of the OHCs, thereby inhibiting their

electromotility. The workings of the LOC efferent system is barely known at all, owing

in large parts to the difficulty of selectively stimulating or recording from the fibres.

The functional significance of the entire efferent system as a whole similarly remains

speculative. Proposed benefits include dynamic range control, reduction of masking

in noisy acoustic backgrounds and the protection of hair cells from cytotoxic acoustic

overstimulation (Guinan, 2006).

On the whole, mechanical and neural tuning properties at any given point along the BM

are closely matched. An important functional property that distinguishes mechanical

from neural responses is the half-wave rectification that the IHCs effectively perform

on the BM response. The IHC potential is depolarised only during half a phase of a

BM oscillation. During the other half, it remains close to the cell’s resting potential.

Due to the slowness of the ion-channel dynamics, the IHC potential gradually ceases to

follow every single peak of the BM oscillation, as oscillation rates increase above 1kHz.

Instead, for high oscillation rates, the potential fluctuates only little around an elevated

baseline. Thus, the IHC response approximately follows the (half-wave rectified) BM

displacement waveform for slow oscillation rates, and its amplitude envelope for fast

rates, performing a simple form of envelope demodulation (see Figure 2.12).

2.2.3.3 Non-linearities in the basilar membrane

Prior to the groundbreaking studies of von Békésy during the 1930s to 50s (von Békésy,

1960), the leading theory of cochlear mechanics had assumed that the stereocilia them-

selves acted as independent resonators tuned to different frequencies, similar to the

strings of a harp or undamped piano (von Helmholtz, 1863). While a similar mech-

anism may indeed be found in the cochleae of some reptiles (e.g. Holton and Weiss,

1983), von Békésy experimentally established the now widely accepted travelling-wave

mechanism as a major determinant of cochlear mechanics in mammals. However, work-
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Figure 2.12: IHC receptor potentials in response to tones of different frequencies
presented at 80 dB SPL, measured at the basal turn of a guinea pig cochlea (from
Russell and Sellick, 1983).

ing solely on cadaver ears, he did not realise the significant role of the OHCs in further

shaping the cochlear response to acoustic stimulation under physiological conditions

(Rhode, 1971; Brownell et al., 1985). As the OHC somata are de- and hyperpolarised

following stereocilia movement, prestin molecules in the cell membrane contract and

expand, rapidly enough to follow frequencies far beyond the human range of hearing

when electrically stimulated in vitro (Frank et al., 1999). This electromotile response

acts to locally amplify the passive, fluid-driven vibration of the basilar membrane and

thereby provides a positive feedback loop that can greatly enhance the amplitude of

basilar membrane motion, particularly in the low-amplitude regime. As a consequence,

the mechanical response of the active cochlea to sounds is highly non-linear. This can

be seen, for example, in the intensity-dependence of cochlear tuning characteristics,

when the intensity of acoustic stimuli is lowered from a moderately high level (e.g.

80 dB SPL) down to the response threshold while measuring the response amplitude at

a fixed point on the basilar membrane across a range of stimulus frequencies. As the

stimulus level decreases, the frequency eliciting the maximal response shifts upwards,

while the frequency selectivity (or sharpness of tuning) around this frequency increases.

Furthermore, the response amplitude for low-intensity stimuli at and near the character-

istic frequency of a given site is amplified by as much as 50 dB above a linear prediction

from high-intensity stimuli (Johnstone et al., 1986). Comparisons have been made

between physiologically-intact preparations and those that were either dead (Rhode,

1973), pharmacologically lesioned (Ruggero and Rich, 1991) or lesioned by acoustic
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overstimulation (Ruggero et al., 1993). From these, it is clear that amplification ef-

fects are indeed due to active processes in the cochlea involving OHC electromotility.

Further non-linear effects beyond the level-dependence of cochlear frequency selectiv-

ity have been linked to the active electromechanical OHC feedback, most prominently

compression of responses to near-CF stimuli, two-tone suppression and intermodulation

distortions.

Compression is a phenomenon observed predominantly at the basal (i.e. high frequency)

end of the cochlea in many mammalian species, whereby the mechanical response to a

tone near the CF of a given site increases sub-linearly (i.e. with a slope of less than 1 dB

response amplitude per dB stimulus amplitude) as the stimulus level increases above

20 to 25 dB SPL. Figure 2.14 shows the velocity-intensity functions of BM responses

to tones in the basal cochlea of a chinchilla. As can be seen, compression is confined

to frequencies near CF (10 kHz). In several cases, response growth has been found to

return to linear at high stimulus levels of 100 dB SPLand above, as seen in the responses

to 9 kHz and 11 kHz tones. Since responses to off-CF tones (e.g. 4-7 kHz in Figure 2.14)

continue to grow linearly at amplitudes where near-CF responses of equal amplitude

are highly compressive, compression does not seem to reflect a mere ceiling effect of

BM responses at high amplitudes. Compression is more pronounced at the base of

the cochlea than near the apex, and is greatly diminished following trauma or death

(Ruggero et al., 1996).

In two-tone suppression, the BM response to a tone (the probe) is reduced in the

presence of another (the suppressor). Similar to amplification and compression, two-

tone suppression is most pronounced for probe tones near the CF of a site, presented

at low to medium intensities (Figure 2.15) and is reduced by hair cell trauma or death

of the animal.

Intermodulation distortions are frequency components in the BM response to two (or

more) tones which are not themselves contained in the stimulus and occur as a natural

consequence of non-linearities in any system. In general, the response of a non-linear

system to a signal consisting of two sinusoids with frequencies f1 and f2, f2 > f1

(primaries) may contain frequencies corresponding to arbitrary integer combinations

mf1 + nf2 : m,n ∈ Z of the primaries (Figure 2.16). These distortions can sometimes

be heard by the listener, most prominently so the quadratic difference tone (QDT)

f2−f1 and the cubic difference tone (CDT) 2f1−f2: their occurrence was described in
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A B

C D

Figure 2.13: Active amplification of BM responses. A & B: Amplitude of the
basal BM response in a guinea pig as a function of tone level and frequency on
an absolute scale (A) and normalised by stimulus level (B), demonstrating super-
linear response magnitude for low-intensity tones near CF. C & D : Level-specific
effects of furosemide injection on BM responses at the basal turn of a chinchilla
cochlea for stimuli presented at 75 dB (C) and 95 dB (D). Adapted from Ruggero
and Rich (1991).
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thetical electromechanical feedback was identified by
Brownell et al. (21), who showed that outer hair cells
change their length under electrical stimulation.

II. IN VIVO BASILAR MEMBRANE MECHANICS
AT THE BASE OF THE COCHLEA

Most of our knowledge of mechanics in normal inner
ears is based on observations of BM motion at basal sites
of the cochleae of guinea pigs, chinchillas, squirrel mon-
keys, and cats. Studies of BM vibrations at the base of the
cochlea have now reached consensus on many issues,
including how to judge the quality of recordings, regard-
less of species or precise CF. The situation is quite differ-
ent with regard to in vivo studies of mechanical responses
at the apex of the cochlea, with studies in chinchilla and
guinea pig having yielded contradictory verdicts regard-
ing several fundamental issues. Nevertheless, there is now
sufficient evidence to conclude that responses at the apex
of the cochlea differ at least quantitatively from those at
the base. Accordingly, in vivo responses to “basic” stimuli
(tones, clicks, and noise) of sites at the base and apex of
the cochlea are described in sections II and III, respec-
tively, of this review.

All techniques for measuring cochlear vibrations re-
quire a relatively unobstructed view of the site of mea-
surement (see sect. XII). At basal locations, the BM can be
reached directly via scala tympani, but the organ of Corti
and the TM are inaccessible (Fig. 1). At the “hook” region
of the cochlea (within 2 mm of the stapes), the BM is
approached by way of the round window (41, 47, 179,
243). Slightly more apical locations (e.g., 3–4 mm from
the stapes) are reached after perforating the otic capsule
(43, 307, 355). An even more apical BM location (�8–9
mm from the stapes) in the squirrel monkey cochlea (293,
306) was reached from inside the posterior cranial fossa
after removal of cerebral tissue and perforation of the
temporal bone near the internal auditory meatus (the
central exit of the auditory nerve).

A. Responses to Single Tones

1. Input/output functions

Figure 2 illustrates velocity-intensity functions for
BM responses to tones recorded at a site of the chinchilla
cochlea located 3.5 mm from the oval window (326). In
contrast to the linear growth of responses to tones with
higher or lower frequencies, responses to stimuli with
frequencies near CF (10 kHz) exhibit highly compressive
growth, i.e., response magnitude grows by only 28 dB as
stimulus intensity increases by 96 dB. Compression is
most prominent at moderate and high levels, with average
rates of growth as low as 0.2 dB/dB at CF (measured for

intensities between 40 and 90 dB SPL; i.e., sound pressure
level referenced to 20 �Pascals) and even lower rates at
frequencies immediately above CF. The input/output
functions for responses to CF tones at basal BM sites in
guinea pig and cat resemble those in chinchilla (Fig. 3).
Rates of growth for responses to CF tones measured in
several studies are collected in Table 1.

Early measurements of BM vibrations using the
Mössbauer technique (see sect. XII) suggested, but did not
establish conclusively, that responses to CF tones grow
linearly at low stimulus intensities (307, 355). Newer mea-
surements using optical techniques have provided confir-
mation (47, 237, 259, 326). Theoretical considerations sug-
gest that input-output functions should also be linear at
sufficiently high stimulus intensities (123, 164, 251, 279,
408). Indeed, the literature includes CF input-output
curves in which compression decreases systematically
above 80 dB SPL and slopes approach linearity at 90–100
dB SPL (272, 300, 322, 324, 332). In contrast, other reports

FIG. 2. Velocity-intensity functions of BM responses to tones. A:
responses to tones with frequency equal to and lower than characteristic
frequency (CF; 10 kHz). B: responses to tones with frequency equal to
and higher than CF. The straight dotted lines (bottom right in each
panel) have linear slopes (1 dB/dB). Recordings were made at a site of
chinchilla cochlea situated some 3.5 mm from its basal end. [From
Ruggero et al. (326). Copyright, Acoustical Society of America, 1997.]
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Figure 2.14: Velocity-intensity functions of BM responses to tones in the basal
portion of a chinchilla cochlea, demonstrating compression near CF (10 kHz). A:
Responses to tones at and below CF. B: Responses to tones at and above CF.
From Ruggero et al. (1997).
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A

B

Figure 2.15: Examples of two-tone suppression. A: Velocity-intensity functions
for probes and suppressors at different levels recorded at a basal site in a chin-
chilla, demonstrating highest suppression for low probe intensities (symbols denote
different suppressor levels; from Ruggero et al., 1992a). B: Effect of a 12kHz sup-
pressor at 63 dB on the response to probes at different frequencies, recorded at a
basal site in a chinchilla. Open circles represent iso-velocity curves for the probe
alone, filled circles for probe and suppressor. Suppression magnitude is indicated
by the thin solid line, demonstrating CF specificity (from Ruggero et al., 1992b).
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the early 18th century by Italian composer and violinist Giuseppe Tartini, and has long

been used as a test for correct intonation by music practitioners (Mozart, 1756). The

amplitude of the CDT on the BM depends on the absolute and relative amplitudes of

the primaries as well as their frequency separation, with larger separations giving rise

to lower distortion amplitudes (Cooper and Rhode, 1997). CDT amplitude, like the

amplitudes of other intermodulation distortions, is highest at sites tuned to the distor-

tion product frequency and can reach levels of up to -15 dB relative to the primaries

(Robles et al., 1997). Furthermore, it is vulnerable to localised acoustic trauma at both

the target and primary sites. This suggests that the CDT is generated at a site close to

the primaries and subsequently propagated along the BM, where it is locally amplified

at an appropriately tuned site (ibid.). Of particular relevance in the context of pitch

perception is the quadratic difference tone (QDT), occurring at a frequency of f2 − f1.

It is audible only at high stimulus levels and more challenging to measure on the BM,

owing to the difficulty of maintaining a physiologically intact preparation while record-

ing from apical (i.e. low-frequency) sites of the cochlea. Nevertheless, its existence has

been clearly demonstrated (Figure 2.16B), with amplitudes as high as 23 dB below the

primaries (Cooper and Rhode, 1997). Its relevance to pitch perception derives from

the simple observation that in a harmonic complex sound with fundamental frequency

f0, any neighbouring pair of harmonics nf0 and (n + 1)f0 gives rise to a QDT at f0.

Since the perceived pitch of such a sound coincides with the fundamental, the question

arises whether the pitch of these and other sounds may reflect the immediate sensa-

tion of mechanical distortions on the BM rather than the result of higher-level signal

processing. This issue will be further discussed in section 2.4.

Peripheral non-linearities, as described above, may also play an important role in psy-

chophysical effects such as simultaneous masking (the elevation of tone detection thresh-

olds in the presence of masking tones or noises, see e.g. Delgutte, 1990) or perceptual

measures of frequency selectivity (Rosen et al., 1998). Such links, however, are very

difficult to establish and remain tentative for the time being, largely due to a lack of

human physiological data. As pointed out, the most important behavioural analogue

from the perspective of pitch perception are combination tones perceived by listeners,

which effectively augment the spectrum of the acoustic stimulus.
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A

B

Figure 2.16: Intermodulation distortions. A: Frequency spectrum of the BM
response to equal-amplitude tone pairs at the basal turn of a chinchilla cochlea
(from Robles et al., 1991). B: Frequency spectrum of the BM response to equal-
amplitude tone pairs at the apical turn of a chinchilla cochlea (from Cooper and
Rhode, 1997).
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Figure 2.17: Major structures of the ascending mammalian central auditory
pathway (from Gacek, 1972).

2.3 Processing of pitch in the central auditory system

In this section, we will give a brief overview of the neural representation of stimulus

periodicity and — possibly — pitch along the ascending auditory pathway, covering

the brainstem, midbrain and auditory cortex (see Figure 2.17). It is generally be-

lieved that neurons in the brainstem and midbrain represent selected physical features

of the sound, all of them likely to contribute to our percept of pitch, but none of

them by themselves a general representation across the entire range of pitch-evoking

sounds. Physiological data is necessarily restricted to non-human species, making di-

rect comparisons impossible. In the cortex, non-invasive physiological measurements

are available from humans. In our review of the cortical substrate of pitch, we will

limit ourselves to these, in addition to electrophysiological data from primates, whose

auditory cortical architecture appears to be closely homologous to humans. A recent,

more general overview including a wealth of recent findings made in ferrets (e.g. Nelken

et al., 2008; Bizley et al., 2009, 2010) can be found in Walker et al. (2011).
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2.3.1 Brainstem and midbrain

In the auditory nerve, two types of representations of sound periodicity have been

observed and studied: one is based on a tonotopic rate-place representation of the

stimulus spectrum, the other one on the timing of neural events in individual pe-

ripheral frequency channels. Spectral peaks in the stimulus give rise to peaks in the

response-amplitude profile of the basilar membrane (BM) along its tonotopic axis, if

their frequencies are sufficiently separated. As the BM amplitude is a major deter-

minant of the inner-hair-cell (IHC) potential and auditory nerve (AN) firing response,

peaks in the BM amplitude profile are preserved in the average firing-rate profile of

the auditory nerve fibres (if one orders them by their characteristic frequencies). For a

harmonic sound, the separation between peaks is equal to its fundamental frequency,

which may serve as the basis for its determination. However, as the frequency band-

width of the BM increases roughly linearly with characteristic frequency (CF), such

peaks are only discernible for low-rank harmonics up to approximately the 10th14. In

addition to this coarse rate-place representation — limited to resolved, approximately

harmonic spectra — periodicity information is also contained in the temporal pattern

of activity in single auditory nerve fibres (or groups of them). Activity in a single

auditory nerve fibre is approximately phase-locked to peaks in the stimulus waveform,

band-passed within a frequency range determined by the place of the innervating IHCs

along the BM axis. Hence, stimulus periodicity within this frequency range is preserved

in the periodicity of the evoked AN response. Cariani and Delgutte (1996a,b) measured

auditory nerve responses in cats to a large variety of (human-)pitch-evoking sounds:

artificial vowels, sinusoidally amplitude-modulated (SAM) tones, SAM noise and click

trains. They computed first-order and all-order inter-spike-interval (ISI) histograms,

pooled across many fibres (the latter being equivalent to the fibres’ autocorrelation

function), and found that the peak of the all-order ISI histogram provided an excellent

match with the “typical” human pitch percept in all cases, independent of the stimulus

level15. Furthermore, sounds typically associated with salient pitch percepts produced

larger peaks in the ISI histogram than weakly-pitched sounds. This form of representa-

tion is expected to deteriorate as the periodicity rates approach the phase-locking limit

14The exact boundary between resolved and unresolved harmonics is a matter of definition and
debate, and depends to some degree on f0 (see e.g. Moore and Gockel, 2011 for a recent summary).

15Histogram peaks based on the first-order ISI were less robust in comparison, e.g. jumping between
fundamental and formant frequencies depending on sound level
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of the AN fibres. Cedolin and Delgutte (2010) investigated the periodicity-limit of the

representation, again in cats, using complex harmonic sounds as stimuli. They found a

sharp increase in estimation errors (> 10% deviation) as the fundametal frequencies ex-

ceeded approximately 1300 Hz (despite the fact that AN fibres in cats have been shown

to phase-lock almost perfectly up to 2 kHz, and to some degree up to 4.5 kHz (John-

son, 1980)). Conversely, the estimation of the fundamental from average-rate profiles

was possible from 400-500 Hz upwards (up to 3.5 kHz, the highest f0 used). These re-

sults demonstrate that neither all-order ISIs nor rate-place profiles alone seem to carry

sufficient information to support human pitch perception across its entire pitch-height

range (if one accepts the cat AN as a legitimate proxy).

Auditory nerve fibres synapse onto neurons in the cochlear nucleus (CN). The CN can

be divided into three sub-nuclei (dorsal, anteroventral and posteroventral), each of them

tonotopically innervated and organised (e.g Malmierca and Hacket, 2010). Out of the

many different cell types in the cochlear nucleus, some have gathered considerable in-

terest with regard to their role in periodicity processing (see e.g. Winter, 2005). Bushy

cells, or “primary-like” neurons, in the ventral CN have response characteristics much

like their AN inputs: they phase-lock to stimulus peaks up to high frequencies, so that

information about the fine-structure periodicity is preserved for potential read-out by

their postsynaptic targets (Winter et al., 2001), for example in the form of all-order

ISI histogram as discussed above. So-called “chopper neurons” in the ventral CN show

a sharp modulatory pattern in their firing rates, at cell-intrinsic modulation rates be-

tween about 100 to 500 Hz in cats (Kim et al., 1990). Within this range, modulation

depth in the response is enhanced when the stimulus periodicity coincides with the

intrinsic chopping rate. This has led to the hypothesis that chopper neurons may help

to transform the all-order ISI representation of periodicity in the AN into a “temporal

place representation”, which would be more convenient to read out subsequently (Kim

et al., 1990; Frisina et al., 1990; Winter et al., 2001; Wiegrebe and Meddis, 2004): given

a linear array of chopper neurons, spanning the entire range of natural chopping rates

for each peripheral frequency channel, stimulus periodicity would manifest itself as a

peak in the modulation-depth profile along this array that is consistent across chan-

nels. The existence of such an arrangement of cells remains speculative however, and

the range of periodicities that can be represented in this fashion would be strictly lim-

ited by the range of intrinsic chopping frequencies. Aside for their hypothesised role in
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transformation of temporal periodicity cues, Blackburn and Sachs (1990) observed that

the rate-place profile in chopper neurons along the tonotopic gradient was considerably

less dependent on sound level than that of primary-like cells (and their AN inputs), thus

providing an easy-to-read spectral representation of the stimulus. Lateral suppression

further acts to sharpen the rate-place profile (Rhode and Greenberg, 1994). “Octopus

cells” in the posteroventral CN receive convergent input across a wide range of frequen-

cies. While their frequency tuning is therefore less specific than in other CN cell types,

their temporal precision and tendency to phase-lock to amplitude modulations in the

stimulus is conversely much higher (Rhode, 1994; Oertel et al., 2000). Overall, the CN

preserves both spectral and temporal fine-structure information in its varied response

patterns. More than just a passive relay, however, some cell types seem to facilitate

the further use of one of these cues or the other for downstream processing stages.

Following the ascending pathway leads us to the superior olivary complex (SOC), the

first stage of binaural convergence. Its primary functional role in hearing is typically

considered to be sound localisation (see e.g. Grothe et al., 2010). Two major nuclei,

the lateral and medial superior olive (LSO and MSO), are highly sensitive to interaural

differences in sound intensity and timing respectively. Within the ascending pathway,

the SOC seems to have gathered only little attention with regard to its role in period-

icity processing and pitch perception. However, due to the specialised function of the

MSO in the processing of interaural time and phase, it may be involved in the genera-

tion of binaural pitch percepts such as the Huggins pitch (however weak and rare the

phenomenon may be; see section 2.1.3). As discussed in section 2.2.3.1, the SOC is the

origin of efferent connections to the inner and outer hair cells.

Neurons in the central nucleus of the inferior colliculus (ICc) receive innervation from

both the SOC (directly and indirectly via the lateral lemniscus) and the CN. Again,

neurons are ordered along a tonotopic gradient: from low frequencies dorsally to high

frequencies ventrally. Interestingly from our point of view, IC neurons respond in a

band-pass manner not only to pure tones frequency: Langner and Schreiner (1988)

demonstrated band-pass tuning also to the modulation frequency of SAM tones for

modulation rates up to 1 kHz in anaesthetised cats (where a neuron’s CF was used as

carrier frequency). Unlike in CN chopper neurons, this manifests itself not only in the

modulation depth of the IC responses, but also in their mean firing rates. Furthermore,

Schreiner and Langner (1988) reported that the modulation-tuning characteristics fol-
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lowed a gradient orthogonal to the dorsal-ventral tonotopic axis, which they called a

“periodotopic map”. Similar results were also obtained from awake chinchillas (Langner

et al., 2002). The physiological mechanisms that underlie periodicity tuning in the IC

are not well understood. McAlpine (2004) showed that quadratic distortions (cf. sec-

tion 2.2.3.3) on the basilar membrane can evoke neural responses in the IC when the

modulation rate of an amplitude-modulated tone matches the CF of a neuron (while

the carrier frequency is consequently much higher). As cells in Langner and Schreiner

(1988) and Langner et al. (2002) had best modulation frequencies (BMFs) typically far

below their CFs (which were used as carrier frequencies), the results cited above are not

readily explained as tonotopic responses to quadratic cochlear distortions16. Hewitt and

Meddis (1994) proposed a mechanism, by which IC neurons act as coincidence detec-

tors of synchronised spikes in their input, originating from a population of CN chopper

units with identical intrinsic chopping rates. High modulation gain in the output of the

chopper neurons (see above) is accompanied by increased spike synchronicity between

neurons, which drives the IC coincidence detector to higher firing-rates when stimulus

modulation rate matches the CN chopping rate. However appealing, there is little di-

rect evidence for such a mechanism and the model cannot readily explain a discrepancy

between the range of chopping rates in the CN and BMFs in the IC found in vivo (see

Krishna and Semple, 2000 for a thorough discussion). Independent of the underlying

mechanism, it remains an open question to what degree (or whether at all) the peri-

odicity map in the IC is related to pitch perception. The simplicity of the read-out

based on average firing rate, without the need for high temporal resolution makes it an

attractive candidate basis for periodicity estimation in the thalamus or cortex, where

neurons become increasingly insensitive to fast-rate fluctuations in their inputs (Wal-

lace et al., 2002, 2007). Furthermore, given the degree of convergence in the IC, the

observed periodicity-tuned responses themselves could reflect a sophisticated, combined

estimate based on the entire variety of spectral, temporal and binaural cues available.

However, BMFs in the IC extend well below the lower limit of pitch (30-40 Hz) on the

one hand, while falling well short of its upper limit (4-5 kHz) on the other hand. In

addition, modulation frequency, periodicity and pitch are not one and and the same

thing. Thus, the generality and robustness of this putative periodotopic representation

across a much larger variety of sounds remains to be tested.

16Reports of modulation tuning to AM tones with high carrier frequencies, far outside the neuron’s
pure tone response range (Biebel and Langner, 2002), however, must be treated with caution for this
reason.
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Figure 2.18: Modulation frequency tuning in the central nucleus of the inferior
colliculus in cats (open circles: single units, filled circles: multi-unit clusters). Peak
firing rate and unit CF are indicated above the tip of each curve (from Langner
and Schreiner, 1988).

The medial geniculate body (MGB) in the thalamus is the target of afferent IC fibres.

Of its three subdivisions (the ventral, medial and dorsal MGB), only the ventral is tono-

topically organised (see e.g. Anderson et al., 2007). Preuss and Müller-Preuss (1990)

demonstrated the existence of band-pass tuning to modulation rates of amplitude-

modulated tones. As with modulation-rate tuning in the IC, it is currently unknown

to what degree these responses in the MGB encode a particular physical feature of the

sound waveform and to what degree they reflect the subjective perceptual experience

of the subject, even in cases when the two may be at odds. Bartlett and Wang (2007)

recently studied the responses of MGB neurons in awake marmoset monkeys using reg-

ular click trains. Their main finding, which qualitatively differentiated MGB from IC

responses, was that a substantial fraction of MGB neurons with band-pass tuning for

click rate responded with wholly stimulus-desynchronised firing patterns. The func-

tional significance of these findings, however, remains yet to be determined (see e.g.

Wang et al., 2008 for a review and discussion).

2.3.2 Cortex

The auditory cortex is a collection of morphologically and physiologically heterogeneous

subfields, located on the temporal lobe in either brain hemisphere. While the archi-

tecture of the subcortical ascending pathway appears to be largely preserved across

many mammalian species, the organisation of auditory cortex is more heavily species-
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dependent (see e.g. Malmierca and Hacket, 2010). One widely shared architectural

feature is the distinction between primary and primary-like “core” areas, that are sur-

rounded by several secondary “belt” areas. The core areas receive ascending, thalamic

innervation primarily from the tonotopically organised ventral MGB and typically show

some form of tonotopy themselves. The non-primary belt areas receive inputs also from

the tonotopically unstructured dorsal and medial MGB, as well as strong intracortical

input from the core areas. Multiple core regions can be distinguished physiologically in

many species by a reversal of the tonotopic gradient at their mutual boundaries. In hu-

mans, the surface of Heschl’s gyrus (HG) is the anatomical site of the core areas of the

auditory cortex (e.g. Hackett et al., 2001). Aside from approximate tonotopic gradients

of preferred spectral tuning observed across species, the functional characterisation of

auditory cortical neurons remains a largely unsolved problem. A major obstacle in this

endeavour is the seeming lability of cortical response properties in the face of changes

in the long-term acoustic or even behavioural context in which stimuli are presented

(e.g. Ulanovsky et al., 2003; Fritz et al., 2003, 2005). Hence, it would appear that

auditory cortex, rather than representing physical stimulus features itself, might be

a key stage in constructing the mental representation of the subjectively-experienced

“auditory scene” from physical-like features represented in the midbrain. If that were

the case, auditory cortex (primary or secondary) would be a promising candidate area

to contain the neural substrate of a perceptual auditory attribute such as pitch. Lesion

studies in humans and animals also suggest that an intact auditory cortex is necessary

to perform pitch-related behavioural tasks. Whitfield (1980), for example, showed that

cats lost their ability to perform and re-learn a missing-fundamental discrimination task

following bilateral ablation of the auditory cortex. In humans, Zatorre (1988) found the

discrimination performance of patients with unilateral temporal-lobe lesions — partic-

ularly those with damage to the right HG — to be significantly impaired when the task

required discrimination of missing-fundamental tones, but not when the fundamental

was present.

Experimentally, one can approach the search for a possible representation of pitch from

many different angles. One could, for example, commit to some specific assumptions

regarding the semantics of a neuronal representation of pitch and search for neurons

(or groups and networks of neurons) in auditory cortex that meet these assumptions.

One particular such form of representation, which experimenters have been keen to
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find, is an explicit rate-place code for pitch along a frequency-labelled axis. In this

putative code, pitch (specifically: pitch height) would be determined by the place of

maximum activity along the axis, and the height of the peak (relative or absolute)

would reflect the perceptual saliency of the percept. All pitch-evoking sounds, and

only those, should elicit a discriminable peak of activity corresponding to their pitch

height. Finally — and critically, in order to classify as a representation of perceived

pitch — the peak should reflect the subjective pitch height on each single trial, rather

than one of several, possibly conflicting, physical cues, for example17. One hallmark of

such a representation would be the existence of neurons with band-pass tuning for pitch

height. Several studies in the primary auditory cortex (A1) of monkeys have failed to

identify such neurons. Schwarz and Tomlinson (1990), for example, recorded responses

to pure tones and harmonic complex tones (with and without fundamental) in A1

of awake macaques, which had previously been trained to perform a missing-f0 pitch

discrimination task. However, all neurons essentially responded to the spectral content

of the stimulus within their respective excitatory and inhibitory receptive fields, rather

than to the missing fundamental. Fishman et al. (1998) came to similar conclusions

based on multi-unit activity (MUA) recorded in a different macaque species. In a

study of A1 in marmoset monkeys, Kadia and Wang (2003) discovered that about

20% of their units showed multi-peaked frequency responses to pure tones with peaks

often occurring at “harmonically-related” frequencies (which they defined as related

by simple integer ratios). Whilst one can imagine that such neurons might be very

useful for determining the f0 of a complex sound via some form of spectral pattern

matching (cf. section 2.4), they clearly do not constitute an explicit representation of

pitch by themselves. To date, the strongest evidence for the existence of an explicit

rate-place code for pitch is based on responses recorded in the core region of auditory

cortex in marmoset monkeys (Bendor and Wang, 2005). A subset of neurons near the

boundary between A1 and primary-like field R were found to be bandpass-tuned not

only to pure tones but also to the missing fundamental of harmonic complex tones with

partial frequencies entirely outside the neurons’ pure-tone response range (see Figure

2.19 A & B). The neurons also fulfilled several other “neccessary conditions” for an

explicit representaion. They reponded to IRN and click-train stimuli with time delays

17Note, that the existence of such an explicit representation is by no means a necessity, and a priori
no more likely than an “implicit” representation, whereby pitch is encoded by the joint activity of
neurons in a widely distributed network, not a single one of which exhibits any obvious kind of tuning
to experimenter-defined stimulus parameters (see e.g. Bizley et al., 2009).
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and click intervals matched to their preferred frequency. Furthermore, response firing

rates were higher for complex tones with low harmonics (IRN with many iterations;

regular click-trains) than for high-harmonic complex tones (IRN with few iterations;

highly jittered click trains), in agreement with expected psychophysical changes in pitch

salience (Figure 2.19 C). Doubts remain, however, whether the control for harmonic

distortion products was effective. Thus, the data is suggestive but not conclusive as

evidence for an explicit representation of pitch in field R. Another reason for concern is

the fact that characteristic frequencies of pitch-selective neurons did not exceed 800 Hz,

indicating that an additional representation is necessary to account for the perception

of pitch above this range.

Figure 2.19: Neural responses to different pitch-evoking sounds in marmoset field
R. A: Tuning of a single neuron to pure-tone frequency and missing f0. B: Firing
rate of a single neuron during presentation of missing-f0 complex tones. Harmonic
numbers range from 1-3 (top) to 12-14 (bottom). Dotted line indicates +2 SEM
from spontaneous rate C: Population-averaged, normalised discharge rates for click
trains (left), IRN (middle) and complex tone stimuli (right). Stimulus parameters
(f0 or ∆t) were chosen for each cell to match its CF. Adapted from Bendor and
Wang (2005).

Regardless of the exact semantics of the representation of pitch, one can ask whether

pitch-related processing in cortex is spatially confined to specific brain regions at all.

A number of studies have attempted to answer this question using functional magnetic
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resonance imaging (fMRI). fMRI provides a measure of the blood-oxygenation-level-

dependent (BOLD) magnetic spin density in the tissue and is thought to provide a

reasonable proxy for local metabolic demand (Logothetis, 2003). Its spatial resolution

is on the order of millimetres but its temporal resolution is low — on the order of several

seconds — due to the slow reaction time of the brain vasculature to changes in oxygen

demand. A locally confined “pitch processor” might be expected to cause a stronger

BOLD signal when listening to a pitch-evoking sound than in the presence of a non-

pitched sound. Patterson et al. (2002) contrasted fMRI responses to band-pass-filtered

iterated rippled noise (IRN) and white noise, the former evoking a pitch percept despite

the absence of prominent, synchronised envelope modulations and sharp rate-place

peaks in the AN response. A selective increase in the fMRI signal for the pitched sounds

over noise was found bilaterally in lateral HG, most likely outside A1, but still within

the core region (homologous to fields R and RT in primates). Penagos et al. (2004)

provided additional support for the role of lateral HG as a pitch centre by showing that

the strength of the fMRI signal in response to missing-fundamental sounds covaried with

its expected pitch strength (but not with fundamental frequency or spectral band-pass

region). Experiments by Hall and Plack (2009), however, question the generality of

a pitch-related activity increase in HG using a pure tone, different harmonic complex

tones and a binaural Huggins-pitch stimulus in addition to IRN. They showed that

only IRN evoked strong responses in HG, while also activating other regions, including

the planum temporale (PT). The other stimuli did non reliably activate HG, but like

IRN, they also activated the PT (which Patterson et al. (2002) had identified as a

region sensitive to time-varying as opposed to static pitch). Activation of HG was also

not found to covary with differences in pitch discriminability, measured in the subjects

during the experiment. In conflict with some of the findings by Hall and Plack (2009),

Puschmann et al. (2010) recently demonstrated the activation of HG in response to

two types of binaural pitch stimuli, including Huggins pitch. For the time being, it

seems, the debate surrounding the roles of HG and the PT in pitch perception — as

measurable in fMRI experiments — remains unresolved.

Other studies have investigated the cortical substrates of pitch using magneto-

encephalography (MEG), measuring changes in the magnetic field above the skull sur-

face effected by the flow of electrical charges during neural activity18. Pantev et al.

18MEG provides much better temporal resolution that fMRI (milliseconds), but the location of the
current-generating sources underlying the MEG response are not uniquely determined by the measure-
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(1989) recorded MEG responses to pure tones and harmonic complex tones in humans

and found that pure tones of a certain frequency would cause activation in the same

region as harmonic complex tones with matched f0. They concluded that the known

tonotopy of auditory cortex is in fact a periodotopy. Langner et al. (1997) took similar

measurements but in conflict with the previous results, reported a periodotopic gradi-

ent orthogonal to the tonotopic axis, i.e. similar to orthogonal layout of frequency and

periodicity previously found in the IC (Schreiner and Langner, 1988; see section 2.3.1).

Both studies, however, suffer from different potential confounds due to peripheral dis-

tortion products (McAlpine, 2004; see also Walker et al., 2011 for a more thorough

discussion), in addition to the very limited range of stimuli used — leaving us once

again in the dark with regards to the cortical representation of pitch.

To summarise, we know very little about the cortical substrate of pitch perception in

spite of long-lasting and intense experimental efforts. Furthermore, no matter what

the ultimate representation may be, there is virtually no empirically-backed indication

of the types of processing steps and computations in cortex that might give rise to our

percept. We have some reason to believe that neurons in the lateral Heschl’s gyrus may

play an important role in these computations, possibly in addition to a wider range

of non-primary areas located in the temporal lobe, including for example the planum

temporale. This may give us a vague sense of where to place pitch perception within the

hierarchy of auditory computational tasks — ranging from the mere detection of a sound

at the one end to complex tasks such as auditory scene analysis, object recognition and

semantic processing at the other end (e.g. Nelken, 2004). The putative involvement

of “higher” cortical areas suggests, if anything, that pitch should perhaps be thought

of as the outcome of a rather high-level computation reflecting not only instantaneous

sensory evidence but also subjective prior knowledge and top-down expectations. At the

level of the brainstem and midbrain, we have a better understanding of the relationship

between stimulus and evoked neural activity than we do in cortex. However, it appears

that these are preliminary processing steps, operating on different periodicity-related

stimulus features in parallel, and that they are only combined into a unified percept

further upstream. In terms of their value in constraining models of pitch perception,

neural response properties in the early auditory pathway may be suggestive of the kind

of “interim results” we may want to arrive at at some point during our computation.

ments, making definitive source localisation difficult
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By themselves, however, they do not tell us much about the computations that build

up on them.

2.4 Theories and models of pitch perception

As we have seen in section 2.1, pitch is a percept that can be evoked by a large variety

of different sounds, from elementary sinusoidal vibrations, through complex-shaped

periodic vibrations, all the way to highly irregular, aperiodic sounds. In this section, we

will explore whether or to what degree we can bring order to and explain these diverse

findings in terms sound properties and our current understanding of the physiological

processes involved in the transformation of the physical signal in the peripheral auditory

system. What is the uniting factor amongst all those various sounds that evoke the

same pitch? As we will see, a satisfactory answer to this question is currently not at

hand. At the same time, however, we will discover a number of promising leads, each

of which can account for a substantial fraction of the observed phenomena. We will

then attempt to formulate a model that is capable of incorporating these various leads

in a concise, principled fashion over the course of the remaining chapters.

We are exposed to a great variety of approximately periodic sounds in our environment,

and their periodicity often carries behaviourally relevant information. Furthermore, the

majority of periodic sounds evoke a pitch equal to their period. It therefore seems only

reasonable to assume that pitch perception reflects a process of periodicity estimation,

developed to extract this information. One way to approach the problem of modelling

pitch might therefore be to find a reliable method of periodicity estimation and test

whether its predictions also hold for all the special cases of periodic sounds that do not

evoke a pitch equal to their period (or perhaps none at all) and those of non-periodic

sounds that nevertheless evoke a pitch as discussed.

A seemingly straightforward method for determining the period of a perfectly periodic

sound x(t) with x(t) = x(t+ Ω) ∀t is to determine its autocorrelation function

R(τ) = lim
T→∞

1

T

∫ T/2

−T/2
x(t) · x(t− τ) dt , (2.4)

which gives a measure of the temporal self-similarity of the signal with itself at all

possible time-lags τ (assuming that we can somehow determine the integral in the
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expression above). One of the fundamental properties of R is that it takes its maximum

at τ = 0 (e.g. Hartmann, 1997), where its value equals the signal power 1
T

∫ T/2
−T/2 x(t)2.

Since our sound is periodic, i.e. x(t) = x(t + Ω), we also know that R(Ω), R(2Ω), . . .

must take the same, maximum value. All we need to do to determine Ω in this idealised

case is to find the smallest non-zero value of τ at which R(τ) = R(0).

Alternatively, we could compute the Fourier transform x̂(f) of x(t):

x̂(f) =

∫ ∞

−∞
x(t) · exp(2πfit) dt . (2.5)

According to Fourier’s theorem, the Fourier amplitudes |x̂(f)| can only be non-zero at

frequencies fk = k
Ω , j = 1, . . . ,∞, i.e. integer multiples of the inverse sound period.

Therefore, in order to find Ω we have to determine the greatest common divisor of

all non-zero Fourier components. In reality, of course, our signals are only finite in

duration and sampled at discrete points in time in the case of digital systems. We

may still compute discretised variants of equations (2.4) and (2.5) and compute R

and x̂ numerically for any given signal. However, as soon as the signal is no longer

perfectly periodic, R does not necessarily peak equally and maximally at τ = Ω and its

multiples, and the non-zero Fourier components of |x̂| may no longer have a greatest

common divisor (greater than the sampling interval) at all. Nevertheless, heuristics

can be used to determine Ω based on either the autocorrelation function or the Fourier

amplitude- or power-spectrum (see e.g. de Cheveigné, 2005). For autocorrelation-based

estimates of Ω, we need a rule to pick one of possibly many local peaks in R(τ) of

approximately equal height. For spectral-based estimates of Ω, an appropriate metric

is required that allows us to determine the fundamental frequency of the harmonic

frequency stack that best fits the observed spectrum — a process commonly referred

to as “spectral pattern matching” or “template matching”.

While these two general approaches will reappear in many theories of pitch perception

in modified form, we can also see why they are by themselves not suitable as models

of pitch perception, when applied directly to the unprocessed waveform of the acoustic

stimulus. One point of concern is the marked degradation of the pitch of HCTs as the

rank of the lowest harmonic increases above 8 to 10. It is not evident a priori, why it

should be much harder to match harmonics 12 to 15 against a harmonic template than it

is to match harmonics 5 to 8. Of even greater concern, however, is the pitch of aperiodic
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sounds such as SAM noise or interrupted noise. The spectra of these sounds are flat

in expectation, and the sound waveform is uncorrelated in time: an impossible task

for pattern matching or autocorrelation. One might be tempted to perform periodicity

analysis not on the raw waveform, but on its periodic envelope, which can be readily

extracted from the signal using a variety of methods (e.g. Turner and Sahani, 2011;

see also section 3.2.2). Unfortunately, this brings an entire host of new problems with

it (aside from not solving the issue of high-harmonic HCTs). Firstly, the pitch of SAM

tones is in general not equal to their envelope periodicity, but shifted away from it.

Secondly, the envelope periodicity and modulation-depth of HCTs depends greatly on

their phase relationships, whereas listeners are largely insensitive to phase relationships

between low-rank harmonics.

In order to explain these subtle effects, it may be necessary to take the physiologi-

cal properties and constraints of the peripheral auditory system into account. Von

Helmholtz (1863) developed a comprehensive theory of “physiological acoustics”, in-

cluding, amongst others aspects, a theory of pitch now commonly referred to as the

“place theory”. Its central tenet is that the pitch of a sound is determined by the place

of maximum excitation of the basilar membrane in the inner ear, which Helmholtz

thought of as a mechanical Fourier analyser (cf. section 2.2.3.3). Helmholtz essentially

adopted an earlier theory by Ohm (1843), known as Ohm’s acoustic law. Ohm had

postulated, that in order to hear a pitch, the Fourier spectrum must contain a compo-

nent at this frequency, and that the pitch of a harmonic complex tone is determined

by the lowest of these19. An intense debate between Ohm and Seebeck ensued (e.g.

Seebeck, 1843; see also Turner, 1977 for a detailed historic account), who in turn had

found contradictory evidence that sounds could evoke a pitch equal to their periodicity

rate, even when the corresponding Fourier component was missing or extremely weak20

(see section 2.1.1.2). Helmholtz, in embedding Ohm’s acoustic law into a physiological

context, provided what seemed like a resolution to this debate (Helmholtz, 1856): he

realised that non-linearities in the peripheral transduction process (cf. section 2.2.3.3)

can introduce harmonic distortion products (DPs) at the fundamental frequency of

a missing-f0 HCT, such that the effective stimulus exciting the auditory nerve (AN)

19Its key sentence, translated as literally as possible, reads as follows: “The pulses required to produce
a tone of frequency m must follow each other in intervals of length 1

m
, and in each of these intervals

they must continuously contain the shape a.sin2π(mt+ p), either purely or such that this form can at
least be segregated as a real, constituent part.”

20In other words: Seebeck had discovered the pitch of the missing fundamental.
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fibres does no longer lack energy at the fundamental21.

Helmholtz’ place theory became the dominant theory of pitch perception for many

decades. Experiments by Schouten (1938, 1940), however, proved it wrong. Schouten,

using equipment which provided a new degree of control over the acoustic stimulus,

devised a scheme of eliminating the DP at the fundamental of a missing-f0 HCT by

adding a pure tone at f0, carefully calibrated in amplitude and phase so as to cancel the

BM excitation caused by the DP itself. The pitch of the missing fundamental remained

unchanged. Furthermore, he generated SAM tones as described in section 2.1.2. The

pitch of a SAM tone is generally not equal to its envelope modulation frequency. A

quadratic DP however, invoked by Helmholtz as the explanation for missing-f0 pitch,

is expected to occur precisely at the modulation frequency, not the perceived pitch.

Hence, Schouten’s experiments effectively ruled out harmonic distortions, and thus

Helmholtz’ place theory, as the sole (or dominant) mechanisms in determining the pitch

of a sound that lacks a tonal component at the pitch frequency. Schouten proposed

a different mechanism (see Figure 2.20). Consider a peripheral bandpass filter that is

centred around the carrier frequency fc of the SAM tone and wider than the modulation

frequency g (i.e. the spectral components are unresolved). Its output will resemble the

waveform of the SAM tone itself. Action potentials in the associated AN fibre (or

bundles thereof) will occur phase-locked to peaks in the filter output (cf. also section

2.3.1). Since the peaks in the temporal fine structure (TFS) of the filter output shift

progressively relative to the phase of the envelope modulation, the time-span between

the two highest peaks of two successive envelope periods is somewhat shorter than the

envelope period itself (τ1 in Figure 2.20). In fact, it matches the perceived pitch very

closely (e.g. 204 Hz for fc = 2040 Hz and g = 200 Hz). The ambiguity of the percept,

and the occasional matching to frequencies around 185 and 227 Hz can similarly be

explained by the timing of spikes that occur not at the two highest TFS peaks but

at peaks slightly before or after (e.g. τ2 and τ3 in Figure 2.20). Thus, the pitch of

SAM tones according to Schouten’s explanation is based on the analysis of peak times

in the output of AN fibres that are stimulated by unresolved harmonics (for example

by computing a histogram of inter-spike-intervals). As such, it cannot constitute a

general theory of pitch by itself: missing-f0 exists, and is strongest, for resolved HCTs

21Helmholtz speculated that the source of the non-linearity was the asymmetry of the middle-ear
ossicular chain. He was wrong, in that the the active mechanical response of the basilar membrane has
now been identified as the predominant source of non-linearity in the transduction process. Neverthe-
less, his observation regarding the generation of distortion products remains valid in principle.
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(Shackleton and Carlyon, 1994, cf. section 2.1.1.2), even though the peripheral channel

outputs are effectively unmodulated pure tones of different frequencies in this case. The

same argument holds for the pitch shift of resolved SAM tones (or shifted HCTs with

a greater number of components, e.g. de Boer, 1956b; Patterson, 1973, 1976).
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Figure 2.20: Sinusoidally amplitude-modulated tone with fc = 2040 Hz and
g = 200 Hz (blue; grey line indicates the 200 Hz envelope). Timing of the peaks
in the fine structure underneath the envelope shifts in phase from one envelope
peak to the next. τ1 ≈ 4.9 ms indicates the time-span between the two-largest
fine-structure peaks within two consecutive peaks of the envelope, corresponding
closely to the dominant pitch of 204 Hz. τ2 and τ3 match the alternative pitches
of approximately 185 and 227 Hz. After Schouten et al. (1962).

Modern theories of pitch perception can be broadly divided into those that are based on

refinements of Helmholtz’ place theory, and those that are based on a temporal analysis

of peripheral filter outputs similar to Schouten’s idea (see Figure 2.21). The former

class of “pattern matching” theories extends Helmholtz’ in that pitch is derived from the

joint pattern of excitation along the entire BM (or AN), rather than just its peak. The

latter class of “temporal” models extends Schouten’s idea by combining the outcome

of the channel-by-channel periodicity analysis into a joint estimate across channels.

Periodicity analysis in these models is often based on computing the autocorrelation

function of each channel (see above). We will discuss several of these models along with

their respective merits and shortcomings in the following.

2.4.1 Examples of spectral pattern-matching models

Pattern matching models work on the assumption that the pitch of a sound is deter-

mined by comparing the peripheral representation of the stimulus spectrum against

harmonic stacks with different fundamental frequencies until the best match is found.
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Figure 2.21: Spectral and temporal cues in models of pitch. Centre: A sound
(200 Hz HCT) evokes a time-varying neural firing pattern in the auditory nerve.
Left: The average-rate profile along a tonotopic axis gives a coarse representa-
tion of the stimulus spectrum. Local firing-rate maxima in the profile occur in
fibres with CFs close multiples of 200 Hz. Right: Autocorrelation analysis in each
peripheral channel yields a measure of temporal stimulus self-similarity. High har-
monics generate envelope modulations at 200 Hz in high frequency channels due
to the widening of filters with increasing CF. Summation across channels is a
commonly-used strategy to obtain an aggregate measure across channels.
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Put in a different way, they try to find an approximate greatest common divisor of the

observed spectral components above the lower limit of pitch perception (> 30−40 Hz).

Initially suggested by de Boer (1956b), three influential models of this kind were pub-

lished in close succession by Goldstein (1973), Wightman (1973) and Terhardt (1974,

1979), and more related work has been published since: Duifhuis et al. (1982) proposed

a model in the spirit of Goldstein, that contains (in the authors words) “elements

that are virtually identical” to elements in Terhardt (1979). Hermes (1988) developed

a method that similarly resembles that of Terhardt. Cohen et al. (1995) provided a

neural-network implementation of spectral template matching, which Grossberg et al.

(2004) incorporated into a hierarchical model of auditory scene analysis. All these

models are fundamentally limited in their scope by the assumption that pitch is based

on aurally resolved spectral peaks: as such, they cannot explain the pitch of unresolved

HCTs and SAM tones, or that of spectrally white sounds such as SAM noise. Several

points regarding these limitation deserve mention at this point.

Firstly, Wiegrebe and Patterson (1999) have shown that the amplitude modulations in

band-limited SAM noise create a distortion product on the basilar membrane at the

modulation frequency (see also Strickland and Viemeister, 1997). Furthermore, when

the distortions were cancelled by adding a pure-tone in anti-phase (as introduced by

Schouten (1938); cf. section 2.4 above), listeners could no longer discriminate between

different modulation rates. This indicates that the pitch of narrow-band SAM noise

may indeed critically depend on peripheral distortions, and thus spectral models could

be sensitive to it provided that they are based on peripheral front-ends with sufficient

physiological realism. However, Wiegrebe and Patterson (1999) also found that AM-

rate discrimination of SAM noise was impaired but still possible despite the cancellation

tone, when the noise bandwidth was wider than twice the modulation frequency. Thus,

the pitch of SAM noise in general does not appear to be explicable in terms of distortion

products alone22.

Secondly, with regard to the limitations of spectral pattern-matching models in ex-

plaining the pitch of unresolved HCTs, it is perfectly possible in principle to extract

spectral information about unresolved components of the stimulus from a spectral anal-

ysis of the response of high-frequency AN fibres (limited of course to their respective

22Note also that the original experiments by Burns and Viemeister (1976, 1981) were performed using
both wide-band SAM noise and band-limited SAM noise with added band-reject masking noise.
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response bandwidths). Thus, a spectral-based, central pitch processor performing pat-

tern matching on this “peripherally-derived” spectrum could also take unresolved har-

monics into account during periodicity estimation. However, this possibility is typically

not exploited in pattern-matching models. A notable exception is the central spectrum

model by Srulovicz and Goldstein (1983) which implements precisely this idea, generat-

ing an internal representation of the stimulus spectrum from spike-interval histograms

in the peripheral channels. However, to the best of our knowledge, no attempt was

subsequently made to combine this potentially powerful spectral representation with a

corresponding, pattern-matching-based periodicity estimator.

2.4.1.1 Wightman’s pattern transformation model

In terms of its categorisation, Wightman’s pattern transformation model of pitch

(Wightman, 1973) is an interesting case: pitch predictions are based on the profile

of average firing rates of auditory nerve fibres ordered by their CFs and the model is

hence legitimately classified as an example of spectral pattern-matching. On the other

hand, what Wightman tries to achieve with his model is to compute an approximate

stimulus autocorrelation function and estimate the stimulus periodicity by finding its

maximum non-zero peak (cf. equation (2.4)). Wightman himself describes the model

therefore as “essentially an autocorrelation model” (ibid.). The simple, appealing logic

behind the model is the following: According to the Wiener-Khinchin theorem, the

autocorrelation function R(τ) is related to the Fourier power spectrum |x̂(f)|2 via the

Fourier transform (Hartmann, 1997). Since the central auditory system has access to a

degraded but nevertheless recognisable representation of the stimulus spectrum in the

form of time-averaged AN firing rates, it might attempt to apply the Fourier transform

to his surrogate spectrum to obtain a surrogate autocorrelation function and perform

periodicity estimation based on the latter.

In our implementation of Wightman’s model for use in chapter 5 (cf. section 5.4.3), we

emulate the peripheral transduction process as a linear gammatone filter bank bank

followed by half-wave rectification and low-pass filtering in each channel. A more

detailed description of this peripheral front-end is given in section 3.2. For a given

acoustic stimulus, we perform the following steps to obtain a prediction for its pitch:

1. Compute the average firing rate ai of each peripheral channel with CF fi (i =
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Figure 2.22: Missing-f0 pitch in Wightman’s pattern transformation model.
Top: Power spectrum of a 250 Hz missing-f0 HCT with harmonics 4 to 15 in a
background of low-intensity white noise. Middle: Average firing rate of auditory
nerve fibres as a function of their CF. Crosses indicate CFs in the model, the curve
is a cubic Hermite interpolation. Bottom: Inverse Fourier transform of the firing
rate profile. Note the peak at τ = 4 ms, corresponding to the f0 of 250 Hz.

1 . . . C).

2. Interpolate between the ERB-spaced CFs fi using cubic Hermite splines to obtain

a firing-rate profile a(f) that is linearly sampled in frequency.

3. Compute the discrete inverse Fourier transform of a(f) to obtain the surrogate

autocorrelation function R̃(τ).

4. Choose the highest peak of R̃(τ) (above 1 ms) as the pitch period.

Figure 2.22 demonstrates that the model is capable of finding the missing fundamental

of a resolved HCT. As the harmonics of the sound above approximately the 10th do not

produce discernable peaks in the a(f) the model is fundamentally limited to pitches

evoked by resolved frequency components.

2.4.1.2 Terhardt’s theory of virtual pitch

Terhardt (1974, 1979) proposed a different approach to pattern matching. In his model
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of virtual pitch, a spectral analyser determines the frequency and amplitude of sig-

nificant local peaks in the Fourier power spectrum of the stimulus. In the next step,

the perceptually-relevant component amplitudes (and to a small degree even the fre-

quencies) are determined based on an overall spectral gain function, masking effects

between nearby spectral peaks as well as the local level of background noise. In the

final stage, the adjusted and thresholded spectral component enter a process of “sub-

harmonic summation”23. Each component adds to the evidence for the presence of a

harmonic stack with fundamental frequency equal to either the component frequency

itself, or its integer submultiples (or subharmonics) up to some maximum rank (e.g.

12). A virtual pitch profile is obtained, the peaks of which are considered possible

pitch matches to the stimulus, in order of their magnitude. Subharmonic summation

had been used for f0 estimation already prior to Terhardt (e.g. Schroeder, 1968; see

also Hermes, 1988 for a subsequent example), but not in combination with a front-end

that modifies the raw stimulus spectrum in order to take masking and resolvability into

account. Terhardt distinguishes the candidate virtual pitches from “spectral pitches”,

which simply correspond to individual, audible frequency components, thus differen-

tiating between synthetic and analytic listening modes (cf. section 2.1.1.2). Terhardt

further posited that the association of component frequencies and their subharmonics

be learnt through the extensive exposure to (near-harmonic) speech sounds during de-

velopment. Shamma and Klein (2000) proposed an alternative mechanism, by which

harmonic templates emerge from cross-correlated firing of AN fibres with harmonically-

related CFs even when stimulated with noise or other broad-band stimuli such as clicks.

In any case, the origin of the knowledge about harmonic relationships is largely irrele-

vant when using Terhardt’s model to predict pitch once the learning phase is completed.

Terhardt et al. (1982) published a detailed algorithmic description of the model, where

the outcome of the learning phase, i.e. the knowledge about harmonic frequency ratios,

is fully hard-coded into the algorithm.

In our implementation of the virtual pitch model (cf. section 5.4.2), we precisely fol-

lowed the specifications of Terhardt et al. (1982) with two small modifications. Firstly,

we did not take interaction effects between spectral components into account that mod-

ify their effective frequencies by small amounts. According to the authors, these can

be safely ignored in many cases, except for very specific minute pitch-shift phenom-

23We have borrowed this term from a related, subsequent model by Hermes (1988), not from Terhardt
himself.
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Figure 2.23: Missing-f0 pitch in Terhardt’s virtual pitch theory. Top: Power
spectrum (up to 5 kHz) of a missing-f0 HCT with harmonics 4-15 (dark red).
Steep local peaks are extracted (red circles) and their effective amplitudes ad-
justed according to a spectral weighting, masking between nearby frequencies and
local masking due to noise (green circles). Components with effective amplitudes
above 0 dB (green crosses) are entered into a process of subharmonic summation.
Bottom: Extracted virtual pitch candidates (light blue) and smoothed virtual
pitch profile (dark blue). The model correctly identifies the missing fundamental
of 250 Hz.

ena. Secondly, we convert the final set of candidate virtual pitches from a collection

of discrete pairs of frequencies and magnitudes (i.e. a sum of delta-functions) into a

continuous virtual pitch profile by applying a narrow (2 Hz) Gaussian smoothing filter.

This was found to be useful to avoid multiple virtual pitch candidates at near-identical

frequencies in the case of noisy stimuli (a similar effect could have been achieved by a

discrete binning of virtual pitches).

2.4.1.3 Goldstein’s optimum processor model

Goldstein developed a model to explain the pitch matching behaviour for two-

component complex tones reported by Houtsma and Goldstein (1972) (cf. section

2.1.2). Out of the three pattern matching models discussed in this section, Goldstein’s

“optimum processor” model is the most abstract in its treatment of the peripheral au-

ditory system. It is assumed that a peripheral front-end simply returns the frequencies

of the two stimulus components. Therefore, not only information about component

phases is lost (as in all models based on the stimulus power spectrum), but also their
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respective amplitudes. Given these highly reduced inputs, however, Goldstein develops

a statistical framework whereby the listener assumes that the two observed spectral

components are two successive harmonics of the same, missing f0 — as was the case in

the experiments by Houtsma and Goldstein (1972) — and forms an optimal estimate of

its frequency, exploiting statistical knowledge about the imperfections of the peripheral

spectral pre-processor.

In particular, Goldstein assumed that the two frequencies f1 and f2 available to the

central pitch processor are independent, noisy samples drawn from two Gaussian dis-

tributions with means equal to the true, harmonic stimulus frequencies n1f0 and n2f0

and frequency-dependent variances σ2(nif0):

P(fi |ni, f0) = N (fi |nif0, σ(nif0)) , i = 1, 2 (2.6)

=
1√

2π σ2(nif0)
exp

(
−(fi − nif0)2

2σ2(nif0)

)
. (2.7)

The rank of the lowest component n1 is unknown, but it is assumed that n2 = n1 +1 (or

when extended to cases with more than two components: ni = n1+i−1). Furthermore,

the central processor has full knowledge about the frequency dependence of the noise

variance σ2(f). According to Goldstein’s theory, pitch reflects the maximum likelihood

estimate (e.g MacKay, 2003) of f0, i.e. the central processor determines those values of

the two unknown variables f0 and n1 that make the observations f1 and f2 seem most

likely24:

(f∗0 , n
∗
1) = argmax

(f0,n1)

∏

i

P(fi |ni, f0) . (2.8)

Note that Goldstein’s model for all its lack of physiological detail is not a purely signal-

based pitch-determination algorithm: the frequency-dependent noise variance of the

spectral preprocessor reflects an inherent property of the peripheral auditory system.

The restrictive assumptions regarding the input representation limit the scope of Gold-

stein’s model rather severely. It is not readily applicable to stimuli with noisy and

continuous spectra, and where applicable its predictions do not generalise to situations

where amplitude or phase differences between different spectral components become

important in determining the pitch (see e.g. chapter 5). Nevertheless, the general

24Note that the inferred rank n∗1 is irrelevant.
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framework of statistical estimation that underlies Goldstein’s model can be extended

to more complex scenarios. Our own model, which we will develop in chapter 3 can be

seen as one possible such extension. In particular, we will replace Goldstein’s highly

abstract spectral preprocessor with a more realistic auditory-nerve model (albeit still

schematic). This will allow our model to process sounds with arbitrary spectra, ex-

ploiting whatever information regarding the stimulus periodicity is preserved in the

AN response, be it harmonic peaks in the rate-place profile or its more fine-grained

temporal properties.

De Boer (1977) noted an interesting relationship between the models of Wightman,

Terhardt and Goldstein: he showed that Goldstein’s model is approximately equivalent

to Terhardt’s in the limit of σ(f)2 → 0, i.e. in the zero-noise case of Goldstein’s

spectral preprocessor. Wightman’s model, conversely, can be approximately obtain

from Goldstein’s when σ(f)2 is assumed to grow large. As a result, the three models

are sometimes regarded as near-equivalent. As we will see in chapter 5 (section 5.4), the

behaviour of Terhardt’s and Wightman’s models can nevertheless be markedly different,

despite their constituting different limiting cases of the same underlying model.

2.4.2 Temporal models and summary autocorrelation

Licklider (1951) proposed the “duplex theory of pitch perception”, the direct ancestor

of many modern, timing-based pitch theories. Licklider thought of pitch as a percept

along two intrinsic dimensions: chroma and height (cf. section 2.1). He hypothesised

that the mechanism for determining pitch along these two dimensions was similarly

“duplex” in nature. Pitch height, according to his theory, is determined by the place

of maximum excitation along the BM, while chroma is determined by a time-domain

analysis of the peripheral frequency-channel outputs. Modern descendants of his theory

typically do not make a categorical distinction between pitch height and chroma, and

regard the temporal component of Licklider’s duplex model as a way to determine

pitch along a single dimension that implicitly determines both these attributes. For

this temporal component, Licklider imagined that the auditory system continuously

computes a running, time-windowed autocorrelation function (ACF) hi(t, τ) in each

frequency channel i, where t denotes the time of evaluation, and τ the lag at which

the ACF is evaluated. If we assume that the time-window over which the peripheral
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channel-output ai(t) is integrated in the computation of the ACF is exponentially

shaped with time constant λ, we can write hi as

hi(t, τ) =

∫ t

0
ai(t

′) · ai(t′ − τ) · exp((t′ − t)/λ) dt′ , (2.9)

i.e. as a leaky integration of the product ai(t
′) · ai(t′− τ). This functional form seemed

particularly appealing to Licklider, as he considered it to map directly onto a possible

neural substrate. For every value of τ in each channel i, he speculated that a neuron

received two copies of ai as its input, one of them delayed by τ with respect to the

other by means of a neural delay line. The recipient neuron fires when spikes in its

two inputs coincide, thereby effectively calculating their point-wise product. A further

neuron integrates the output of the coincidence detector, but its excitation “dissipates

itself spontaneously, perhaps at a rate proportional to the amount accumulated” (Lick-

lider, 1951), giving rise to a time-varying membrane potential exactly of the form of

equation (2.9). If one imagines these neurons to be arranged on a two-dimensional

lattice (extending in dimensions of peripheral CF and τ), a HCT would give rise to a

ridge along the CF-Dimension for the value of τ that corresponds to the inverse of its

f0. For fibres stimulated by a single, resolved harmonic nf0, hi peaks at all integer

multiples of 1
nf0

, including 1
f0

itself. For high-frequency fibres stimulated by a number

unresolved harmonics, the AN activity ai follows essentially the envelope of the BM

vibration (cf. sections 2.2.3.2 and 3.2.2), which is periodic at rate f0 and therefore

causes a peak in hi at τ = 1
f0

. Critically, this autocorrelation-ridge is preserved for

high-CF fibres independent of the presence of low-rank harmonics, providing a basis

for unresolved missing-f0 pitch that is missing from virtually all spectral models. Such

a ridge is similarly generated by non-periodic stimuli such SAM noise, which also evokes

periodic envelope modulations in high-frequency fibres (see Figure 2.24).

Licklider’s original duplex theory does not specify how the ridge in hi(t, τ) is to be iden-

tified by a subsequent pitch processor. Slaney and Lyon (1990) presented an implemen-

tation of Licklider’s theory, where hi(t, τ) (after an additional step of edge-sharpening)

was summed across channels. Summation as a means for combining information across

channels had already been proposed by van Norden (1982), with the slight difference

that hi in his model was based on first-order inter-spike-intervals (ISIs) rather than

autocorrelation (which for a neural spike train is equivalent to computing the all-order

ISI histogram; see also Cariani and Delgutte, 1996a). The summation approach was
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A B

C

Figure 2.24: Licklider’s duplex theory of pitch. A: Putative delay-line mecha-
nism underlying the autocorrelation computation. Synaptic relays at neurons Bk

cause increasing delays relative to the output of neuron A. Neurons Ck act as
coincidence detectors and neurons Dk perform a leaky integration of their outputs
(from Licklider, 1951). B: Spatial array of neurons along dimensions of periph-
eral CF (“x”) and delay τ (ibid.). C: AN response (centre) to a 250 Hz SAM
noise stimulus (top left: waveform, bottom left: power spectrum) and output of
the autocorrelators at the end of the stimulus (right), showing peak in high-CF
autocorrelators at multiples of the modulator periodicity of 4 ms.

adopted and popularised by Meddis and Hewitt (1991), who coined the term “summary

autocorrelation function” (SACF) for the function

s(t, τ) =
∑

i

hi(t, τ) . (2.10)

There are numerous possible ways to “read out” the SACF, and defining an appropriate

strategy is not a trivial task. One difficulty arises from the fact that s varies over time.

To simplify the problem, one might decide to base the decision regarding the pitch of the

sound solely on its shape at the time T of stimulus offset. Needless to say, information

regarding the periodicity of the stimulus is lost by disregarding the time-course of s.

Assuming that pitch is determined by the evaluation of s at a single point in time, we

still need a decide which lag τ∗ to report. A straightforward strategy is to pick the peak
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τ∗ = argmaxτ s(T, τ) (constrained within certain bounds in order to avoid reporting a

pitch close to τ = 0 ms). Peak-picking disregards potentially valuable additional cues,

such as the reoccurence of peaks in intervals of 1
f0

in the case of HCTs. For situations

where pitch is measured by direct matching against a reference stimulus (rather than

interval or melody recognition, for example), Meddis and Hewitt (1991) suggested to

use the squared Euclidean distance

D2 =

∫
(st(Tt, τ)− sr(Tr, τ))2 dτ (2.11)

between the SACFs st and sr of the target sound and the reference as a measure of their

pitch similarity. Pitch matching is then achieved by finding the reference sound that

minimises D2. This method is not without pitfalls, however, as D2 is highly sensitive

not only to variations in the shape of s due to differences in pitch, but also to those

effected by differences in level or spectral envelope between the two sounds.

Despite these concerns, Meddis and Hewitt (1991) demonstrated that the SACF model

can, in principle, account for a substantial range of pitch-related phenomena. We

have already discussed how missing-f0 HCTs (including unresolved ones) and SAM

noise can create ridges in Licklider’s 2D-lattice of autocorrelators, and these ridges are

preserved when summing across different fibres. In the case of SAM tones and shifted

HCTs, unresolved components below the phase-locking limit in the auditory nerve give

rise to multiple peaks in s in close correspondence to the pitch matches measured

psychophysically (e.g. Schouten et al., 1962; Patterson and Wightman, 1976; see also

section 2.1.2). SACF also explains the pitch of IRN, including the dependence of the

pitch of IRNn− on the number of iterations n (cf. section 2.1.2), which is not trivially

explained by its power spectrum. For IRN 1−, the delay-and-subtract process creates

an anti-correlation between waveform amplitudes separated by the delay interval d.

This anti-correlation is preserved in the temporal fine-structure of the lower-frequency

AN fibres, causing a local minimum to occur in s(T, τ) at τ = d. Meddis and O’Mard

(1997) further showed that the SACF model is to some degree phase-sensitive. While

the phases of resolved harmonics do not influence the position of the peak in s, phase

relationships between unresolved harmonics that double the envelope modulation rate of

their respective filter outputs can cause a doubling of the reported pitch (cf. Shackleton

and Carlyon (1994) and section 2.1.1.2).
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Based on these results alone, SACF explains a wider range of phenomena than any of

the pattern matching models discussed in the previous section. Yet, the SACF model

is not without issues either. As Houtsma and Smurzynski (1990) have shown (and oth-

ers such as Shackleton and Carlyon (1994) and Bernstein and Oxenham (2003) have

subsequently confirmed), the pitch of missing-f0 HCTs is markedly stronger (subjec-

tively and in terms of f0-discriminability) when low-rank harmonics are present in the

stimulus. Carlyon (1998) demonstrated that no such systematic effect is found in the

SACF model (in its implementation by Meddis and O’Mard (1997)). The model showed

very little degradation even when all harmonics were unresolved. The authors inter-

preted these results as evidence for the existence of two separate pitch processors: one

that performs pattern-matching on the resolved spectral components of the stimulus

and gives rise to a strong percept of pitch, and one based on periodicity analysis in

the output of fibres stimulated by unresolved harmonics that provides a much weaker

sense of pitch. We have already discussed one weakness of this argument (cf. section

2.1.1.2), namely that peripheral resolvability does not appear to be the primary cause

for the weakening of the pitch percept. Furthermore, Bernstein and Oxenham (2005)

presented a modification of the SACF model which addresses the criticism by Carlyon

(1998) at least qualitatively. Instead of simply summing the individual channel-ACFs,

a channel- and lag-dependent weight-matrix W = {wi,τ} is introduced, and equation

(2.10) is replaced by the weighted sum

s̃(t, τ) =
∑

i

wi,τ hi(t, τ) (2.12)

Bernstein and Oxenham (2005) chose wi,τ such that high-CF autocorrelators hi would

contribute little or nothing to s̃ at long time-lags, thereby lowering or abolishing the

SACF peak at the fundamental of an unresolved missing-f0 HCT.

Numerous other modifications have been proposed regarding details of the original

SACF model by Meddis and Hewitt (1991). One recurrent issue concerns the choice

of λ, the integration time constant of the autocorrelators. Licklider proposed values of

λ ≈ 2 ms, which would makes the model insensitive to periodicity rates substantially

lower than 500 Hz and allow for rapid fluctuation of the periodicity estimate. Meddis

and O’Mard (1997) used a value of λ = 10 ms which is still somewhat short of the lower

limit of pitch around 30 Hz (Pressnitzer et al., 2001). Wiegrebe (2001) proposed the use
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of CF-dependent integration time constants λi, such that low-frequency autocorrelators

integrate over longer time windows. Balaguer-Ballester et al. (2008) recently presented

a substantial extension, whereby the short-term SACF s, computed with λ ≈ 10 ms,

is itself integrated over time. Integration is leaky, as in the autocorrelators, but with

considerably longer time constant λl (e.g. hundreds of milliseconds). The outcome of

this integration is the low-pass filtered SACF (LP-SACF)

l(t, τ) =

∫ t

0
s(t′, τ) · exp((t′ − t)/λl) . (2.13)

Its benefit over the the unfiltered SACF s is that spurious, short-term peaks in s

due to random fluctuation are evened out in l over longer durations, while at the

same time maintaining the lower limit of period-sensitivity imposed by λ (i.e. the

time constant of the autocorrelators). In addition to changes to the “central” compo-

nent of the model, refinements have also been made to the peripheral front-end that

feeds into the autocorrelators. The peripheral front-end used by Balaguer-Ballester

et al. (2008), for example, is based on a biophysically detailed model of inner-hair

cell (IHC) and AN responses (Sumner et al., 2002), including a non-linear, compres-

sive cochlear filter bank, calcium-dynamics in the IHC soma and stochastic, calcium-

dependent neurotransmitter-trafficking at the IHC synapse.

Licklider thought of autocorrelation as a physiological mechanism. While coincidence

detection and integration are indeed two fundamental modes of neural computation,

direct anatomical or physiological evidence for the type of autocorrelators required for a

mechanistic interpretation of his theory has not been found. In particular, the existence

of precisely-timed neural delay lines with delays up to 30 ms (in order to account for the

lower limit of pitch) appears doubtful. De Cheveigné and Pressnitzer (2006) recently

proposed an alternative potential mechanism whereby “synthetic” delays are generated

through cross-channel phase interactions. This abolishes the need for neural delay lines,

at least for resolved harmonics. Positive evidence for the use of such a mechanism by

the auditory system however is also lacking.

Various models based on the temporal analysis of peripheral filters by means other

than summary autocorrelation have been developed. Patterson et al. (1992) proposed

the “auditory image model” (AIM) as an alternative central stimulus representation

(see also Patterson, 2000). Like Licklider’s lattice of correlators, the auditory image
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extends in dimensions of peripheral CF and time. Rather than tracking the short-term

ACF however, running averages of “snapshots” of the AN activity within a certain

time window are computed. This running average is not computed continuously (in

which case the model would simply compute the peripherally resolved spectrum), but

in a “strobed” fashion: snapshots are taken at discrete points in time, triggered inde-

pendently in each channel by prominent peaks in the channel output. When the AN

activity pattern across several channels is periodic, and strobed integration is repeat-

edly triggered in an approximately phase-locked manner, ridges along the CF dimension

appear in the auditory image at times corresponding to multiples of the common peri-

odicity. Just like Licklider’s lattice by itself, however, the AIM is not a model of pitch

perception but instead a particular representation of the stimulus and its recent past

that may lend itself well to subsequent periodicity detection. A model that is formally

closely related to autocorrelation is the “cancellation model” of pitch (de Cheveigné,

1993, 1998). Instead of the point-wise product ai(t) · ai(t − τ), the squared difference

(ai(t)−ai(t−τ))2 is integrated over time similar to equation (2.4). While the resultant

integral is equivalent to hi up to sign-reversal and a constant, the model also generates

an output in which the stimulus periodicity is suppressed. Thus, it provides not only

a means for estimating the stimulus periodicity, but also implements a harmonic can-

cellation filter which may provide a basis for segregating concurrent, periodic sounds.

Cariani and Delgutte (1996a,b) used real data recorded from cat AN in place of a

simulated, peripheral front-end as the basis for computing an aggregate all-order ISI

histogram, closely related to the SACF (cf. also section 2.3.1). The authors found that

the ISI histograms allowed for the reliable prediction of the pitch of missing-f0 HCTs,

SAM tones (ambiguity and shifts), SAM noise and others.

None of the models discussed in this section make use of the frequency label associ-

ated with each peripheral channel during periodicity estimation: the channel identity

is entirely irrelevant during summation, except to a limited degree in the extensions by

Wiegrebe (2001) and Bernstein and Oxenham (2005). Oxenham et al. (2004) designed

a stimulus to specifically test whether the same might be the case in human listeners.

They imposed three harmonically-related low-frequency modulators of 300, 400 and

500 Hz (i.e. with a missing modulator f0 of 100 Hz) on high-frequency sinusoidal carri-

ers, thereby generating what they called a “transposed complex tone” (cf. section 4.6).

In the SACF model, these modulator give rise to a 100 Hz peak in the SACF during
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summation of the single-channel ACFs, similar to a missing-f0 complex tone composed

of the modulator frequencies. In contrast, human listeners did not perceive a pitch at

100 Hz, suggesting that the human auditory system may indeed be sensitive to channel

identity when combining periodicity information across peripheral channels. Recently,

Balaguer-Ballester et al. (2008) showed that the LP-SACF model (see above) correctly

fails to predict at 100 Hz at sound intensities comparable to those used in the psy-

chophysical experiments. For low stimulus intensities, however, the model still predicts

a pitch of 100 Hz, suggesting that the reason for the absence of a pitch in the former

case is likely due to their elaborate peripheral model (which may have been driven to

saturation by the louder stimuli) rather than changes to the central pitch processor.

So far, the prediction of level-dependence has not been tested psychophysically, and

it is therefore not clear yet whether the effect reported by Oxenham et al. (2004) is

indicative of a fundamental failure mode of the SACF and related models.



Chapter 3

A generative model of

near-periodic sounds and

auditory nerve responses

We have argued in the previous chapters, that near-periodic sounds are ubiquitous

in our environment, and that their periodicity carries behaviourally relevant informa-

tion: it aids in distinguishing predator from prey and in establishing the identity of

objects and agents in our environment. During acoustic communication, periodicity

is purposefully used as a means to convey information from sender to listener. Since

periodicity and pitch are so closely related in the case of most natural, near-periodic

sounds, it seems only appropriate to think of pitch perception as a process of periodicity

estimation. Periodic stimuli evoke physiological responses in the peripheral auditory

system which are themselves highly regular. These regularities manifest themselves

in a number of different statistics commonly used to describe the peripheral response.

Measuring the average firing rates of fibres in the auditory nerve, one hallmark of many

periodic sounds is the occurrence of firing rate maxima in AN fibres with CFs harmoni-

cally related to the periodicity rate of the stimulus. Temporal fluctuations around these

mean rates in each channel are also highly periodic, at rates indicative of the stimulus

periodicity. Models of pitch perception typically operate on one or the other of these

two cues, but not both. Spectral pattern matching models are clearly too limited in

their scope to provide a general account of pitch perception on their own. Temporal

models, such as summary autocorrelation, explain a wider range of phenomena, but
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have difficulty explaining why, on the whole, pitch is stronger for stimuli that pattern

matching can account for. Some authors have therefore called for a “dual mecha-

nism” explanation, whereby the output of two pitch processors operating on different

periodicity cues is combined at a final stage that determines the overall percept (e.g.

Carlyon and Shackleton, 1994; Carlyon, 1998; see de Cheveigné, 2005 for a discussion

of potential pitfalls).

From a normative standpoint, we agree that disregarding one or the other of two seem-

ingly non-redundant cues is wasteful and suboptimal, if accurate estimation is to be

achieved. Our aim here is to develop a model which uses information about the stimulus

periodicity, contained in the evoked peripheral response, as efficiently as possible. The

problem of determining the stimulus periodicity based only on indirect observations

seems fundamentally ill-posed: as sound waves travel through air from their source to

the ear of a listener, they are perturbed by noise, mixed with other sounds, filtered and

reflected in ways that can only appear as stochastic to an observer. A further source of

variability is the process of sensorineural transduction itself. Hence, an observer cannot

establish the exact identity of the stimulus or its periodicity with absolute certainty.

Von Helmholtz (1867), considering similarly ill-posed problems in human vision, devel-

oped an influential theory of perception based around this premise. Evolving a school

of thought that dates back to 11 th century astronomer and mathematician Alhazen,

he posited that our percepts arise from a process of unconscious inference, whereby

incoming nervous sensations are combined with prior knowledge and memories in order

to form an estimate of their most likely underlying cause in the external world: “The

general rule according to which visual representations determine themselves is that we

always find present in the visual field such objects as would have to exist in order for

them to produce the same impression on the neural apparatus under the usual normal

conditions of the use of our eyes” (von Helmholtz, 1867, in a translation by Westheimer,

2008).

Bayesian probability theory (e.g. Jaynes, 2003; MacKay, 2003) provides a formal frame-

work that allows for optimal statistical inference about the hidden causes underlying a

set of stochastic observations, provided that the observer is given knowledge about their

statistical regularities and interdependencies. “Ideal observer” models of this kind have

become valuable tools in the study of human perception (see e.g. Knill and Richards,

1996; Kersten et al., 2004; Shams and Beierholm, 2010) and have been successful in
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explaining psychophysical performance limits and perceptual illusions not only in the

visual domain (e.g. Weiss et al., 2002), but also in cross-model perception (Ernst and

Banks, 2002; Wozny et al., 2010) and the perception of time (Ahrens and Sahani, 2011).

In this chapter, we will present an ideal observer model of pitch as an optimal estimate

of the unobserved periodicity of a noise-corrupted periodic sound observed indirectly

through noisy evoked responses in the auditory nerve.

The statistical dependencies between the unobserved periodicity and the observed AN

response is expressed in terms of a generative, statistical model (Figure 3.1). The

generative process is divided into two phases, sound generation (section 3.1) and sen-

sorineural transduction (section 3.2). The outcome of the first phase is a waveform x,

drawn from a distribution over all possible waveforms with period duration Ω and cor-

rupted by noise. In the second phase, the sound evokes a time-varying neural response

A = {ai(t)} in peripheral frequency channels i = 1 . . . C. Combined, the two stages of

the model define a probability distribution P(A |Ω) over auditory nerve responses to

sounds with periodicity Ω. Using approximate Bayesian inference techniques (section

3.3), we can evaluate the posterior distribution P(Ω |A∗) over periodicities given a par-

ticular, observed auditory nerve response pattern A∗, on the basis of which an estimate

of Ω is formed.

3.1 Sound generation

Our generative model of acoustic waveforms takes inspiration from the true generative

mechanism underlying a ubiquitous type of pitch-evoking sound in our natural environ-

ment: voiced speech. According to the source-filter theory of speech production (Fant,

1960), vowel sounds are generated acoustically through the excitation of resonances in

the vocal tract (comprising the laryngeal, pharyngeal, nasal and oral cavities) by sharp,

periodic air puffs emitted from the vocal source, the larynx. During vocal production,

muscles inside the larynx contract, causing the vocal folds to obstruct the tracheal air

flow. Air pressure builds up at the vocal folds until reaching a threshold, upon which

the folds open and the pressure is released eruptively, following which the cycle repeats

(see Figure 3.2).

To a first approximation, the air pressure waveform emitted by the vocal source can be

characterised as a regular pulse train δΩ with an inter-pulse interval Ω, while the vocal
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Figure 3.1: A generative model of naturalistic, approximately periodic sounds
and evoked auditory nerve responses. A pulse train with period Ω is convolved with
a randomly-generated acoustic impulse response f and corrupted by additive noise
to obtain an acoustic waveform x. Two variants of the model are distinguished
by the presence or absence of a dependency between Ω and f . x evokes responses
in auditory nerve fibres i = 1 . . . C as follows: in each channel, the waveform is
filtered by a linear bandpass filter with impulse response bi. Its output is half-
wave rectified and low-pass filtered before further noise is added, resulting in a
demodulation of the filter outputs for oscillation rates above the low-pass cutoff
frequency.

tract acts on this pulse train as a linear filter, the impulse response of which we will

denote as f . Different vowel sounds are produced by changing the shape of the vocal

tract, thereby affecting its preferred resonance frequencies and hence the shape of f ,

while the stereotypical pulse-shape of the vocal source remains unaffected. Comparable

mechanisms underlie vocal production not only in other mammals and birds, but even

in certain amphibians and fish (Patterson et al., 2007), even though the organs used

and sound sources and resonance chambers will of course differ. The sounds of many

musical instruments are similarly produced following the pulse-resonance principle (van

Dinther and Patterson, 2006; Gough, 2007). In brass instruments, for example, the

pulses are generated through the regularly intermittent obstruction of the air flow

into the instrument by the player’s tensed lips. In many wind instruments, wooden

reeds fulfil the exact same purpose, whereas in string instruments, the hairs of the

bow pull a string away from its straight resting position until the tension becomes so

great that it snaps back in an abrupt, saw-tooth like motion (Gough, 2007). Thus, the
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Figure 3.2: Schematic of human vocal production. A: Glottal air-pressure wave-
form generated by the periodic opening and closing of the vocal folds. B: The
spectrum of the emitted waveform (top) is the product of the glottal source spec-
trum (bottom) and the vocal tract resonance spectrum (middle). Adapted from
Lindblom and Sundberg (2007).

pulse-resonance principle of sound generation underlies a wide range of natural, pitched

sounds. But more than that: any periodic waveform can be decomposed into a series

of pulses and a stereotypical impulse-response, regardless of whether it was physically

generated by a pulse-resonance-type mechanism or not.

In our generative model, we treat δΩ as a sum of δ-pulses, regularly spaced at a time

interval Ω:

δΩ(t) =
∞∑

k=0

δ(t− k · Ω) (3.1)

The Fourier transform of this equation is a flat, even-spaced comb-spectrum with a

lowest spectral peak at f0 = Ω–1, the fundamental frequency. Any truly periodic

sound x can thus be formed by the convolution of δΩ with an appropriately chosen

impulse response f . As natural sounds are hardly ever perfectly periodic, we include

an uncorrelated, isotropic Gaussian noise term in our generative equation to allow for

random perturbations, resulting in an approximately periodic waveform

x = f ∗ δΩ + η, η ∼ N (0, σ2
x IT×T ) (3.2)

of length T . Here and throughout the following, N (µ,Σ) denotes a Gaussian distribu-

tion with mean µ, covariance matrix Σ and probability density function N (x |µ,Σ) =

det–1(2πΣ) · exp
(
−1

2(x− µ)Σ–1(x− µ)T
)
. IT×T denotes the T -by-T identity matrix.
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Equation (3.2) defines a probability distribution over sound waveforms, given an un-

derlying pulse-rate Ω and acoustic impulse response f . In order to obtain a full model

of the marginal distribution over sounds, considering all possible values of Ω and f , we

will need to specify prior distributions over these two variables.

In our model, Ω is drawn uniformly from some range [Ωmin; Ωmax]. This is arguably an

unrealistic simplification, when compared to the distribution of fundamental frequen-

cies f0 encountered in our environment. For example, the natural distribution of f0s

in human speech is clustered broadly around approximately 100 Hz and 200 Hz, corre-

sponding to the natural speaking ranges of adult male and female speakers (Simpson,

2009). As we will see later, our prior distribution in the model would have to vary

over many orders of magnitude in order to substantially affect the outcome of its pitch

estimation. Hence, while it would be conceptually simple to replace the uniform prior

with a more naturalistic distribution, we think our choice is not crucial to the model’s

success or failure.

Regarding the prior distribution over impulse responses f , we will discuss two alterna-

tives in the following. First, we will present a basic formulation of the model, in the

following referred to as the “uncoupled model”, in which the spectro-temporal charac-

teristics of f are independent of the periodicity Ω (section 3.1.1). We will refer to this

as the “uncoupled” model in paragraphs and chapters to come. In section 3.1.2, we will

present a general framework for introducing a statistical dependency between Ω and

f into the model. We will investigate the nature of this dependency in the “coupled

model” later on in chapter 5.

3.1.1 Uncoupled model

The intuition behind our prior distribution over f in the uncoupled model is simple: we

require the amplitude envelope of a typical draw of f to decay monotonically after initial

excitation with some arbitrary, unknown rate, while making no explicit assumption

about the temporal fine-structure of f underneath this envelope. In the model, this is

implemented as a multivariate mixture of Gaussian distributions (MoG), in which each

mixture component (labelled by s) is associated with a particular time scale τs over

which the impulse envelope decays. The mean of each mixture component is a vector of

zeros: we do not expect the average impulse response — across all possible sounds —
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to have a particular positive or negative amplitude at any point in time. What remains

yet to be specified, is a covariance matrix Ψs for each component. Its diagonal elements,

Ψs(t, t) control the average squared amplitude of f at any time-point t. Hence, we can

enforce the decay of the impulse envelope by letting the diagonal elements of Ψs drop

off — in our specific case with a squared-exponential time course. The non-diagonal

elements of Ψs(t, t) control the mutual dependency of pairs of the elements of f at

different points in time, such as for example the degree of smoothness in f . At this

point, we will limit ourselves to diagonal covariance matrices Ψs: the elements of f

are entirely uncorrelated in the generative process, allowing for arbitrarily irregular

shapes of the temporal fine structure within the decaying envelope. We will, however,

consider an extended, more realistic model that allows for the flexible control over the

covariance structure of f in section 3.1.2. As a final detail, we allow for a temporal

delay φs in the onset of each impulse response. This detail may not seem particularly

relevant for sound generation itself. It will turn out to be rather important when we

invert the model to perform inference about the periodicity Ω of a sound (i.e. when we

estimate its pitch), the waveform of which does not necessarily peak at t = 0: up to the

resolution set by the modeller in choosing the range of φs in the mixture distribution,

this allows for an optimal alignment of the pulse train f to the sound waveform. The

entries of the mixture covariance matrices are thus given by

Ψs(t, t′) = 0 if t 6= t′ (3.3)

Ψs(t, t) =





0 if t < φs

exp(− (t−φs)2

2τ2
s

) otherwise .

(3.4)

By setting the non-diagonal elements of Ψs to zero, the elements of f are temporally

uncorrelated. Hence, the average power spectrum of repeated draws of f is therefore

white, i.e. broadband and flat (cf. Figure 3.4 for examples).

Following our description above, the full set of generative equations for the uncoupled

model reads as follows:

Ω ∼ uniform([Ωmin; Ωmax]) (3.5)

f ∼
S∑

s=1

πs · N (0,Ψs) (3.6)
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Figure 3.3: Diagonal elements of the covariance matrix Ψs of a single mixture
component (black) and representative draw f ∼ N (0,Ψs) (blue).

η ∼ N (0, σ2
x IT×T ) (3.7)

x = δΩ ∗ f + η (3.8)

with f ∈ R1×M , Ψs ∈ RM×M and x ∈ R1×T . For the sake of simplicity, we let πs = 1
S ,

i.e. all combinations of time-scales τs and delays φs are a priori equally likely.

We can write down an analytical expression for P(x |Ω), the distribution over wave-

forms with periodicity Ω, marginalised across all possible draws of f . In order to

arrive at this expression, we observe that we can rewrite the convolution of x with δΩ

equivalently as a matrix multiplication,

δΩ ∗ f = f ·∆Ω , (3.9)

where ∆Ω is the convolution matrix of δΩ, i.e. an M × T Toeplitz matrix with pro-

gressively time-shifted copies of δΩ as its rows. Since P(f |Ω) is a MoG distribution,

and since the Gaussian family of distributions is closed under linear transformation and

addition, P(x |Ω) is similarly a MoG distribution. The covariance matrices Σs of its

mixture components are obtained from P(f |Ω) by linear transformation with ∆Ω and

subsequent addition of isotropic Gaussian noise:

x ∼
S∑

s=1

πs · N (0,Σs) (3.10)

Σs = ∆T

ΩΨs∆Ω + σ2
x · I (3.11)

Figure 3.4 shows draws from the model for different settings of τs. The temporal extent
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Figure 3.4: Influence of the envelope time constant τs on draws from the model.
Left: Sound waveforms drawn from the model for different values of τs (Ω =
10 ms, identical random seed, low noise); black curves depict the diagonal entries
of Ψs. Right: Corresponding amplitude spectra on logarithmic scale with arbitrary
reference. Note the effect of τs on spectral scale of smoothness.

of the impulse response increases from a sharp pulse for τs = 0.1 ms (top left) to almost

flat within a single pulse interval for τs = 10 ms (bottom left). Its amplitude envelope

is jittered around the diagonal entries of Ψs (black curves). The spectral envelope of δΩ

is flat, as is the expected spectrum of f (owing to the mutual statistical independence

of elements of f). Therefore, the spectral envelope of x, being the product of the two,

must also be flat in expectation. Nevertheless, the choice of τs has an interesting effect

on the spectra of individual draws of x (Figure 3.4, right): as τs increases, the spectral

scale of smoothness decreases. This phenomenon is easily understood for the extreme

corner-cases τs → 0 and τs → ∞ (cf. top and bottom panels). As τs → 0, the shape

of the temporal envelope of f approaches a perfect δ pulse, the spectrum of which

is both deterministic and perfectly flat. Hence, x will similarly have a perfectly flat,

i.e. smooth, envelope. At the other extreme, as τs → ∞, draws of f approach the

statistics of stationary, white Gaussian noise. The Fourier amplitudes of such noise are

individually Raleigh-distributed, and mutually independent (e.g. Hartmann, 1997) —

in other terms: maximally unsmooth. For intermediate values of τs, the smoothness

of the power spectrum of f is likewise intermediate between these two extremes (cf.
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panels for τs = 0.5 and 2 ms in Figure 3.4). We can also think of this as a reflection

of the duality of the Fourier transform: multiplication with a fast-decaying envelope

in the time domain corresponds to a convolution of the spectrum with a broad (i.e.

low-pass) filter. As our model contains mixture components across a wide range of

τs, the model is equally likely to produce sounds of any degree of spectral smoothness

during sound generation, and indifferent towards this spectral feature during inference.

3.1.2 Coupled model

The model presented in the previous section features independent priors over periodicity

and impulse response, the latter of which effectively governs the perceived timbre of

a sound. As we will discuss at length in chapter 5, it is reasonable to assume that

these two variables should in fact be linked, based on both acoustic and psychophysical

evidence. We will demonstrate at this point how our present formalism can be easily

extended to capture such statistical dependencies while retaining the structure of the

generative equations (3.5) . . . (3.8).

The key step is to replace the unconditional prior (3.6) over f by the conditional

distribution

f |Ω ∼
S∑

s=1

πs · N (0,Ψs
Ω) , (3.12)

where the covariance matrices Ψs
Ω now depend on the periodicity Ω, rather than using a

fixed set of matrices Ψs for all periodicities as was the case in the previous section. While

these covariance matrices Ψs
Ω could depend on Ω in any arbitrary way, we will consider

here a special case, albeit a powerful and flexible one. Specifically, we restrict Ψs
Ω to

the class of covariance matrices that correspond to a linear filter hΩ being applied to a

draw from N (0,Ψs), where Ψs is a diagonal matrix as defined in (3.4). In terms of the

source-filter model of speech production, this corresponds to allowing for a systematic

variation of the vocal tract shape (and thus its filtering properties) with fundamental

frequency. If we let f̃ denote the initially drawn impulse response prior to filtering,

hΩ the filter kernel, and f the final impulse response, we can describe the generative

process in two steps as

f̃ ∼ N (0,Ψs) (3.13)
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f = f̃ ∗ hΩ (3.14)

Alternatively, we do not need to introduce the auxiliary variable f̃ at all. We can

rewrite the convolution f̃ ∗ hΩ as a multiplication of f̃ with a Toeplitz matrix HΩ

which implements the exact same linear operation (cf. equation (3.9), where we used

the same trick):

f = f̃ ·HΩ (3.15)

As the family of Gaussian distributions is closed under linear transformation, f is also

Gaussian-distributed and its covariance matrix Ψs
Ω is given by

Ψs
Ω = HT

ΩΨsHΩ (3.16)

More convenient still, as the two-sided multiplication with HΩ corresponds to sequen-

tially filtering the rows and columns of Ψs with hΩ, equation (3.16) is equivalent to a

convolution of Ψs with a two-dimensional kernel, which is given by the outer product

of hΩ with itself: Ψs
Ω = Ψs ∗

2d
(hT

Ω · hΩ).

∗ =
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Figure 3.5: Coupling of Ω and f through a linear filter hΩ. A: f̃ is drawn
from a Gaussian distribution with diagonal covariance Ψs and convolved with hΩ

to obtain f . B: The effect of this convolution on the covariance structure of f ,
compared to that of f̃ , is equivalent to convolving the Ψs with the outer product
of hΩ with itself.
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In Figure 3.5, we have chosen a Gaussian-shaped kernel for illustrative purposes, but

note that hΩ could in principle have any arbitrary shape. At this point we will leave

the specific shape of hΩ and its dependence on Ω unspecified. We will revisit the issue

of defining a suitable coupling between Ω and f in chapter 5.

Whatever the exact dependence of Ψs
Ω on Ω may be, we can still write down the

marginal distribution of the acoustic waveform x given a particular value Ω in general

terms (where we marginalise with respect to f), according to our derivation of equation

(3.10):

x |Ω ∼
S∑

s=1

πs · N (0,Σs
Ω) (3.17)

Σs
Ω = ∆ΩΨs

Ω∆T

Ω + σ2
x · I (3.18)

3.2 Transduction

The process of sensorineural transduction was described in considerable detail earlier

(cf. 2.2), and will be summarised here only briefly. During acoustic stimulation, the

inner-ear fluids are set into motion by the middle ear ossicles, causing the basilar mem-

brane (BM) to vibrate. To a first approximation, the basilar membrane performs a

spatial frequency analysis of the sound by means of a gradient of preferred resonance

frequencies along its axis. The passive, approximately linear response of the BM is

considerably modulated by an active component, largely due to the electromotile feed-

back of the outer hair cells (OHCs). Motion of the basilar membrane at a certain

point along its axis results in an alternating de- and repolarisation of the inner hair

cells (IHCs), which in turn initiate the generation of action potentials in the fibres of

the auditory nerve (AN) during phases of depolarisation. For high oscillation rates

of the BM, the IHC potential ceases to follow individual phases of the BM response.

Instead, it fluctuates only little around an elevated baseline. As a result, the IHC po-

tential (and consequently the firing rates in the auditory nerve) reflects the amplitude

envelope of the basilar membrane response for high frequencies (progressively above

1-2 kHz), rather than the raw amplitude waveform (cf. Figure 2.12).

In the model, we restrict ourself to a rather schematic, functional characterisation of

these highly complex biophysical processes. The basilar membrane will be modelled as
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a linear system, much like envisioned by von Helmholtz (1863), von Békésy (1960) and

others before the discovery of the active contribution of the OHCs to the BM response.

We will also not attempt to model the progressive loss of temporal fine structure in

the IHCs in biophysical detail: instead, amplitude demodulation of the BM response

will be achieved using a simple but effective signal-processing technique for envelope

extraction.

3.2.1 Basilar membrane response

We want to model the BM response as the outputs ci of a bank of linear band-pass

filters bi, where each filter corresponds to a different place along its axis:

ci = x ∗ bi ∀ i = 1 . . . C . (3.19)

A widely-applied type of filter for linear characterisations of the basilar membrane is the

gammatone filter (de Boer and de Jongh, 1978). The impulse response of a gammatone

filter is the product of a sine-wave carrier with an envelope shaped like a the integrand

in the definition of the gamma function. Several parameters govern the shape of a

gammatone filter: the carrier has an amplitude ai, frequency fi and phase θi, while

the gamma envelope is characterised by a filter order n (integer and typically constant

across all filters) and its bandwidth βi. It impulse response is given by

bi(t) = ai t
n−1e−2πβit cos(2πfi t+ θi) . (3.20)

Johannesma (1972) proposed the gammatone impulse response, albeit not under its

present-day name, as an analytic description for linear filters he derived from the

responses of neurons in cat cochlear nucleus using reverse correlation (de Boer and

Kuyper, 1968; see also de Boer and de Jongh, 1978; Aertsen and Johannesma, 1980;

de Boer and Kruidenier, 1990 for subsequent uses of the gammatone filter to describe

physiological reverse-correlation filters). Importantly, gammatone filters are not only

suitable for the characterisation of peripheral neural responses in animals, but have

also been found to provide excellent fits to psychophysical estimates of human periph-

eral auditory filters (Patterson and Moore, 1986; Glasberg and Moore, 1990), given

an appropriate choice of the filter order n and the relationship between frequency fi

and bandwidth βi (Patterson et al., 1992). The “equivalent rectangular bandwidth”
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Figure 3.6: Gammatone filter bank. A: Spectral magnitude response of 12 gam-
matone filters as used in the model. CF spacing and filter bandwidths grow in
proportion to the human ERB scale (cf. equation (3.21)) B: Impulse response of
three filters (colours match A).

(ERB) of human auditory filters approximately depends on their centre frequencies f

as summarised by Glasberg and Moore (1990):

ERB(f) = 24.7 (0.00437 f + 1) . (3.21)

Following Patterson et al. (1992) and Slaney (1993) in our implementation, we choose

βi = 1.019 ERB(fi), n = 4, θi = 0, and a spacing of neighbouring carrier frequencies fi

that is proportional to their bandwidths. The gains are chosen so as to give the same

peak attenuation around fi for all filters.

Gamma-tone filter banks of this kind are commonly used as the initial peripheral pro-

cessing stage in models of human auditory perception (e.g. Meddis and Hewitt, 1991;

Patterson et al., 1995; Meddis and O’Mard, 1997; Wiegrebe, 2001; Bernstein and Oxen-

ham, 2003). Interestingly, gammatone filter banks seem to be particularly well-suited

for the efficient coding of natural sounds. Smith and Lewicki (2006) used a sparse-

coding model to learn an optimal basis for the representation of natural sounds as well

as speech (Smith and Lewicki, 2005). They reported that the learnt basis vectors bore

a striking similarity to the impulse responses of gammatone filters, suggesting that the

process of human vocal production on the one hand, and the peripheral neural encoding

of speech and other natural sounds on the other are almost ideally co-adapted to each

other.

There is an ongoing debate as to whether the ERB scale according to (Glasberg and
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Moore, 1990) (equation (3.21)) provides an adequate estimate of human peripheral

filter bandwidths. As physiological data regarding the tuning properties of the active

cochlea or single auditory nerve fibres is not available for humans, bandwidth estimates

are based on psychophysical measurements instead. In a classical paradigm, the effect

of a notched-noise masker on the detectability of a simultaneous target tone at the

centre of the spectral notch in measured (Patterson, 1976; Glasberg and Moore, 1990).

Central to this kind of bandwidth estimation is the assumption that energy in the noise

masker impairs the detection of the target only if it falls within the bandwidth of the

same peripheral auditory filter, but not outside. Shifting the masker passbands sym-

metrically away from the target tone, thereby widening the notch while keeping the

masker energy constant, one will find that the detection threshold of the tone improves

and then saturates, once the notch exceeds a certain bandwidth. From the progres-

sion of these threshold improvements, approximate filter shapes and bandwidths can

be estimated. The human ERB scale summarises these bandwidth estimates, which

are thought to reflect the frequency selectivity of the cochlea. Recently, Shera et al.

(2002) and Oxenham and Shera (2003) have challenged the established ERB scale:

using a forward-masking paradigm instead of simultaneous masking, and low sound in-

tensities in order to maximise the occurrence of active, non-linear effects in the basilar

membrane response (cf. section 2.2.3.3), Oxenham and Shera (2003) arrived at band-

width estimates up to two times sharper than previously reported. However, Ruggero

and Temchin (2005) showed that a behavioural forward-masking paradigm lead to an

overestimation of the sharpness of cochlear tuning in several species, for which direct

physiological measurements of cochlear frequency selectivity are available, suggesting

that the same may be the case in humans. Notwithstanding the possibility of future

revisions, we chose to adopt the traditional ERB scale in our model. In our own psy-

chophysical experiments (chapter 5), presentation levels around 75 dB SPL were used,

at which point active amplification and sharpening of the basilar membrane response

can be expected to be substantially reduced compared to the near-threshold levels used

in Oxenham and Shera (2003), even if the concerns of Ruggero and Temchin (2005)

turn out to be unfounded.
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3.2.2 Auditory nerve response

We emulate the demodulation-like behaviour of the IHCs by a simple envelope ex-

traction method, consisting of the half-wave rectification (HWR) of the BM response,

followed by low-pass filtering at a frequency where phase-locking of the IHC declines

(HWR-LP). If we let r(·) denote the element-wise rectification of a vector, and l the

impulse response of our low-pass filter, we obtain the output firing rate ai of a single

auditory nerve fibre in the model as:

ai = r(x ∗ bi) ∗ l+ ξi, ξi ∼ N (0, σ2
A I) . (3.22)

Owing to the addition of the isotropic Gaussian noise term ξi to every channel, the

distribution over activity patterns A = {ai}i=1...C , conditioned on the output of the

BM filters, is itself Gaussian with a non-linear dependency between the BM output and

its mean according to equation (3.22):

P(A |x) =
C∏

i=1

N
(
ai | r(x ∗ bi) ∗ l, σ2

A I
)

(3.23)

Strict half-wave rectification ( r (z) = max(0, z)) introduces discontinuities in the deriva-

tives of r at z = 0. In order to enable us to draw on the family of gradient- and

Hessian-based methods for inference (cf. section 3.3), we avoid these discontinuities by

applying a “soft” rectification function r :

r (z) =
log(1 + exp(αz))

α
. (3.24)

The strictness of r is controlled by the parameter α. For α→∞, r (z)→ max(0, z).

From a technical point of view, several heuristics other than our HWR-LP approach

are in common use for the extraction of a slow-moving envelope from an amplitude-

modulated signal (see e.g. Turner and Sahani, 2011). For example, full-wave rectifica-

tion ( r (z) = |z|) or squaring can similarly be used prior to low-pass filtering. Another

common approach, mathematically more principled, is to compute the amplitude of

the analytic signal, obtained via a Hilbert transform of the waveform (e.g. Hartmann,

1997). All these methods have their specific drawbacks, and it is hence a priori difficult

to choose one over the others from a signal-processing standpoint alone. Considering
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the underlying physiological process in the IHCs (cf. section 2.2.3.2) and the HWR-like

response behaviour that is visible in their responses to low-frequency BM vibration

(Figure 2.12), however, the HWR-LP method appears to be preferable to the alterna-

tives outlined above in the context of our model.
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0 5 10 15 20
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Figure 3.7: Progressive amplitude demodulation of high-frequency oscillations
by the auditory nerve model. Waveforms prior to demodulation (grey) are pure
tones, sinusoidally ring-modulated at 50 Hz. After half-wave rectification and low-
pass filtering (green), fine structure is is progressively lost while the shape of the
waveform envelope remains recognisable. The magnitude response of the low-pass
filter dropped by 80 dB between 1.5 and 4.5 kHz, no noise was added to the output.

The frequency range over which AN fibres gradually cease to follow fine-structure peaks

of the BM response varies from species to species and is not known from physiological

measurements in humans. In guinea pigs, phase locking (measured as the ratio between

modulation depth and average excitation level in the evoked IHC potential) starts to

decline at around 600 Hz and is no longer detectable at around 3.5 kHz (Russell and

Sellick, 1983). Other mammalian species, such as cats and squirrel monkeys, show

near-constant phase locking for frequencies up to 2 kHz, which then declines over a

range of 1 to 1.5 octaves (Rose et al., 1967; Johnson, 1980). In humans, the marked

loss of pitch discriminability and musical interval and melody identification for tones

with fundamental frequencies above 4 to 5 kHz has been interpreted as a reflection

of the physiological upper limits of phase locking, but direct evidence is lacking. For

the purpose of demodulation in our model, we truncated the impulse response of an

ideal low-pass filter to obtain a FIR low-pass filter with a magnitude drop-off of 80 dB
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between 1.5 and 4.5 kHz using a Kaiser window (see Oppenheim et al., 1999, chapt. 7)

without specific fine tuning of the filter characteristics.

In summary, the sensorineural transduction stage of our model is highly schematic com-

pared to the complexity of the true biophysical mechanisms, but nevertheless captures

two essentials aspects of the human peripheral auditory system. Mimicking cochlear

frequency analysis, sounds are filtered into different frequency bands, the bandwidths of

which grow approximately linearly with their centre frequencies. The ability of model

auditory nerve fibres to follow the output of these filters phase-by-phase gradually de-

clines between 1.5 kHz and 4.5 kHz, giving rise to envelop demodulation in frequency

channels within and above this range. In using a linear filter bank, we ignore the active,

OHC-driven component of the physiological BM response, which may be an acceptable

simplification when considering its response to moderately high sound levels (cf. section

2.2.3.3), where OHC electromotility is greatly reduced compared to low levels. We also

assume that the magnitude of the IHC potential is in essence linearly related to the

BM response magnitude. We could, in principle, include some form of instantaneous

compression into the model, for example by letting r saturate for high input value, but

did not explore this possibility1.

3.3 Inference

We have, so far, defined a generative statistical model of approximately periodic sounds

and the resultant evoked firing rate patterns in the auditory nerve. At its core, the

model comprises equations (3.10) and (3.22) in the uncoupled case, where sound period-

icity and acoustic impulse response are treated as independent variables, and equations

(3.17) and (3.22) in the coupled case, were a statistical dependence between the two

variables is introduced by means of a periodicity-dependent filter hΩ, modifying the

shape of the acoustic impulse response f prior to its convolution with the pulse train

δΩ. Acoustic waveforms generated in this way are passed through a simple model of

the peripheral auditory system up to the auditory nerve (AN), the response of which

is again stochastic.

For every value of Ω our generative model implicitly defines a marginal distribution

1Since our algorithms for performing inference in the generative model (see section 3.3) require the
computation of the first and second derivatives of r, these derivatives need to remain well-behaved
unless new inference schemes were to be developed in addition.
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over A:

P(A |Ω) =

∫
P(A,x |Ω) dx (3.25)

=

∫
P(A|x) · P(x|Ω) dx (3.26)

Computing P(A |Ω) for an observed AN activity pattern A is the basis for performing

inference about Ω our model. In this section, we will discuss ways of performing this

non-trivial operation of Bayesian model inversion.

The essential obstacle in computing P(A |Ω) according to equation (3.25) is the high

dimensionality of the unobserved latent variable x, the acoustic waveform, in con-

junction with its non-linear transformation during the transduction-stage of the model

(equation (3.22)). Under our prior, x itself is distributed according to a mixture of

high-dimensional Gaussian distributions (equations (3.10) and (3.17)). If our peripheral

model were fully linear, P(A |Ω) would similarly be MoG distributed. Albeit computa-

tionally challenging, a wide range of practical inference techniques has been developed

for this case, based on the framework of Gaussian Processes (GPs; Rasmussen and

Williams, 2006; Rasmussen and Nickisch, 2010). Non-linear generalisations of GPs ex-

ist, for which inference is also tractable. In a Warped Gaussian Process (Snelson et al.,

2004) for example, observations are assumed to be non-linearly transformed draws from

a GP. However, while Warped GPs allow for an arbitrarily high-dimensional latent vari-

able space, they are restricted to one-dimensional observation spaces and furthermore

require the warping function to map onto the entire real line, which is at odds with

our requirements for r (·) to perform some form of rectification on its inputs (in order

for amplitude modulation to occur).

As we could not readily apply existing inference procedures “off the shelf” for use with

our model, we developed two different algorithms of our own. One is based on the

Laplace approximation (e.g. MacKay, 2003), a deterministic Gaussian approximation

to the integral
∫

P(A,x |Ω) dx around its mode with respect to x (section 3.3.1). The

second uses a combination of Markov Chain Monte Carlo (MCMC) sampling techniques

(Neal, 1993, 1998, 2010) that allow us to approximate the same integral stochastically,

albeit at a much higher computational cost (section 3.3.1). Both approaches rely on

the gradient ∇x ln P(A,x |Ω) of the log-joint distribution over observed and latent

variables, and the Laplace approximation furthermore requires the computation of its
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Hessian matrix, ∇2
x ln P(A,x |Ω). The — somewhat tedious — formal derivation of

the gradient and Hessian is given in Appendix A.

Assuming that we have a practicable method of computing P(A |Ω), how can we use

it to perform inference about Ω, in other words: how can we predict pitch? Suppose

we are given an observation A : the firing rate pattern across the entire auditory nerve

in response to an arbitrary, unknown stimulus. We assume that the auditory system,

and particular the “pitch processor”, treats A as if evoked by an approximately pe-

riodic sound as described by our generative equations, even though the true, physical

generative process may have been different.

Ideally then, we would like to compute the full posterior distribution

P(Ω |A) =
P(A |Ω) P(Ω)∫

P(A |Ω′) P(Ω′) dΩ′
, (3.27)

where P(A |Ω) =: L(Ω) is called the likelihood of Ω and P(Ω) is the prior distribution

over periodicities in our generative model. Given the posterior, a reasonable and in-

tuitive estimate of the periodicity underlying A is the MAP (maximum a posteriori)

estimate

Ω∗ = argmax
Ω

P(Ω |A) , (3.28)

i.e. the most likely periodicity to have caused the observed AN activity pattern A by

means of some unobserved acoustic waveform.

It is worth noting at this point, that what constitutes the optimal, or “rational”, choice

in the more general context of Bayesian decision theory (rather than that of pure per-

ceptual inference) depends on the subjective cost function of the listener. This cost

function may vary across individuals and depend on the task at hand. The MAP es-

timate is the optimal choice when the cost function is “all-or-none”, i.e. when any

failure to infer the true underlying periodicity is deemed equally unfavourable. For

an arbitrary cost function C(Ω̃; Ω) that specifies the subjective cost of the observer

for reporting a periodicity of Ω̃ when the true periodicity is Ω, the rational estimate

(in the formal sense) is obtained by minimising the expected cost under the posterior

distribution: Ω∗ = argmin
Ω̃

∫
C(Ω̃; Ω) P(Ω |A) dΩ (see e.g. Mamassian et al., 2002;

Shams and Beierholm, 2010). Another widely-used cost function is the squared error
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C(x̃;x) = (x̃−x)2, which is minimised in expectation by the posterior mean Ω·P(Ω |A).

A different strategy, which seems to provide a good description of human behaviour

in some perceptual decision making tasks such as audio-visual target localisation (Pick

et al., 1969; Wozny et al., 2010), is to draw a random sample from the posterior dis-

tribution on each trial rather than making a deterministic choice on the basis of the

posterior distribution (such as the MAP or posterior mean). Following the sampling

strategy, a subject’s average decision (i.e. the mean response over many repeats of the

same stimulus) will minimise the squared-error cost. Nevertheless, the sampled deci-

sions will in general be suboptimal on any given single trial and vary across multiple

repeats of the same stimulus. For our purpose of predicting pitch in the absence of an

experimenter-controlled cost function, we will use the MAP estimate (equation (3.28))

throughout the remainder of this thesis, i.e. the single most probable period duration

given all sensory evidence and prior expectations. Owing to the uniform prior over

Ω, this is equivalent to the maximum likelihood (ML) estimate in our particular case.

In principle, however, our Bayesian framework allows not only for optimal perceptual

inference about Ω, but also for the prediction of optimal behaviour in more complicated

situations, where for example the cost function may be shaped by the experimenter by

rewarding or punishing listeners (human and animal) depending on their response to

the stimulus. In this case, one may expect to find behavioural biases in the listeners’

decisions, which are not inherent in the posterior distribution itself.

In practice, we will evaluate the posterior only at a set of selected candidate periodicities

{Ω1, . . . ,ΩN}, the range and sampling density of which will depend on the stimulus at

hand and the question we want to ask. Rather than covering the entire range of human

hearing, for example, we may choose {Ω1, . . . ,ΩN} to lie within a 1- to 2-octave range

around the true fundamental of a harmonic sound, with quarter-tone intervals between

neighbouring periodicities (i.e. 24 values of Ωn per octave in that case). As we have

chosen a flat prior P(Ω) in the model (cf. equation (3.5)), we can thus simply return

the ML (maximum likelihood) estimate Ωn∗ amongst the candidates, where

n∗ = argmax
n

L(Ωn). (3.29)

We will show examples of the log-likelihood profiles {lnL(Ω1), . . . , lnL(ΩN )} and ML

periodicity estimates for a variety of pitch-evoking sounds in chapter 4. For the re-
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mainder of the current chapter, we will investigate two alternative methods for approx-

imating the likelihood lnL(Ω) = P(A |Ω).

3.3.1 Laplace approximation

As laid out in the section above, we need to compute the integral

P(A |Ω) =

∫
P(A,x |Ω) dx (3.30)

(3.31)

where the dimensionality T of the integrand x ∈ RT is high (for example, T = 1000

for a 50 ms waveform segment, sampled at a resolution of 20 kHz). Following Laplace’s

method (MacKay, 2003), the intractable integral
∫

P(A,x |Ω) dx is approximated by

a Gaussian integral instead. To find the (unnormalised) approximating distribution

Q(x), we Taylor-expand the log-joint distribution ln P(A,x |Ω) up to second order

around its mode x∗ = argmaxx ln P(A,x |Ω), yielding

ln Q(x) = ln P(A,x∗ |Ω)− 1

2
(x− x∗)THx∗(x− x∗). (3.32)

Here, Hx∗ denotes the Hessian matrix of − ln P(A,x |Ω), evaluated at x∗:

Hx∗ = −∇2 ln P(A,x |Ω)

∣∣∣∣
x=x∗

. (3.33)

In other words, the covariance matrix of the approximating Gaussian Q is given by the

negative Hessian of the log-joint distribution at its mode. Finally, our estimate of L(Ω)

is obtained as the integral of Q over x:

∫
Q(x)dx = P(A,x∗ |Ω)

√
(2π)T

detHx∗
. (3.34)

Note that in practice, we will compute the log-likelihood lnL(Ω) instead due, to nu-

merical scaling issues.

In order to compute the Laplace approximation, we need to find the modal waveform

x∗ = argmaxx ln P(A,x |Ω), which we achieve by performing gradient ascent in x

using the L-BFGS method (Limited-memory Broyden-Fletcher-Goldfarb-Shanno; see
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Nocedal and Wright, 1999)2. A derivation of the required gradient, as well as the

Hessian, of ln P(A,x |Ω) is given in Appendix A.

Algorithm 3.1 Laplace approximation for ln P(A |Ω)

Input: observed AN activity A; periodicity Ω; initial condition x0

x∗ ← LBFGS(A,Ω,x0)

Hx∗ ← −∇2 ln P(A,x |Ω)

∣∣∣∣
x=x∗

return ln P(A,x∗ |Ω) + T
2 ln(2π)− 1

2 logdet(Hvx∗)

3.3.2 Hamiltonian Annealed Importance Sampling

Naively, one might attempt to evaluate L(Ω) by simple Monte Carlo sampling (e.g

MacKay, 2003), drawing samples of x from the model prior P(x |Ω) and evaluating

them under P(A |x):

L(Ω) = P(A |Ω) (3.35)

=

∫
P(A,x |Ω) dx (3.36)

=

∫
P(A |x) P(x |Ω) dx (3.37)

≈
N→∞

1

N

N∑

i=1

P (A |xi) , xi ∼ P(x |Ω) (3.38)

Despite being unbiased, however, this estimator is not useful in practice. We can

view equation (3.38) above as a particular case of Importance Sampling. In order

to simplify notation, we will denote p(x) := P(A,x |Ω) in the following, and view

p as an unnormalised distribution over x: the “target distribution”. Its normalising

constant Zp =
∫
p(x)dx is thus equal to L(Ω), i.e. the quantity we want to estimate.

Importance Sampling allows us, in principle, to estimate Zp by sampling from some

tractable “proposal distribution” q(x):

Zp =

∫
p(x) dx (3.39)

=

∫
p(x)

q(x)
q(x) (3.40)

2We used a Matlab implementation by Mark Schmid, minFunc.m, available from http://www.cs.

ubc.ca/~schmidtm/Software/minFunc.html.

http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
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≈ 1

N

N∑

i=1

p(xi)

q(xi)
, xi ∼ q(x) (3.41)

Equation (3.38) is the special case where the proposal distribution equals our model

prior: q(x) = P(x |Ω). Unfortunately, Importance Sampling suffers from a well-known

deficiency when applied to high-dimensional variable spaces, despite being asymptoti-

cally unbiased (e.g Neal, 1993, 1998; MacKay, 2003). Most of the mass of the integral
∫
p(x)dx is associated with values of x that are typical under the target distribution

p. If the overlapping volume between the proposal and target distribution is small, the

time required to obtain even few representative samples (if any) is prohibitively large,

unless the dimensionality of x is low, and p and q concentrate their mass in the same

region of the variable space (see also Minka, 2005). As a consequence, Importance

Sampling estimates of Zp (i.e. L(Ω)) would suffer from unacceptably large variance

in our case. Other methods (e.g. Rejection Sampling) based on drawing independent

samples from q fail for the same reasons.

Markov Chain Monte Carlo methods (Neal, 1993; Murray, 2007) — such as Metropolis-

Hastings, Gibbs sampling, or Hamiltonian Monte Carlo — provide an alternative way

of obtaining samples from p (albeit not independent). A stochastic transition operator

T (x → x′) is repeatedly applied to an initial sample x1 ∼ q, yielding a sequence of

further samples x2, . . . ,xN . T is carefully designed such that it has p as its stationary

equilibrium distribution:

∫
T (x→ x′)p(x) dx = p(x′) . (3.42)

After an initial “burn-in” phase, this procedure will generate dependent samples from

the target distribution: in effect, T gradually bridges the distributions q and p, despite

the fact that their divergence may be large (assuming that they share at least some

support). Much current effort is being spent on finding efficient transition operators T ,

that require only short burn-in periods and produce sequential samples as independently

as possible. Frustratingly however, even estimators of Zp based on true samples from p

(e.g. Newton and Raftery, 1994), obtained for example via MCMC sampling, are often

badly behaved (see Murray, 2007 for discussion).

Annealed Importance Sampling (AIS; Neal, 1998) is one of only a small number of tech-

niques, that have been shown to allow the estimation of Zp in high-dimensional variable
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spaces for intractable distributions p, while keeping the variance of the estimates under

control at least asymptotically. In AIS, the transition operator T is not fixed during

a sampling run, but instead forms itself a chain T1, . . . , TN . By convention, the xn in

AIS are sampled “backwards”, starting with xN ∼ q and then according to

xi |xi+1 ∼ Ti(xi+1 → ·) i = N − 1, . . . , 0 (3.43)

Each Ti has a different equilibrium distribution qi, that morphs between q = qN and

p = q0 to a steadily increasing degree:

qi = q1−βi pβi 1 = β0 > β1 > . . . > βN = 0 (3.44)

At the end of a single AIS run comprising samples xN , . . . ,x0, we obtain an “importance

weight”

w =
N∏

i=1

qi−1(xi−1)

qi(xi−1)
. (3.45)

If we repeat this procedure multiple times, each iteration j yielding an importance

weight wj , we finally obtain an estimate of Zp:

Z̃p =
1

S

S∑

j=1

wj , (3.46)

which will provably converge to the true Zp as S →∞ (see Neal, 1998).

Aside from requiring a potentially large number of intermediate steps N in each run,

the success or failure of AIS (as with any other MCMC method) depends largely the

ability of transition operators Ti to mix quickly, i.e. to generate near-independent sam-

ples after only a short time. We implemented each Ti as Hamiltonian Monte Carlo

(HMC) sampler, an MCMC method that uses gradient information about qi in order

to explore the variable space more efficiently than simple, random-walk-like procedure.

(Neal, 1993, 2010). Hamiltonian Monte Carlo generates samples from a target distribu-

tion (in our case, qi(x) as in equation (3.44)) by simulating a Hamiltonian dynamical

system with random initial conditions: a particle with initial position x0 and initial

momentum u0 moves through a landscape defined by the potential-energy function

E(x) = − ln(qi(x)) while maintaining a constant total energy H(x,u) = E(x)+K(u),
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where K(u) = 1
2uu

T is its kinetic energy3. At any point in (continuous) time, the

instantaneous change in position of the particle is given by ∇xE, i.e. the negative gra-

dient of the log-target distribution, while the momentum u changes as ∇uK = u. In

the computer simulation of this system, the dynamics are discretised using the “leap-

frogging” procedure, whereby the variables are updated in each step as follows (note

the half-steps in u):

ut+1/2 = ut − ε

2
∇xE(xt) (3.47)

xt+1 = xt + εut+1/2 (3.48)

ut+1 = ut+1/2 − ε

2
∇xE(xt+1) (3.49)

Leap-frogging yields smaller discretisation errors than the simple Euler method, result-

ing in more stable dynamics and ultimately more efficient sampling (see below). After

letting the dynamical system evolve for some pre-determined number of steps L, the

final position xL is stochastically accepted or rejected as a new sample in the Markov

chain, depending on a draw of ξ ∼ uniform([0; 1]):

x∗ =




xL if ln ξ < H(x0)−H(xL) (accept)

x0 otherwise (reject)

(3.50)

The final acceptance/rejection-step, called a Metropolis-Hastings update (Hastings,

1970), ensures that qi is indeed the stationary distribution of the HMC sampler, and is

necessary to compensate for numerical errors due to the discretised dynamics. Observ-

ing that the position variable x tends to get repeatedly drawn towards low points in

the potential-energy landscape in this dynamical system4, we get an intuition for why

the imaginary particle preferentially explores high-probability regions of our target dis-

tribution qi(x) = exp(−E(x)), and hence why HMC is likely to return representative

samples of qi.

In order to use this approach then, we need to be able to evaluate ∇xE = −∇x log qi.

3For x ∈ R2 for example, this corresponds to the idealised path of a ball on a frictionless surface,
the height profile of which is defined by − ln qi

4Note though, that the particle will never rest there, owing to its kinetic energy that increases by
the same amount by which its potential energy decreases.
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Recalling equation (3.44), we see that

log qi(x) = (1− βi) ln q(x) + βi ln p(x) (3.51)

= (1− βi) ln P(x |Ω) + βi ln P(A,x |Ω) (3.52)

= ln P(x |Ω) + βi ln P(A |x) , (3.53)

the gradients of which we have already derived for use in our Laplace-based inference

scheme (cf. section 3.3.1 and Appendix A). The entire combined HMC/AIS sampling

algorithm (HAIS) is given below (Algorithm 3.2). Following a recommendation by Neal

(1998), we chose the annealing schedule β1 > . . . > βN = 0 to be essentially log-linearly

spaced, with a short linearly ramping segment from βN = 0 to β0.9N = 0.01, i.e. for

the first 10% of AIS samples (see also Berkes et al., 2008).

Algorithm 3.2 Hamiltonian AIS for ln P(A |Ω)

Input: observation A; periodicity Ω; annealing schedule βN , . . . , β0

let q := ln P(x |Ω), p := ln P(A,x |Ω), qi := q1−βi pβi

for j = 1 to S do

draw xN ∼ qN
for k = N − 1 down to 0 do

draw uo ∼ N (0, I)
xo ← xk+1

for l = 1 to L do

ul ← ul−1 + ε
2∇ log qk(x

l−1)

xl ← xl−1 + εul

ul ← ul + ε
2∇ log qk(x

l)

end for {l}
draw ξ ∼ uniform([0; 1])

if log(ξ) < log qk(x
L)− log qk(x

o)− 1
2(〈uL,uL〉 − 〈uo,uo〉) then

xk ← xL {accept update}
else

xk ← xk+1 {reject update}
end if

end for {k}
ŵj ←

∑N
i=1(βi−1 − βi) log p(A|xi−1)

end for {j}
log Ẑp ← log

∑
j exp(ŵj)− logS

return log Ẑf
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3.4 Summary

In this chapter, we have presented a generative, statistical model of approximately

periodic sounds and subsequently evoked firing rates in the auditory nerve. The acous-

tic component of our model is a probabilistic extension of the source-filter model of

speech production (Fant, 1960). A key variable is the unobserved periodicity Ω of the

sound prior to it being corrupted by noise (and further transformed into neural activ-

ity). In short, our model defines probability distributions over observed auditory nerve

responses for each possible such periodicity. The second, essential variable for this pur-

pose is the acoustic impulse response f of the sound source, which determines the shape

of the sound waveform within a period of Ω (note though that the impulse response can

last longer than the period duration). We presented two alternatives for characterising

the distribution over impulse responses f . Both assume that the envelope shape of f

can be described as an initial excitation which subsequently decays with an unknown,

arbitrary time constant. This assumption is implemented by drawing f from a mix-

ture distribution, where each mixture component corresponds to one of many different

time constants. The two alternatives models differ in their assumptions regarding the

fine structure of f underneath the decaying envelope. In the uncoupled model (section

3.1.1), f is temporally uncorrelated and independent of the sound periodicity. In the

more complex coupled model (section 3.1.2), temporal correlations are introduced by

means of specifying the covariance structure of f . Furthermore, the covariance struc-

ture, which also governs the expected overall spectral envelope, is allowed to depend

on the periodicity Ω.

Having specified probability distributions of over auditory nerve responses for each

possible periodicity Ω, we can use the framework of Bayesian probabilistic inference

to infer the most likely sound periodicity underlying some given, observed pattern of

auditory nerve activity. Due to the complexity of the generative model, exact inference

is computationally intractable. Two approximate inference algorithms were therefore

presented. The Laplace algorithm (section 3.3.1) is based on a Gaussian approximation

to the posterior distribution over unobserved waveform around its mode. Hamiltonian

Annealed Importance Sampling (HAIS; section 3.3.2) in contrast is a Markov Chain

Monte Carlo method that attempts to estimate the volume of the intractable posterior

distribution stochastically by drawing iterative samples.
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Basic model evaluation

In this chapter, we will perform a first evaluation of the basic, uncoupled model as

defined by the generative equations (3.5) - (3.8) and (3.23). Two questions are of im-

mediate interest here. The acoustic component of our generative model is a model of

periodic sounds, corrupted by additive Gaussian noise. Therefore, a first test should

be whether our approximate inference schemes are capable of estimating the true pe-

riodicity of sounds of this type at the very least. Beyond this, we want to investigate

to what degree our model is suitable as a explanation for psychophysical phenomena

in human pitch perception, i.e. to what degree it can explain the pitch of non-periodic

sounds or the pitch of periodic sounds in cases where it does not coincide with the

periodicity rate of the stimulus.

In order to estimate the periodicity of an arbitrary sound, we first generate an AN re-

sponse A according to our forward model (cf. section 3.2), and use this self-generated re-

sponse as input for one of our inference algorithms. We then evaluate the log-likelihood

function lnL(Ω) = ln P(A |Ω) for an appropriate set of possible candidate periodicities.

A number of choices have to be made regarding the setting of stimulus- and model

parameters. For all following examples, we arbitrarily scale the acoustic stimulus to

have mean squared amplitude (i.e. power) of 20. The covariance matrices of the

generative model are similarly scaled to yield the same expected power, i.e. the model

knows the energy of the stimulus. Likewise, when performing inference about periodic

sounds presented in a background of noise at a particular signal-to-noise ratio (SNR), we

typically scale the signal and noise components in the generative model (i.e. 1
T trace(Σs)
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and σ2
x in equation (3.6)) to obey the same ratio. This may seem like a potentially unfair

advantage for our model, since a human listener does not know the true acoustic SNR

a priori when listening to a stimulus. However, we found this potential advantage

to be of little practical concern: when comparing the likelihood values across a range

of models with SNRs set to different values, we obtain the highest likelihood values

for assumed SNRs in the model close to the true SNR in the stimulus. Thus, the

outcome of the periodicity estimation would essentially be the same if the model were

to infer (or integrate out) the stimulus SNR as a further unobserved variable instead,

while increasing the computational cost substantially. This was verified for a range

of stimuli. Furthermore, we would argue that it is not unreasonable to assume that

a human listener can form a relatively reliable estimate of the stimulus SNR over the

course of a prolonged psychophysical experiment.

Our peripheral gammatone filter-bank has 80 channels with CFs extending from 40 Hz

to maximally 16 kHz (or lower, when we reduce the sampling rate below 32 kHz for the

sake of computational efficiency). The level of AN noise (σ2
A in equation (3.22)) was

chosen so as to yield high SNRs (on the order of 10 dB) in channels with high evoked

activity levels, equally during the generation of simulated AN responses and during

inference.

A final consideration concerns the choice of envelope time-constants τs and pulse-train

offset φs that define the mixture covariance matrices Ψs according to equation (3.4),

and which we introduced to the model partially as a means to integrate out these un-

known parameters of the waveform during inference. For the sake of computational

efficiency, we want to avoid integrating over values of τs which contribute only neglige-

able probability mass to L(Ω). Conversely, it is important to ensure that the range

of timescales τs considered is wide enough such that a reasonable explanation of the

waveform envelope can be provided for every setting of Ω. Hence, when evaluating

lnL(Ω) for a range of Ω spanning several octaves, we balance these two constraints by

choosing the timescales τs relative to (and differently for) each Ω from a range between

0.1Ω and Ω. As Figure 3.4 demonstrates, this allows for sharp pulses as well as for

waveforms that remain approximately flat within the duration of one period Ω.

In section 3.3, we presented two alternative schemes – Laplace and Hamiltonian An-

nealed Importance Sampling (HAIS) – to estimate the unobserved stimulus periodicity

Ω from an observed pattern A = {ai} of time-varying auditory nerve (AN) activity in
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peripheral frequency channels i = 1 . . . C. In either case, our goal is to compute the log-

likelihood function lnL(Ω) = ln P(A |Ω) =
∫

P(A,x |Ω) dx . In the Laplace scheme,

we approximate lnL(Ω) as the Laplace integral of ln P(A |Ω) around the most likely,

unobserved waveform x∗. In the second scheme (HAIS), we use Annealed Importance

Sampling (with the Markov transition operator implemented as a Hamiltonian Monte

Carlo sampler) to approximate the integral over unobserved waveforms stochastically.

Figure 4.1 shows the estimated log-likelihood functions for three different sounds (pure

tone, HCT and SAM tone) under the two different approximation schemes around

their pitch frequency (lnLLap and lnLHAIS) . While there is an overall offset between

lnLLap and lnLHAIS in each of the three examples (i.e. a multiplicative scaling differ-

ence between LLap and LHAIS), the shape of the estimated log-likelihood functions is

otherwise similar for the two approximations. We do not have a solid analytic under-

standing for this seemingly consistent discrepancy, whereby the Laplace approximation

yields higher likelihoods than our sampling-based method. On the one hand, it is

clear that non-Gaussianity of the distribution P(A,x |Ω) can in principle give rise to

biases in the Laplace integral, as can local optima during the initial gradient-ascent

phase of the algorithm. On the other hand, convergence of MCMC methods in high-

dimensional spaces may be slow and is generally hard to establish. Even though this

was not considered further for the purpose of this thesis, one might attempt to identify

the true cause of the discrepancy by reducing the peripheral processing step to a fully

linear operation, in which case P (A |Ω) would become a mixture of Gaussian distri-

butions (cf. discussion in section 3.3) with fully-known parameters. Linearising the

peripheral model, however, has significant functional consequences by making envelope

demodulation invariably impossible, and it is unclear whether the insights gained by

this analysis would even hold for the actual non-linear model. In the absence of a

established ground truth for lnL(Ω), all likelihood estimates in the following sections

and chapter will be computed using the Laplace approximation due to its much lower

computational demand1.

1To give a rough sense of scale: In the Laplace approximation, a few hundred gradient steps in x
are typically needed to find a maximum of ln P(A,x |Ω), plus a single evaluation of its Hessian. If we
perform 500 annealing steps for each HAIS sample, where each annealing step itself involves 5 steps
of simulating the Hamiltonian dynamics, we need 2500 gradient calculations for a single sample. 400
samples were used to estimate the likelihoods shown in Figure 4.1, requiring more than 1000 times the
number of gradient steps required for the Laplace-based algorithm in total. A general, more precise
comparison of the computational cost is problematic since both the number of gradient steps in the
Laplace method and the number of MCMC samples required for convergence of th HAIS method depend
on the stimulus. From our rough comparison above, it is nevertheless clear that the increased effort of
HAIS over Laplace can easily become prohibitively large.
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Figure 4.1: Inference: Examples of periodicity estimates obtained using either
a Laplace approximation or Hamiltonian Annealed Importance Sampling (HAIS).
Stimulus waveforms (top) and estimated log-likelihood profiles lnL(Ω) (bottom).

4.1 Pure tones

As a first example, we will show model estimates of the periodicity of pure tones. We

generated 80 ms pure tones at a sampling rate of 32 kHz with frequencies ranging from

50 Hz to 6.4 kHz. Gaussian white noise was added at a SNR of 6 dB. We computed

lnL(Ω) for a three-octave range around the true stimulus frequency in up to 48 steps

per octave (limited by the sampling rate for higher frequencies) as shown in Figure 4.2

(top). The true stimulus frequency was inferred in every case. Notably, there is a strong

octave ambiguity between the true pure tone frequency and the frequency one octave

below, but not above2. This is consistent with features of the SACF, where peaks occur

at integer multiples of Ω, and with spectral pattern matching models where the presence

of a spectral component is regarded as evidence for an f0 at subharmonic frequencies

(not however with a simple, maximum-excitation place model). A noteworthy feature

of the estimated profiles is a broadening of the peaks (on a logarithmic scale) at the low-

frequency end, which is likely due to a combination of factors. Firstly, the bandwidth of

low-CF gammatone filters relative to their centre frequency, as well as their spacing, is

wider than that of high-frequency fibres, owing to their linear relation to the ERB scale

2Similar, still lower peaks occur also at higher-order submultiples of the tone frequency (not shown)
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(cf. equation (3.21) in section 3.2.1). Hence, the same small difference in log-frequency

may be harder to discriminate for low frequencies than for medium-to-high frequencies.

Peaks also broaden for the highest frequencies: discriminability in the model is limited

for technical reasons as Ω approaches the sampling rate limit. For a tone at 6.4 kHz

and a sampling rate of 32 kHz, the smallest detectable difference is approximately 20%.

Another likely reason for the broadening of lnL(Ω) at low frequencies is the small

number of cycles that can be observed over the 80 ms duration of the stimulus. This is

further amplified by the fact that we evaluate lnL(Ω) based on the AN activity only up

to 80 ms, i.e. before ringing of the peripheral filters has subsided. As low-CF filters are

slower to build-up their response, more information is lost in this way for low-frequency

stimuli. In the bottom panel of Figure 4.2, we compare the shape of lnL(Ω) for a 400 Hz

pure tone and different stimulus durations ranging from 20 to 80 ms, evaluated at a

rate of 24 steps per octave (the overall difference in scale is due to the lower acoustic

SNR of 0 dB is this example). As one would expect, the model accumulates evidence

over time and the likelihood function becomes increasingly peaked for longer stimulus

durations. We did not systematically explore longer durations, but there is no reason to

believe that this trend should subside. Data on pure-tone frequency difference limens

by Moore (1973) (see Figure 2.3) for example suggests an upper limit to the integration

time window in human perception between 100 and 200 ms3.

4.2 Harmonic complex tones

Next, we will consider the pitch of harmonic complex tones (cf. section 2.1.1.2). We

generated missing-f0 complex HCTs with 11 consecutive harmonics of 250 Hz each. The

rank n of the lowest harmonic was varied from 4 to 22 in steps of three, i.e. ranging

from HCTs with many resolved harmonics to entire unresolved sounds. Stimuli were

80 ms long, sampled at 32 kHz and presented in white noise at 0 dB SNR. Houtsma

and Smurzynski (1990) used a very similar set of stimuli to measure f0-discriminability

as a function of n. While subjects were able to perform the discrimination task even

for the entirely unresolved HCTs in principle, the authors reported a steep decrease in

discriminability between n = 7 and n = 13 which then flattened off for values of n = 16

3At the same time, however, human listeners are sensitive to changes in pitch at a much faster rate,
indicating that the time scale of integration may be dependent on the stimuli, stimulus context or task
(see e.g. Balaguer-Ballester et al., 2009).
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Figure 4.2: Top: Log-likelihood profiles for pure tones in the frequency range of
50 to 6400 Hz. Stars indicate the ML estimate for each curve. Bottom: Depen-
dence of lnL(Ω) on stimulus duration.

and higher. These are important results for two reasons. Firstly, they demonstrate

(along with many other sets of experiments) that pitch perception based entirely on

unresolved spectral components is possible. This rules out models based solely on

pattern-matching of the peripherally resolved spectrum (but not pattern matching of

spectra derived from the time course of neural activity as proposed by Srulovicz and

Goldstein (1983); cf. section 2.4.1). Secondly, the data of Houtsma and Smurzynski

(1990) are also challenging for models based on the summary autocorrelation function

(SACF; cf. section 2.4.2), since the the SACF does not naturally account for the marked

drop in pitch strength around n = 10 (even though this challenge has been addressed in

a recent modification by Bernstein and Oxenham (2005)). Therefore, this set of stimuli

is an interesting test case for the Bayesian model.

As Figure 4.3 shows, the Bayesian model behaves qualitatively much like the SACF

model. On the one hand, the stimulus periodicity is correctly inferred for resolved and

unresolved HCTs. However, we find no indication of a “weakened” reliability of the

model estimates for stimuli with n > 10. We did not evaluate lnL(Ω) densely enough
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around 250 Hz, or with sufficient number of stimulus samples, in order to compute f0

difference limens that would allow us to compare our model estimates directly to the

discriminability results of Houtsma and Smurzynski (1990). We can, however, interpret

the height of the local peak in lnL(Ω) at 250 Hz as an indicator of the subjective single-

trial certainty of the model about its inference (within a narrow region). Using this as

a measure of “pitch strength”, we must conclude that pitch strength in the Bayesian

model is unaffected by the rank of the lowest harmonic. We will not consider ways of

addressing this undesirable property of the model at this point, but instead revisit the

issue in section 5.5 after introducing an extension of our generative model targeted at

capturing human perceptual pitch-timbre interactions.
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Figure 4.3: Missing-f0 complex tones. A: Waveforms and spectra of two 250 Hz
missing-f0 HCTs with lowest harmonic rank n = 4 (top) and n = 22 (bottom). B:
lnL(Ω) for HCTs with n varying from 4 to 22.

A different aspect of missing-f0 pitch perception is the differential effect of phase ma-

nipulations on the pitch of HCTs with resolved and unresolved harmonics. Shackleton

and Carlyon (1994) showed that phase relationships between spectral components that

cause a doubling of the envelope periodicity of the sound from f0 to 2f0 results in a
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doubling of pitch for unresolved, but not resolved HCTs (cf. section 2.1.1.2). There is

a plausible mechanism for this effect: high-frequency AN fibres, stimulated by two or

more unresolved harmonics, follow the envelope rather than the temporal fine-structure

of the BM vibrations. Therefore, they cannot distinguish whether a doubling of en-

velope periodicity is caused by a doubling of f0 or by component phase-shifts. Given

our choice of peripheral front-end which explicitly comprises a stage of high-frequency

envelope demodulation (cf. section 3.2.2), we expected to observe similar effects in our

Bayesian model.

Following Shackleton and Carlyon (1994), we generated four different 250 Hz missing-f0

HCT stimuli. Wide-band HCTs with equal-amplitude partials in either “sine phase”

or “alternating phase” were filtered into two different frequency bands: a “low” one

extending up to 625 Hz, and a “high” one extending from 3.9 to 5.4 kHz. Figure 4.4A

shows the two high-filtered stimuli with a clearly-visible doubling of the envelope mod-

ulation rate for the alternating-phase HCT relative to the sine-phase HCT (a similar

doubling occurs for the low-filtered stimuli). Estimation results (evaluating lnL(Ω)

only at 250 and 500 Hz in this instance) are shown in 4.4B: while the inferred pitch of

the two low-filtered HCTs is 250 Hz irrespective of the phase relationship, the pitch of

the high-filtered HCTs is phase-dependent: the pitch of the alternating-phase HCT is

estimated as 500 Hz, while that of the sine-phase HCT remains at the true f0 of 250 Hz.

Note that by the exact same mechanism, the SACF model achieves an identical effect

(Meddis and O’Mard, 1997).

4.3 Iterated rippled noise

Iterated rippled noise (IRN) is generated by a process of repeatedly delaying a noise

token by an interval d and adding it back to itself after multiplication with a gain

factor g (cf. section 2.1.2, Figure 2.5). The mean reported pitch for IRN with g = 1 is

equal to 1
d (250 Hz for d = 4 ms), independent of the number of iterations. For g = −1,

the percept is different. Pitch matches to IRN1− (i.e. IRN with a single delay and

subtraction) are bimodally distributed around approximately 1/d ± 10%. For higher

numbers of iterations n, the percept drops to 1
2d (Yost et al., 1978; Yost, 1996; see Figure

4.6C). The pitch of IRNn+, as well as that of IRNn− for n ' 2, is explicable both by

the (broad) peaks in their resolved spectra and in terms of the temporal correlations
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Figure 4.4: Phase-dependence of unresolved missing-f0 pitch. A: Waveforms and
spectra of two 250 Hz HCTs with components in sine (top) of alternating phase
(bottom) filtered into a high, unresolved frequency region. B: log(Ω) evaluated
at 250 and 500 Hz for low- and high-filtered 250 Hz HCTs in sine and alternating
phase. Note the octave-increase in pitch for the high-filtered sound in alternating
phase (light green).

induced by the delay-and-add process.

We generated IRN with a delay of 4 ms, g = ±1 and one or four delay-add iterations,

denoted as IRN 1+, IRN 1−, IRN 4+ and IRN 4− (Figure 4.5). The stimulus duration

was 100 ms at a sampling rate of 20 kHz. Following Yost (1996), stimuli were low-pass

filtered at 4 kHz (6th order Butterworth filter).
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Figure 4.5: Waveforms and spectra of IRN 4+ and IRN 4−.

Figure 4.6A shows 10 log-likelihood profiles for each stimulus condition and their re-

spective means. The mean profiles for IRN 1+ and IRN 4+ (orange and red) both peak
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at 1/Ω = 250 Hz as expected from the psychophysics literature. The mean profiles for

IRN 1− and IRN 4− both have a local minimum around that same value. The profile

of IRN 4−, but not that of IRN 1− peaks visibly at 1/Ω = 125 Hz. We computed his-

tograms of the ML estimates of Ω in semitone bins (Figure 4.6B). All 10 estimates for

IRN 1+ and IRN 4+ fell within one semitone around 250 Hz (lnL(Ω) itself was evalu-

ated at 48 values per octave). The distribution of ML estimates for IRN 1− was very

broad and we generated an additional 15 samples to obtain a clearer picture. Peaks

appear in the histogram around both 250 Hz and 125 Hz, but no estimate fell within one

semitone of either of these two values. The clustering of pitch matches slightly above

and below 250 Hz with an absence of matches at 250 Hz itself is in good agreement

with psychophysical results reported by Yost (1996) (Figure 4.6C, top left and right).

However, the model has an overall greater tendency to infer periodicities around 125 Hz

than apparent in subjects’ matching behaviour. For IRN 4−, model results and human

psychophysics are in close agreement, with pitch matches clustered unimodally around

125 Hz in both cases (Figures 4.6B and 4.6C, bottom left).

Meddis and Hewitt (1991) argued that the SACF model accounts for the pitch of

IRN 1+ and IRN 1−, but the the periodicity estimates for IRN 1− were restricted to

within ±20% of the inverse delay 1
d in order to avoid spurious pitches caused by random

peaks in the SACF. Owing to the noisy, broadly modulated spectrum of IRN with

a low number of iterations, the pitch of such stimuli is difficult (if not impossible)

to account for with spectral pattern-matching models that require a line-spectrum

representation of the stimulus, e.g. the models by Goldstein (1973) and Terhardt

(1974). Even assuming that some spectral pre-processor was able to identify the peaks

in the spectrum, it still remains unclear how those models would account for the drop

in pitch between IRN 1− and IRN 4− as the peak frequencies do not change when the

number of iterations is increased. The pattern transformation model by Wightman

(1973) is capable of processing continuous spectra such as those of IRN. Yost and Hill

(1979) demonstrated that the model is able to account for bimodal distribution of

pitches around 1
d in the case of IRN 1− at least qualitatively.
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Figure 4.6: Model estimates and psychophysical data for IRN stimuli with a delay
of 4 ms, positive and negative gain, 1 and 4 iterations. A: lnL(Ω) for 10 samples
of each of the four stimulus conditions (thin lines) and their respective means
(thick lines). B: Histograms of ML estimates of Ω in semitone bins (25 samples
for IRN 1−, 10 each for the IRN 1+, IRN4+ and IRN 4−) C: Psychophysical data.
Left: histograms of pitch matches for IRN 1− and IRN 4− (adapted from Yost,
1996). Right: Modes of the distribution of pitch matches for IRN 1− and IRN 1+
as a function of delay, showing a lack of matches at f0 = 1

d in the case of IRN 1−
(adapted from Yost et al., 1978).
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4.4 Pitch shift of amplitude-modulated tones

Sinusoidally amplitude-modulated (SAM) tones with carrier frequency fc and modula-

tion rate g have the line spectrum of a frequency-shifted HCT with frequencies fc−g, fc

and fc+g. Schouten (1940) approximated the dominant perceived pitch as fp = g+ ∆f
n ,

where n is the rank of the harmonic of g closest to fc, and ∆f = fc−ng is the amount

of shift (cf. equation (2.3) section 2.1.2). The pitch of SAM tones is explicable both

by their SACF, as well as by spectral pattern matching, provided of course that the

components are peripherally resolved in the latter case. Needless to say, the pitch of

unresolved SAM tones is not explained by pattern matching models.

We tested the model behaviour for shifted, three-component complex sounds much like

SAM tones. We varied the centre frequency fc between 1900 Hz and 2100 Hz, with a

constant component spacing of g = 200 Hz around fc (see Figure 4.7). We chose a high

sampling rate of 44 kHz in order to be able to evaluate lnL(Ω) with high resolution

around g. The stimulus duration was 60 ms. We observed that the peak of lnL(Ω)

shifted away from 200 Hz for fc 6= 2000 Hz (Figure 4.7B shows three examples), exactly

as described by Schouten’s approximation (4.7C). lnL(Ω) in the model has several,

clearly distinguishable modes other than the ML estimate, the two next-highest of

which are also shown in Figure 4.7C. Their positions are well described by Schouten’s

approximation where n is chosen higher or lower than the true rank of the harmonic of

g closest to fc. Schouten made the same observation psychophysically: subjects, when

encouraged or cued, reported additional pitch matches at corresponding frequencies

(cf. section 2.1.2). In the model, a discontinuity occurs around fc = 2100 Hz, at which

point the spectral components of the stimulus are better explained as harmonics 10 –

12 of a harmonic sound with f0 ≈ 190 Hz than as harmonics 9 – 11 of an f0 ≈ 210 Hz.

Similar discontinuities around the point where fc is half-way between two harmonics

of g (e.g. 2000 and 2200 Hz) have been observed psychophysically for shifted harmonic

complex tones (e.g. de Boer, 1956a).

4.5 Amplitude-modulated noise

Sinusoidally amplitude-modulated (SAM) noise gives rise to a weak pitch correspond-

ing to the modulation frequency, for modulation frequencies up to approximately 1 kHz
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Figure 4.7: 200 Hz amplitude-modulated tones. A: Waveform and power spec-
trum of a shifted HCT with frequency components 1840, 2040 and 2240 Hz, similar
to a 2040 Hz pure tone sinusoidally modulated at 200 Hz. B: lnL(Ω) for three SAM
tones with carrier frequencies fc of 1920, 2000 and 2080 Hz, and a constant mod-
ulation rate of g = 200 Hz. Stars indicate the ML estimate of Ω, showing a pitch
shift for the tones with fc 6= 2 kHz. C: ML estimates (circles) and two highest
side-peaks in lnL(Ω) (crosses) for SAM tones with fc ranging from 1900 to 2100
Hz. Note the discontinuity at fc = 2100 Hz. The dotted line indicates a linear
approximation to subjects’ matching behaviour derived by Schouten (1940) from
psychophysical data (cf. section 2.1.2).

(Burns and Viemeister, 1976, 1981). The variability of this pitch is on the order of

one semitone. Even though the pitch of narrow-band SAM noise may be mediated

by mechanical distortions in the inner ear, modulation rates of SAM noise remain

discriminable even when distortions at the modulation frequency are actively cancelled

(Wiegrebe and Patterson, 1999; cf. section 2.1.2). Since SAM noise has flat, featureless

power spectrum, pattern matching fails to predict its pitch, while SACF and related

temporal models are sensitive to the amplitude modulations generated in high-CF fi-
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bres.

We tested the sensitivity of our model to SAM white noise with a modulation rate of

200 Hz (Figure 4.8A). The stimulus duration was 80 ms at a sampling rate of 24 kHz, no

unmodulated noise was added. Figure 4.8B shows the estimated log-likelihood profiles

for 20 different draws of white noise (blue curves) as well as the averaged profile (black).

While lnL(Ω) tends to peak around 200 Hz on average, the true modulator frequency

was not inferred as the most likely stimulus periodicity for each individual sample.

The histogram of the ML estimates (24 bins per octave) is shown in 4.8B. 19 out of

20 estimates fell within approximately one semitone of 200 Hz (4.8C), indicating that

the inferred periodicity is more labile than that of most other pitch-evoking sounds

discussed in this chapter (with the exception of IRN 1−). There is another qualitative

difference between the pitch of SAM noise and that of other pitch-evoking stimuli in

the model. For the purpose of inferring Ω, we initially set the assumed acoustic SNR in

the model to an arbitrary low value (-9 dB in the data shown). While the setting of this

value was found to have little influence on the outcome of the periodicity estimation and

its reliability, we observed that the likelihoods were overall higher for lower settings of

the SNR. In fact, we found that the single most likely explanation of the observed AN

response was obtained when the model assumed the stimulus to be pure noise (in which

case, of course, all periodicities Ω are equally likely). An example for one SAM noise

stimulus is shown in Figure 4.8D: the dotted line represents the (flat) likelihood profile

under the “noise only” model. It is persistently higher than the likelihood profile under

the model assuming -9 dB SNR. This means in turn that the model, when forced to

decide whether the stimulus contains a periodic element at all, would prefer to regard

the stimulus as entirely aperiodic. In order to explain the pitch of SAM noise, we

could assume that the model integrates over SNRs in the stimulus (effectively treating

it as another unobserved nuisance variable), in which case a peak is expected to persist

at 200 Hz, albeit weak. Alternatively, we could accept that a listener may be able to

wilfully override his own point-estimate of the SNR and listen to the sound under the

prior assumption that a periodic component must be present in the stimulus. The

ability to do so might, for example, depend on listening practice and training with

SAM noise, or musical expertise in general.
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Figure 4.8: The pitch of 200 Hz sinusoidally amplitude-modulated noise. A:
Example stimulus waveform and spectrum B: Log-likelihood profiles for 20 samples
of SAM noise (blue) and their mean (black). Individual profiles were shifted to
have zero-mean for ease of visualisation. C: Histogram of the ML estimates of Ω for
the samples shown in B (24 bins / octave). D: lnL(Ω) for a SAM noise stimulus,
evaluated under two different models. Assuming pure noise in the stimulus (dotted
line) yields overall higher likelihoods than assuming a low, but finite SNR of -9dB
(solid curve).

4.6 Transposed complex tones

Transposed complex tones (TCTs) are the summed products of half-wave rectified

sinusoidal modulators with high-frequency sinusoidal carriers, where the modulators

share a common fundamental frequency fm0 (Figure 4.9A). The carrier frequencies

are chosen such that the different modulation bands do not overlap in their resolved,

peripheral excitation pattern. The stimulus modulation-rates are reflected by periodic



Transposed complex tones 126

modulations of the peripheral filter outputs in the respective carrier frequency bands

(Figure 4.9B, right and centre). Oxenham et al. (2004) designed this type of stimulus to

test whether periodicity information is combined across different peripheral frequency

channels irrespective of their spectral identity in terms of CF, as suggested by the

summary autocorrelation model (see section 2.4.2). The stimulus frequencies used in

their study were 300, 400, and 500 Hz for the modulators, and 4, 6.35 and 10.08 kHz for

the carriers. As shown in Figure 4.9B (right), the periodic modulation of AN activity

in the carrier bands gives rise to peaks in the autocorrelation function (ACF) of the

corresponding channels, which coincide at a lag of τ = 10 ms. Following summation,

the SACF (bottom) peaks at τ = 10 ms, resulting in a pitch prediction of 100 Hz.

With TCT embedded in a background of pink noise, human listeners were found to

be unable to match fm0 , the fundamental frequency of the modulators. Furthermore,

three out of four listeners were unable to perform fm0 discrimination at all, while a

fourth subject had a fm0 difference limen of approximately 8%. At the same time, f0

discrimination and matching was possible for three-component missing-f0 HCTs (with

harmonic component frequencies equal to the TCT modulator frequencies) under the

same noise conditions. These results contradict the predictions of the SACF model. Not

surprisingly, however, there is no basis for reporting a low pitch of 100 Hz in spectral

pattern matching models.

We generated TCTs as described in Oxenham et al. (2004). Stimuli were 80 ms long,

sampled at a rate of 32 kHz (the same rate that was used by the authors of the study)

and embedded in pink noise at a total SNR of 0 dB. Figure 4.10 (top) shows the log-

likelihood profiles for three different draws of background noise. In each instance, the

model infers a stimulus periodicity corresponding to the high-frequency carrier bands,

rather than the low fundamental of 100 Hz. At the same time, missing-f0 HCTs with

component frequencies 300, 400 and 500 Hz in the same noise background give rise to

a ML estimate at the fundamental (bottom). Thus, the (correct) failure to report a

pitch of 100 Hz in case of the TCT is not simply due to an overwhelming noise masker.

Instead, we can understand the differential behaviour of the Bayesian model (which is

lacking in the SACF model) intuitively by considering the statistics of naturally-evoked

AN responses to periodic sounds. The observation of amplitude modulations of 300,

400 and 500 Hz in frequency channels with matching CFs is perfectly reasonable for an

approximately harmonic sound with f0 = 100 Hz as these are indicative of harmonics
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Figure 4.9: A: Generation of a transposed complex tone. Rectified sinusoidal
envelopes with a common fundamental frequency are used to modulate high-
frequency carriers, and the modulated carriers are summed. B: Simulated auditory
nerve response to a transposed complex (centre; modulator and carrier frequencies
as in A). The carriers generate peaks in the average AN firing rates, independent
of the modulator frequencies (left). The modulators cause regular peaks in each
of the three carrier frequency-band, which coincide at lag τ = 10 ms and cause a
peak in the SACF (right).

3 to 5 in the stimulus. Contrarily, the observation of the same set of modulation rates

transposed into high-frequency channels is not as typical for harmonic sounds with

f0 = 100 Hz. Since the harmonics of f0 are unresolved in this high frequency range,

they should evoke modulations of 100 Hz in each channel, unless the phase relationships

between harmonics happen to be very specifically set — differently in each carrier band

— so as to generate envelope modulation rates of 300, 400 and 500 Hz in the filter

outputs. To the degree that our generative model captures this simple intuition, it

should therefore down-weight the evidence for a low, common fundamental provided

by the high-CF channels in case of the TCT compared to the correctly-matched low-CF



Transposed complex tones 128

channels in case of a missing-f0 HCT.
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Figure 4.10: Top: lnL(Ω) for a transposed complex tone with fm0 = 100 Hz
in three different backgrounds of pink noise. Carriers of 4, 6.35, 10.08 kHz were
modulated at rates of 300, 400 and 500 Hz respectively. Bottom: lnL(Ω) of three
missing-f0 HCTs with component frequencies equal to the modulator frequencies.

As discussed in section 2.4.2, an recent extension of the SACF model by Balaguer-

Ballester et al. (2008) leads to the (desirable) failure of the model to identify fm0 as the

pitch of the TCT, except when the stimulus intensity in the simulation was lowered

considerably. As the central, low-pass SACF (LP-SACF) pitch processor does still not

take peripheral CF into account during the SACF computation, the change in model

behaviour was most likely effected by the use of a more complex model of the peripheral

response (Sumner et al., 2002) compared to earlier versions of the SACF model (e.g

Meddis and O’Mard, 1997). Without further psychophysical evidence regarding level

dependence on the one hand, and a demonstration of the phenomenological validity of

the peripheral model-response to TCT stimuli in noise on the other hand, it is therefore

impossible to draw strong conclusions regarding the value of the results by Oxenham

et al. (2004) as evidence for or against SACF-like models and pitch-processing strategies

that disregard the coherence or incoherence of filter CFs and their output firing patterns

in general. In any case, the Bayesian model responds differentially to HCTs and TCTs

despite its simple peripheral model which yields no distinction between these stimuli

when used with a SACF-like read-out.



Discussion 129

4.7 Discussion

The evaluations in this chapter have shown that the Bayesian model is able to infer

the true periodicity of periodic sounds such as pure tones and HCTs. These sounds

are well-described by the acoustic component of the generative model. In addition, the

AN activity pattern used as input to our inference algorithm was generated according

to the same peripheral model that we then assumed during inference. Thus, these

stimuli provide in many ways ideal conditions for the model, and any failure to infer the

correct periodicity would have been indicative of a severe deficiency of our approximate

inference schemes. While the model is able to infer the true period duration and thus to

predict the pitch frequency, we have observed that it fails to account for the degradation

of pitch strength as a function of the lowest-ranking harmonic of a HCT. A similar failure

was previously observed for the SACF model and interpreted as evidence against its

suitability as a unified model of pitch.

The Bayesian model produces periodicity estimates for a variety of non-periodic sounds

that are in close accordance with human pitch-matching behaviour, even though the

generative model assumptions are substantially violated. The model predicts the pitch

shift of SAM tones, the pitch of IRN+ and IRN- (including the dependence of the

latter on the number of iterations), and the pitch of SAM noise. We have seen that

the pitch of SAM noise is particularly weak in the model, in that highest likelihoods

overall are achieved by assuming an SNR of 0 in the model, at which point periodicity

is no longer detectable. Integration over SNRs or a strong, subjective prior in favour of

the presence of a periodic sound could explain the existence of the percept despite pure

noise being the single most likely interpretation of the evoked AN response. For all these

stimuli, the SACF model makes virtually identical predictions. This demonstrates that

periodicity estimates based on AN autocorrelation can be optimal for a considerable

range of pitch-evoking stimuli.

Transposed harmonic tones (TCTs) were presented as an example where the prediction

of SACF and the Bayesian model differ. While SACF predicts a low pitch at the missing

fundamental fm0 = 100 Hz of the modulators, the Bayesian model predicts a high pitch

around one of the carrier frequencies (4 kHz), explaining why subjects are unable to

discriminate the pitch of TCTs with different fm0 (but equal carriers).

Several of the phenomena discussed in section 2.1 are not captured by the model. We
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found no tendency to infer periodicities close to the edges of steeply filtered low- or

high-pass noise in the model, contrary to the pitch reported by human listeners (Small

and Daniloff, 1967; Fastl, 1971). Lateral inhibition has been suggested as a potential

explanation, as it could give rise to a peak in peripheral (or central) representation

of the stimulus spectrum around the edge frequency, and physiological evidence for

lateral inhibition has been found in chopper neurons of the cochlear nucleus (Rhode

and Greenberg, 1994; cf. section 2.3.1). To the best of our knowledge, neither SACF-

like nor spectral models have been reported to predict spectral edge pitch, and our

own implementation of the SACF model (cf. section 5.4) did not show such behaviour

either. Note though that the spectral model by Cohen et al. (1995) does include a stage

of centre-surround lateral interaction which could in principle give rise to the desired

effect. A further phenomenon which the Bayesian model fails to predict are the small

pitch shifts (≈ 1%) of HCTs with a mistuned low-rank partial (Moore et al., 1985). In

our model, the estimated periodicity simply remained at the fundamental of harmonic

stimulus components. Meddis and O’Mard (1997) reported pitch shifts in the SACF

model when pitch was determined by matching of the Euclidean distance D2 between

target and reference SACF (cf. section 2.4.2), but even then the amount of shift was

underestimated by a factor of approximately two.

Out of the unexplained phenomena above, we consider the failure to account for the

weakened pitch of high-rank missing-f0 HCTs the most concerning, as it subjects the

Bayesian model to the same fundamental criticism regarding its suitability as a uni-

fied model of pitch as the SACF model. As we will see in section 5.5, an extension

of the generative model aimed at explaining pitch-timbre interactions in human per-

ception turns out to provide a promising solution for the problem of pitch strength.

Notably, the proposed model extension is rooted in the statistical properties of nat-

ural, pitch-evoking sounds, providing functional insight in addition to an improved

phenomenological description of human pitch perception.



Chapter 5

Octave biases and timbral effects

in the perception of non-uniform

periodic pulse trains

5.1 Motivation

All results presented thus far were obtained from the basic model described in section

3.1.1, in which the stimulus period Ω and the acoustic impulse response f are treated

as independent in the generative process. As f determines the shape of the spectral

envelope of the sound, and Ω the spacing of spectral peaks underneath this envelope (the

lowest of which is the fundamental frequency f0 = Ω−1), sounds generated according

to this model will contain, on average, the same amount of energy in any given range of

frequencies, independent of the fundamental being low or high. Even more: since the

generative distribution over impulse responses is temporally uncorrelated, the average

spectrum of f is essentially white (cf. Figure 3.4). Hence, sounds of all periodicities

are a priori assumed to have flat, broadband spectral envelopes under the model.

Perceptually, the spectral envelope of a sound is a major determinant of its timbre,

while the periodicity determines – by and large – its pitch. Thus, one might say that

our basic, uncoupled model assumes pitch and timbre to be independent.

For natural pitch-evoking sounds, however, this assumption does not seem to hold, both

acoustically and perceptually. In this chapter, we will review evidence for a systematic
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relationship between the fundamental frequency and spectral envelope in the acoustic

properties of natural pitched sounds (such as produced by human voices and musical

instruments) on the one hand, and for interactions between the perceptual attributes

of pitch and timbre on the other. Based on this evidence, we propose an extended

model that incorporates a coupling between these two quantities in the generative pro-

cess, and fit the coupling parameters to a collection of instrumental and vocal sounds.

Finally, we present psychophysical data that demonstrates the ability of our extended

model to accurately predict effects of timbre on octave biases in the perception of

acoustic stimuli with inherent octave ambiguities. While these effects arise naturally in

our model as a consequence of Bayesian cue combination, they prove to be a difficult

challenge for existing, more heuristic models based on either spectral pattern match-

ing or autocorrelation analysis of the auditory nerve firing pattern. Finally, we go on

to show that our extended model now captures a perceptual phenomenon which was

previously unexplained by the simpler, uncoupled model. A dependence of the pitch

strength of missing-f0 harmonic complex tones on the rank (i.e. harmonic number)

of the lowest harmonic in the spectrum arises through the coupling, which matches

a similar dependence observed in human interval identification performance and pitch

discriminability.

5.1.1 Timbre, brightness and spectral centroid

Four properties — duration, loudness, pitch and timbre — are commonly used to de-

scribe the perceptual quality of a sound. Out of those four, timbre is arguably the

least well-defined. In fact, a typical approach is to define timbre as the ensemble of

all those qualities which distinguish sounds of equal perceived pitch, loudness and du-

ration1 (Plomp, 1970; ANSI, 1994; see Houtsma, 1997 for a review): like for example

the same musical note played on a violin and an oboe. Owing to its vague definition,

solely in terms of negatives, timbre has somewhat disrespectfully been described as the

“psychoacoustician’s multidimensional waste-basket”(McAdams and Bregman, 1979).

Several studies have attempted to identify and disentangle the underlying dimensions

of this complex perceptual space (e.g. Lichte, 1941; Grey, 1977; McAdams et al., 1995),

based on similarity ratings made by listeners between pairs of sounds. One dimen-

sion which has been identified consistently across studies correlates physically with the

1Spatial location appears to be an often-neglected aspect in this list of attributes.
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spectral centre of mass (centroid), and is commonly described verbally as “brightness”.

While other physical parameters (such as rise and decay rates of the waveform envelope,

noisiness, or the presence of amplitude and frequency modulations) also contribute to

the timbre of a sound, we will focus on brightness in the following. Brightness has

not only been studied more carefully than any other aspect of timbre in its effect on

pitch perception in the past (see section 5.1.3). It is also the aspect which is most

readily incorporated into our existing statistical framework without the need for severe

structural changes to the model, as we will show in section 5.2.

5.1.2 Relationship between fundamental frequency and spectral cen-

troid in natural sounds

Over the broad range of pitch-evoking sounds that listeners (animal or human) are likely

to encounter in their environment, there is a priori good reason to assume that their

fundamental frequencies and spectral centroids should in fact depend on each other.

Vocalisations, arguably the most common and relevant type of pitched sounds, are

generated by the excitation of a resonator – the vocal tract, encompassing the laryngeal,

pharyngeal, oral and nasal cavities in mammals – by the periodically modulated air

flow originating from the primary sound source, namely the vocals folds (mammals)

or syrinx (birds). It is an almost trivial observation, that small animals do not only

tend to modulate their air flow at higher rates than larger animals, but that they also

have shorter vocal tracts with correspondingly higher resonance frequencies2: compare

for example the roar of a lion to the squeak of a rat. The same holds true not only

across, but also within species: the vocal folds of women and children open and close at

higher rates than those of men when speaking at their natural pitch, while at the same

time the speech formants, i.e. dominant peaks in the spectral envelope, are shifted

towards higher frequencies (Peterson and Barney, 1952), owing to their shorter vocal

tracts (Patterson et al., 2008). Measuring the formant frequencies in the vocal tracts

of soprano singers as they sang scales on different vowels, Joliveau et al. (2004) found

that a similar, positive correlation between fundamental and centroid appears to exist

even within a single individual, as the pitch moves from the bottom the the top of the

2Even though the resonance frequencies of the vocal tract are difficult to determine exactly due its
complex shape, an inverse relationship between size (in any dimension) and resonance frequency exists
for analytically tractable resonator shapes, such as cylindrical tubes, spheres or cuboids.
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vocal range3. Another common source of pitched sounds are musical instruments. As

with vocalisations, it is similarly true that low-pitched sounds are typically produced

by large instruments with low resonance frequencies, while high-pitched instruments

are small and resonate best at high frequencies (van Dinther and Patterson, 2006).

The variation of the spectral centroid with f0, however, depends on the instrument

type: while they appear to co-vary strongly in some instruments, the spectral envelope

remains more or less fixed in others (see for example Figure 5.1). We will quantify this

relationship for a large ensemble of instrumental and vocal sounds more carefully in

section 5.2.2.

5.1.3 Psychophysical effects of timbre on pitch

The previous section was concerned with the relationship of fundamental frequency

and spectral centroid in the statistics of natural sounds, but what about their (approx-

imate) perceptual counterparts, pitch and timbral brightness? In a study by Plomp and

Steeneken (1971), subjects rated the perceptual dissimilarity between pairs of tones that

differed in their fundamental frequency, spectral envelope, or both at the same time.

From the structure of these dissimilarity rating, Plomp concluded that pitch and tim-

bre are effectively processed as independent dimensions: the dissimilarity of tone pairs

that differed in both fundamental and spectral envelope was found to be close to the

summed dissimilarities along either dimension alone. Such a “city block” metric, as

opposed to a Euclidean metric, in the judgement of dissimilarities along multiple dimen-

sions is often regarded as evidence for perceptual separability (Garner, 1974). Several

recent studies (Marozeau et al., 2001, 2003; Schubert and Wolfe, 2006; Marozeau and

de Cheveigné, 2007) have indeed confirmed that differences in pitch have only rather

limited influence on the perception of simultaneous differences in timbre (brightness in

particular), and furthermore suggest that overall pitch-dependent shifts of sounds in

timbre space (leaving timbre differences invariant) are also small.

While the effect of pitch on timbre may be small, there is a substantial body of evidence

suggesting that timbre can affect the perception of pitch more severely. According to

Hesse (1982), compositional practise since the nineteenth century has been aware of

the need to compensate for gross timbral differences of certain instruments, alternating

3Note though, that the effect is strongest for fundamental frequencies above the natural speaking
range.
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Figure 5.1: Spectra of a violin, a trumpet and a piano, each playing two notes
separated by two octaves (lower-pitched note in blue, higher-pitched note in red).
Samples taken from the University of Iowa Musical Instrument Samples database.
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in the execution of a continuous melody, by octave transpositions in order to avoid

perceived breaks in the melodic contour4. Similarly, von Helmholtz (1863) stated that

“although the pitch of a compound tone is, for musical purposes, determined by that

of its prime, the influence of the upper partial tones is by no means unfelt. They

give the compound tone a brighter and higher effect”. Hesse (1982) himself conducted

experiments in which he had music students transcribe melodies that were played with

synthesised sounds of various degrees of spectral brightness. When two notes of the

same fundamental frequency were played in sequence, while the timbre was considerably

brightened at the same time, students tended to transcribe the interval as an octave,

rather than a unison. Similarly, a downward leap (in fundamental frequency) of a

fourth would often be transcribed as an upward leap of a fifth, again differing from the

true interval between the two fundamentals by an octave. Hesse concluded not only

that brightness and pitch are dependent upon one another, but also that brightness is

“a component or dimension of pitch”. This interpretation was shared by van Norden

(1982), who suggested that the perception of pitch height (i.e. that aspect of the pitch

that distinguishes between different notes separated by one or several octaves) and

brightness are mediated by the same underlying process. Robinson (1993) contested

this view: in his experiments, subjects had to judge either whether the pitch interval

between two notes was a unison or octave, or whether the instruments playing the two

notes were the same or different5. Subjects, musically trained and untrained alike, were

able correctly discriminate instrument identity (presumably based on their brightness)

in the presence of differences in pitch height. Like Hesse (1982), however, he found that

pitch height judgements were strongly impaired when the two notes were played on

different instruments, i.e. with different brightness (more so, and for longer durations,

in musically untrained subjects than in musicians). From this asymmetry, Robinson

concluded that the perception of pitch height and brightness are based on separate

processes, but with a unidirectional, partial dependency of pitch height on timbre.

Aside from the rather large-scale effect of brightness on the perception of octave position

within the same pitch class (chroma), interactions between pitch and timbre have also

been documented in the discrimination of nearby fundamental frequencies. Singh and

Hirsh (1992) showed that an increase in brightness can perceptually compensate for a

4A mention of this rule is seemingly found in F. A. Gevaert’s handbook on instrumentation, “Traité
général d’instrumentation”, from 1863 (Hesse, 1982).

5Two pitches, 130 and 260 Hz, and two synthetic instruments with different spectral brightness were
used.
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decrease in the fundamental frequency of up to 2% (i.e. less than half a semitone), such

that the pitch is perceived as identical. Vurma et al. (2010) recently confirmed these

results using natural vocal and instrumental sounds, indicating that timbre-induced,

perceptual pitch shifts are likely to affect the subjective quality of intonation in everyday

music performance. Measuring reaction times for pitch and timbre discrimination,

Melara and Marks (1990) found an interference effect between timbre and pitch in a

Garner speeded classification task: both attributes were varied simultaneously in order

to assess the influence of changes in the unattended dimension on the processing speed

of the attended one (Garner, 1974). The pitch differences were of a similar relative

magnitude as in the study by Singh and Hirsh (1992) (close to 2%). This finding was

recently confirmed by Silbert et al. (2009), who speculated that “the locus of interactive

effects between f0 and spectral shape is, in some respect, postsensory”, occurring after

f0 and spectral shape have been extracted, more or less independently, from the spacing

between spectral components (f0) and their relative amplitudes (shape), respectively.

What about interval sizes other than octaves and microtones, which would be indicative

of an effect of timbre not only on pitch height, but also on pitch class? Here, the

evidence is more scarce. Krumhansl and Iverson (1992) demonstrated that reaction time

interactions, akin to those found by Singh and Hirsh (1992), occur also for fundamentals

separated by a tritone (i.e. half an octave). Pitt (1994) extended these results, again for

a tritone interval, comparing the performance of musicians and non-musicians. While

reaction time effects were observed in both groups, non-musicians (but not musicians)

were also prone to pitch misclassifications (same/different) when the timbre changed

simultaneously. Somewhat worryingly though, subjects did not only report changes

in pitch when the fundamental remained unchanged, they also failed to report a true

difference in fundamental frequency in 40% of all cases. Considering that the tritone

is typically regarded as the most strongly contrasting inverval in Western tonal music,

this raises the issue whether the non-musical listeners were simply overburdened with

the experimental task, which required them to detect and report changes in both timbre

and pitch at the same time for each trial. For example, a strong difference in timbre may

have diverted their attention from changes in pitch, rather than exactly compensating

for the tritone difference in f0. This explanation seems particularly likely, as there

is no indication that the two different timbres used in the experiment were chosen

deliberately to produce an effect on pitch of approximately a tritone.
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There is the well-documented phenomenon of a transition from missing-fundamental

pitch to a purely spectral pitch as the rank of the lowest harmonic of a missing-

fundamental complex tone is increased, especially when the total number of harmonics

is low (e.g. Smoorenburg, 1970; Houtsma and Fleuren, 1991; Renken et al., 2004).

For natural sounds, however, the fundamental frequency is typically present in the

spectrum, and brightness is determined by the degree to which a continuous spectral

envelope extends into high-frequency regions, rather than by small isolated groups of

high-rank harmonics.

In summary, there is solid evidence for an effect of timbre, and in particular bright-

ness, on the perception of pitch height within the same pitch class under naturalistic

stimulus and listening conditions, as well as for small timbre-induced biases within ap-

proximately a quarter-tone range around the true fundamental. Evidence for systematic

effects of timbre on pitch chroma is less extensive and less convincing in comparison.

From a methodological point of view, octave-scale pitch differences would appear to

be more readily measurable than microtonal differences close to the limit of discrim-

inability, both experimentally and in a model. We therefore choose to focus on the

influence of brightness on the perception of within-chroma octave position throughout

the remainder of this chapter.

5.2 Incorporating f0-dependent timbral characteristics

into the Bayesian model

In section 5.1.2, we argued for a dependence between fundamental frequency and spec-

tral centroids in the statistics of natural sounds. Even though we have described an

abstract formalism, capable of linking these two quantities in our generative model in

principle (cf. section 3.1.2), all results in chapter 4 were obtained using a model in

which they were a priori uncoupled. The primary goal of this section is to describe,

in more practical terms, how to link fundamental and centroid frequency in the model

so as to better capture their dependency as measured in a database natural pitched

sounds. Several qualitative predictions regarding the influence of brightness on pitch

arise from the extended model. In section 5.3, we present new psychophysical data

of human listeners in task specifically designed to test these predictions. We will go

on to demonstrate that these data are quantitatively well-described by our extended
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Bayesian model, and compare its performance to several established models of pitch

perception, based on more heuristic computations such as pattern matching of the

peripherally-resolved spectrum (Terhardt, 1974; Wightman, 1973) or autocorrelation

analysis of evoked auditory nerve responses (Meddis and Hewitt, 1991; Bernstein and

Oxenham, 2005; Balaguer-Ballester et al., 2008).

5.2.1 General parametric form

Our initial specification of the Bayesian model (section 3.1.2) allows for a generative

coupling between the periodicity Ω and spectral properties of the impulse response f

by means of the following two-step procedure:

1. First, an impulse response f is drawn from the distribution P(f) =
∑

s πs N (0,Ψs), a mixture of Gaussians with diagonal covariance matrices Ψs

(cf. equation (3.6)).

2. Next, f is convolved with a filter kernel hΩ, the shape of which can depend on Ω

in an arbitrary way. In expectation, f is spectrally white prior to filtering, and

hence hΩ fully determines its spectral envelope.

We also showed that this procedure is formally equivalent to drawing f from a different

distribution PΩ(f) =
∑

s πs N (0,Ψs
Ω), where each covariance matrix Ψs

Ω is obtained

by multiplying a diagonal matrix Ψs on both sides with HΩ, the convolution matrix

implementing the filter hΩ: Ψs
Ω = HT

ΩΨsHΩ (cf. equation (3.14)).

In order to apply this general framework in our model, we need to choose a workable

parametrisation of hΩ: one that is simple enough to fit yet sufficiently powerful to

capture those aspects of the statistical dependency of Ω and f in natural sounds that

matter the most from a perceptual point of view. We will approach this issue in two

stages. First, we choose a family of kernels that is parametrised, for each value of Ω, by

only a single shape parameter λ(Ω). Following that, we will show how to fit the scalar

function λ(Ω) to a database of instrumental and vocal sounds in section 5.2.2.

We can use the spectra depicted in Figure 5.1 as guiding examples in order to define a

set of desiderata for a suitable parametrisation of hΩ. Firstly, like the spectra of many

natural pitched sounds, they are skewed: from a peak in the frequency region around the

fundamental, or perhaps a low-ranking harmonic, the spectral envelope decays rather
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Figure 5.2: Effect of smoothing the model impulse response with a Gaussian
kernel. A: Waveform representation of a draw from P(f) before (left) and after
smoothing (right) with a Gaussian kernel (centre). B: Spectral representation of
the same draw and kernel. C: Effect of smoothing on the covariance matrix of
P(f).

smoothly as frequency increases. Secondly, as the pitch increases (5.1, red versus blue

curves), the envelopes appear to stretch, rather than shift, while largely retaining their

characteristic, skewed shapes. Based on these two observations, we chose to model hΩ

simply as Gaussians kernels, each with a single shape parameter λ(Ω) corresponding

to its width:

hΩ(t) ∝ exp

(
−1

2

t2

λ(Ω)2

)
(5.1)

The Fourier amplitude spectrum of such a kernel is given by the positive half of Gaussian

function, centred at 0 Hz with its spectral width λ̂(Ω) inversely proportional to λ(Ω):

F{h}(f) ∝ exp

(
−1

2

f2

λ̂(Ω)2

)
(5.2)

with

λ̂(Ω) =
1

2πλ(Ω)
. (5.3)

The effect of such a Gaussian-shaped kernel hΩ — with an arbitrarily chosen width for

now — on a draw from P(f) (i.e. a mixture of Gaussians with diagonal covariances) can
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be seen in Figure 5.2 (panels A and B). Figure 5.2C demonstrates how the covariance

structure of f is changed by this filtering operation. Prior to filtering, the covariance

matrix is diagonal (with variances decaying along the diagonal according to equation

(3.4)). After filtering with hΩ, there is a band of positive covariances around the

diagonal, dropping off with increasing distance from it, that enforces local smoothness

in filtered draws of f . Our choice of kernel, as Figure 5.2 goes to show, already meets

two of our desiderata: firstly, its spectral envelope peaks at at 0 Hz. When multiplied

with a harmonic comb spectrum, such as that of the pulse train δΩ in our model, the

resultant sound will on average have the highest spectral peak at the fundamental and

decay with a smooth Gaussian-shaped envelope towards higher frequencies. Our final

requirement — that the spectra of higher-pitched sounds should essentially be stretched

versions of the spectra of lower-pitched sounds — imposes constraints not on the general

kernel shape as such, but on the relationship of its width λ(Ω) on the period duration

of the pulse train. In order to meet this requirement, we need to specify λ(Ω) such that

it increases with Ω. Since f0 = Ω–1 and λ̂ ∝ λ–1, this will cause the spectral width λ̂

to increase with f0 and result in the desired stretching effect. From visual inspection

of the spectra in Figure 5.1 we can perhaps make the educated guess that λ(Ω) should

grow sub-linearly, as a two-octave increase in f0 appears to result in a stretching of less

than two octaves in the envelope in all three cases. The exact relationship between Ω

and λ will be determined quantitatively in the following section.

5.2.2 Fitting the timbral f0-dependence to natural pitched sounds

We used the sounds of 20 orchestral instruments over their entire playing range, pro-

vided by the University of Iowa Musical Instrument Samples database6, as well as

recordings of two-octave scales sung on different vowels7. For each note, the fundamen-

tal frequency (f0) and the width of the spectral spectral envelope (fc) were estimated

automatically (see Appendix B for the algorithm). We restricted the range of pitches

to below 2500 Hz (approximately an E[7). Firstly, the f0-estimates became increas-

6The instruments contained in this data set are: piano, flute (concert, alto, bass), oboe, clarinet
(E[, B[, bass), bassoon, saxophone (soprano, alto), french horn, trumpet (B[), Trombone (tenor, bass),
tuba, violin, viola, cello, double bass. Out of three loudness levels available for each instrument, only
the medium-loudness samples, without vibrato where applicable, were used. All samples were recorded
in anechoic conditions using high-fidelity recording equipment. The samples are freely available at
http://theremin.music.uiowa.edu/MIS.html.

7Scales on the vowels [e], [A], and [O] (closed “eh”, open “ah” and open “oh”), sung by the author
and one professional female singer, were recorded in an anechoic room.

http://theremin.music.uiowa.edu/MIS.html
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ingly prone to octave mistakes at higher frequencies. Secondly, the few samples in this

highest f0 region all originated from only a single instrument (piano).

Figure 5.3 shows a scatter-plot of the f0 and fc estimates across our entire ensemble

of sounds. A positive correlation between f0 and fc is evident from the raw data. In

addition, we binned the f0s into successive whole-tone intervals and computed 〈fc(f0)〉,
the mean centroid frequency for each bin (green line in Figure 5.3). We found that the

resulting f0-fc relationship was well fit by a scaled square-root function,

〈fc(f0)〉 = a ·
√
f0 . (5.4)

We fitted the scaling parameter a to our data set, using generalised linear regression to

minimise
∑

i(fc,i−a
√
f0i)

2, the summed squared error between predicted and observed

fc across all data points (Figure 5.3, solid red line). This approach yielded an estimate

of a = 56.8. Since this estimate might be unduly dominated by the great number of

samples with f0 below 500 Hz, we also fit a to the f0-binned means (green line) directly,

thereby compensating for the varying density of samples along the f0-axis. This second

estimate agreed with the first within 2%, i.e. almost perfectly. Even though the space

of possible functional relationships was not explored systematically any further, we

found that a linear relationship, fc = m ·f0 + c (Figure 5.3, dashed red line) provided a

slightly worse fit to the data despite having an additional free parameter (for both for

the raw and binned estimate). Considering the visually convincing agreement with our

empirical binned centroids, we commited to the square-root relationship of equation

(5.4).

Having described the relationship between f0 and fc in our ensemble of musical instru-

ment sounds, how should we choose the smoothing time scale λ(Ω) in our model, so

as to match these natural statistics? A scaled half-normal distribution of width λ̂(Ω),

such as the average spectral envelope of the impulse response f in our model after

smoothing, has a mean (i.e. centre of mass) of

fc(Ω) =
√

2/π λ̂(Ω) . (5.5)

If we re-express fc in equation (5.4) as a function of Ω = 1
f0

, substitute it into equation
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(5.5) and solve for λ̂(Ω), the spectral width, we obtain

λ̂(Ω) = a ·
√

π

2 Ω
. (5.6)

Using equation (5.3), we can finally solve for λ(Ω), the temporal width of the Gaussian

smoothing filter as a function of the period Ω:

λ(Ω) =

√
Ω

a · π3/2
√

2
. (5.7)

Using the previously determined value of a = 56.8, draws from our generative model

will show the same average relationship between period (or fundamental frequency)

and spectral centroid as observed in our natural sound ensemble. In the following, Ω is

typically expressed in milliseconds, rather than seconds: an additional factor of
√

1000

is to be applied to the right-hand side of equation (5.7) in this case, yielding a combined

factor of approximately 0.07069. Thus, within 1% of our true estimate of the scaling

relationship, we obtain the model fit used throughout the remaining experiments:

λ(Ω[ ms]) = 0.07
√

Ω[ ms] . (5.8)

5.2.3 Qualitative predictions

Based on the nature of the coupling between periodicity and spectral envelope in our

generative model, we can make some qualitative predictions regarding the dependence

of pitch perception on timbral stimulus features that we would expect to find in the be-

haviour of a Bayesian ideal observer. Owing to the periodicity-dependence of spectral

brightness during sound generation, brightness becomes informative about periodicity

during inference. Since the expected spectral centroid increases monotonically with

fundamental frequency, the presence of strong high-frequency components in the spec-

trum is broadly indicative of high pitches, whereas a concentration of spectral energy

only at low frequencies points towards low pitches. During inference, these timbral

cues need to be weighted against evidence arising from the temporal periodicity of the

auditory nerve responses.

It is one of the fundamental properties of Bayesian cue combination that different cues

are weighted according to their reliability (e.g. Ernst and Banks, 2002). For periodic
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Figure 5.3: Fundamental frequency (f0) and spectral centroid (fc) for sounds
from a collection of 20 musical instruments and two voices. Black circles represent
f0 and fc for each tone from the ensemble. The green line shows the mean fc for
each whole-tone bin along the abscissa, the shaded area represents ±1 standard
deviation around the mean. Shown in red are the best linear (dotted) and square-
root (solid) fits to the raw data set.

sounds that evoke strongly peaked, periodic envelope modulations across many periph-

eral frequency channels, the temporal cue alone will determine the sound periodicity

almost unambiguously and with much greater certainty than the spectral envelope by

itself. In cases like this we would expect the combined periodicity estimate to be dom-

inated by the temporal cue and largely independent of timbre. However, we do expect

to see a stronger influence of timbre on pitch in cases where a periodicity estimate

based on the temporal cue alone is ambiguous: in this case, the centroid of the spec-

tral envelope will be useful in distinguishing between alternative interpretations of the

observed data.

Therefore, we should be able to bias a listener’s pitch percept of temporally ambiguous

sounds (but not that of temporally unambiguous sounds) by manipulating their spectral

brightness, provided that the listener judges pitch like an ideal observer that assumes

a dependency between periodicity and spectral envelope similar to the one embodied

in our coupled model. In the next section, we will present an experiment designed

specifically to test this prediction.
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5.3 Octave biases in the perception of non-uniform peri-

odic pulse trains

The most common type of errors in pitch judgements, aside from small deviations

around the true pitch due to limited discriminability, are octave mistakes. As we

discussed in section 5.1.3, these errors are strongly influenced by the brightness of

stimulus timbre. Hence, in order to test our hypothesis and model, we sought a stimulus

with clearly defined pitch chroma on the one hand, but with high octave ambiguity on

the other. One simple class of stimuli which has exactly this property are periodic pulse

trains with amplitudes alternating between two values a1 and a2. For an inter-pulse

interval of duration ∆t and (even) pulse amplitudes a1 = a2, the pulse train is clearly

periodic at a rate of 1
∆t . For a2 = 0, the train is obviously periodic at half the rate

1
2∆t . For any other combination of amplitude a1 6= a2, the pulse train is also periodic

at this slower rate, but it might be mistaken for the high rate perceptually, especially

if a1 and a2 are almost identical, and in the presence of added noise. Thus, by varying

the relative amplitude r = a1
a2

from 1→∞, one would expect subjects to change their

pitch judgements from 1
∆t (high) initially to 1

2∆t (low) once r becomes sufficiently large,

moving through a region of high ambiguity in-between. An experiment just like this

was performed by Flanagan et al. (1962), who found that the pitch percept dropped

by an octave for values of a1
a2

in excess of 6 to 10 dB (see Figure 5.4). Importantly, this

initial plateau of the psychometric curves is unlikely to result from a basic failure to

detect the amplitude alternations: Pollack (1971) measured jitter detection threshold

for square waves with amplitude jitter added to each half-wave, showing that relative

jitter amplitudes of few percent were detectable for stimuli of comparable duration and

period length.

We adapted Flanagan’s stimulus paradigm in order to test our hypothesis, that stimulus

timbre should influence the perceptual octave-boundary between high- and low pitch,

and that it should do so specifically in cases where ambiguity regarding the stimulus

period is high. Listeners had to judge the pitch of alternating-amplitude pulse trains

and harmonic complex tones with different timbral characteristics as either high or low

compared to flanker sounds which had a pitch half-way in-between.
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Figure 5.4: Results of matching the pitch of a regular, uniform pulse train
(pulse-rate B) to that of train of pulses with alternating amplitude (pulse rate
AL). Different curves represent different pulse rates AL. For most pulse rates
used in the experiment, the matched pulse rate B drops by an octave from AL to
AL/2 as the amplitude ratio reaches approximately 8 dB. Figure from Flanagan
(1972), results originally published in abstract form in Flanagan et al. (1962).

5.3.1 Experimental methods

5.3.1.1 Participants

Seven subjects, including the author, took part in the experiment. All subjects were

graduate students at University College London, between 23 to 30 years old and male.

Participation was voluntary and without monetary reward. No subject had previously

been diagnosed with a hearing disorder or reported any subjective hearing impairments.

Three subjects played a musical instrument around the time of the experiment, a fourth

subject had had musical training in the past. Excluding the author, subjects had

not previously participated in psychoacoustic experiments, and were fully naive with

regards to the purpose and expected outcome of the task.

5.3.1.2 Stimuli

In each trial, the stimulus consisted of a target sound, preceded and followed by two

identical flankers. Target sounds were either alternating click trains (ACTs) or har-

monic complex tones (HCTs). The ACT targets had an inter-click interval of 2 ms.

Individual clicks were bipolar with a duration of 0.3 ms. The click amplitudes alter-

nated periodically between two values a1 and a2. Thus, for values a1 = a2, the ACTs

were periodic at a rate of 500 Hz. For values a1 6= a2, they were periodic at a rate of
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250 Hz, i.e. one octave lower. Independent of the click amplitude ratio r = a1
a2

, the

click trains had a similar, broad-band spectral envelope, which we refer to as having a

“broad” timbre (Figure 5.5A). In order to manipulate their timbral brightness, some

ACT stimuli were low-pass filtered at 3 kHz (36 dB/octave, 6th order Butterworth filter),

in the following referred to as having a “dark” timbre (Figure 5.5B). Harmonic com-

plex tones had fundamental frequencies of either 250 or 500 Hz with equal-amplitude

partials in sine phase. In order to match the two different timbres of the ACT stimuli,

even-amplitude partials extended from the fundamental up to either 20 kHz (broad) or

3.5 kHz (dark).

Flankers were always missing-fundamental HCTs with a fixed f0 of 353 Hz, exactly

half an octave in between the two possible target fundamental frequencies of 250 and

500 Hz. Flankers comprised the partials 2 to 20, in sine phase and with equal amplitude.

Containing many peripherally resolved partials, the flankers were expected to evoke a

strong, unambiguous pitch of 353 Hz.

Both targets and flankers were presented in a background of low-pass filtered noise

with a cutoff frequency near 1 kHz, in order to mask possible mechanical distortion

products at either 250, 353 or 500 Hz (see section 2.2.3.3). The level of the masking

noise in relation to the target and flanker level was chosen such that the overall signal-

to-noise ratio (SNR) was either 0 or -6 dB (Figure 5.5C). In any given trial, the SNR

and absolute levels were identical for the target and flankers.

Each subject was presented 30 samples from each of 19 different target stimulus condi-

tions, as summarised in Table 5.1. 15 different ACT conditions were used, comprising

five different amplitude ratios (1, 1.69, 2.25, 2.89 and 4) for each of three combinations

of noise level and timbre (0 dB SNR, broad; -6 dB SNR, broad; 0 dB SNR, dark). The

amplitude ratios were based on previous pilot data (from the author and a different

group of subjects), which indicated a transition of the perceived pitch for the ACT

stimuli from 500 to 250 Hz within this range. The remaining four stimulus conditions

comprised HCTs with a pitch of either 250 or 500 Hz and broad (harmonics up to

20 kHz) or dark timbre (harmonics up to 3.5 kHz). Overall presentation level was kept

constant across trials. Target and flankers had a duration of 60 ms, separated by 100 ms

of silence.
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2 ms alternating click train

SNR timbre amplitude ratio

0dB broad 1 1.69 2.25 2.89 4

-6dB broad 1 1.69 2.25 2.89 4

0dB dark 1 1.69 2.25 2.89 4

harmonic complex tone

SNR timbre f0

0dB broad 250 Hz 500 Hz
0dB dark 250 Hz 500 Hz

Table 5.1: Stimulus conditions used in the experiment. The 15 ACT conditions
comprised five different amplitude ratio for each of three different combinations of
SNR and timbre. Four further conditions comprised harmonic complex tones with
either low or high f0 and broad or dark timbre.

Stimuli were generated digitally in Matlab8 with a sampling rate of 44.1 kHz and pre-

sented, using the Psychophysics Toolbox extension (Brainard, 1997; Kleiner et al.,

2007), in a quiet room via circumaural headphones with high passive noise attenuation

(Sennheiser HDA 200) at a comfortable listening level. Listening levels chosen by the

subjects ranged from 70 to 78 dB SPL.

5.3.1.3 Task

In each trial, subjects were asked to judge the shape of the melodic contour of an A-B-A

sound triplet as either rising-falling or falling-rising, where A is flanker and B a target

stimulus as described above (see Figure 5.6). Trials for all 19 target conditions were

intermixed randomly. Subjects listened to the sounds via headphones and responded

either by clicking one of two buttons depicting the two melodic contours on a computer

screen with a mouse, or by pressing one of two corresponding keys on the keyboard.

Reaction times were unconstrained, the intertrial interval between response and onset

of the next stimulus triplet was 1 s. No feedback was given during the experiment.

Subjects were told that the purpose of this experiment was to probe their subjective

perceptual experience and that there was no strictly right or wrong response in any

trial. They were further informed that they were likely to experience ambiguous stimuli,

in which case they should make a quick decision according to their best judgement.

Furthermore, subjects were informed that the stimuli were independent from trial to

trial and not influenced by their previous choices in any way, and that long sequences

of identically shaped triplets may occur simply by chance. Before the start of the

main task, subjects were given the opportunity to familiarise themselves with the user

interface in two short test runs. The first of these contained only broadband ACT

8MATLABr version 7.10.0 (R2010a), The Mathworks Inc., Natick, Massachusetts
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Figure 5.5: Effect of manipulating amplitude ratios (A), spectral envelope (B)
and noise level (C) on the stimulus waveform (left column) and power spectral
density (right column). A: Pulse trains with the five amplitude ratios used in the
experiment, shown without noise (the spectra are shown only for the range 0 –
4 kHz) B: Even-amplitude pulse train (r = 1) with (top) and without (bottom)
low-pass filtering at 3 kHz, shown without noise. C: Unfiltered, even-amplitude
pulse train (r = 1) with noise added at SNRs of 0 dB (top) and -6 dB (bottom).
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targets (0 dB SNR) with amplitude ratios of either 1 or 9 . These were expected to

give rise to relatively unambiguous pitches of 500 and 250 Hz, respectively. The second

test run contained broadband ACT with (more ambiguous) amplitude ratios 1, 2.25

and 4, again present with 0 dB SNR. Both test runs together lasted approximately 10

minutes. Before the start of the main task, subjects were informed that they would

experience be a greater variety of different sound colours and qualities than during the

test runs.

response response

flanker target flanker

time1s 60ms 100ms 60ms 100ms 60ms

Figure 5.6: Task design: after an inter-trial interval of 1s, a sound triplet consist-
ing of a target surrounded by two identical flankers is presented, following which
subjects have to judge the melodic contour as either “rising-falling” or “falling-
rising”.

5.3.2 Psychophysical results

For each target condition and subject, we computed the fraction of trials in which the

contour was perceived as rising-falling. A “rising-falling” response implies that the

pitch of the target was perceived as higher that the flankers, a “falling-rising” response

implies that it was perceived as lower. Furthermore, the likely pitches for any target,

predicted from virtually any theory or model, are either 250 or 500 Hz. Hence, we

assume throughout the following that we can equate a “rising-falling” responses with a

pitch percept of 500 Hz (“high”), and a “falling-rising” response with a pitch of 250 Hz

(“low”).

For the ACT targets, we generated a set of three psychometric curves for each subject,

showing the fraction of high-pitched targets as a function of the click amplitude ratio

r for each of the three timbre conditions (0dB broad, -6dB broad, 0dB dark). These

curves were averaged across subjects.

Two subjects – one with previous musical training and one without – were excluded from

this average, based on their responses to the four HCT targets conditions: responses

were close to chance in each case (as well as for the ACT stimuli), even though both
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targets and flankers were expected to evoke a clear pitch percept (Figure 5.7). This

indicates that they were generally unable to reliably distinguish between pitch octaves

in our task setting, even under favourable stimulus conditions. The five remaining

subjects (three with musical training, two without) judged the pitch of the HCTs

consistently (within and across individual).
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Figure 5.7: Two subjects were excluded from further analysis based on their low
reliability in identifying the octave of the complex harmonic tone stimuli (funda-
mentals of 250 and 500 Hz, broad and dark timbre). Bars represent the fraction
of targets judged as high-pitched (chance level 0.5).

5.3.2.1 Timbral effects on the pitch of alternating click trains and harmonic

complex tones

Psychometric curves, averaged across the five included subjects, are shown in Figure

5.8A. Starting with the broadband ACT stimuli at 0 dB SNR (blue curve), we observe

that subjects judge the pitch of the target as predominantly high for click amplitude

ratios up to 2.25 (cf. Figure 5.5A), reaching the 50% level at around 2.89 and finally

dropping to below 10% for our maximum ratio of 4. Comparing our psychometric curves

with the results reported by Flanagan et al. (1962) and Flanagan (1972), we find that

the two datasets are in good agreement, despite several differences in the details of the

stimuli employed. While our click trains were bipolar and presented in a background of

low-pass noise, Flanagan used unipolar click trains, presumably without added noise9.

9To the best of our knowledge, the most complete published description of Flanagan et al.’s results
is a figure in Flanagan (1972) (reproduced in Figure 5.4), the other source being a conference abstract
(Flanagan et al., 1962). Both sources lack methodological detail, but we can assume the absence of noise
based on other publication by the authors made around the same time (e.g. Flanagan and Guttman,
1960).
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A B

Figure 5.8: High-low pitch judgements, averaged across five subjects: mean
fraction of target judged as “high” (melodic contour “rising-falling”) ± 1 SEM. A:
Responses to ACT targets with varying click amplitude ratios (abscissa). Stim-
ulus conditions were: broadband timbre with low noise level (blue), broadband
timbre with high noise level (green) and dark timbre with low noise level (red).
B: Responses to complex harmonic tone target stimuli with matched fundamental
frequencies (250 / 500 Hz) and timbres (broadband / dark).

In Flanagan’s study, subjects reported their percept by matching an even-amplitude

pulse train to the target sound. The median matched pitch, depicted in Figure 5.4,

dropped by a factor of two for amplitude ratios of 8 dB (approximately 2.5) and greater

at comparable pulse rates. Note that, while the fraction of “high” responses in our data

(individuals and average) drops off more gradually than Flanagan’s median matched

pulse rates, we would obtain a similarly sharp transitions for median reported pitch in

our data.

In comparison to the broadband stimulus, the reported pitch for low-pass filtered click

trains drops from high to low for considerably lower amplitude ratios (5.8A, red curve).

While the pitch of the even-amplitude, 2 ms pulse train (r = 1) consistently remains at

500 Hz despite the change in timbre, the fraction of “high” responses has dropped by

almost 30% at the next-highest value tested (r = 1.69) and the percept is predominantly

low for all remaining r ≥ 2.25. Decreasing the power of the broadband click stimulus

relative to the low-pass masking noise from 0 dB to -6 dB (green curve), also has a

biasing effect towards the lower pitch (compared to the 0 dB broadband stimulus) but

the effect is overall less pronounced than that of darkening the timbre by low-pass

filtering the click train.
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Figure 5.5B shows the averaged pitch judgements for the complex harmonic tone stim-

uli. Presented in identical 0 dB low-pass noise, the same timbral manipulation that

induced a significant change in the perceptual octave bias for click train stimuli had

virtually no effect on subjects’ pitch judgements: the perceived pitch equals the funda-

mental frequency (250 and 500 Hz) irrespective of the frequency of the highest harmonic

present in the spectrum (20 kHz and 3.5 kHz).

Our psychophysical results are in general agreement with previous studies that reported

timbre-induced octave-biases in the perception of pitch (Hesse, 1982; Robinson, 1993,

cf. also von Helmholtz, 1863). They are also in good qualitative agreement with our

more specific predictions based on the idea of an ideal observer, that optimally combines

periodicity- and spectral envelope-based pitch cues, assuming a statistical dependency

of form described in section 5.1.2 between the two. Not only is there an overall greater

tendency for stimuli with dark timbre to be perceived as lower in pitch: crucially from

the standpoint of an ideal observer, this timbral biasing becomes apparent especially

when the periodicity of the stimulus itself is inherently ambiguous. In our data, the

effect of timbre is strongest for click train stimuli with intermediate click amplitude

ratios, and wholly absent in both the even-amplitude click trains (r = 1) and the

complex harmonic tones. The consistent, timbre-independent pitch percept of the

harmonic tones argues against a general perceptual confusion between periodicity and

timbral characteristics in our subjects. While we cannot strictly rule the interpretation

that a confusion occurred selectively for some stimuli but not others, we would argue

instead that subjects were still trying to infer periodicity, but were doing so using

information contained in the spectral envelope shape – owing to its correlation with

periodicity in the statistics of natural sounds – where periodicity judgements based

on stimulus self-similarity alone were in-determinate. This latter interpretation of the

results, based until now merely on a plausible but somewhat vague intuition, will be

strengthened by the good quantitative agreement between our psychophysical data and

the periodicity estimates of our Bayesian model, that instantiates these intuitions in a

formal way.
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5.4 Pitch-timbre interactions in models of pitch

5.4.1 Bayesian model: coupled and uncoupled

f0 

Figure 5.9: Periodicity estimates of the Bayesian model with prior dependency
between periodicity and spectral envelope. A: Click train stimuli; dotted lines
represent model predictions, shaded areas indicate subjects’ mean psychometric
curves ±1 SEM (cf. Figure 5.8). B: Harmonic complex tones.

We used the same set of stimuli as in the psychophysical experiments to compute

periodicity estimates under the Bayesian model. Periodicity Ω and spectral extent of

the acoustic impulse response f were linked as described in section 5.1.2: the time-

domain width λ(Ω) of the low-pass filter applied to the initial draw of f increased

proportional to the square root of Ω: λ(Ω) = 0.07
√

Ω (Ω and λ in ms). The possible

time-scales of the envelope of f were chosen in 8 steps between 0.1 ms (shorter than

a single impulse) and 4 ms (the period length for Ω = 250 Hz). The peripheral filter

bank had 80 frequency channels, spaced between 40 and 16 kHz. We used a sampling

rate of 44 kHz, rather than 44.1 kHz, to ensure that both a periodicity of 250 and

500 Hz would align exactly with the sampling grid while changing the temporal and

spectral characteristics of the stimulus as little as possible. The stimulus duration was

60 ms, as in the psychophysical experiment. For every stimulus, we computed the log-

likelihoods lnL(Ω = 2 ms) and lnL(Ω = 4 ms) (using our Laplace-approximation based

inference scheme, cf. section 3.3.1), and classified the inferred periodicity as “high”

when lnL(Ω = 2 ms) > lnL(Ω = 4 ms). 50 repetitions of each stimulus condition were

used to compute the fraction of “high” responses.

Figure 5.9A shows the outcome of our estimation for the click train stimuli. We observe
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a close agreement between psychophysical data (shaded areas) and model estimates for

all three timbral conditions. Like human listeners, the model judges the pitch of the

0 dB broadband stimuli (blue) to be predominantly high for click amplitude ratios of r ≤
2.25. For r = 2.89, the model reports high and low pitch with almost equal probability.

For r = 4, where human subjects report the low pitch with ≈ 90% probability, the

model reports the pitch as exclusively low. Low-pass filtering of the click trains (red)

has a strong effect on octave preference in the model for intermediate amplitude ratios

(1.69 ≤ r ≤ 2.89), but none for the even-amplitude stimulus (r = 1) or the highest

amplitude ratio, r = 4 (where a small effect remains for human subjects). The greatest

deviation between model and human behaviour occurs for r = 2.25, where the model’s

preference for the high pitch drops to 0, whereas humans still report approximately

one in five stimuli as high-pitched. As in human subjects, an increase of the noise

level (green) results in a noticable bias towards hearing the lower pitch, though less

pronounced than the bias due to low-pass filtering the click trains.

The Bayesian model is also consistent with human pitch judgements of the complex

harmonic tone stimuli: the true stimulus periodicity is inferred correctly irrespective of

changes in timbre (Figure 5.9B). In summary, the modelling results match our qualita-

tive expectations regarding the effects of timbre on pitch in an ideal observer, as well

as providing an accurate account of human psychophysical performance.

A natural question to ask is to what degree the success of the model depends on the

coupling of pitch and timbre in the generative process, which we introduced in this

chapter. Figure 5.10 shows the results of the Bayesian model with pitch and timbre

uncoupled (i.e. λ(Ω) ≡ 0). We can immediately see that the fit between model and

psychophysical data deteriorates in the absence of this coupling. The model is now

noticeably biased towards reporting the low pitch for intermediate values of r, while

the additional biasing effect of low-pass filtering the click stimulus is small compared to

human behaviour and the coupled model (5.10A, blue and red curves). Furthermore,

increasing the low-pass noise while keeping the timbre broad has a qualitatively different

effect in the uncoupled model than in subjects and the coupled model: pitch judgement

are more biased towards the high pitch than in the low-noise broadband condition

(green and blue curves). Pitch judgements of the model for the complex tone stimuli

are unaffected by the change of the model prior: pitch ratings are independent of our

timbral manipulations – as one would expect given their prior independence in the
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model. One more aspect of the model behaviour is worth pointing out: even though

there no longer is a spectrally induced bias for reporting the high pitch in case of the

alternating click trains, the model still favours the high pitch for values of r up to

1.69, rather than its true periodicity (i.e. the low pitch). Since we have been arguing,

that our model infers the stimulus periodicity optimally, does this not constitute a

worrisome failure? The explanation for this somewhat paradoxical behaviour lies in

another feature of our prior distribution over the acoustic impulse response f . In our

model, f is expected to decay at some unknown, but finite rate τ . In order to explain

a waveform with intermediate amplitude ratio, e.g. r = 1.69, with a periodicity of

4 ms (low), the model needs to assume a biphasic envelope for f (i.e. one with two

distinct local maxima), whereby each of the two pulses corresponds to a peak in the

envelope. This conflicts with the prior favouring impulse responses with monotonic,

and hence monophasic, envelopes. Conversely, there is no such conflict when we assume

an underlying periodicity of 2 ms. This bias for monophasic responses, inherent in the

model, gives rise to a slight preference for reporting the high pitch despite stronger

evidence for the low periodicity in the self-similarity pattern of auditory nerve response

itself. Of course, this holds only up to some value of r, beyond which where this

evidence becomes overpowering (while at the same time the cost for having the second

peak under prior decreases, as it becomes lower for increasing values of r). The exact

point at which this change in preference occurs, depends to some degree on the amount

of noise — acoustic and neural — assumed in generative process. As in the coupled

model before, we set the acoustic SNR in the model to the mean SNR of our stimulus

ensemble, while the noise variance in the auditory nerve was low compared to the

average firing rate of the active fibres. The results of neither the coupled nor the

uncoupled model depended critically on the fine-tuning of these parameters.

5.4.2 Pattern matching: Terhardt

We implemented Terhardt’s spectral pattern matching model of virtual pitch (Ter-

hardt, 1974; Terhardt et al., 1982) as described in section 2.4.1.2. In short, the model

extracts peaks in the Fourier spectrum, adjusting their relative hights by an overall

spectral weighting function as well as local competition between nearby peaks. Each

peaks then contributes evidence for a pitch not only at its own frequency but also at

its subharmonics. For harmonic spectra, this process results in the greatest overall
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Figure 5.10: Periodicity estimates of the Bayesian model without prior depen-
dency between periodicity and spectral envelope. A: Click train stimuli; dotted
lines represent model predictions, shaded areas indicate subjects’ mean psychome-
tric curves ±1 SEM (cf. Figure 5.8). B: Harmonic complex tones.

accumulation of evidence at the fundamental frequency of the harmonic series.

Applied to our stimulus set, Terhardt’s model succeeds in predicting the pitch of the

complex tone stimuli and its timbre independence (Figure 5.11B). We found, however,

that it doesn’t match human behaviour for the ACT stimuli well: for amplitude ratios

r > 1, the model immediately predicts the pitch to drop to 250 Hz, irrespective of

changes in timbre or noise level (5.11A). Thus, the model appears to reflect the true

periodicity of the acoustic stimulus, which drops from 2 ms to 4 ms as soon as r deviates

from 1, rather than human perception. Since model predictions already drop to the

lower pitch for all r 6= 1 in case of the 0 dB broadband stimulus (blue), we wouldn’t be

able to measure a timbral biasing effect in our stimulus ensemble even if it did exist in

the model. In principle, one might expect such effects to occur in Terhardt’s model:

each spectral peak contributes only to a limited range of subharmonics during the

process of subharmonic summation, and thus a range of high-frequency peaks should

contribute evidence only to the high pitch interpretation, but not the low, of the spectral

profile at hand. However, we did not perform a more fine-grained analysis of the model

prediction in the range of 1 < r < 1.69 to test for this. Furthermore, as Terhardt

limited the initial spectral analysis in the model to frequencies up to 5 kHz, the model

arguably is effectively blind towards our low-pass filtering of the ACTs at 3 kHz. We

therefore repeated the predictions with a frequency range extending up to 10 kHz, but

found that the model behaviour remained exactly the same.
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Figure 5.11: Virtual pitch estimates from Terhardt’s pattern matching model.
A: Click train stimuli; dotted lines represent model predictions, shaded areas indi-
cate subjects’ mean psychometric curves ±1 SEM (cf. Figure 5.8). B: Harmonic
complex tones.

5.4.3 Pattern transformation: Wightman

Wightman’s pattern-transformation model of pitch (Wightman, 1973) uses a peripheral,

spectral representation of the stimulus as the basis for its pitch estimates (cf. section

2.4.1.1). It interprets the time-averaged peripheral firing rate profile along a tonotopic

axis as a substitute for the true Fourier power spectrum of the acoustic stimulus.

Applying a Fourier transform to this peripheral spectrum, a degraded estimate of the

stimulus autocorrelation function is obtained10. The estimated stimulus periodicity, or

pitch, is determined by the highest peak in this surrogate autocorrelation function.

When we applied the pattern-transformation model to the output of our simple periph-

eral model, we were surprised to find that the model reported exclusively the high pitch

for all click train stimulus conditions (data not shown). Closer inspection revealed the

source for this mode of failure. Due to the tuning width of the peripheral filters, the

spectral peaks that correspond to the odd harmonics of the 250 Hz fundamental are

too low in amplitude compared to the even harmonics (i.e. multiples of 500 Hz) in

order to evoke discernable peaks in the average firing-rate profile. They are effectively

unresolved by the peripheral filter bank, even in the low-frequency range – hence the

aberrant model behaviour. It has been argued that peripheral frequency resolution

in humans may be considerably higher than classical psychophysical estimates, de-

10The estimate would be exact if it was based on the true power spectrum, according to the Wiener-
Khinchin theorem
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rived from notched-noise masking experiments (e.g. Glasberg and Moore, 1990), would

suggest. Bandwidth estimates based on otoacoustic emissions as well as forward mask-

ing effects at low sound intensities (Shera et al., 2002; Oxenham and Shera, 2003)

indicate that human frequency resolution may in fact be up to twice as sharp as typ-

ically assumed, even though these claims have subsequently been disputed (Ruggero

and Temchin 2005; see also Moore and Gockel 2011 for a recent review on peripheral

resolvability). Since our peripheral model has been based on the wider bandwidth esti-

mates of Glasberg and Moore (1990) throughout, we repeated our modelling attempts

with peripheral bandwidths reduced by a factor of two while increasing the number of

channels to 200, in order to test whether Wightman’s pattern transformation approach

could explain our psychophysical findings when applied to a more sharply defined pe-

ripheral spectral profile. Figure 5.12 shows that even in this setting, the model retains

its strong bias to judge the pitch as of the click train stimuli as high across all stimulus

conditions. We can observe an effect of timbre on pitch that follows the same ordering

as that observed in human listeners for r = 4, but overall the quantitative discrepancy

between model and human data remains high.
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Figure 5.12: Pitch estimates from Wightman’s pattern transformation model.
A: Click train stimuli; dotted lines represent model predictions, shaded areas indi-
cate subjects’ mean psychometric curves ±1 SEM (cf. Figure 5.8). B: Harmonic
complex tones.

Comparing the models of (Terhardt, 1974) and (Wightman, 1973), we observe that they

mark almost opposite poles of a spectrum, with a strong bias towards the low pitch in

the former and an equally extreme bias towards the high pitch in the latter. This may

seem surprising at first sight, as both models are often treated as closely related. This

notion seems to be largely due to de Boer (1977), who compared the three spectral
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pitch models of Terhardt, Wightman and Goldstein (1973). He showed that the former

two can be seen as two different limiting cases of the same approximation to Goldstein’s

less tractable “optimum processor” model (see section 2.4.1.3). Despite this unifying

theoretical framework, the different limiting assumptions inherent in Terhardt’s and

Wightman’s models can apparently lead to markedly different predictions: this is ev-

idenced by our modelling results and seems to confirm Terhardt’s own reservations

against de Boer’s unifying treatment of these models (Terhardt, 1977).

5.4.4 Summary autocorrelation

“Summary autocorrelation” is a general principle underlying a whole family of related

models (e.g. Meddis and Hewitt, 1991; Meddis and O’Mard, 1997; Bernstein and Oxen-

ham, 2005; Balaguer-Ballester et al., 2008). They all involve the computation of some

form of temporal autocorrelation function (ACF) of the neural firing pattern in each

channel of a peripheral band-pass filter bank. A “summary autocorrelation function”

(SACF) is obtained, essentially by summing the individual ACFs across channels, and

the final periodicity judgement is based on this (see section 2.4.2). Instantiations of

this principle can vary in the implementation of the peripheral neural response to the

acoustic stimulus, the ACF computation and summation stage as well the read-out

mechanism operating on the final SACF. It is therefore difficult to prove or disprove

the principle of summary autocorrelation in general. We chose two variations of this

model, one at the simplistic and one at the complex end of the spectrum of possible

implementations, to investigate whether our psychophysical data might be in accord

with the principles of summary autocorrelation.

Our first implementation is based on the same peripheral model that we assumed in

the generative process underlying our Bayesian estimation (cf. section 3.2): a linear

gamma-tone filter bank (80 channels from 40 Hz to 16 kHz) followed by envelope de-

modulation. For each channel, we compute the autocorrelation function across the

entire duration of the stimulus (λ = ∞ in equation (2.9)) after removing the channel

mean. Individual ACFs are summed with equal summation weight for each frequency

channel and time-lag of the SACF. We determine the model response by comparing the

maximum heights of the SACF in two narrow ranges around 2 ms (“high”) and 4 ms

(“low”). This may seem like an overly simplistic use of the SACF at first sight: in the
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context of pitch matching paradigms, the periodicity decision is sometimes made by

finding the sound whose SACF is most similar to that of the target stimulus11. In our

psychophysical paradigm, however, there is no comparison stimulus against which the

target SACF could be matched and thus this mode of read-out is not readily applicable.

Instead, we essentially ask whether the SACF peak occurring at a lag of 1
353 s during the

flanker stimulus (owing to its periodicity being half an octave between 250 and 500 Hz)

shifts towards a shorter or longer lag during target presentation. This form of read-out

is in agreement with Meddis and Hewitt, 1991 and in our opinion reflects a reasonable

choice, given our paradigm based on judging the pitch contour of a three-tone “melody”

in the absence of direct reference stimuli (250 and 500 Hz) for comparison of the second

tone.
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Figure 5.13: Pitch estimates from a simple summary autocorrelation model;
peripheral front-end as in the Bayesian model, unweighted summation across all
channels for all time lags (SACF). A: Click train stimuli; dotted lines represent
model predictions, shaded areas indicate subjects’ mean psychometric curves ±1
SEM (cf. Figure 5.8). B: Harmonic complex tones.

The outcome of this procedure is shown in Figure 5.13. Not unlike Terhardt’s model, our

first implementation of summary autocorrelation is unsuitably biased towards reporting

the low pitch for all click train stimuli with r > 1 (5.13A), reflecting true stimulus

periodicity rather than listeners’ subjective percept of pitch. Darkening the stimulus

spectrum by removing high-frequency components leads to a small, further biasing

for click trains stimuli (blue and red curves) but not the complex harmonic tones

(5.13B), qualitatively in agreement with human behaviour. Contrary to our human

11Note though, that this form our read-out is also problematic by itself, as the SACF is sensitive
to changes in the stimulus other than its periodicity and the matching might thus reflect an entirely
different feature of the stimulus in theory (cf. section 2.4.2).
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data however, an increase in the masking noise results in an increase of the fraction

of high pitch judgements (blue and green curves), rather than a decrease. Leaving

the peripheral model and read-out mechanism unchanged, we verified that this model

response pattern was robust towards towards several changes in the ACF and SACF

computation stages. Instead of computing the exact ACF across the entire stimulus,

we used a short-term ACF (no prior mean-removal) with either a single integration

time constant of 10 ms for all channels (Meddis and O’Mard, 1997) or a different CF-

dependent time constant for each channel (Wiegrebe 2001; cf. section 2.4.2). The

fit between model and psychophysical data was also not notably improved by applying

channel- and lag-dependent summation weights, gradually limiting the influence of high-

frequency channels on long SACF lags (Bernstein and Oxenham, 2005). The behaviour

of our simple autocorrelation model is in many ways comparable to that of the Bayesian

model without pitch-timbre dependence: note in particular the effect of increasing the

masking noise in both cases (cf. Figure 5.10). The greatest difference between the

two is an overall greater tendency of the uncoupled Bayesian to report the high pitch

for r = 1.69. This difference is consistent with our previous explanation (cf. section

5.4.1): at low values of r > 1, the Bayesian model prior favours monophasic impulse

response shapes over biphasic ones, overruling periodicity violations that should favour

the low-pitch interpretation. The summary autocorrelation model has no such biasing

mechanism — not for high periodicities per se, but for certain waveform shapes over

others given an assumed periodicity.

A serious and possibly unfair limitation to the performance of our first implementation

may have been imposed by our choice of the peripheral model. Starting with Meddis

and Hewitt (1991), proponents of the SACF model have typically applied the summary

autocorrelation principle to the output of a far more biophysically-detailed peripheral

processing stage than we have done so far. In order to make a fair comparison, we used

a recent extension of the original summary autocorrelation model (Balaguer-Ballester

et al., 2008)12: an initial, time-varying SACF function is computed based on a physio-

logically detailed peripheral model (Meddis, 2006), including a human-like middle-ear

transfer function, calcium and neurotransmitter trafficking in the outer hair cells and

firing-rate adaptation in the auditory nerve. Finally, a low-pass filtered SACF (LP-

SACF) is generated by leaky integration of the initial SACF over time. Even with

12A Matlab code package encompassing all stages of the model is available from Ray Meddis’ website,
http://www.essex.ac.uk/psychology/department/people/Meddis.html

http://www.essex.ac.uk/psychology/department/people/Meddis.html
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this considerably more complex (and tunable) model, we did not succeed in capturing

the essential characteristics of pitch-timbre interactions in our human listeners. Our

best attempt is shown in Figure 5.14. The pitch estimates are representative of low-

to medium-spontaneous rate auditory nerve fibres, when the stimulus is presented at

an intensity level around 45 dB SPL (±5 dB tolerance, approximately), using lag- and

channel dependent summation weights (Bernstein and Oxenham, 2005). Our relative

success depended crucially on this particular combination of settings, while the choice

of integration time constants, both for within-channel ACFs and during computation

of the LP-SACF, had little influence. Note though, that we are allowing for a 20-30 dB

level difference between experiment and model: the stimulus presentation level in our

psychophysical experiment was around 75 dB SPL, at which point the LP-SACF model

fails completely.
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Figure 5.14: Pitch estimates from an extended summary autocorrelation model,
using physiologically plausible peripheral model, channel- and lag-dependent sum-
mation weights and low-pass filtering of the summary autocorrelation function
over time (LP-SACF). 45 dB SPLstimulus presentation level. A: Click train stim-
uli; dotted lines represent model predictions, shaded areas indicate subjects’ mean
psychometric curves ±1 SEM (cf. Figure 5.8). B: Harmonic complex tones.

Accepting the aforementioned restrictions and caveats, we see the LP-SACF model

comes much closer to capturing human pitch judgements of the ACT stimuli — in

particular their dependency on timbre — than our simplistic first implementation. The

0 dB broadband stimuli are consistently classified as high-pitched up until an amplitude

ratio of r = 2.25, beyond which the percept drops to the low pitch (Figure 5.14A, blue

curve). In comparison, low-pass filtered click trains (red curve) are judged as low-

pitched more often in comparison, matching human behaviour well. The predicted
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psychometric curve for noisy broadband stimuli (green) falls in between, even though

the effect of this manipulation is smaller than observed psychophysically and the only

notable difference occurs at r = 2.89 . However, this relative success in modelling

the pitch of alternating click trains is accompanied by a significant, previously unseen

failure of the model to capture the independence of pitch and timbre of the harmonic

complex tones (Figure 5.14A). While human pitch judgements are virtually unaffected

by our timbral manipulation in this case, the model judges 62% of the 250 Hz tones

with broadband timbre to be high in pitch (500 Hz). Thus, it seems that the model (in

this already unrealistically favourable regime) is now too unspecifically biased towards

high pitches.
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Figure 5.15: Comparing pitch estimates for a 200 Hz sinusoidally amplitude-
modulated tone across three models. Dotted lines indicated typical human pitch
matches. A: Bayesian model with prior pitch-timbre coupling. B: Simple summary
autocorrelation; peripheral front-end as in the Bayesian model, unweighted sum-
mation across all channels for all time lags (SACF). C: Summary autocorrelation
with physiologically plausible front-end, channel- and lag-dependent summation
weights and low-pass filtering of the summary autocorrelation function over time
(LP-SACF).

We confirmed this diagnosis with a further test of the model. As was previously dis-

cussed in sections 2.1.2 and 4.4, the pitch of an 200 Hz sinusoidally amplitude-modulated

tone with carrier frequencies of 2040 Hz is typically reported by listeners as 204 Hz, while

additional pitches around approximately 185 Hz and 227 Hz can be heard out when lis-

teners are appropriately cued or encouraged to do so (Schouten et al., 1962). We

compared the predictions of the Bayesian model with pitch-timbre dependence in the

prior, and of our two implementations of the summary autocorrelation model (SACF

and LP-SACF; LP-SACF in the same intensity range around 45 dB SPL) for this partic-

ular stimulus. While the dominant pitch of 204 Hz, as well as the two minor modes, are

well-predicted by the Bayesian model and the simple SACF model, LP-SACF is again

unduly biased towards the higher of these two alternative pitches and predicts instead
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a pitch of 227 Hz (this was robust to changes in the acoustic noise level). Hence, only

the extended Bayesian model is able to capture the timbre-dependence of the pitch

of alternating click trains without simultaneously incurring an unspecific high-pitch

bias affecting its judgements of two types of control stimuli: amplitude-modulated and

harmonic complex tones.

5.5 Harmonic complex tones revisited: the strength of

missing-f0 pitch

In chapter 4, we investigated the behaviour of our simple, uncoupled model across

a range of pitch-evoking stimuli. While the model succeeded in predicting the pitch

height of many periodic and aperiodic sounds, we found that the model lacked signs of

the qualitative perceptual difference in pitch strength between HCTs with and without

low-rank harmonics present in the spectrum. Pitch strength and f0-discriminability

of a HCT declines markedly, if its spectrum contains only high-rank harmonics above

approximately the tenth (Houtsma and Smurzynski, 1990; Bernstein and Oxenham,

2003). In our uncoupled model, we found no sign of such a transition: the likelihood

ratio between the true periodicity and a near-by value (e.g. a quarter tone above or

below), which we treat as an indicator for the subjective certainty of the model about

its own estimate on a single trial, was unaffected by the rank of the lowest harmonic.

Following our extension of the model by a prior that couples periodicity and spectral

envelope in the generative process, we decided to revisit the issue of pitch strength

of the missing fundamental. Based on the overall nature of this coupling, whereby

low-pitched sounds are expected to have less high-frequency content than high-pitched

sounds (cf. section 5.2.2), we might now expect to find a dependence of pitch strength

on the rank of the lowest harmonic. When the model encounters evidence for high-

frequency spectral content in the AN activity pattern while evaluating L(Ω) for long

periods Ω, it should now be inclined to attribute these high-frequency components to

the acoustic background noise, rather than to the periodic signal embedded in it. By

attributing high-frequency spectral components to noise, however, they are effectively

discarded as evidence in favour of Ω or against it. Since the estimation of Ω (for low

Ω and spectrally bright sounds) is based on less evidence, we would reasonably expect

the certainty of the estimate to be reduced.
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In order to test this intuition, we replicated a simple version of the experiments by

Houtsma and Smurzynski (1990) in the model. We generated a series of harmonic

complex tones with a fundamental of 250 Hz and 11 successive harmonics each, varying

the harmonic number (or rank) n of the lowest component from 4 to 25 in steps of three.

We computed the log-likelihood function lnL(Ω) for a narrow range of periodicities

around 250 Hz and determined the height of its peak at 250 Hz compared to values of

lnL(Ω) one quarter-tone above and below.
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Figure 5.16: Effect of lowest harmonic number n on the pitch strength of 11-
component HCTs. A: Human interval identification performance as a function of
n; chance level was 14% (from Houtsma and Smurzynski, 1990). B: Local peak
height of the log-likelihood function as a function of n in the model. C: Log-
likelihood functions for three different stimuli with n ∈ {4, 13, 22}.

Using the same kind of stimuli, Houtsma and Smurzynski (1990) had found that both

musical interval identification and f0-discriminability declined rather sharply as n in-

creased above 7 with no significant further deterioration at and above 16 (see Figure

5.16A). We found a very similar transition in the coupled model. As shown in 5.16B,

the height of the local peak in lnL(Ω) around 250 Hz drops steeply at first as n > 7,

but the decline tails off as n ≥ 16 (though not entirely flat). The uncoupled model,

in comparison, shows no deterioration of peak height across the entire range of values

tested (as previously observed; cf. section 4.2).

A similar effect was demonstrated by Shackleton and Carlyon (1994). Complex tones

with fundamental frequencies of either 88 or 250 Hz were filtered into either a “LOW”,

“MID” or “HIGH” frequency region (125 – 625 Hz, 1375 – 1875 Hz and 3900 – 5400 Hz

respectively). In the LOW region, both HCTs contained resolved, low-rank partials,

while both complexes contained only unresolved, high-rank partials in the HIGH re-

gion. In the MID region however, the low-pitched sound contained only peripherally-
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unresolved harmonics, while the high-pitched sound was still resolved. Measuring f0

difference limens (F0DLs) for all six stimuli, it was found that F0DLs were low for

the two LOW-filtered stimuli, and high for the two HIGH-filtered stimuli. In the MID

region, there was a discrepancy between the low-pitched stimulus which was poorly

discriminated, and the high-pitched stimulus which was well-discriminated by listeners

(Figure 5.17A). Shackleton and Carlyon (1994) explained their results as a consequence

of resolvability and argued that two different pitch mechanisms might be at work for

resolved and unresolved complex sounds — an argument that Carlyon (1998) later

used to refute the autocorrelation model of Meddis and O’Mard (1997) which showed

no such dependence on resolvability.

We tested the behaviour of our coupled model on stimuli much like the ones used by

Shackleton and Carlyon (1994). We used a low f0 of 100 Hz (instead of 88 Hz), in order

to ensure that both low and high stimulus periodicities matched our sampling rate of

20 kHz. The frequency range of the MID region was adjusted accordingly. We mea-

sured the local peak height of the log-likelihood function around the true fundamental

frequencies as a proxy for pitch strength in the model. The results are shown in Figure

5.17B. Despite minor discrepancies, our model captures the main psychophysical effect:

pitch strength appears to be determined by resolvability. In line with our previous re-

sults for the stimuli of Houtsma and Smurzynski (1990), no such effect was found in the

uncoupled model (results not shown). This means, however, that the discrepancy in the

MID frequency region cannot be due to resolvability per se in the model, as our change

in the model prior does not affect the peripheral transduction stage at all. Instead,

the effect can be explained by the changing spectral centre of mass in relation to the

fundamental frequency, resulting in a tendency to regard the high-frequency content of

low-pitched sounds as noise, and to thereby disregard it as evidence for the presence of

the fundamental as discussed above.

The interpretation of the results by Shackleton and Carlyon (1994) as an effect of

harmonic number, rather than resolvability, is strengthened by an experiment by Bern-

stein and Oxenham (2003). Here, a monaurally unresolved complex sound was played

to subjects dichotically, with even and odd harmonics presented to opposite ears. The

harmonics were perceptually fused across ears, and pitch height of the sound remained

unaffected by this manipulation. However, as the spacing of the components in each ear

doubled, the sound became peripherally resolved. If resolvability was the major deter-
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Figure 5.17: Pitch strength of two complex tones filtered into different frequency
bands. A: F0DLs for two sounds with f0s of 88 and 250 Hz, filtered into LOW,
MID and HIGH frequency regions. B: Negative peak height of lnL(Ω) in the
model (f0s 100 and 250 Hz; high negative values indicate high (local) certainty
about Ω). C: Log-likelihood functions for the six stimuli.

minant of pitch strength, then one might expect an improvement in f0-discriminability

for the dichotic stimulus compared to the diotic one. No such effect on discriminability

was found, arguing for harmonic number, rather than resolvability as the key deter-

mining factor (see also Moore and Gockel, 2011 for a recent review and discussion).



Chapter 6

Conclusions

6.1 Summary

In this thesis, we set out to develop a Bayesian probabilistic model of human pitch

perception, based on Helmholtz’ notion of perception as unconscious inference and

harnessing the power of modern statistical estimation techniques. In chapter 3, we

described a generative model of naturalistic pitch-evoking sounds and evoked responses

in the peripheral auditory system. We discussed how the model can be inverted to

perform optimal perceptual inference about the periodicity of an arbitrary waveform,

indirectly observed by the central auditory system through time-varying neural firing

rates in the auditory nerve. Due to the inherent non-linearity of the sensorineural

transduction process and the high dimensionality of the latent variable space, exact

inference in the model is intractable. We adapted two established approximate inference

techniques for use with our model.

Two variants of the model were presented, which differ in their prior assumptions

regarding the relationship between the periodicity of a sound and the characteristics of

its spectral envelope. In the uncoupled model, these two acoustic properties are treated

as independent. Our evaluation of the uncoupled model in chapter 4 revealed that we

can account for the pitch frequency of a large variety of periodic and non-periodic pitch-

evoking sounds under this assumption. However, we also saw indications of sensitivity

to spectral characteristics of sounds other than their harmonicity in human listeners,

which the uncoupled model is unable to explain.
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In chapter 5, we introduced a coupling between periodicity and spectral envelope into

the assumed generative process. The coupling was chosen such that the low-pass char-

acteristic of the spectral envelope, and concomitantly its spectral centre of mass, varies

with periodicity: high-pitched sounds are expected to contain more high-frequency

content than low-pitched sounds. This coupling was motivated in part by qualitative,

psychophysical evidence for a perceptual dependency of pitch on timbre. The cou-

pling parameters, however, were qualitatively fit to a database of natural pitch-evoking

sounds. As a result of this dependency, the spectral envelope of natural sounds becomes

to some degree informative about their periodicity. In an ideal observer, we therefore

expect to observe a biasing effect of timbre on pitch that is most pronounced when the

uncertainty regarding the sound periodicity is high.

We designed a psychophysical experiment to test these predictions, using stimuli that

allow for precise control over the degree of octave-uncertainty in human listeners. Our

results indicate a timbre-dependent bias of human pitch perception that is quantita-

tively well-described by our coupled Bayesian model. The uncoupled Bayesian model

fails to account for these effects alongside a variety of other, non-probabilistic models

lacking the power to express this kind of dependency. Thus, human psychophysical

behaviour is non-trivially explained by our coupled model, indicating that human lis-

teners exploit statistical regularities of natural sounds during pitch perception in order

to improve the accuracy of their periodicity estimates.

Finally, we investigated the effect of coupling pitch and timbre in the model on period-

icity estimation for harmonic complex tones with missing fundamental. Whereas pitch

strength in the uncoupled model was insensitive to the rank of the lowest harmonic

present in the stimulus, pitch strength in the coupled model decreases as this rank

is increased, similar to the percept in human listeners. We therefore suggest that de-

creased pitch strength of HCTs with high-rank harmonics does not primarily constitute

a potentially disadvantageous performance limit. Instead, it may reflect an optimal or

near-optimal adaptation of the auditory system to natural listening conditions.

As envisioned by Helmholtz, human pitch perception bears specific hallmarks of an

optimal inferential process, in which ambiguities inherent in the immediate, incoming

sensory evidence are resolved by recourse to prior knowledge (learnt or innate) regarding

the occurrence of their physical causes in the external world and the processes that map

causes onto sensations. The act of inference itself is highly non-trivial in the case of our
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model. We have derived approximate inference schemes without consideration of the

computational and mechanistic constraints of their potential physiological substrate.

We justify this in two ways. Firstly, in order to establish the behaviour of a true

ideal observer with minimal bias, we should prioritise accuracy of the approximation

over implementational constraints regarding time and memory demand or its likely

mechanistic building-blocks (within the limits of overall tractability). Secondly, there

is very little hard evidence for the exact locus, size or structure of the neuronal network

involved in the determination and representation of our percept. Whatever evidence

is available seems insufficient to delineate even a rough boundary between viable and

inviable estimation algorithms.

Nevertheless, implementational considerations are important. With our current arsenal

of inference techniques, we are severely limited technically in terms of the maximal

stimulus duration, number of trials and density with which we can feasibly evaluate

the likelihood function. We have seen that in many instances, heuristic models such

as summary autocorrelation and its close relatives make predictions similar to our

Bayesian model at a fraction of the computational cost. Rather than further improving

the validity of these heuristics purely by phenomenological adjustments, the functional

insights gained from our ideal observer approach may serve as valuable guidance in the

development of more accurate heuristics. Chiefly amongst these are the consideration

of natural sounds and listening conditions, which are expected to shape the behaviour

of an ideal observer, as well as the efficient combination of information from multiple

sources where they may be available, weighted according to their reliability.

6.2 Outlook

In this thesis we have taken the first steps towards a systematic Bayesian characterisa-

tion of human pitch perception. Needless to say, many possible routes have been left

unexplored along the way. Some easily-attainable extensions that would not require

structural changes to the model have already been discussed in chapter 3. We could

include a more realistic prior distributions over periodicities, that reflects, for example,

the prevalence of speech amongst the pitched sounds likely to be encountered in our

environment, as well as the rarity of extremely high- or low-pitched sounds. In our cur-

rent model, the fundamental sensitivity of AN fibres to acoustic stimulation is uniform
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across all CFs. Human sensitivity, in contrast, varies non-uniformly with frequency,

owing to diverse factors such as the outer- and middle-ear transfer functions or a vary-

ing density of hair cells along the length of the basilar membrane. We have preformed

preliminary studies with filter gains adjusted according to absolute threshold hearing

levels, and it stands to reason that a modification such as this may be required to cap-

ture subtle phenomena regarding the dominance of some spectral regions over others in

determining the pitch of a sound. At the level of the auditory nerve, we could include

static non-linear compression in the demodulation stage, requiring only minor changes

to the inference algorithms to account for the different derivatives of the rectification

function.

By assumption, we have restricted ourselves to short, monaural stimuli of constant

periodicity, presented in an otherwise unstructured background of noise. This immedi-

ately suggests possible next steps. Amongst these, an extension of the model towards

binaural processing of pitch is perhaps the least interesting by itself. On the one hand,

binaural pitch phenomena are largely limited to artificial listening conditions and will

hardly ever be encountered in natural situations. On the other hand, those phenomena

encountered under natural conditions persist even for monaural stimulation.

Extending the generative model to mixtures of periodic sounds seems conceptually

straightforward. We can simply imagine the waveform to be a sum of component

sounds, each of which is distributed according to our acoustic model. However, the

dimensionality of the latent variable space that we need to integrate over in order to

evaluate the likelihood L(Ω1, . . . ,ΩK) grows linearly with the number of components,

in addition to the exponential growth in the number of combinations of periodicities

(Ω1, . . . ,ΩK) itself. Needless to say, the computational demand of joint estimation along

the lines of our current inference algorithms seems absolutely prohibitive. Interestingly,

binaural processing may play a more important role in the perception of mixtures

of pitched sounds: interaural time- and level differences provide salient cues for the

grouping of frequency components in the stimulus according to their spatial origin,

which would be expected to interact with harmonicity-based grouping cues.

More immediately attainable, perhaps, is an extension towards time-varying pitch. We

could, for example, consider a Hidden Markov model in which short observation seg-

ments, each some tens of milliseconds long and distributed according to our generative

model, are linked by a prior over consecutive periodicities but independent otherwise.
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Even though the number of likelihood evaluations grows linearly with the number of

segments, the dynamic programming algorithm involved in computing the trajectory

of periodicities through time is easily parallelised, and the use of shorter individual

time windows could in fact benefit performance. With a model of this kind (crude as

the Markov assumption may be) we could start to investigate sequential pitch effects

such as the tritone paradox (Deutsch, 1986) in the perception of Shepard tones and its

dependence on stimulus context and priming (discussed in section 2.1).

Pitch perception is no end in itself. If, as we have argued, pitch is used to identify sound

sources or even to infer the semantic content of a speech utterance, then pitch perception

should ideally be closely intermeshed with these “higher-level” auditory perceptual

tasks. This view is supported by the limited available evidence for the involvement of

higher auditory cortical areas in the processing and representation of pitch. Assuming

for example, that identifying the gender (or alternatively, size or age) of a speaker from

their voice is behaviourally useful, we could express the joint distribution over pitch and

timbre as mixture distribution over male and female speakers, where each gender has its

own characteristic range of pitches and timbres. Knowing the pitch of a speaker’s voice

(in addition, for example, to the content of the speech utterance) is obviously useful in

establishing his or her gender. Knowing the speaker’s gender conversely restricts the

pitch range we can expect to hear. This may in turn help us in segregating the speaker’s

voice from a noisy background, which is another common perceptual task the auditory

system faces. It is one of the great appeals of the Bayesian probabilistic framework that

it allows for the consistent and optimal integration of evidence, knowledge, expectations

and inferences across multiple levels of a hierarchically structured task model as we have

just sketched. Thus, by expressing pitch perception as Bayesian inference, we pave the

way for its seamless integration with probabilistic models of auditory scene analysis in

general.



Appendix A

Gradient and Hessian of

ln P(A,x |Ω)

We want to find expressions for the gradient and Hessian with respect to x of

ln P(A,x |Ω) = ln P(A |x) + ln P(x |Ω)

= ln P(A |x) + ln
∑

s

P(x, s |Ω)

=
∑

i

ln P(ai |x) + ln
∑

s

P(x, s |Ω)

(A.1)

where s = 1 . . . S is the component indicators in our (Gaussian) mixture model of x.

A.1 Gradient ∇x ln P(A,x |Ω)

We will treat the two gradients, ∇x ln P(A |x) and ∇x ln
∑

s P(x, s |Ω), separately in

the following two section.

A.1.1 ∇x ln
∑

s P(x, s |Ω)

P(x |Ω) is a mixture distribution: P(x |Ω) =
∑

s P(x, s |Ω). As we will proof below,

we can relate the gradient of ∇x ln P(x |Ω) (note the logarithm) to the gradients of the
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log-component distributions ln P(x, s |Ω) by a simple weighted average as follows:

∇x ln P(x |Ω) =
∑

s

P(s |x,Ω) · ∇x ln P(x, s |Ω) (A.2)

In words: ∇x ln P(x |Ω) is the sum over the individual log-component gradients,

weighted by their linear, posterior responsibilities P(s |x,Ω), given via Bayes rules

by

P(s |x,Ω) =
P(x | s,Ω) P(s |Ω)∑
s′ P(x | s′,Ω) P(s′ |Ω)

(A.3)

Note that, typically for our purposes, the prior mixture weights are uniform and inde-

pendent of Ω: P (s|Ω) = 1
S , simplifying above expression further.

With this convenient result at hand, we can compute ∇x ln P(A,x |Ω) easily, as the

component distributions are all Gaussian in x and their individual gradients are:

∇x ln P(x, s |Ω) = −x(Σs
Ω)–1 , (A.4)

where Σs
Ω is the generative covariance matrix as defined in equation (3.17) (in case of

the less general, uncoupled model, we can simply drop the Ω-index; cf equation (3.10)).

Proof of equation (A.2):

Since
∑

s P(s |x,Ω) = 1, we can trivially rewrite ln P(x |Ω)

ln P(x |Ω) =
∑

s

P(s |x,Ω) ln P(x |Ω) (A.5)

Exploiting the identities

P(x |Ω) =
P(x, s |Ω)

P(s |x,Ω)
(A.6)

and

∑

s

∇xP(s |x,Ω) = ∇x
∑

s

P(s |x,Ω) = ∇x1 = 0 (A.7)
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we obtain the gradient ∇x ln P(x |Ω) as follows:

∇x ln P(x |Ω) =
∑

s

P(s |x,Ω) · ∇x ln P(x, s |Ω)

−
∑

s

P(s |x,Ω) · ∇x ln P(s |x,Ω)

+
∑

s

∇xP(s |x,Ω) · ln P(x |Ω)

(A.8a)

=
∑

s

P(s |x,Ω) · ∇x ln P(x, s |Ω)

−
∑

s

P(s |x,Ω) · ∇xP(s |x,Ω)

P(s |x,Ω)

+ ln P(x |Ω) · ∇x
∑

s

P(s |x,Ω)

(A.8b)

=
∑

s

P(s |x,Ω) · ∇x ln P(x, s |Ω) (q.e.d) (A.8c)

A.1.2 ∇x ln P(A |x)

We recall from section (3.23), that

ln P(A |x) = − 1

2σ2
A

∑

i

(ai − r(x ∗ bi) ∗ l)2 + Z , (A.9)

where (·)2 denotes the inner product of a vector with itself. For a single channel i, we

obtain the gradient ∇ ln P(ai |x):

∇ ln P(ai |x) =
1

σ2
A

∇ai( r(x ∗ bi) ∗ l)T − 1

2σ2
A

∇( r(x ∗ bi) ∗ b)2 (A.10)

We will consider the two terms on the RHS of equation (A.27) separately, starting with

∇ai( r(bi ∗ x) ∗ l)T. Writing out both convolutions explicitly, we get

ai( r(bi ∗ x) ∗ l)T =
∑

t

ai(t)
∑

t′

l(t− t′ + 1) r

(∑

t′′

bi(t
′ − t′′ + 1)x(t′′)

)
(A.11)

with indices

t′ = max(t−N + 1, 1), . . . , t− 1 and t′′ = max(t′ −M + 1, 1), . . . , t′ − 1 , (A.12)
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where N and M are the lengths of l and b, respectively. Hence,

∂

∂xk
aT

i( r(bi ∗ x) ∗ l)

=
∑

t

ai(t)
∑

t′

l(t− t′) ∂

∂xi
r

(∑

t′′

bi(t
′ − t′′ + 1)x(t′′)

)
(A.13)

=
∑

t

ai(t)
∑

t′

l(t− t′) r′((x ∗ bi)(t′))




bi(t
′ − k + 1) if k ≤ t′ ≤ i+M + 1

0 otherwise

(A.14)

=
∑

t′

(∑

t

ai(t)l(t− t′)
)

r′((x ∗ bi)(t′))bi(t′ − k + 1) (A.15)

with t′ = k . . .min(k +M − 1, T ) and t = t′ . . .min(t′ +N − 1, T )

=
∑

t′

Bi(t
′) r′((x ∗ bi)(t′))bi(t′ − k + 1) (A.16)

= (Bi ◦ r′(x ∗ bi)) ∗
←−
bi (k) , (A.17)

where

Bi(t) =
∑

t

ai(t)l(t− t′) = (ai ∗
←−
l )(t′) (A.18)

and
←−
bi and

←−
l denote the time-reversed filter kernels bi and l.

Similarly, for ∇( r(x ∗ bi) ∗ b)2 we get

∂

∂xk
( r(x ∗ bi) ∗ b)( r(x ∗ bi) ∗ l)T

=
∂

∂xk

∑

t

(∑

t′

l(t− t′) r
(
(x ∗ bi)(t′)

)
)2

(A.19)

= 2
∑

t

( r(x ∗ bi) ∗ l)(t)
∂

∂xi

(∑

t′

l(t− t′) r
(
(x ∗ bi)(t′)

)
)

(A.20)

= 2
∑

t

( r(x ∗ bi) ∗ l)(t)

·
∑

t′

l(t− t′) r′((x ∗ b)(t′))




bi(t
′ − k) if k ≤ t′ ≤ k +M − 1

0 otherwise

(A.21)

= 2 ((Ci ◦ r′(x ∗ bi)) ∗
←−
bi )(k) (A.22)
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where

Ci(t) = (( r′(x ∗ bi) ∗ l) ∗
←−
l )(t′) . (A.23)

Thus,

∇ ln P(A |x) =
∑

i

((Bi −Ci) ◦ r(x ∗ bi)) ∗
←−
bi (A.24)

A.2 Hessian ∇2
x ln P(A,x |Ω)

As with the gradient, we will consider ∇2
x ln P(A |x) and ∇2

x ln
∑

s P(x, s |Ω), the two

constituent parts of the Hessian, separately.

A.2.1 ∇2
x ln

∑
s P(x, s |Ω)

In section A.1.1, showed that the gradient of ln
∑

s P(x, s |Ω) is simply related to the

gradients of its log-component distributions ln P(x, s |Ω). As will will proof below, a

similar relationships also holds for its Hessian matrix:

∇2
x ln P(x |Ω) =

∑

s

P(s |x,Ω) ·
(
∇2
x ln P(x, s |Ω) + [∇x ln P(x, s |Ω)]2

)

− [∇x ln P(x |Ω)]2 ,

(A.25)

where [v]2 denotes the outer product matrix of a vector v with itself, and the mixture

responsibilities P(s |x,Ω) can be computed as in section A.1.1.

For the Hessian, let us consider the partial derivatives ∂2

∂xi∂xj
ln P(x |Ω) (for ease of

notation, we will drop any dependency on Ω in the following derivation):

∂2 ln P(x)

∂xi∂xj
=

∂

∂xj

∑

s

P(s |x) · ∂

∂xi
ln P(x, s) (A.26a)

=
∑

s

P(s |x) · ∂2

∂xi∂xj
ln P(x, s)

+
∑

s

∂

∂xj
P(s |x) · ∂

∂xi
ln P(x, s)

(A.26b)
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=
∑

s

P(s |x) · ∂2

∂xi∂xj
ln P(x, s)

+
∑

s

P(s |x) · ∂

∂xj
ln P(s |x) · ∂

∂xi
ln P(x, s)

(A.26c)

=
∑

s

P(s |x) · ∂2

∂xi∂xj
ln P(x, s)

+
∑

s

P(s |x) · ∂

∂xj
ln P(x, s) · ∂

∂xi
ln P(x, s)

−
∑

s

P(s |x) · ∂

∂xj
ln P(x) · ∂

∂xi
ln P(x, s)

(A.26d)

=
∑

s

P(s |x) ·
[
∂2 ln P(x, s)

∂xi∂xj
+

∂ ln P(x, s)

∂xj
· ∂ ln P(x, s)

∂xi

]

− ∂ ln P(x)

∂xj
· 1

P(x)

∑

s

P(x, s)
∂ ln P(x, s)

∂xi

(A.26e)

=
∑

s

P(s |x) ·
[
∂2 ln P(x, s)

∂xi∂xj
+

∂ ln P(x, s)

∂xj
· ∂ ln P(x, s)

∂xi

]

− ∂ ln P(x)

∂xj
· 1

P(x)

∂

∂xi

∑

s

P(x, s)

(A.26f)

=
∑

s

P(s |x) ·
[
∂2 ln P(x, s)

∂xi∂xj
+

∂ ln P(x, s)

∂xj
· ∂ ln P(x, s)

∂xi

]

− ∂ ln P(x)

∂xj
· ∂ ln P(x)

∂xi

(A.26g)

q.e.d. (A.26h)

A.2.2 ∇2
x ln P(A |x)

∇2 ln P(ai |x) =
1

σ2
A

∇2ai( r(x ∗ bi) ∗ l)T − 1

2σ2
A

∇2( r(x ∗ bi) ∗ b)2 (A.27)

=
1

σ2
A

[
diag(Bi ◦ r′′i )− diag(Ci ◦ r′′i )−G ◦ [ri]

2
]
∗
2d

[bi]
2
180◦

(A.28)

Here, diag(v) denotes a diagonal matrix with diagonal elements v, ri is shorthand

notation for r(x ∗ bi) (similarly for the derivatives of r), [·]2 denotes the outer product

of a vector with itself, and [·]180◦ stands for the 180 degree rotation of a matrix. Note

that, as bi is a filter kernel, the convolution of a matrix with [bi]
2
180◦ results in the
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sequential row- and column-wise filtering of that matrix with the reverse kernel,
←−
bi .

From section A.1.2, we already know the gradients ∇ai( r(x ∗ bi) ∗ l)T and ∇( r(x ∗
bi)∗b)2. Using those, we obtain (from similarly elementary algebra) the second partial

derivatives for the first term (cf. equations (A.17) and (A.18)):

∂

∂xk∂xl
ai( r(x ∗ bi) ∗ l)T (A.29)

=

T∑

t′=1

Bi(t)r
′′
i (t′)





bi(t
′ − k + 1)bi(t

′ − l + 1) if 1 ≤ t′ − k + 1 ≤M

∧ 1 ≤ t′ − l + 1 ≤M

0 otherwise

(A.30)

And for the second term (cf. equations (A.22) and (A.23)):

∂

∂xk∂xl
( r(x ∗ bi) ∗ b)2 (A.31)

= 2

T∑

t′=1

Ci(t
′)r′′i (t′)




bi(t
′ − k + 1)bi(t

′ − l + 1) if . . .

0 otherwise

(A.32)

+ 2

T∑

t′=1

∑

s

G(t′, s)r′i(t
′)r′i(s)




bi(t
′ − k + 1)bi(s− l + 1) if . . .

0 otherwise

(A.33)

(A.34)

with

G(t′, s) =

min(t′+N−1,T )∑

t=max(t′+n+1,1)

l(t− t′ + 1) l(t− s+ 1) (A.35)
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Method for estimating f0 and fc

of musical instrument and vocal

sounds

For each recording in the collection of instrumental and vocal sounds used in chapter

5 to fit the dependency between pitch and timbre in the coupled model (cf. section

5.2.2), the fundamental frequency (f0) and spectral envelope width (fc) of all notes

were estimated as follows:

As each recording is a scale segment containing several different musical notes, indi-

vidual notes are first identified based on the minima and maxima of the amplitude

envelope. Each note is then further analysed in overlapping windows of 1 s duration

(75% overlap). The Discrete Fourier Transform (DFT) of each windowed sound seg-

ment is computed and peaks in the amplitude spectrum are identified, with a minimum

required difference of 40 Hz between neighbouring peaks and a minimum amplitude of

1% of the maximum in that particular segment.

In order to determine the fundamental frequency of each segment, the waveform is

demodulated at 4 kHz and its autocorrelation function (ACF) R(τ) is computed. We

then determine the shortest lag τ∗ > 0.2 ms at which R(τ) reaches a peak within 5% of

its maximum. In chosing τ∗ this way, rather than simply picking argmaxR(τ), errors

can be avoided that would otherwise occur due the effect of noise on harmonically

related peaks in R(τ) of near-equal height. For the same reason, the initial estimate
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τ∗ of the sound periodicity is iteratively lowered further, one octave at a time, if the

amplitude spectrum contains a significant peak one octave below 1/τ∗. f0 is estimated

as the inverse of the final periodicity estimate τ∗.

Following the estimation of f0, the width of the spectral envelope is determined. All

spectral peaks {f1, . . . fK} that fall within 10% of a harmonic of the estimated funda-

mental are selected. The amplitude A and width fσ of a scaled, half-normal function

e(f) = A exp(−f
2

f2
σ

) (B.1)

is fitted to the amplitudes {a1, . . . aK} of the selected spectral peaks by minimising the

summed squared error,

E =
K∑

k=1

(e(fk)− ak)2 . (B.2)

Thus, fσ is the width of a half-normal approximation to the spectral envelope of

the sound segment. The mean of a half-normal distribution of width fσ equals

fc =
√

2/πfσ. This value fc is returned as a measure of the spectral envelope width.

We will, somewhat imprecisely, call fc the “spectral centroid” of a sound on occasion,

when in fact it is the centroid of an approximation to its spectral envelope. For sounds

with an approximately half-normal spectral envelope, fc will closely approximate the

harmonic spectral centroid as defined by the MPEG-7 ISO standard, which is simply

the amplitude-weighted mean of the harmonic spectral peaks on linear scales of both

frequency and amplitude (Kim et al., 2005). Figure B.1A shows the outcome of the

f0 and fc determination algorithm for one example note from the music instrument

database. Figure B.1B shows the estimates of f0 and fc across the entire collection of

sounds, and demonstrates a good correspondence between the instrumental and vocal

samples concerning the dependency of fc on f0. There is, however, also considerable

inter-instrumental variability, which is not taken into account by the coupled genera-

tive model as it only attempts to fit the overall dependency across all instruments (cf.

section 5.2.2).
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Figure B.1: A: Estimated f0 (pink) and best-fit half-normal approximation
(blue) to the spectral envelope of a sample note from the music instrument data
base (Viola A[5). The linear amplitude spectrum is shown in black, significant
peaks as determined by the algorithm in red. B: Estimates f0 and fc for all
sounds from the collection of samples (instrumental and vocal).
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A. de Cheveigné. Cancellation model of pitch perception. Journal of the Acoustical

Society of America, 103(3):1261–1271, 1998.
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