
Assessing Computational Thinking Process using a Multiple Evaluation Approach

Yasemin Allsop
University College London, UK

y.allsop@ucl.ac.uk

ABSTRACT
This study explored the ways that the Computational Thinking (CT) process can be evaluated in a classroom environment.
Thirty Children aged 10 - 11 years, from a primary school in London took part in a game-making project using the Scratch and
Alice 2.4 applications for eight months. For the focus of this specific paper, data from participant observations, informal
conversations, problem-solving sheets, semi-structured interviews and children’s completed games were used to make sense of
elements of the computational thinking process and approaches to evaluate these elements in a computer game design context.
The discussions around what CT consists, highlighted the complex structure of computational thinking and the interaction
between the elements of artificial intelligence (AI), computer, cognitive, learning and psychological sciences. This also
emphasized the role of metacognition in the Computational Thinking process. These arguments illustrated that it is not possible
to evaluate Computational Thinking using only programming constructs, as CT process provides opportunities for developing
many other skills and concepts. Therefore, a multiple evaluation approach should be adopted to illustrate the full learning scope
of the Computational Thinking Process. Using the support of literature review and the findings of the data analysis I proposed a
multiple approach evaluation model where ‘computational concepts’, ‘metacognitive practices’, and ‘learning behaviours’ were
discussed as the main elements of the CT process. Additionally, in order to investigate these dimensions within a game-making
context, computer game design was also included in this evaluation model.

KEYWORDS
Game programming, Elementary school, Scratch, Alice, Assessment, Computational Thinking, Metacognition, coding

1 Introduction
The recent inclusion of programming concepts in the primary school curriculums of many countries including England raised
an interest in teaching children how to code, as a result educators started to explore the methods that they can use for engaging
learners with programming activities. Some researchers have suggested that computer game design is a fun and effective way
of introducing programming concepts [1, 2], however; the empirical evidence to support this is very limited.

Alongside coding, computational thinking also has increasingly gained attention, which highlighted an important issue: the
readiness of teachers for planning, teaching and assessing children’s learning when they code. Teachers might be able to
describe the terminology relating to computational process or teach coding using lesson plans and instruction sheets that are
available online without mastering the concepts, however, this doesn’t warrant that they would be able to recognise
Computational Thinking (CT) skills and concepts when they evaluate children’s work in different subjects. In the following
sections I will investigate what computational thinking is and approaches to evaluating CT skills.

2 Defining Computational Thinking
There is no common definition of computational thinking and its characteristics. Papert did not provide a definition for
Computational Thinking (CT), however, he came up with the idea of CT by focusing on the procedural thinking that children
develop through programming in a LOGO environment [3,4]. Wing [5] pioneered this idea and emphasized that CT is not just
about coding, it is a skill set for understanding human behaviour using fundamental concepts from computer science. In 2010
she reintroduced the term computational thinking as “the thought processes involved in formulating problems and their
solutions so that the solutions are represented in a form that can be effectively carried out by an information-processing agent”
[6].
 A number of studies highlighted CT as a cognitive process [7,8] and some described it as a problem-solving approach [6,9].
The role of metacognition in the CT process is also emphasized [10,11] and how CT is different to other ways of thinking has
been explained by focusing on the automation of information [12,13] for computer systems to execute repetitive tasks
efficiently. This highlights the link between CT and Artificial Intelligence (AI). AI can be defined as “the ability of the
computer systems to learn, think and perform tasks that require complex decision-making” [14]. The core of this repetitive task
automation is algorithms and abstractions, which is also key element of CT [15].

Aho explained CT as the thought processes involved in formulating problems so that “their solutions can be represented as
computational steps and algorithms” [12, p.832]. From a psychological perspective forming a mental representation of a
problem (formulating problems), planning and choosing appropriate strategies for a solution (Formulating solutions), checking

2

for errors (evaluating) and debugging them, thinking about how to improve work (monitoring) are components of
metacognition [16]. Simply described as ‘thinking-about-thinking’ [17], Claxton [18] explains metacognition as a way of
supporting people to manage their minds more productively, which enables them to use their resources more effectively.

Lu discussed CT as a “full set of mental tools necessary to effectively use computing to solve complex human problems” [13].
The effective allocation of these mental tools for completing a task requires one’s own knowledge of these tools and knowing
how to use them for executing a task, namely metacognition. Several researchers also highlighted the relationship between
metacognition and Computational thinking. Resnick [19] suggested that constructive learning environments where learners are
given opportunities to design solutions iteratively and reflect on their own learning processes is required for facilitating learning
of computational thinking skills. This was also supported by Papert [3, p.25] who argued that creating programs encouraged
learners to be more aware of the strategies they used for debugging problems and think about ways of improving them. In a
recent paper Kafai and Burke discussed the benefits of constructionist game making and emphasised the learning beyond
coding. They claimed that a constructionist game making space supports children to think about their own thinking and learning
namely “reflection or metacognition” [11, p.10].

The Barefoot Computing Programme [20] considered computational thinking from the concepts and approaches aspect. They
listed tinkering, creating, debugging, persevering, and working collaboratively as the main approaches that pupils apply and
develop during the CT process. Brennan and Resnick [10] discussed questioning, connecting and expressing under the term
computational perspectives. In a model for computational thinking created by the Somerset e-Learning & information
management team [21], making mistakes, perseverance, imagination and collaboration were listed as attitudes that pupils use
during the computational thinking process. Furthermore, other studies found that whilst working on their games, pupils had
opportunities to apply and develop skills such as collaboration, creativity, communication, critical thinking, tinkering,
persevering [22-24]. All these approaches, perspectives and attitudes can be described as learning behaviours since these are
the strategies for promoting behaviours that are ‘necessary for learning’ [25, p.53]. Powell and Tod [26] suggested that
Learning behaviours reflect pupils’ social, emotional and cognitive development and depends on their prior learning
experiences; therefore, the patterns of development would be varied for each pupil.

As discussed above, Computational Thinking process offers wider scope than just learning of programming constructs.
Informed by the discussion about what CT consists of using relevant literature, I propose the following definition of
computational thinking, which:

• is a cognitive process
• is regulated by metacognitive practices
• involves the application of a series of computational concepts
• includes the utilization of learning behaviours
• aims to design solutions to problems that are susceptible to automation

3 Recent literature on assessing CT Process
In recent years several studies have been conducted to measure the CT skills that children develop when creating their own
computer games [27, 10, 28]. Werner, Denner and Campe [27] proposed a three-level assessment model called Game
Computational Sophistication (GCS) for measuring children’s computational learning in an ‘Alice’ programming environment.
The first level is about coding blocks that are crucial for programming or making games. At the second level, students use
coding blocks to create patterns. The next level, a combination of programming constructs and patterns, namely, ‘game
mechanics’. Although the clear structure of their game mechanics and pattern model makes it easier for investigating evidence
of CT skills in the games that were created by the children, it is crucial to remember that computational thinking includes both
concepts and approaches [20]. Therefore, other methods should be used alongside this model to provide a more detailed
overview of the CT skills that learners develop when making computer games. It is difficult to gain an insight of the that
challenges they faced and / or how they managed their thinking and learning process by just looking at the programming
constructions that they used.

Brennan and Resnick [10] proposed a model for measuring CT skills when children develop games in a ‘Scratch’ programming
environment. They suggested a framework with three dimensions; computational concepts, computational practices and
computational perspectives. Computational concepts include sequences, loops, parallelism, events, conditionals, operators, and
data. Computational thinking practices involves focusing on the thinking and learning process, how they planned their games,
how they solved problems, which strategies they used and so forth. Although the computational thinking practices were defined
in relation to a Scratch Programming environment, it can be applied to activities when using other gaming applications. This
dimension can be seen as a metacognition of coding as it involves metacognitive skills such as planning, evaluating, modifying,
monitoring, reflecting in other words thinking about thinking.

 3

The final dimension of Brennan and Resnick’s model for measuring CT skills is called the computational perspective and is all
about children’s “understandings of themselves, their relationships with others, and the technological world around them” [10].
They suggested three approaches to assess computational concepts, practices, and perspectives; project analysis, artifact-based
interviews and design scenarios, all with strengths and limitations. One interesting point about Brennan and Resnick’s model is,
computational practices are similar to the metacognitive process which involves focusing on the thinking and learning process,
how they planned their games, how they solved problems, which strategies they used and so forth.

4 Towards a multi evaluation approach for assessing CT
The definition of CT I shared in section two and the literature review on assessing Computational thinking skills highlights the
complex structure of computational thinking and the interaction between the elements of Artificial Intelligence (AI), computer,
cognitive, learning and psychological sciences whilst providing a foundation for defining the multiple aspects that the
evaluation of CT skills should include. This multiple means of assessment approach was also supported by Brennan and
Resnick [10] who highlighted the necessity of focusing on the process that children go through rather than only their codes.
Similarly, Grover [29] after reviewing different assessment approaches to CT suggested that the ‘systems of assessment’
discussed by Conley & Darling-Hammond [30] would provide a more comprehensive view of children’s learning of CT skills. I
agree with this view, as it is not possible to use one single method to evaluate the interaction between the elements of computer,
cognitive, learning and psychological sciences. Adopting a multiple means of assessment approach would not only provide
more in-depth information about children’s understandings of computational concepts, but also gather evidence of children’s
individual skills development, especially during pair coding activities. In this context I use the term ‘assessment’ to represent
the evaluation of children’s learning rather than as an educational assessment tool.

The terms from my definition of Computational thinking, which represent the interaction between different sciences, were used
for evaluating learners’ CT skills from three aspects: ‘computational concepts’, ‘metacognitive practices’, and ‘learning
behaviours’. In order to investigate these dimensions within a game-making context, computer game design was also included
in the evaluation model. The model is semi-flexible; as it is possible to exclude and replace the game design dimension when
evaluating CT in a different context to computer game design for example app development. Figure 1 presents the overview of
the Multiple Evaluation Approach to CT skills in a computer game design context.

Figure 1: Multiple Evaluation Approach to CT skills in a computer game design context

Computational Concepts
Computational concepts refer to the programming constructs that are commonly used for completing tasks in programming
environments such as sequences, loops, conditionals, and variables. Motivated by Werner and colleagues [27] Game
Computational Sophistication Analysis Procedure and the Computational thinking concepts by Brennan and Resnicks [10], I
included sequences, loops, events, parallelism, conditionals, operators, variables and abstraction as the programming constructs
that represent computational concepts in this study.

Learning Behaviours
I explain learning behaviour as the strategies, approaches and habits that have been exhibited by children whilst working on a
task, which promotes learning. Powell and Tod listed engagement, collaboration, participation, communication, motivation,
independent activity, responsibility, disaffection and problems as the main behaviours for learning [26]. In a DfES White Paper
about Education and Skills for 14-19 years old pupils enquiry, creative thinking, information processing, reasoning and
evaluation were included as learning behaviours [31]. Although he did not mention the term ‘Learning behaviour’, Claxton’s

CONTEXT: GAME BASED LEARNİNG

CT

Computational
concepts

Learning
behaviours

Metacognitive
practices

4

[32] theories around building learning power seem to focus on similar attributes that schools should focus in order to help
children learn. These attributes are; resilience, resourcefulness, reflectiveness, and reciprocity.

Metacognitive practices
I define metacognition as a skills set which enables one to deploy and manage his or her cognitive resources effectively to
regulate his or her thinking and learning. Stenberg [33] listed planning, evaluating, monitoring problem-solving activities and
allocating cognitive resources appropriately as the main abilities for managing the metacognitive process. Flavell [17] described
exploring, setting goals, organizing, planning, self-questioning, choosing and applying, monitoring and managing thinking as
metacognitive skills. A number of studies also described planning, monitoring and evaluation as the main metacognitive skills
[34-36]. Metacognitive practices can be seen as the trigger and executive control for regulating cognitive activities, which
includes planning, evaluation and monitoring.

The core of metacognitive practices is the conversational exchanges that take place between ‘others’ and ‘self’. Vygotsky [37]
also mentioned the role of private and inner speech (conversation with self) and Social speech (Conversation with others) in
self-regulation by stating that language is not only used for communication, but also for self-regulation through planning and
monitoring. Likewise, some other studies also described this conversational exchange with self and others as an instrument for
managing planning, monitoring, thinking and learning processes [37-38].

Game Mechanics
The main elements of games were usually explained by game mechanics, which defines how players interact with the game.
Lundgren and Björk [39, p.4] explained game mechanics as the rules that players need to employ when they interact with a
game. Vincent and colleagues described the mechanics of a game as “the basic components out of which the game is built: the
materials, rules, explicit goals, basic moves, and control options available to the players”. Hunicke and colleagues [40] noted
that mechanics involve actions, behaviours and control mechanisms. This complex structure of game mechanics makes it
difficult to create a set of evaluation criteria for pupil created games. Weise [41] suggests that writing game mechanics in a verb
form; basically, as actions that are accomplished within the limits of game rules is a technique that can be useful for creating a
framework. Werner and colleagues [27] used a similar technique to assess game mechanics in computer games that were
created by children using Alice 2. They listed actions such as collecting, shooting, racing, guessing, hitting moving objects,
exploration as game mechanics. Additionally, they included puzzles, hidden objects, navigation, levels and avoidance in game
mechanics.

5 Methodology
This paper is based on a longitudinal PhD study with a wider focus area and it specifically aims to answer the question ‘What is
the best approach for assessing CT skills through game making?’. This study was reviewed by Goldsmiths, University of
London Institutional Review Board and later also approved by the Manchester Metropolitan University ethics committee.
For the purpose of this specific study ethnography as a longitudinal and qualitative method was used to examine the children’s
Computational Thinking process when making computer games. Ethnography not only enabled me to blend different data
collection methods but also provided me with a rich written account of the children’s learning process. By being in the
classroom for a long period of time to observe what is going on, what children are saying, doing and why; I was be able to
monitor the changes in children’s reasoning over a long period, which provided me with detailed, in depth findings,
understanding, and a very personal level of experience.

As Denzin and Lincoln [42] suggested that the use of methodological triangulation can increase the validity of studies,
therefore, for the focus of this paper data from participant observations, informal conversations, children’s problem solving
sheets, in-depth interviews and children’s completed games were used to make sense of elements of computational thinking
process and approaches to evaluate these elements in computer game design context.

Participant observations and informal conversations
Field notes were collected by examining the language children used for their ‘self’ explanations and group discussions, the
gestures, the context of their relations with teacher, peers and technology in their classroom setting. During observations, I used
informal or conversational interviews, which allowed me to discuss issues that arose or question the children on significant
events as they occurred. Because they were not formal interviews, this helped the children to feel more comfortable and open in
giving their answers. I used a pen and A5 size notebook to keep a record of both my observations and informal conversations.

Semi-structured interviews
Semi-structured interviews were used to unfold the student’s ‘deeper self’ and collect ‘authentic data’ [43]. I interviewed ten
focus children at the end of the project individually. The interviews were recorded using a sound recorder and transcribed. Each
interview was around 10-15 minutes long.

 5

Journals and Problem solving sheets
Although I provided children with journals to record their activities, many children found it difficult to decide what to record in
their journals; therefore, I decided to provide them with a template to record their activities when solving problems. This
problem sheet included questions and a space for the children to draw their problem in case they did not want to write down
their comments. Appendix E shows an example of completed problem solving sheet.

Children’s completed games
The children’s completed games were studied to examine the computational thinking process that the children went through
whilst they were working on their games. In total, I analysed 18 games that were created using the Scratch application and 15
games that were created using Alice 2.4. I mainly looked at the programming constructs and game mechanics that the children
had used in their code scripts.

The data was collected for a period of eight months, in a primary classroom setting in London. The school is larger than the
average primary school with approximately 900 students. The school has a high proportion of pupils from minority ethnic
backgrounds. There is also a high proportion of pupils who speak English as an additional language. The proportions of pupils
with special educational needs are above average. The students are mainly coming from disadvantaged backgrounds, therefore
the proportion of the children eligible for free school meals is high.

Children aged 10-11 (Year six) were included in this study. At the first stage thirty children in a Year six class (16 boys, 14
girls) aged 10-11 used Scratch between September and January for four months, once a week, for an hour as part of their
weekly computing session. This totalled 14 hours of coding. All fourteen of the girls decided to work in pairs, only 12 of the
boys chose to work in pairs and four of them opted to work alone. At the second stage thirty children in a Year six class (16
boys, 14 girls) aged 10-11 used an Alice application for making games between January and April for four months, once a
week, for an hour as part of their weekly computing session. This totalled 14 hours of coding. During the Alice game making
project all of the children decided to work in pairs. One reason for this might be that after the introduction session many
students mentioned how challenging they found the Alice application in comparison to the Scratch program that they had used
in the previous term.

Ethics
Although the school had a generic form signed during the child’s registration to allow the school to study the children’s work,
because this was part of a PhD study, I created an information sheet and a consent form in line with BERA [44] ethical
guidelines. A permission letter regarding observing children working on their game designs; interviewing them; studying their
written learning log, photos, videos and audio was prepared. I listed the data collection activities on the consent form which
included; taking part in the study, being observed by the teacher, keeping a journal, participating in audio recorded interviews,
taking part in video recorded group discussions. 14 out of 30 parents returned their consent forms agreeing to permit their
children to take part in all data collection activities. All ten of the focus children were selected from this list.

I had the completed parental consent forms, however, I decided to negotiate ongoing consent with the children. As Flewitt [45]
suggested, it is difficult to regulate ongoing consent, however, I wanted to make sure that the children were happy to take part
in all of the stages of this study. Before the interviews, I asked the children if they were happy to be included.

6 Data analysis
In order to evaluate the thinking and learning process that children go through when making games, their problem solving
sheets, completed games, interview data and field notes were analysed for patterns of CT skills and characteristics. Although
collecting data using many different methods provided me with a better understanding of emerging themes, I found it
challenging to analyse the vast amount of data that I had collected without developing a system. In order to tackle this issue, as
suggested by Miles and Huberman [46], I reduced the data into manageable units through constant comparison and coding to
answer each focus questions separately. I used the three levels of coding that were proposed by Strauss and Corbin [47]; open,
axial and selective coding. I started analysing the data by comparing the findings from different data collection methods. At this
stage some categories and themes started to emerge naturally. Next, I started to link the categories by asking questions and
making comparisons. At the final stage, I focused on the key themes and investigated similarities and relationships between the
categories, which helped me to refine and develop the concepts that reflect the behaviours of the participants.

During the ‘open coding process’ I read and annotated each interview script, field notes, children’s problem solving sheets and
their completed game designs. I highlighted and labeled concepts on each data text (Appendix A). For the content analysis all
the data that was collected from different sources were coded using a constant comparative method in order to identify the
repeating patterns and emerging themes. As I continued to code, themes and categories that were different from previous
studies emerged. For example when analyzing the data from the interviews, problem solving sheets and the field notes;

6

‘Talking to self”, ‘Talking in mind, in the head’ for managing learning were repeated many times. Therefore, conversational
exchanges were included as an additional category.

Alongside methodological triangulation, qualitative directed content analysis was used for making sense of the data where the
initial coding started with the previous research findings [48]. Drawing concepts from the previous studies was very useful
especially at the beginning of the data analysis [49]. For example, prior to forming a framework for evaluating children’s CT
skills when making games, Computational Sophistication Framework [25] and Scratch assessment package [10] were explored
in depth to understand how children’s learning of CT skills could be evaluated during game making activities.

6.1 Computational Concepts
Motivated by Werner and colleagues [25] Game Computational Sophistication Analysis Procedure and the Computational
thinking concepts by Brennan and Resnicks [10], I included sequences, loops, events, parallelism, conditionals, operators,
variables and abstraction as the programming constructs that represent computational concepts in this study.

In order to make the analysis process more efficient I created a guide where I described each programming construct, and
then showed an example of what it looked like in both the Scratch and Alice environments (Appendix B). This is useful for
educators, as it would help them to identify the programming constructs in children’s games. I then used this guide to create
case studies; where I exemplified the programming constructs in two games that were created by children using the Scratch and
Alice applications. Appendices C and D show the example case studies of games in Scratch and Alice. Finally, I analysed the
overall data using a three-step analysis process, as described by Werner and colleagues [25] for analyzing each game that the children
created using both Scratch and Alice application:

• In the first stage the code was analyzed to identify the programming constructs that were used.
• The games were then played to check if the programming constructs were executed correctly.
• The final step looked to define whether the code was either built-in or created by the student.

6.1.1 Computational Concepts in Scratch
Out of the 30 children 24 of them worked in pairs and six of them worked alone, therefore 18 games were included in the data
analysis. Although at first I used Dr. Scratch (an online application for assessing children’s Scratch projects) created by
Moreno-León and Robles [50] to analyse the students’ games, I then manually evaluated each game as I wanted to be able to
use specific examples from the students’ game script to explain how well they were able to use the programming constructs
rather than the generic ones that were presented by this tool. This was very useful when giving individual feedback to the
students by using examples their own game scripts. The programming constructions were graded using a simple point system
similar to the Dr. Scratch assessment tool. If the programming constructs were not used within the game the student received
zero points, if they were used in a simple form the students received one point and if a more sophisticated programming
construct was used, the students received two points.

If the game included all of the programming constructions at a sophisticated level it would have received 16 points in total,
which is 100%. Once I had graded each game, I calculated the mean value to define the average level of use for each
programming construct in the Scratch environment. This was very useful for identifying the computational concepts that the
children were struggling with and those concepts that they were using efficiently. Table 1 displays the mean score for each
programming construct.

As it is illustrated on Table 1 the mean score for using an abstraction construct was zero, meaning that no one used custom built
functions. The mean score for sequences was 97.2% with a standard deviation of 0.2; this shows that almost all the games
included sequences at a complex level. The use of operators was low, at only 33.3% with a standard deviation of 0.7. This
means that either the children did not know how to use operators, or it wasn’t necessary for their game design. Parallelism and
conditionals were used confidently with a mean score being 77.8% (SD: 0.5) and 75% (SD: 0.6). Loops were used in 16 games
and events were used in 17 games. Variables such as timer, score and lives were used by 52.8 % (SD: 0.8) of the games.

 7

Mean score
N: 18

Percentage %

Standard
Deviation

Sequences 1.9 97.2 0.2
Loops 1.3 66.7 0.7
Parallelism 1.6 77.8 0.5
Conditionals 1.5 75.0 0.6
Operators 0.7 33.3 0.7
Variables 1.1 52.8 0.8
Events 1.3 66.7 0.6
Abstractions 0.0 0.0 0.0

Table 1: Mean scores for programming constructs

Although pair-coding made it difficult to compare individual students’ understanding of CT concepts, single sex pairing made
it possible for some gender-based comparisons. There were 14 girls who worked in pairs to create their animations and games.
The analysis of the games that were created by the seven pairs of girls showed that, they were all able to use sequences very
well, however, they struggled with the application of variables. Only one group of girls was able to use variables to create a
game with both a score and a timer. The remainder created simple animations without any variables. The students’ prior
experience of game playing might have had an impact on this, however, there was no data to support this claim as the students
were not asked about their previous experiences of either playing or making games. The gender based comparison for other
programming structures did not have any significant patterns, both boys and girls groups had some issues with using operators,
conditionals and loops.

The comparison of the six games that were created by individual children along with twelve pair coded games provided me
with some information about the impact of pair coding on the students’ ability to use programming constructs.

Pair coded
Games

Independently coded games

Mean
score
N: 12

%

Standard
Deviation

Mean
score
N:6

%

Standard
Deviation

Sequences 1.9 95.8 0.3 2.0 100.0 0.0
Loops 1.5 75.0 0.6 1.0 50.0 0.6
Parallelism 1.6 79.2 0.5 1.5 75.0 0.5
Conditionals 1.7 83.3 0.5 1.2 58.3 0.7
Operators 0.8 37.5 0.7 0.5 25.0 0.5
Variables 1.3 66.7 0.7 0.5 25.0 0.5
Events 1.5 75.0 0.5 1.0 50.0 0.6
Abstractions 0.0 0.0 0.0 0.0 0.0 0.0

Table 2: Comparing pair coded games and independently created games

As displayed on Table 2, the use of variables in the games that were created by the children who worked alone was only 25%,
which rose to 66.7% in the games that were coded by pairs. The students who worked collaboratively used loops, conditionals
and events constructs by almost 25% more than the games that were created independently. It is very difficult to describe the
factors that might have had an impact on the level of using programming constructions. Students’ prior experiences of these
constructs and coding with Scratch programs, opportunities for talk and discussion, accessing the work from home can be listed
as some of these, however there is no data to support or explain this statement. The use of sequences and parallelism were of a
very similar level for both pair coded and independently created games.

6.1.2 Computational Concepts in Alice
Werner et al. [15] listed Alice programming constructs in four levels of difficulty. They placed basic constructions for creating
sequences and simple event handlers in level 1; use of built-in functions and more sophisticated event handlers in level two;
creating methods, variables, if/else, loop and while statement in level three; parameters, student created functions, list variables,
nested if/else statements, more sophisticated sequence and parallelism constructions in level 4. Using their analysis scheme I
created a simple rubric that would help me to evaluate the games that students created using Alice application. I first listed the
blocks under one and two points to differentiate their difficulty level. This can be seen as level one and two. Then I mapped
each block and action in Alice to a programming construction to make it easier to compare the level of use. As discussed by
Werner et al [15], both if/else and while statements are based on simple Boolean expressions, therefore they have been listed

8

under the 1 points section. If the student did not use the programming construct, they received zero points, if they used the
simple constructions as listed in Table 3 they received one point, if they used more advanced programming constructs they
received two points. In total I analysed fifteen games that were created using Alice application.

 0 point 1 point 2 points
Sequences Programming

construct
hasn’t been
used

Do in order For all in order
Loops Loop statement While statement Nested loop

Parallelism Do together For all together
Conditionals If/Else statement Nested If/Else
Operators Mathematical expressions Relational and Logical Operators
Variables Non-list variables List variables
Events Event with single action Event with multiple actions
Abstractions Built in methods Simple event

handlers
Built-in functions

Student created Methods
Sophisticated event handlers
Student created functions

Table 3: Scoring system for Alice programming constructs

Similar to the Scratch games analysis if a student used all of the programming constructions at the sophisticated level they
would receive 16 points in total, which is 100%. I calculated the mean value for each programming construct to define the
average use in the Alice environment. This helped me to see the computational concepts that the children were able to apply at
a confident level. Table 4 displays the mean score for each programming construct.

As clearly illustrated by table 4 the mean score for the sequences construct was 100%, meaning everyone was able to create a
set of instructions to program the behaviour of an object at a sophisticated level. 80% of the games included more than one
event for an object that would happen at the same time (parallelism). The mean score for the uses of operators was 60% with a
standard variation of 0.4, showing that the students used this construct more than they used when coding with Scratch.
Abstraction was used in 43.3% of the games and loops in 46.7%. Students used conditionals well, as 75% of the games
included this programming construct. Variables had the lowest mean score (10%) where only one student used this construction
at a complex level, where he created a timer and a score. Another student attempted to create a variable but there was an error
so it did not work correctly.

Mean score
N: 15

Percentage %

Standard
Variation

Sequences 2.0 100.0 0.0
Loops 0.9 46.7 0.7
Parallelism 1.6 80.0 0.5
Conditionals 1.5 73.3 0.5
Operators 1.2 60.0 0.4
Variables 0.2 10.0 0.5
Events 1.3 66.7 0.5
Abstractions 0.9 43.3 0.6

Table 4: Mean scores for programming constructs

Gender comparison of the games that created using Alice shows that both boys and girls were able to use sequences in their
games. Boys were more successful at using almost all the programming constructions including loops, parallelism, conditionals
and events. Variables seem to be problematic for both boys and girls, as girls’ game did not include any variables, and only one
pair of boys were able to include variable in their game. Another pair also tried to use it but didn’t work properly. Abstractions
were used in 50% of the boys games, in comparison to 35% in girls games. The data used for gender comparison of the games
can be seen in table 5.

 9

Boys Girls

Mean
score
N: 8

%

Standard
Deviation

Mean
score
N:6

%

Standard
Deviation

Sequences 2.0 100 0.0 2.0 100.0 0.0
Loops 1.3 62.5 0.7 0.6 28.6 0.5
Parallelism 1.9 93.75 0.3 1.3 64.3 0.5
Conditionals 1.8 87.5 0.4 1.1 57.1 0.3
Operators 1.3 62.5 0.4 1.1 57.1 0.3
Variables 0.4 18.75 0.7 0.0 0.0 0.0
Events 1.5 75 0.5 1.1 57.1 0.3
Abstractions 1.0 50 0.7 0.7 35.7 0.5

Table 5: gender comparison of children’s games created using Alice

6.2 Metacognitive practices
As discussed previously planning, monitoring, evaluation, self-questioning, choosing and applying were listed as metacognitive
skills by many studies [15, 31-34]. Kafai [51, 52] studied children’s game design activities and suggested that game design is a
context for children to practice and develop transferable skills such as planning and problem solving.

Planning
 This study also found that planning was a skill used by all of the children mainly at the beginning of the activity. The
children used different methods and styles to plan their games when using both the Scratch and Storytelling Alice applications.
Some children preferred only drawings as a tool to communicate their ideas, some used both text and drawings and a few used
only text to present their thoughts. Appendix F shows some examples of the children’s planning sheets. Only four children
decided to use the planning sheet that I had prepared for them (Appendix G).

The data from the semi-structured interviews also suggests that coding activities for making games helped the children to use
planning skills more often for other activities as well. One student reported this “I used be like, let’s do this, but never planned
for anything. But game design made me to do stuff freely, like independent. And then suddenly my thinking has changed. Now I
plan everything out”.

Monitoring and evaluation
The children were able to identify their errors and explain how they solved them, which can be seen as both a ‘monitoring’ and
an ‘evaluating’ skill. During the interviews one student explained that they found their mistake, which was ‘naming the
variable wrong and corrected it’. She also recorded in her journal that both she and her partner learned to “sort stuff out and
how to correct their mistakes in game design”. Another student reported their problem solving activity as “We couldn’t change
the colour of the tombstone, we went on You Tube and followed the instruction, and we had to put down a lot of methods”. This
shows that this student was able to evaluate his game to identify the error and then exploring ways of finding a solution. This
shows that this student was able to evaluate his game to identify the error and then exploring ways of finding a solution.
Another focus child recorded their problem solving activity as “We test it and it doesn’t work…I then figured out that the
lollipop must be behind, so we add another net which is behind it. BINGO! It works.” All these activities can be seen as
demonstrations of self-regulating, because had they stopped when they couldn’t solve a problem, the learning would also have
stopped. Rather they used different strategies to help themselves to continue to look for solutions for their problems. This
involved, testing, evaluating, communicating, working collaboratively, making decisions, experimenting with ideas and
selecting strategies.

The participant observations showed that the children constantly tested their game design and checked their codes for errors
when it did not work how they expected. They deleted lines of code or added new code blocks to make their designs work; In
other words debugged their errors. This constant evaluation activity, continued throughout the design, not just as the learners
developed their games but also at the end as a final check up activity. The children also helped each other to evaluate their
games by giving one another feedback. They walked around the room, played with their friends’ games and gave verbal
feedback. Some students analyzed their game and provided feedback to their ‘self’. For instance one of the focus children
looked at his design at the end then started to touch the screen and talk to his ‘self’. He said ‘This works (pointing at a car,
good. The sound ‘pop’ doesn’t go with this. Maybe I could use (he clicked on the sound tab and explored different sound
effects) this one (chomp)’.

10

Conversational exchanges
Another findings of this study showed that children used language as an instrument, in different forms of conversation to make
decisions, evaluate and regulate their activities. When the students were asked to record what they asked / talked / thought to
themselves on their problem solving sheets, the students shared the questions that they were asked in order to solve a problem,
make a prediction, or make a decision before they took an action. For example one student reported this as “I asked and talked
about how are we going to work out to move the robot and the space men”. Another one wrote, “I thought to myself how am I
going to make the witch move around the screen?” There were more questions written in this section by children asking about
how to complete a specific task and also more broad questions to check if they were doing things correctly.

In his problem-solving sheet Child K stated that he had asked and talked to himself about ‘how are we going to work out how
to move the robot and the space man’. This is significant as he used ‘we’ instead of ‘I’. This can be seen as his
acknowledgement of his on and off interaction with his partner in his thought process. He also added that he discussed with his
friend how to make the robot say ‘boo’. Other children in their problem solving sheets also reported this type of focused
dialogue with their partner on a specific problem, question or task.

The data from the interviews also demonstrated that the conversations with both their ‘self’ and ‘others’ was taking place when
the children were regulating their problem solving activities. One child expressed this as solving a problem in mind and said
“Yeah, I ask questions to my partner and I think, I talk to my brain. Can I do this, it is like my brain says yes and give me the
answer, think like solving in my mind”. Another child stated that he would use dialog with his ‘self’ to check and evaluate his
design before sharing it with others. He articulated this as “Before let people see, I would ask myself ‘ are you sure it is
alright?’ When I was making the robot fighting game. I wanted to see, I talked to myself how would make it more interesting
and more detailed. To make it more like movement, maybe add voice. I just say in my mind ‘What shall I do to fix this?’ if
something is wrong. This makes you think if you ask and repeat”.

During the semi-structured interviews Child M, aged 9 remarked “First I write a piece of script like how the steps, then I think
to myself, how can I make it better? I try to understand or sometimes decide by asking myself. I usually do this when I don't
understand what I am doing, when I just check it or revise it I talk to myself. In other lessons I do it, but I don't do it a lot. Not
as often as game design.”

It is apparent from this comment that Child M used language in a form of a thought for asking himself for help when he doesn’t
understand something or is making decision. It is interesting that he is aware of a self-talk function and he states that he uses it
in other lessons but not as often. By asking how he could make it better he is activating the thought process for evaluating and
planning. Child H, aged 10 also stated similar comments but this time with a justification, suggesting that listening to teacher
in other lessons limits the use of self-talk. This might pose a question as to whether or not too much ‘teacher talk’ would have
an impact on both children’s private and inner speech.

“I ask myself shall I do that, shall I do this, trying to make a decision. It kind of helps me to make sense of things. I do it in
other lessons too but not that much. Because you have to listen what teacher is saying”.
Child H’s purpose of using self-talk is comparable to that of Child M’s; both mentioned making decisions and making sense of
things. They noted that they are both aware of self-talk as a function and pointed out that they use it more often during game
making.

6.3 Learning behaviours
The findings of this study also found that during their game making project, whilst working on their design and programming
scripts, pupils worked collaboratively, thought creatively and critically, debugged errors, tinkered with ideas and communicated
these ideas using different modes of conversational exchanges.

Collaboration
The field notes presented that although most of the children usually worked directly with their partner, on many occasions they
also walked around the classroom to look at others work, where they either made suggestions or got some ideas for their own
games. There were some that asked for help from others. There was a constant discussion between the pairs and other game
designers, which enabled them to evaluate and reflect on their own work and to re-organise their ideas. This collaborative
approach to game making had motivational power by providing support for the children from their peers when they needed it.

Perseverance
One other interesting learning behaviour shown by many pupils was perseverance. When they identified their script error, they
tried different solutions to debug it. Sometimes this was a simple action, but sometimes they had to spend a very long time
trying different options until they found how to make it work. The records from the participant observations of the children
working on their games showed that some children did give up when faced with a challenge and some persevered, so that they

 11

did not stop until they had found a solution to their problem. The following record from participant observations shows the
interaction, which took place between three children during one of the game making sessions demonstrate this:

Child T and Child A were making a game together using Alice application. They had a problem. They couldn’t stop spacemen
becoming smaller as they got closer to the spaceship. Child T looked for information on Google but she couldn’t find anything.
It was apparent from her facial expressions and body gestures that she was getting very annoyed. Child A suggested that they
should re-start their work, however, this did not solve their problem. At this point Child T started to become disengaged. She
did not answer Child A’s questions, she just looked at the screen. Child A called Child C to help them. He wanted to quickly fix
the problem but Child T wasn’t happy with this. She asked Child C to show how to stop the spacemen becoming smaller. Rather
than just doing it, she then took the mouse from Child C and completed the task.

Child T was disengaged with the activity when she couldn’t solve a problem. Her partner suggested that they should re-write
the script, but she didn’t show any interest in this. It was only when another child offered to help them with their problem that
she engaged with the game making activity again. This shows the importance of, allowing children to face challenges,
facilitating discussions; group interactions and pairing when making games that will motivate children continue learning.

Communication
The field notes from the observation of the children have shown that they constantly communicated with their friends. They
talked about their storylines, characters, backgrounds, code errors and rules. They discussed their solutions and actions to
problems before they put them into practice. They gave feedback to each other and made suggestions for improving their work.
This shows that communication was a core part of their game making. Many children mentioned asking for help during their
interviews. For example Child K suggested that he first tried to solve a problem himself but if he couldn’t, he asked his friend.
He explained this as “What I do is, if I have a problem, like the character is in the wrong place, I will try to move to different
place by changing the code, but if it doesn't work I will ask my friend. Likewise children’s problem solving sheets also had
records of children talking to their friends about problems they faced whilst making games.

Debugging
Identifying and debugging coding errors or solving problems related to the design of the games were also observed during
game making. The children tested their codes frequently to check that it worked. When it did not they tried to identify the
problem; sometimes alone, sometimes with others and then designed solutions. The written records of informal conversations
with the children highlighted that the children evaluated their work and checked for errors during game making more than for
any other lesson. One of the children reported the reason for this is as “you can find your mistake very easy when making games
because if the code is wrong, game doesn’t work”.

Creativity & Tinkering
I did not ask children about how creative their games were during this study; however, it is evident from their completed games
and field notes that they were experimenting with ideas that involved decision-making, critical thinking, problem solving,
designing solutions which can all be seen as part of creativity. The task of character and background designs also provided the
children with an opportunity to develop creativity skills, as this would allow them to express their own ideas using technology.
During the interviews children were asked about what they learned by making games. Child K replied as “my imagination”.
When I asked how, he answered as “Because like it expresses your imagination different points and it tells you, you can come
up with good things to say”. There were mention of pair work and how this impacts on creativity. Child M reported this “we
learned how to use our imagination and how to cooperate because we worked in a pair. If you work by yourself you may not do
much, because two heads are better than one”. This shows that some children may not be able to express their ideas alone and
might need the input or support of a friend. The link between using imagination, creativity and brainpower was proclaimed by
Child S who suggested that “Having a wide imagination means, thinking a lot harder, harder you think, more intelligent and
more creative you get”.

Problem solving
During the interviews when asked what do they think they learned by making games, every single child mentioned ‘problem
solving’ as one of the skills that they developed. Child S replied this as “I think I learned imagination and a lots of skills.
Designing, imagination, problem solving. I learned to do it by myself, not always many people around to help”. Child K stated
that during game making sessions when he had a problem, he would try new things to see if he could make it work or think
about adding more things to improve it.
Both participant observations and children’s problem solving sheets from this study showed that constant problem solving was
at the core of the game making activities. The children’s problem solving sheets where they recorded some of the challenges
that they faced and how they solved them provided us with more detailed information about examples of problems that they
had. When analyzing children’s problem solving sheets this was also visible in the problems that the children recorded when
making their games. In Scratch the children solved problems related to script such as creating a variable but they also had
different problems; such as making sound work, locating sound files, duplicating a character, finding a costume. When

12

designing a game using Alice the children’s problems were mainly writing the code to make an object do something e.g. How
to add a score, moving an object by itself, how to add a timer (variable), moving a left arm or right leg (robot).

6.4 Game mechanics
At the beginning of the study we had a class discussion about ‘what makes a game, a game’. The common answers that were
given by students were: games is something you can play, it has rules, you get rewards, it has score, it needs timer, you get
points if you win, you lose lives if you don’t play well, you have different levels, many games have stories, it has goals.
My notes of informal conversations with children during the class discussions illustrates that they distinguish a game from
animation mainly by its playability function. One student explained this as “You play with games, but animation, you just watch
them, don’t you?”

I analysed 18 games that were created using the Scratch application and 15 games that were created using Alice I used Werner
and colleagues’ study to examine game mechanics in children’s games. I added other visible actions and elements that
represent game mechanics for each game and then looked for repeated patterns first in Scratch games, then Alice games.
Finally, I compared the results of the two separate analysis to provide an insight into game mechanics that were used by the
children whilst making their games and how this relates to their learning, especially the development of computational thinking
skills. Table 6 shows the actions and elements that the children included in their games.
Analysis of the eighteen Scratch games that were created by the children showed that timed challenge and score/point were the
most commonly used mechanics as these were included in eleven games. Levels and lives mechanics were used only in two
games. Seven games contained the challenge of avoiding objects by controlling a sprite using either mouse or arrow keys on
the keyboard. Three games included an action of clicking on the objects that were appearing and hiding on the screen in order
to get points. Two games were basic racing games where two players were expected to each move a character to a finishing
line, however this task did not have any visible forms of reward. One game included speed for objects (apples) dropping from
top, which was a range of random numbers. When asked what the reason was for using speed, Child B replied as “This made
my game more challenging because players have to be ready for speed that changes all the time”. There was one game
contained which a mathematics quiz, for players to enter the correct answer into a box. This analysis illustrates that children
used different mechanics in their game, which they thought had an impact on the level of players’ engagement with their
games.
The analysis of the fifteen children’s games created using Alice showed different results from those of the Scratch games. The
most commonly used game mechanic was moving objects where children created events to control the objects using arrow
keys. Only one game included a timed challenge and score. Two games tried to create a boat racing game but had issues with
creating the score and timer. One student created a simple race game by moving objects using arrow keys to a specified
position. Most of the games, which the children created, using Alice, were in a format of animation rather than a game. When
the children were asked why they did not include mechanics in their games, they mentioned how difficult it was for them to
create a timer and score using Alice When I provided them with an instruction sheet for a game with a timer and score, they
were then able to add these to their games. This showed that they needed more input and practice for creating games using
Alice coding environment.

Mechanic Description
Timer Player is given a time limit to complete the task
Levels Player is allowed to move to different stages when completing a challenge or reaching a target
Avoiding objects Player avoids objects to complete a task. This is done sometimes by controlling the object using a mouse

or arrow keys on the keyboard.
Clicking objects Player is given points/ reward when clicking the objects
Moving objects Player moves the objects by using mouse or keys on keyboard
Racing Player moves objects to the finishing line. This sometimes involves time limit.
Guessing Player completes a quiz by typing answers
Catching objects Player controls an object to catch other falling objects. This is done using mouse or keys on the

keyboard.
Points / Score Player receives points or score for completing tasks.
Lives Player is given number of lives for completing a task. In many games when the player runs out of lives,

the game stops.
Speed Player is given number of speed options for different level of challenge, engagement and interaction with

the game.
Table 6: The actions and elements that children included in their games

 13

7 Conclusions
This paper explored what Computational thinking constitutes and the ways to best evaluate it using both the support of
literature and the data collected from this study. After a thorough literature review I proposed a definition of computational
thinking which highlighted the interaction between computation and the elements of AI, computer, cognitive, learning and
psychological sciences. This was also used for creating a framework for evaluating different aspects of the Computational
Thinking Process, which can be listed as ‘computational concepts’, ‘metacognitive practices’, ‘learning behaviours’ and
‘Context’, in this study, computer game design. We can conclude that a multiple evaluation approach should be adopted to
illustrate the full learning scope of the Computational Thinking Process.

Evaluation of children’s completed games exhibited that although a few students found using variables and abstraction
challenging, children were able to use programming constructs including sequences, loops, parallelism, conditionals, operators
and events. The gender based comparisons showed that there were differences between the girls’ and boys’ use of programming
constructs both in Alice and Scratch. In the Scratch environment all except two girls created animations without using
variables. There were no significant differences in the use of other programming constructs. In the Alice environment variables
were found challenging by both girls and boys and only 35% of the girls’ games included abstractions in comparison to 50% of
the boys’ games.

Data analysis of the children’s problem solving sheets, observation records, informal conversations and semi-structured
interviews presented that planning, monitoring, and evaluation were the main metacognitive skills that the children applied and
developed through metacognitive practices when making computer games. Monitoring through constant testing and evaluation
was also evident in all of the children’s work, showing that metacognitive practices were used for controlling and regulating
programming activities. Furthermore, the findings of this study showed that the children used different modes of conversation
to make decisions, evaluate and regulate their activities.

The findings of the data also displayed that learning behaviours such as collaboration, communication, persevering, problem
solving and creativity were visible whilst children were coding their games.

This was a small-scale study, limited to a class in a primary school in London, UK. Larger scale studies in various locations
should be conducted to explore the challenges around how each aspects of Computational thinking process can be assessed
consistently by teachers on a daily basis using simple evaluation tools. For example, the creation of tasks and ‘I can’ statements
for each aspect of the Computational Thinking process that can be used by class teachers, alongside a guide will help them to
recognise programming constructs, which would be very beneficial.

References
[1] A. R. Basawapatna, K. H. Koh & A. Repenning, Using scalable game design to teach computer science from middle school
to graduate school, In: Proceedings of the fifteenth annual conference on Innovation and technology in computer science
education, ACM, New York, NY, USA, 2010, 224-228. https://doi.org/10.1145/1822090.1822154
[2] J. Denner, S. Bean & J. Martinez, The girl game company: Engaging Latina girls in information technology. Afterschool
Matters. 8, (2009), 26-35.
[3] S. Papert, Mindstorms: Children, Computers, and Powerful Ideas, Basic Books, New York, 1980.
[4] S. Papert, Situating constructionism. In I. Harel & S. Papert (Eds.). Constructionism. Ablex Publishing Corporation,
Norwood, NJ, 1991.
[5] J.M. Wing, Computational thinking, Commun. ACM 49 (2006) 33–35. http://dx.doi.org/10.1145/1118178.1118215.
[6] J. Cuny, L. Snyder, and J. M. Wing, Demystifying computational thinking for non-computer scientists, 2010.
https://www.cs.cmu.edu/~CompThink/resources/TheLinkWing.pdf (Accessed June 5, 2018).
[7] C. Selby & J. Woollard. Refining an understanding of computational thinking, 2014.
https://eprints.soton.ac.uk/372410/ (Accessed June 5, 2018).
[8] W. Sung, J. Ahn, S. M. Kai, A. Choi, J. B. Black. Incorporating Touch-Based Tablets into Classroom Activities: Fostering
Children's Computational Thinking through iPad Integrated Instruction. In Handbook of Research on Mobile Learning in
Contemporary Classrooms. IGI Global, (2016), pp.378-406. https://doi.org/10.4018/978-1-5225-0251-7.ch019
[9] ISTE. Computational Thinking in K–12 Education leadership toolkit. 2011.
[10] K. Brennan & M. Resnick. New frameworks for studying and assessing the development of computational thinking. In:
Proceedings of the annual meeting of the American Educational Research Association. Vancouver, Canada, 2012, pp.1-25.
[11] Y. B Kafai & Q. Burke, Constructionist gaming: Understanding the benefits of making games for learning. Educational
psychologist 50, 4, (2015), 313-334.
[12] A. V. Aho, Computation and computational thinking. The Computer Journal 55, 7, (2012), 832-835.
[13] J.J. Lu, G.H.L. Fletcher, Thinking about computational thinking, in: Proceedings of the 40th ACM Technical Symposium
on Computer Science Education, ACM, New York, NY, USA, (2009), 26–264.

14

[14] G. Gadanidis, Artificial intelligence, computational thinking, and mathematics education. The International Journal of
Information and Learning Technology, 34 (2), (2017), 133-139.

[15] A. Yadav, C. Mayfield, N. Zhou, S. Hambrusch, and Korb. J.T., Computational thinking in elementary and secondary
teacher education, ACM Transactions on Computing Education, 14 (1), (2014), 5
[16] J. E. Davidson, R. Deuser & R. J. Sternberg, The role of metacognition in problem solving. In J. Metcalfe & A.P.
Shimamura (Eds.), Metacognition. Cambridge, MA: MIT Press, 1994.
[17] J.H. Flavell, Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American
psychologist, 34(10), (1979), 906.
[18] G. Claxton, Wise up: The challenge of lifelong learning. Bloomsbury, London, 1999.
[19] M. Resnick, All I really need to know (about creative thinking) I learned (by studying how children learn) in kindergarten.
In: Proceedings of the 6th ACM SIGCHI conference on Creativity & cognition, ACM, 2007, 1-6.
[20] Barefoot, C. A. S. Computational Thinking, 2014. https://barefootcas.org.uk/barefoot-primary-computing-
resources/concepts/ (Accessed June 1, 2018).
[21] Somerset e-Learning & information management team. The Computational Thinker, 2014.
https://slp.somerset.org.uk/sites/edtech/SitePages/Secondary%20Learning/KS3%20and%20the%20Computing%20Curriculum.
aspx (Accessed June 1, 2018).
[22] M. Akcaoglu, Learning problem-solving through making games at the game design and learning summer program.
Educational Technology Research and Development, 62, (2014) 583–600.
[23] J. Denner & L. Werner, Computer programming in middle school: How pairs respond to challenges. Journal of
Educational Computing Research, 37, 2, (2007), 131-150.
[24] S. Bermingham, N. Charlier, FM. Dagnino, J. Duggan, J. Earp, K. Kiili, E. Luts, L. Stock, N. Whitton, Approaches to
collaborative game making for fostering 21st century skills. In: proceedings of the 7th European Conference on Games-Based
Learning. Academic Conferences Limited, 2013.
[25] S. Ellis & J. Tod, Behaviour for learning: proactive approaches to behaviour management. Routledge, Oxon, UK, 2013.
[26] S. Powell & J. Tod, A systematic review of how theories explain learning behaviour in school contexts. EPPI-Centre,
Social Science Research Unit, Institute of Education, University of London, 2014.
[27] L. Werner, J. Denner and S. Campe, Using computer game programming to teach computational thinking skills.
In Learning, education and games, ETC Press, (2014), 37-53.
[28] L. Werner, J. Denner, S. Campe & D. C. Kawamoto, The fairy performance assessment: measuring computational thinking
in middle school. In Proceedings of the 43rd ACM technical symposium on Computer Science Education, 2012, 215-220.
[29] S.Grover. “Systems of Assessments” for Deeper Learning of Computational Thinking in K-12. In Proceedings of the
Annual Meeting of the American Educational Research Association, Chicago, USA, 2015, 15-20.
[30] D. T. Conley & L. Darling-Hammond, Creating systems of assessment for deeper learning. Stanford Center for
Opportunity Policy in Education, Stanford, USA, 2013.
[31] Department for Education and Skills (DfES), 14–19 education and skills HMSO, Norwich, 2005e.
[32] G. Claxton, Building learning power: Helping young people become better learners, Vol. 9. TLO, Bristol, 2002.
[33] R. J. Sternberg, Metacognition, abilities, and developing expertise: What makes an expert student? Instructional
science, 26(1-2), (1998) 127-140.
[34] R. Fisher, Teaching children to think. Nelson Thornes, 2005.
[35] G. Schraw, K. J. Crippen & K. Hartley, Promoting self-regulation in science education: Metacognition as part of a broader
perspective on learning. Research in Science Education, 36, (2006) 111-139
[36] D. Whitebread, P. Coltman, D. Pino Pasternak, C. Sangster, V. Grau, S. Bingham, Q. Almeqdad, D. Demetriou, The
development of two observational tools for assessing metacognition and self-regulated learning in young children.
Metacognition and Learning, 4(1), (2009) 63-85.
[37] Lev S. Vygotsky. Thought and language. A. Kozulin (Ed.). MIT Press, Cambridge, MA, 1986.
[38] M. M. Rohrkemper & B. L. Bershon, Elementary School Students’ Reports of the Causes and Effects of Problem
Difficulty in Mathematics. The Elementary School Journal 85, 1, (1984) 127-147.
[39] S. Lundgren & S. Bjork, Game mechanics: Describing computer-augmented games in terms of interaction. In Proceedings
of TIDSE, 3, 2003.
[40] R. Hunicke, M. LeBlanc & R. Zubek, MDA: A formal approach to game design and game research. In Proceedings of the
AAAI Workshop on Challenges in Game AI. 4 (1), (2004), 1-5.
[41] Matthew Weise, The Future Is Now - Emergent Narrative Without Ridiculous Tech. Paper presented at the Game
Developers Conference Online, Austin, 2011.
[42] N.K. Denzin and Y.S. Lincoln, The SAGE Handbook of Qualitative Research (4). Sage Publications, London, 2012.
[43] A. B. Marvasti, Qualitative research in sociology. An introduction. Sage Publications, London, 2004.
[44] BERA Ethical Guidelines for Educational Research, 2011. http://www.bera.ac.uk/wp-content/uploads/2014/02/BERA-
Ethical-Guidelines-2011.pdf. (Accessed June 1, 2018).

 15

[45] R. Flewitt, Conducting research with young children: Some ethical considerations. Early child development and
care, 175(6), (2005), 553-565.
 [46] M. B. Miles & M. A. Huberman, Qualitative data analysis: A sourcebook of new methods (2.). Sage Publications,
Newbury Park, CA, 1994.
[47] A. Strauss & J. Corbin, Basics of qualitative research: Grounded theory procedures and techniques (3). Sage Publications,
Newbury Park, CA, 2008.
[48] Hsieh, H.F. and Shannon, S.E., Three approaches to qualitative content analysis. Qualitative health research, 15(9), (2005),
1277-1288.
[49] Berg, B.L. Qualitative Research Methods for the Social Sciences. Allyn and Bacon, Boston, 2001.
[50] J. Moreno-León & G. Robles, Dr. Scratch: A web tool to automatically evaluate Scratch projects. In Proceedings of the
workshop in primary and secondary computing education. ACM Press, 2015, 132-133
[51] Y.B. Kafai, Minds in Play: Computer Game Design as a Context for Children's Learning. Lawrence Erlbaum Associates
Hillsdale, NJ, 1995.
[52] Y.B. Kafai, Electronic play worlds: Gender differences in children's construction of video games. In: Y. B. Kafai & M.
Resnick (Eds.), Constructionism in practice: Designing, thinking, and learning in a digital world, Lawrence Erlbaum
Associates, Hillsdale, NJ, 1996, pp. 97-123

Appendices

Appendix A – Data analysis of interview script

16

 17

18

 19

Appendix B: The guide for programming constructs

20

 21

22

 23

Appendix C: Scratch Case study

24

 25

Appendix D: Alice Case study

26

 27

Appendix E- Problem solving sheet

28

Appendix F– Planning examples

 29

30

Appendix G – Planning template

 31

