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Abstract

The recent advances in computational efficiency and the scarcity/absence of recorded

ground motions for specific seismicity scenarios have led to an increasing interest

in the use of ground motion simulations for seismic hazard analysis, structural de-

mand assessment through response-history analysis, and ultimately seismic risk

assessment. Two categories of ground motion simulations, physics-based and

stochastic site-based are considered in this study.

Physics-based ground motion simulations are generated using algorithms that solve

the fault rupture and wave propagation problems and can be used for simulating

past and future scenarios. Before being used with confidence, they need to be val-

idated against records from past earthquakes. The first part of the study focuses

on the development of rating/testing methodologies based on statistical and infor-

mation theory measures for the validation of ground motion simulations obtained

through an online platform for past earthquake events. The testing methodology

is applied in a case-study utilising spectral-shape and duration-related intensity

measures (IMs) as proxies for the nonlinear peak and cyclic structural response.

Stochastic site-based ground motion simulations model the time-history at a site

by fitting a statistical process to ground motion records with known earthquake

and site characteristics. To be used in practice, it is important that the output IMs

from the developed time-histories are consistent with these prescribed at the site

of interest, something that is not necessarily guaranteed by the current models.

The second part of the study presents a computationally efficient framework that

addresses the modification of stochastic ground motion models for given seismicity

scenarios with a dual goal of matching target IMs for specific structures, while

preserving desired trends in the physical characteristics of the resultant time-

histories. The modification framework is extended to achieve a match to the full

probability model of the target IMs. Finally, the proposed modification is validated

by comparison to seismic demand of hazard-compatible recorded ground motions.

This study shows that ground motion simulation is a promising tool that can be

used for many engineering applications.
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Chapter 1

Introduction

1.1 Background and motivation

Earthquake ground motions are an important component of seismic risk assess-

ment and have many engineering applications. They are used to characterise the

seismic hazard through the development of ground motion prediction equations

(GMPEs), as input to response-history analysis to assess the induced damage to

structures, and validate catastrophe insurance models. For many of these en-

gineering applications, the complete acceleration time-history is represented by

a single parameter called intensity measure (IM); the peak ground acceleration

(PGA) or spectral accelerations at different structural periods T , (Sa(T )), are

some commonly used IMs. Modern building codes prescribe the use of a target

response spectrum, which is the output of site-specific seismic hazard assessment.

This target response spectrum is then used either for response spectrum analysis

of structures or to select a number of suitable ground motions as input to perform

nonlinear dynamic analysis (NLDA). For response spectrum analysis, the spec-

tral acceleration estimates are used whereas for applications involving dynamic

analysis, the entire ground motion acceleration time-history is needed.

1
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In the past decades, the growing fields of simulation-based seismic risk assess-

ment (Au and Beck, 2003; Gidaris et al., 2016) and performance-based earthquake

engineering (PBEE) (Bozorgnia and Bertero, 2004; Goulet et al., 2007), which

addresses the entire spectrum of structural response, from linear to highly nonlin-

ear to collapse, have changed the landscape related to ground motion modeling.

These approaches require a large number of ground motion time-histories that are

compatible with the various hazard levels as input to perform NLDA to determine

performance of structures in terms of probability distributions of some engineering

demand parameters (EDPs). In recognition of this need, there has been a bulk of

research performed in the area of selecting suitable ground motions for performing

NLDA of structures (Haselton, 2009; NIST, 2011).

In most advanced codes and state-of-the-art literature, the target response spec-

trum for structural or geotechnical analysis at a site of interest is identified through

probabilistic seismic hazard analysis (PSHA). The outcome of PSHA is then used

to develop a uniform hazard spectrum or conditional (mean) spectrum (Baker,

2011) to represent the design response spectrum. The design ground motions to

be provided as input to NLDA, should match the target response spectrum, and

also be compatible with the earthquake source characteristics relevant for the site

of interest (these are also needed in defining a conditional spectrum). The earth-

quake source features in terms of magnitude (M), source-to-site distance (R) and

epsilon (ε) that have the largest contribution to the hazard can be identified via

disaggregation of PSHA at the structural period of interest (Bazzurro and Cor-

nell, 2007) as presented in Figure 1.1. Therefore, suitable ground motions are

those that are recorded during earthquake events of magnitude and source-to-site

distance similar to the magnitude and distance of the seismic scenario that drives

the hazard at the site where the structure is located. Moreover, other important

source and site features, for example the tectonic environment and soil condi-

tions at the site, need to be accounted for when selecting acceleration time-history

records. The target response spectrum can alternatively be defined for a given

earthquake scenario through the use of GMPEs e.g., scenario-based assessment
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prescribed in FEMA P-58 (FEMA, 2012) guidelines for seismic performance as-

sessment of structures. In this case, the earthquake source and site features are

these of the scenario earthquake.
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Figure 1.1: Steps to define design ground motions according to the hazard
at the site from (1) to (3): target spectrum for the site of interest, hazard
disaggregation for the spectral ordinate at the fundamental period of the struc-
ture, selection of a set of records compatible to disaggregation and matching

the target spectrum at that same period (adapted from Galasso, 2010).

Despite the thousands of strong ground motion records available, there is an inher-

ent scarcity or total absence of suitable natural records for some specific earthquake

scenarios, for example large magnitude events on nearby faults (see Figure 1.2), as

well as records that sample specific combination of source, path and site charac-

teristics. Moreover, a significant number of ground motion records is required for

the calibration of GMPEs, which is usually not possible to obtain in regions where

earthquakes are infrequent like the stable continental regions of the Central and

Eastern United States. For the purposes of PBEE, it is common engineering prac-

tice to modify recorded ground motions by scaling or spectrally matching them

to a target spectrum. The former approach modifies the amplitude of a “seed”
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ground motion record to match spectral acceleration values over a specified range

of periods around a target period, while the latter modifies the frequency content

of the ground motion record in order to make its spectrum match a target response

spectrum.

Synthetic or simulated ground motions is another option for describing seismic

excitations that has been recently gaining popularity within the engineering com-

munity.
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Figure 1.2: Lack of large magnitude and short epicentral distance ground
motion records in the European strong motion database (ESD). A, B, C, D and

E are soil classes according to Eurocode8 (2004).

Simulated ground motions can be used as an alternative to replace or supplement

recorded ground motions in cases where these are absent or insufficient. Many

ground motion simulation methods have been proposed over the last few decades,

but only recently there has been an increasing interest in their use for struc-

tural engineering applications. The advances in scientific understanding of the

earthquakes’ physics and computational power have rendered ground motion sim-

ulations easier to compute and use. Two categories of ground motion simulations

considered in this study are the physics-based and stochastic site-based.
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Physics-based simulations are generated using numerical models that explicitly

incorporate the physics of the fault rupture and seismic wave propagation and can

thus, be used for simulating future scenarios. Some of their engineering applica-

tions may be the design of new or assessment of existing structures in areas where

the seismic hazard is dominated by large magnitude events on nearby faults (i.e.,

in cases that records are scarce or absent), and the calibration of GMPEs in regions

where there is not a sufficient number of records to study special topographic or

site effects (e.g., study of basin effects). Physics-based ground motions may also

represent an attractive option for loss estimation purposes within the catastrophe

risk modeling framework, as there is a scarcity of recorded motions for large mag-

nitude and short distance events that can cause nonlinear structural responses.

Besides such applications, some researchers have used a rupture-to-rafters simula-

tion approach which simulates the entire phenomenon: from earthquake rupture to

nonlinear structural response and damage/loss prediction. Within this approach

the seismic hazard and structural analysis are fully coupled. The results of such

studies may ultimately be used (1) by public and private organisations to develop

emergency response plans, (2) to quantify seismic risk by using a comprehensive

collection of earthquake scenarios with associated probabilities, (3) to evaluate

cost-effective seismic retrofitting actions and risk mitigation strategies, (4) to eval-

uate rapid damage-estimation algorithms for effective disaster response, and (5)

to use the synthetic data sets to train and test health monitoring algorithms for

damage identification (Krishnan et al., 2011).

The stochastic site-based simulation method models the ground motion time-

history at a specific site by fitting a statistical process to a suite of recorded

ground motions and is thus, relying on ground motion records for predictions.

The stochastic ground motions can be used to supplement existing ground motion

records in cases where a large number of ground motion time-histories is needed,

such as in PBEE or where there is a lack of records with specific combination

of source, path and site characteristics. Another very important application of

stochastic ground motions models is in simulation-based reliability frameworks
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(e.g., for seismic risk assessment) where there is a need for a comprehensive char-

acterisation of acceleration time-histories for a wide range of seismicity scenarios.

Ground motions simulations can be very useful for a wide range of engineering

applications as discussed above, provided that they capture the properties of real

ground motions as well as their natural variability. However, among stakeholders

and engineers the general concern in the context of PBEE, is that simulated ground

motions may not be equivalent to real records in estimating seismic structural

demand, and hence, the induced damages to structures and losses. Therefore,

there is a need for validation of the ground motion simulations so that they can be

used with confidence for the various engineering applications. Furthermore, given

the significant improvements in computational power, it is evident that simulation-

based methods that use stochastic ground motion models will play an important

role in the future. This provides another strong motivation for having validated

and trust-worthy simulated stochastic ground motion models.

1.2 Scope and aims of research

This study is concerned with the use of simulated ground motions for seismic risk

assessment of structures. In particular, two categories of ground motion simula-

tion methods are considered: physics-based and stochastic site-based simulation

models. Physics-based models are computationally intensive and can be used to

provide realistic synthetic ground motions in areas where ground motion records

are scarce or absent; however, they need to be validated against records to be

used with confidence in engineering applications. Stochastic site-based models,

on the other hand, are fast to compute and have significant potential to be used

in practice when a large number of ground motions is needed e.g., in PBEE or

simulation-based seismic risk assessment.

The scope of this study is twofold. The first part of the thesis focuses on the intro-

duction of statistics-based metrics for the validation of ground motion simulations
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to be used for earthquake engineering applications with a focus on the seismic

demand and damage induced in engineering structures. The novelty of this study

is the introduction of an information theory-based approach for the engineering

validation of ground motion simulations. The approach can be applied to any

ground motion simulation method (physics-based or stochastic). Simple proxies

for the spectral-shape and duration of the ground motions that are indicative of

the peak and cyclic nonlinear structural response, respectively, are used for the

validation. These proxies have been proposed in the literature, though, they have

not been used in past validation studies.

In the second part of the study, the emphasis is placed on stochastic ground

motion simulation models and their use in PBEE and seismic risk assessment ap-

plications. The main objective is the development of a computationally efficient

framework for modification of existing stochastic ground motion models to achieve

compatibility with the conditional seismic hazard at a given site and structure of

interest. This conditional hazard is typically characterised through PSHA, for ex-

ample through disaggregation as discussed above. Essential part of PSHA are the

GMPEs. GMPEs provide predictions, as function of seismicity characteristics, for

both the median and the dispersion of IMs, determining ultimately the conditional

hazard for seismic events corresponding to these characteristics. This facilitates

the use of the modified stochastic ground motion models for PBEE or seismic

risk assessment applications, where suites of hazard-compatible ground motions

are needed. Finally, the proposed modification framework is validated by compar-

ing the seismic demand of recorded ground motions established through NLDA of

single degree of freedom (SDoF) case-study systems to the demand of stochastic

ground motion models established through the proposed modification.

Figure 1.3 depicts a schematic diagram that explains the most commonly used

approach for seismic risk assessment of a specific structure using recorded ground

motions (right part of the Figure) as well as the proposed approach (left part of

the Figure), where the recorded ground motions have been replaced by ground

motion simulations. The current state-of-the-art approach involves the selection
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Fault Rupture Scenario: M, R, Vs,30, fault style

R

M

Define target 
response spectrum

Ground Motion 
Simulation

Ground Motion 
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Acceleration time-history
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Spectral acceleration prediction

Scale recorded ground motions to 
match  the target response spectrum

Recorded ground motions

Figure 1.3: Schematic diagram of the current and proposed approaches for
seismic risk assessment of structures.

of an earthquake scenario (or set of scenarios) which are used to define a target

response spectrum. This response spectrum can be derived for a single scenario

or based on PSHA incorporating multiple scenarios (resulting in a uniform hazard

or conditional (mean) spectrum). The spectral acceleration predictions used in

all cases are derived through the use of GMPEs. For the single scenario, these

are simply estimated from GMPEs for the given seismicity and site characteristics

such as magnitude (M), source-to-site distance (R), shear wave velocity in the

upper 30 meters of soil (Vs,30), and fault style. For deriving a uniform hazard

spectrum, the spectral acceleration predictions for a set of earthquake scenarios

are aggregated, but still GMPEs are used to estimate spectral accelerations for

each scenario. Recorded ground motions are then selected from a database and

scaled to match on average the target response spectrum within a period range of

interest. In the proposed approach, the recorded ground motions can be replaced

by simulated ground motions that are generated based on a given seismicity sce-

nario and site of interest. The scaled recorded or simulated ground motions are

finally used to perform NLDA of the structure and calculate probability distribu-

tions of EDPs, annual rate or probability of exceedance of given levels of EDPs,
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loss or any desired seismic risk metric. The presented approaches can be seam-

lessly applied to perform seismic risk assessment of a portfolio of structures in a

given area. For the simulated ground motions to be used in the proposed seismic

risk assessment approach, it is important to validate the stochastic ground motion

models to ensure their output IM statistics (mean and dispersion) are compatible

to these expected at the site of interest (e.g., as estimated through GMPEs). If

that is not the case, modification of the stochastic ground motion model needs to

be performed to achieve compatibility.

1.3 Thesis outline

Chapter 2 discusses the literature review on the topics of ground motion simulation

and validation. In this chapter, the different ground motion simulation methodolo-

gies are presented and common validation approaches are described. Current gaps

identified in the literature and the framework adopted in this study are discussed.

Chapter 3 introduces a quantitative approach for the engineering validation of

ground motion simulations based on information theory concepts and statistical

hypothesis testing. The application of the proposed validation approach is demon-

strated to ground motion simulations generated by three simulation methods, in-

cluding physics-based and stochastic models, for four historical events in Califor-

nia. The validation is performed in terms of spectral-shape and duration-related

IMs, acting as proxies for the nonlinear response of more complex engineered

systems. The considered IMs are shown to be the optimal IMs in several proba-

bilistic seismic demand models of different structural types, within the framework

of PBEE.

Chapter 4 focuses on the use of stochastic site-based ground motion models in

PBEE and simulation-based seismic risk assessment applications. This is estab-

lished by relating the parameters of the stochastic ground motion model to earth-

quake and site characteristics through predictive relationships. This chapter offers
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a computationally efficient framework for the modification of stochastic ground

motion models to match target IMs for a specific site and structure of interest.

This is set as an optimisation problem with a dual objective. The first objective

minimises the discrepancy between the target IMs and the predictions established

through the stochastic ground motion model for a chosen earthquake scenario. The

second objective constraints the deviation from the model characteristics suggested

by existing predictive relationships, guaranteeing that the resultant ground mo-

tions not only match the target IMs but are also compatible with regional trends.

A framework leveraging kriging surrogate modeling is formulated for performing

the resultant multi-objective optimisation.

Chapter 5 discusses the extension of the developed framework in Chapter 4 to

perform modification of stochastic ground motion models to establish compat-

ibility with the seismic hazard, described through the mean and dispersion of

some structure-specific IM(s), for given seismicity scenarios and structure/site.

The modification pertains to the probabilistic predictive models that relate the

parameters of the ground motion model to seismicity/site characteristics. These

predictive models are defined through a mean prediction and an associated vari-

ance and both these properties are modified in the proposed framework. For both

the predictive models and the seismic hazard a probabilistic description is consid-

ered. The proposed modification is defined as a bi-objective optimisation. The

first objective corresponds to comparison for a chosen seismicity scenario between

the target hazard and the predictions established through the stochastic ground

motion model. The second objective corresponds to comparison of the modified

predictive relationships to the pre-existing ones that were developed considering

regional data, and guarantees that the resultant ground motions will have features

compatible with observed trends. The relative entropy is adopted to quantify both

objectives and a computational framework relying on kriging surrogate modeling

is established for an efficient optimisation.

Chapter 6 focuses on the validation of the proposed stochastic ground motion
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model modification by comparison to seismic demand of recorded ground mo-

tions. Suites of hazard-compatible recorded and modified stochastic ground mo-

tions whose spectral acceleration statistics match the mean and variance of target

spectra within a period range of interest, are used as input to perform response-

history analysis of inelastic SDoF case-study systems. EDP distributions are com-

pared to perform the desired validation.

Finally, Chapter 7 presents the main conclusions of this study and recommends

future research directions.

The chapters of this thesis are developed to be largely self-contained because they

are published as individual journal articles. Because of this, there is some repeti-

tion in introductions and background material. In addition, notational conventions

were chosen to be simple and clear for the topic of each chapter rather than for the

thesis as a whole; because of this, the notational conventions may not be strictly

identical for each chapter. Apologies are made for any distraction this causes when

reading the thesis as a continuous document.





Chapter 2

Literature review

2.1 Introduction

This chapter provides a review of the current literature regarding ground motion

simulation methodologies and validation metrics. The chapter is organised as fol-

lows: Section 2.2 presents the most common ground motion simulation methodolo-

gies encountered in the literature along with their strengths and limitations. Sec-

tion 2.3 provides an overview the different approaches and metrics developed over

the years for the validation of ground motion simulations. Section 2.4 discusses an

open-source platform that enables users to generate ground motion simulations.

Finally, Section 2.5 summarises the research gaps that have been identified in the

literature and discusses the framework proposed in the thesis.

2.2 Simulation methods

The existing ground motion simulation methods can be grouped in three main cate-

gories: (1) Physics-based or deterministic methods (2) Stochastic-process-based or

stochastic methods and (3) Hybrid methods. All these methods simulate a ground

13
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motion time-history, whereas parameter prediction methods, the most common

of which are GMPEs, typically use a single IM that represents a ground motion

time-history (e.g., PGA, Sa(T ), etc.). Douglas and Aochi (2008) present a compre-

hensive review of the existing ground motion simulation methodologies including

parameter prediction methods and summarise the history of simulation method

development in Figure 2.1 (adapted from Burks, 2014). It is noted that this study

focuses on simulation of ground motion time-histories as input to response history

dynamic analysis of structures and thus, past studies with this objective will be

reviewed. In this chapter the available simulation methods will be presented in

detail along with the advantages and disadvantages of each method.

Stochastic 

methods

Parametric pre-

diction methods

Physics-based 

methods

Hybrid

methods

Kinematic 

source

Finite-

fault

Dynamic 

source

1940 19601950 1970 1980 1990 2000

Figure 2.1: History of the development of the four main categories of ground
motion simulation methods (after Douglas and Aochi (2008) as adapted from

Burks (2014)).

2.2.1 Physics-based methods

Physics-based or deterministic methods generate ground motion simulations by

using numerical models that explicitly incorporate the physics of the fault rupture

and seismic wave propagation. Physics-based simulations were introduced in the

1970s but have been rapidly developed in the last few years due to advances

in numerical methods and algorithms, and the growth of computing power and

increased availability of parallel computers.

Taborda and Roten (2015) summarise the elements or steps of physics-based sim-

ulation methods as described below:
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• Selection of a simulation domain;

• Selection of a source and material model;

• Definition of a set of model parameters for the targeted results;

• Implementation of solution methods and operation of a simulation engine,

and;

• Execution of simulation

The first three items of the list include the input data for the simulation; that is

the selection of the simulation domain, the source model, the material model and

the simulation parameters. The source model describes the characteristics of the

fault rupture in terms of location, orientation and slip history. The material model

describes the properties of the material in the simulation domain. The last input

required for simulation are the model parameters which most typically include the

maximum targeted frequency in the simulation (fmax) and the minimum shear

wave velocity (Vs,min), as well as the number of points per wavelength.

The last two items on the list refer to the solution method and its implementation

in a computer code application. The most common numerical methods to estimate

the solution to the wave propagation equation are the finite difference method

(e.g., Alterman and Karal, 1968; Graves, 1996; Day and Bradley, 2001) and finite

element method (e.g., Lysmer and Drake, 1972; Bao et al., 1998). Other numerical

methods encountered in the literature include the spectral element method (e.g.,

Faccioli et al., 1997; Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999)

and discontinuous Galerkin method (e.g., Dumbser and Käser, 2006).

The physics-based methods can be divided into two main categories: the kinematic

methods (e.g., Irikura, 1983; Zeng et al., 1994; Hartzell et al., 1999; Ruiz et al.,

2007) and the fully spontaneous or dynamic methods (e.g., Olsen et al., 1997;

Hartzell et al., 2005; Pulido and Dalguer, 2009).
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The kinematic methods solve the fault rupture and the seismic wave propagation

problems separately due to the complexity of the full phenomenon, so that the

simulation consists of two steps: (1) simulation of the slip distribution on the fault,

and (2) simulation of the resulting wave propagation from the fault to the site of

interest. Dynamic rupture simulations, on the other hand, solve the fault rupture

evolution combined with the triggered wave propagation problem by prescribing

the fault pre-stress, fracture energy and stress drop. Due to their complexity and

lack of constraints in the current level of knowledge regarding earthquake rupture

dynamics, the dynamic methods are not yet developed to the point that they can

be used in engineering applications. Most physics-based simulations use kinematic

models to generate simulations and thus, this study will only refer to these models.

As explained above, the input of the physics-based simulations consists of two

models used to represent the earthquake source and the propagation media and,

that is the source model and the material model, respectively. In the kinematic

methods, source models are resolved in the first stage and are then used as basic

input in the second stage, which is the ground motion simulation. The source

model is most commonly represented by a set of self-balanced forces that are

applied to the second stage to trigger the wave propagation.

Taborda and Roten (2015) discusses the two types of source models used by re-

searchers, the point-source and finite-source models. In the case of small magni-

tude earthquakes (M < 5) or sources small enough compared to the wavelength

of the radiated energy, the effect of the earthquake rupture and the discontinuity

of displacements on the fault can be modelled using a point-source model, that is

a single set of equivalent forces acting on a point. In the case of larger magnitude

events, the earthquake is modelled as a sum of many smaller earthquakes by dis-

cretising the entire rupture area into smaller subfaults, each of which with their

own point-source model. The geometry and point-source model of the subfaults

are such that when added up, they adjust to the geometry and expected energy

release of the entire fault. The simulated ground motions from each subsource are

then summed at the site of interest, with appropriate time lags considering the
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difference from the triggering time of the subsource and the travel time, to produce

the ground motion for the entire fault. These type of source models that consist

of a collection of smaller subfaults are called finite-source models. In both point

and finite-source models, the point-source model is defined by some geometry and

rupture characteristics including the hypocentre location, strike, dip, rake angle,

area, and average shear modulus of the subfault as well as the evolution of the slip

with time.

The material model is the second input required for the simulation and consists of

the material’s density (ρ), the P- and S-wave seismic velocities (Vp and Vs) and the

material’s attenuation properties expressed with the quality factors Qp and Qs.

The quality factors are defined using attenuation relationships that are empirical

functions of Vp and Vs.

The physics-based simulation methods produce realistic synthetic ground motions

at low frequencies (less than 1 Hz), but they are computationally intensive and

require a large number of seismological information about the rupture area (e.g.,

crustal structure, rise time, stress drop, cut-off frequency, material properties,

basin effects etc.) that is not readily available for many regions. However, as

demonstrated by Graves and Aagaard (2011) in the case of a future event, the

input parameters for the simulation can either be reliably estimated (e.g., seismic

moment and fault dimensions) or parametrically assessed using multiple realisa-

tions (e.g., hypocenter location and slip distribution). All other source parame-

ters can be determined using the scaling relations described in Graves and Pitarka

(2010).

2.2.2 Stochastic-process-based methods

The stochastic ground motion simulation methods make use of statistical ap-

proaches to integrate the physics and characteristics of the earthquake source,
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path effects, directivity and site effects into simple functional forms. The pa-

rameters of the stochastic ground motion models are represented by probability

distributions. They are valid representation of the physics of earthquakes without

solving the mathematical problem of fault rupture and wave propagation.

Two approaches (Rezaeian and Sun, 2015) used for the NLDA of structures are:

(1) nonlinear response-history dynamic analysis by use of a suite of ground motions

and (2) nonlinear stochastic dynamic (i.e., random vibration) analysis by use of a

stochastic representation of the ground motion. For the former approach, a suite

of recorded or synthetic ground motions or a combination of both can be used

and both deterministic and stochastic simulations can be utilised. The stochastic

dynamic analysis for yielding/nonlinear structures encompass various statistical

linearisation techniques which define, first, an equivalent linear system minimising

the error/difference between its response statistics for a given stochastic excitation

and the response statistics of the nonlinear system. Such approaches by-pass the

need for response-history dynamic analysis as well as selection of recorded ground

motions (e.g., Giaralis and Spanos, 2010; Mitseas et al., 2018).

Synthetic ground motions should properly capture the characteristics of the recorded

ground motions that control the response of the structures, that is the intensity,

duration and frequency content. Many researchers have conducted reviews of

stochastic simulations over the last few decades and one important issue raised in

all of them is that of temporal and spectral nonstationarities (Liu, 1970; Ahmadi,

1979; Shinozuka and Deodatis, 1988; Kozin, 1988; Conte and Peng, 1997; Rezaeian

and Der Kiureghian, 2008). Temporal nonstationarity is the variation of the ampli-

tude of the time-series with time (nonstationarity in time domain), while spectral

nonstationarity is the variation of frequency content with time (nonstationarity

in the frequency domain). In particular, spectral nonstationarity can affect the

nonlinear dynamic structural response (Yeh and Wen, 1990; Conte, 1992a; Wang

et al., 2002), because the structure’s behaviour becomes nonstationary as it gets

in the inelastic response range and is subject to period elongation (Papadimitriou,

1990).
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Another important issue for stochastic simulations is the proper representation

of the natural variability of recorded ground motions. Some simulation methods

underestimate the natural variability of the ground motions because they underes-

timate the variability of their model parameters. On the other hand, if correlations

between the model parameters are not taken into account or if they are under-

estimated, the variability of the simulations will be overestimated compared to

recorded ground motions (Rezaeian and Sun, 2015).

Stochastic models are the oldest ground motion simulation methods. The moti-

vation behind their development was partly the lack of sufficient and dependable

recorded ground motions considering that the first strong motion to be recorded

by a seismograph next to a fault rupture was not until the 1940 El Centro or

Imperial Valley earthquake. Furthermore, stochastic models had the potential to

be used in random vibrations as well as nonlinear stochastic dynamics techniques

which, whilst approximate, offered meaningful results at times where computers

were scarce and nonlinear response-history dynamic analysis was a luxury.

The oldest and most widely used stochastic ground motion model is the Kanai-

Tajimi model (K-T) (Kanai, 1957; Tajimi, 1960) expressed through a stationary

coloured random process that represents the response of a SDoF oscillator model-

ing soil deposits to white-noise excitation. In the early 1960’s, several enveloping

functions in the time-domain have been considered to modulate the K-T yield-

ing uniformly modulated non-stationary stochastic process. In late 1980’s, the

concept of K-T filters with time-varying properties has been proposed to capture

the nonstationary frequency content of recorded accelerograms (Fan and Ahmadi,

1990).

Stochastic ground motion models can be divided in two categories: the source-

based and site-based models. Source-based models describe the fault rupture at

the source and the propagation of the seismic waves at the site of interest explicitly

accounting for the path and site effects, whereas the site-based models describe

the ground motion time-history at a specific site by fitting a stochastic process to
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recorded ground motions with known earthquake and site characteristics (Reza-

eian and Der Kiureghian, 2008). In contrast to source-based models, site-based

models account for the source, path and site effects implicitly through empirical

calibrations.

Stochastic source-based simulations have been developed by a number of researchers

in the past few decades (e.g., Beresnev and Atkinson, 1998; Boore, 2003; Mo-

tazedian and Atkinson, 2005; Boore, 2009) based on the work of McGuire and

Hanks (1980), that uses the Fourier amplitude spectrum of a ground motion and

then combines it with a random phase spectrum, assuming the ground motion to

be a band-limited white Gaussian noise with finite duration. Stochastic source-

based method was first developed to model far-field ground motions where the

earthquake source can be considered as a point (e.g., Boore, 2003), resulting in

point-source stochastic models. For simulation of ground motions closer to the

earthquake source, the method was improved to consider the rupture progress on

a finite fault (Beresnev and Atkinson, 1998), resulting in finite-fault stochastic

models. In finite-fault modeling, the fault is discretised into many subfaults, and

each subfault is treated as a point-source. The ground motion from each subfault

is modeled using the point-source stochastic model with its own amplitude spec-

trum. The total ground motion at a site is the superposition of the contributions

of all subfaults with a proper time lag considering the difference from the trigger-

ing time of the subfault and from the travel time between the subfault to the site

(Rezaeian and Sun, 2015). One of the disadvantages of the point-source stochastic

models is that they don’t include variation of the frequency content with time

and they can underestimate the natural variability of ground motions as they fix

their model parameters. However, the latter can be addressed by assigning prob-

ability distributions to the model parameters to introduce parametric uncertainty

(Vetter and Taflanidis, 2014). In general, stochastic source-based models require

a thorough knowledge of the source, path and site characteristics as well as a good

understanding of their underlying principles which makes them not practical to

be used by practicing engineers.
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Site-based models on the other hand, are easy to compute due to their simple

formulations and can be more practical to use in engineering applications, as their

parameters can be correlated with basic earthquake (e.g., moment magnitude and

rupture distance) and site (e.g., shear wave velocity) characteristics. The assump-

tion behind these models is that the ground motion is a zero-mean Gaussian pro-

cess. Rezaeian and Der Kiureghian (2008) classifies site-based stochastic ground

motion simulations into four categories:

(1) Filtered white-noise processes that are obtained by passing a white-noise signal

through a filter with subsequent modulation in time to achieve temporal nonsta-

tionarity (e.g., Bolotin, 1960; Shinozuka and Sato, 1967; Amin and Ang, 1968;

Iyengar and Iyengar, 1969; Ruiz and Penzien, 1971). A disadvantage of these pro-

cesses is that they have constant frequency content throughout the time-history.

Auto-regressive moving average (ARMA) models (e.g., Jurkevics and Ulrych, 1978;

Hoshiya and Hasgur, 1978; Polhemus and Cakmak, 1981; Chang et al., 1982; Kozin,

1988; Conte et al., 1992b; Mobarakeh et al., 2002; Giaralis and Spanos, 2009) also

fall under the umbrella of methods that filter white-noise. These models can simu-

late ground motions with temporal and spectral nonstationarity using time-varying

model parameters; however, it is difficult to correlate the model parameters with

earthquake and site characteristics and that makes them impractical to use for

engineering applications. Rezaeian and Der Kiureghian (2008) developed a fully

nonstationary stochastic model with separable temporal and spectral nonstation-

arities based on previous work by Yeh and Wen (1990) and Papadimitriou (1990).

Their model uses a filtered white-noise process in the time domain with the filter

having time-varying properties, thus allowing variation of the frequency content

with time. The modulated process with spectral nonstationarity is subsequently

passed through a time modulating filter to generate a fully nonstationary process

as presented in Figure 2.2. The process is finally passed through a high-pass filter

to ensure zero residual velocity and displacement and provide reasonable spectral



Chapter 2 22

response estimates at long periods. The model parameters are related to earth-

quake and site characteristics such as the faulting mechanism, earthquake magni-

tude, source-to-site distance and shear wave velocity through predictive equations

Rezaeian and Der Kiureghian (2010). Vlachos et al. (2016) recently developed a

stochastic ground motion model that uses a bimodal, analytical, fully nonstation-

ary spectral version of the K-T model. The model parameters are established in

the energy domain and are related to earthquake (e.g., moment magnitude and

rupture distance) and site (e.g., shear wave velocity) characteristics to facilitate

simulation of stochastic ground motions for specific earthquake scenarios and sites

of interest (Vlachos et al., 2018).

(2) Filtered Poisson processes obtained by passing a train of Poisson pulses through

a linear filter (e.g., Cornell, 1964; Lin, 1965). These processes can achieve temporal

and spectral nonstationarity through modulation in time (Lin, 1986); however

matching with natural recordings is difficult.

(3) Various forms of spectral representation (e.g., Saragoni and Hart, 2002; Der Ki-

ureghian and Crempien, 1989; Shinozuka and Deodatis, 1991; Conte and Peng,

1997; Pousse et al., 2006; Yamamoto and Baker, 2013). Contrary to the previ-

ous three categories, these models work in the frequency domain and focus on

developing a time-varying spectral representation that matches a recorded ground

motion. They use a short-time Fourier transform or wavelet transform to develop

a time-frequency modulating function.

Emphasis in this study is placed on site-based stochastic ground motion models

that use filtered white-noise processes and more specifically, the class of models

that generate synthetic ground motions for specific earthquake and site character-

istics. The techniques discussed can be extended to any type of stochastic ground

motion model as long as a link between the model parameters and earthquake

and site characteristics through predictive relationships is provided (Atkinson and

Silva, 2000). For illustration of the developed methodologies, the stochastic ground

motion model by Rezaeian and Der Kiureghian (2008) is used later in the thesis.
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Figure 2.2: Development of a fully nonstationary stochastic process according
to Rezaeian and Der Kiureghian (2008).

An important concern related to the use of stochastic ground motion models for

structural engineering applications is the fact that through current approaches in

selecting their predictive relationships, compatibility to the seismic hazard for spe-

cific structures and sites is not necessarily obtained. Rezaeian and Der Kiureghian

(2010) validated their model by comparing model predictions with spectral accel-

eration estimates from GMPEs. The comparison is performed for both the median

and median ± one standard deviation of pseudo-acceleration response spectra as

predicted by four GMPEs. The results show that a good match to the median

and median ± one standard deviation estimates from GMPEs is not obtained for

all considered earthquake scenarios and structural periods. Such a match to some

desired GMPE (or target IMs in general) is, though, important for subsequent use

of the stochastic ground motion models to describe the seismic hazard.
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This observation has motivated researchers to investigate the selection of predic-

tive relationships for stochastic ground motion models so that compatibility with

GMPEs is explicitly established. Scherbaum et al. (2006) introduced an explicit

optimisation for matching the median predictions of the ground motion model to

the spectral acceleration estimates of GMPEs, while maintaining physics-based

principles or the matching to trends from real ground motions as an optimisation

constraint, in an attempt to preserve desired ground motion characteristics. Vetter

et al. (2016) extended the work of Scherbaum et al. (2006) and proposed a versatile

and computationally efficient framework, leveraging surrogate modeling for tuning

stochastic ground motion models to generate GMPE-compatible stochastic ground

motions for a range of seismicity scenarios and structural periods of interest. The

parameters of the stochastic ground motion model are tuned to optimise the match

of the model predictions to the ones from one or more selected GMPEs in terms

of spectral accelerations at different periods (Sa(T )). One of the advantages of

their model is that unlike its predecessors, it can be directly used within a seismic

risk assessment framework on account of its target versatility (the response from

different earthquake scenarios and structural periods can be selected as targets)

and hazard compatibility. One of the main drawbacks of this tuning approach,

though, is that the physical characteristics of the resulting acceleration time-series

are incorporated in the optimisation merely as constraints, something that requires

significant experience in ground motion characterisation for proper definition of the

optimisation problem, and can furthermore lead to synthetic time-histories with

unrealistic properties for some seismicity scenarios. Another shortcoming of all the

aforementioned studies is that they focused on the mean model characteristics and

GMPE estimates. Optimisation utilised only the mean of the predictive relation-

ships of the stochastic ground motion model, whereas, more importantly, match

only to the median spectral accelerations from GMPEs was investigated, ignoring

any variability in their predictions. That is though, an important constraint since

for seismic risk assessment applications hazard compatibility is expressed in terms

of both the mean and dispersion of some target IMs.
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As a summary, stochastic site-based models are fast to compute and very practi-

cal to use for engineering applications when a large number of ground motions is

needed e.g., in PBEE. The essential component for such applications is the pre-

dictive models relating seismicity/site characteristics to ground motion model pa-

rameters. Their parameters are calibrated based on observations from previously

recorded ground motions and this limits their use to areas where ground motion

data is available. However, the recent advances in physics-based ground motion

simulation methodologies can provide valuable data to fill in gaps in recorded

ground motion datasets and extend the use of stochastic-process-based models.

2.2.3 Hybrid methods

Hybrid methods compute the low-frequency and high-frequency components sep-

arately and then combine them to generate a single ground motion time-history.

More specifically, they combine a physics-based simulation method for the low-

frequency range with a stochastic simulation for the high-frequency range. The

use of different simulation approaches at different frequency bands results from

the observation that the effects of fault rupture and wave propagation become

stochastic at frequencies of about 1Hz and higher that mainly reflects the lack of

knowledge about the details of these phenomena at high frequencies (Graves and

Pitarka, 2010). This is also consistent with the observation that physics-based

simulations produce realistic synthetic time-histories at low frequencies (typically

below 1 Hz). Several hybrid models exist in the literature including the work

of Hartzell et al. (1999); Liu et al. (2006); Frankel (2009); Graves and Pitarka

(2010); Mai et al. (2010); Graves and Pitarka (2015). These simulations combine

the advantages of the physics-based and stochastic simulations and thus, the final

ground motion is more realistic across a wider frequency band, which is particu-

larly relevant for tall buildings and multiple degrees of freedom (MDoF) systems

with higher frequency modes. This type of simulations requires the same detailed

seismological information to describe the source mechanism, wave travel path and
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local site effects as physics-based simulations and therefore, they can only be used

in regions where seismological data is available.

2.3 Validation of simulated ground motions

Ground motions simulations are an attractive option that can supplement or sub-

stitute recorded motions in many engineering applications. In particular, physics-

based and hybrid simulations can give insight in cases that scarcity or absence of

recorded motions is a problem. Stochastic-based simulations on the other hand,

being simpler and faster to compute, may be more practical in PBEE, where a

large number of input ground motions is required to assess different damage levels

of structures. Before these simulations can be used in engineering applications, it

is important to show that they produce ground motions that are equivalent with

the real records in estimating seismic demand and induced damage on structures.

Several approaches and metrics to validate ground motions exist in the literature.

2.3.1 Validation approaches

Burks (2014) places the existing validation approaches in three categories: (1) the

historical approach which compares simulations with past recordings of histori-

cal events, (2) the empirical model approach, which compares simulations with

predictions from empirical parameter models (e.g., GMPEs), and (3) the similar

spectra approach, which compares groups of simulations and recordings with sim-

ilar elastic response spectra. These approaches can be used to validate simple IMs

as well as structural response for a particular event or a response spectrum.
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2.3.1.1 Historical approach

The historical approach is used to directly compare the simulations of a historical

event with ground motion recordings for the same event and it is the oldest method

found in the literature. During these early studies, the researchers that developed

the simulation method performed a visual inspection of the acceleration, velocity

and displacement waveforms of simulations to test whether they match historical

recordings (e.g., Zeng et al., 1994; Olsen et al., 1997; Pitarka et al., 1998; Wang,

1999; Olsen et al., 2003). As the engineering interest in simulations has grown,

researchers started using simple validation metrics such as PGA and Modified

Mercalli Intensity (MMI) for large sets of simulations and past records, (e.g.,

Hartzell et al., 1999, 2005; Aagaard et al., 2008).

Eventually, as the understanding of the ground motion properties that are impor-

tant for the seismic structural performance grew, the simple validation metrics used

in the early studies evolved into goodness-of-fit parameters, which can quantify the

misfit between simulations and recordings in terms of peak ground values (PGA,

peak ground velocity (PGV) and peak ground displacement (PGD)), spectral ac-

celerations at different periods (Sa(T )), shaking duration and other engineering-

specific metrics, such the ratio of inelastic to elastic displacement (e.g., Anderson,

2004; Kristekova et al., 2006; Olsen and Mayhew, 2010; Dreger et al., 2015). In

particular, Olsen and Mayhew (2010) proposed a goodness-of-fit criterion using

several IMs and the ratio between inelastic and elastic response spectra. They ap-

ply the proposed criterion to the 2008 M 5.4 Chino Hills, California earthquake,

concluding that the simulated ground motions yield realistic results for moderate

and long structural periods.

Recent studies have moved a step further to perform engineering validation of

simulated ground motions for historical events in terms of linear and nonlinear

response of SDoF (Bazzurro et al., 2004; Galasso et al., 2012) and MDoF systems

(Galasso et al., 2013). More specifically, Bazzurro et al. (2004) using suites of

simulated and real records from the 1994 M 6.7 Northridge earthquake conclude
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that six out of seven simulation methods considered in their study appear to be

biased both in the elastic and post-elastic cases. Similarly, Galasso et al. (2012,

2013) examine engineering validation in terms of elastic and inelastic response of

structural systems for four historical earthquakes modeled using the hybrid broad-

band ground motion simulation methodology by Graves and Pitarka (2010). The

validation metrics used include various EDPs, such as the inelastic displacement

(∆in), and equivalent number of cycles (Ne) for SDoF systems and maximum in-

terstory drift ratio (MIDR) and peak floor acceleration (PFA) for MDoF systems.

They also compare the intra-event variability of the simulations at different sta-

tions with the natural variability observed from the recordings. The statistical

significance of the differences observed in the structural response and dispersion

from simulations and records was tested using hypothesis testing. The results

indicate that there are small differences between median estimates of seismic de-

mand obtained by using real records and simulations especially in the transition

area between semistochastic and deterministic simulations (around 1 s). The ob-

served differences can be attributed to the systematic differences in the shape of

the elastic and inelastic response spectra. For all the events considered in their

study, the intra-event dispersion in the structural response due to simulations is

generally lower than that for recordings at short periods. At longer periods, the

simulations can contain strong velocity pulses that cause them to overestimate the

intra-event dispersion (Galasso et al., 2012).

Rezaeian et al. (2015) propose an engineering validation of ground motion simula-

tions based on their waveform characteristics using three time-dependent valida-

tion metrics that capture the nonstationary intensity and frequency features of the

ground motions. The proposed metrics are the mean-square intensity of the accel-

eration time-series which quantifies the evolving intensity of the ground motion,

the cumulative number of zero-level up-crossings, which quantifies the evolution

of the predominant frequency of the ground motion, and the cumulative number

of negative maxima and positive minima, which relates to the evolution of the

bandwidth of the ground motion. The proposed validation approach is applied
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to recorded and simulated ground motions from the 1994 M 6.7 Northridge event

generated by using the simulation method by Graves and Pitarka (2010).

A general concern regarding the historical validation approach is that ground

motion simulation developers tend to tune their model parameters to provide the

best fit with past records, thus model developers should be cautious in order to

avoid the over-fitting of model parameters (Stewart et al., 2001). The historical

validation approach cannot be used for future earthquake scenarios where no past

recordings are available, so a different validation approach may be applied in

this case. Nevertheless, engineering validation of historical events is necessary

in order to provide feedback to ground motion developers and help them improve

the predictive capabilities of their models.

2.3.1.2 Empirical model approach

The empirical model approach compares simple IMs of simulated ground motions

(e.g., PGA, Sa(T )) with the output from empirical relations (e.g., GMPEs). There

are several GMPEs available in the literature that are used to estimate ground

motion IMs for future events, thus they can be used to compare with simulations

when past records are not available. There are some examples of simulation vali-

dation studies that use predictions from GMPEs as a baseline (Frankel, 2009; Star

et al., 2011; Dreger et al., 2013, 2015) and in general show good fit of the IMs used

as validation proxies.

In particular, Star et al. (2011) compare simulations of an M 7.8 rupture scenario

on San Andreas fault and an M 7.15 Puente Hills blind thrust scenario to median

and dispersion predictions from Next Generation Attenuation (NGA) GMPEs in

terms of elastic spectral accelerations at different periods. The observed differences

can be due to problems with the simulations, GMPEs, or even both. Moving a

step further, De Luca et al. (2014) present prediction equations for peak and

cyclic inelastic SDoF systems’ response, developed based on Italian accelerometric

data, and use them as a baseline for the engineering validation of broadband
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hybrid ground motion simulations of the 1980 M 6.9 Irpinia earthquake in Italy.

Results show that the simulation method may lead to generally acceptable results,

although the authors consider this study to be preliminary due to the limited

number of simulated records used.

One limitation for the use of the empirical model approach is the fact that the

empirical models used are calibrated using observations from past earthquakes and

thus, give reliable results for the magnitude and distance range of the underlying

data. Since in most of the cases ground motion simulations are generated for rare

events for which recordings are scarce or not available, it is difficult to rely on

these models for comparison.

2.3.1.3 Similar spectra approach

The third approach used in ground motion simulation validation compares sets

of simulations and recordings that have similar elastic response spectra. This

approach is important for both performance-based design and code-based appli-

cations that require a suite of acceleration time-histories that match a hazard

compatible response spectrum as input to nonlinear response-history analysis, and

for probabilistic seismic demand analysis that assesses structural response at dif-

ferent intensity levels. Validation studies (e.g., Iervolino, De Luca and Cosenza,

2010; Atkinson and Goda, 2010; Jayaram and Shome, 2012; Burks et al., 2015)

show that, in general, the differences in structural performance to synthetics and

recordings with similar elastic response spectra are not statistically significant. In

particular, Burks et al. (2015) focus on the validation of hybrid broadband ground

motion simulations that match the ASCE 7 (ASCE, 2010) building code specified

spectrum, for use by structural engineers as input to nonlinear response-history

analysis. They conclude that the structural response to simulations and record-

ings is similar with most of the discrepancies explained by differences in directional

characteristics (i.e., orientation of the maximum spectral response).
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Burks and Baker (2014) present a simulation validation framework based on the

empirical model and similar spectra validation approaches and propose a list of pa-

rameters for the response of complex structural systems that can be used as proxies

for the validation of ground motion simulations for engineering applications. These

proxies include (1) the correlation of spectral acceleration across periods, which

is a proxy for the spectral-shape and relevant to the response of structures dom-

inated by higher-mode periods and expected to suffer period elongation, such as

tall buildings, (2) the ratio of maximum to median spectral acceleration across all

horizontal orientations, which is indicative of the directionality of the ground mo-

tion and important for 3-D structures that respond in all orientations, and (3) the

ratio of inelastic to elastic displacement that is indicative of nonlinear behaviour

and important for structures expected to perform nonlinearly during large earth-

quake events. All these proxies have reliable empirical models that can be used as

baseline for validation of the simulations.

2.3.2 Validation metrics

The credibility of simulated ground motions is assessed based on criteria that are

used to quantitatively evaluate the similarity of simulated and recorded accelera-

tion time-histories. One common approach adopted by researches involves the use

of goodness-of-fit criteria to compare how well the simulations match the ground

motion records. Hypothesis testing has also been employed in recent studies in

the literature. The following sections provide an overview of the aforementioned

validation approaches.

2.3.2.1 Goodness-of-fit measures

Recognising that an earthquake ground motion is a very complex time series that

is very difficult to characterise by means of a single parameter, Anderson (2004)

proposed a suite of ten metrics that can be used for validation. The proposed
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method first filters the acceleration time-histories in up to ten narrow pass-bands

and gives a score to each different metric in the frequency band. The suite of

metrics comprise the PGA, PGV, PGD, Arias intensity, the integral of velocity

squared, Fourier spectrum and acceleration response spectrum on a frequency-by-

frequency basis, the shape of the normalised integrals of acceleration and velocity

squared, and the cross correlation. The goodness-of-fit for each metric in the

frequency band is expressed by a score between 0 and 10, with 10 indicating

perfect match, and is estimated using equation 2.1:

S(p1, p2) = 10exp

{
−
[

(p1 − p2)
min(p1, p2)

]2}
(2.1)

Where p1, p2 are the metrics used for comparison (e.g. PGA).

The scores for all the metrics are averaged over the frequency bands to provide

an overall goodness-of-fit measure. In order to examine what the different scores

mean in terms of quality of fit, the author performed calibration using two different

approaches: (1) by comparison of 1000 pairs of synthetic acceleration time-histories

generated by the same simulation method for the same earthquake scenario, and

(2) the comparison of two horizontal components of recorded ground motions.

Based on the calibration results, the author suggests the following goodness-of-fit

classification: A score below 4 is a poor fit, a score of 4 to 6 is a fair fit, a score of

6 to 8 is a good fit, and a score over 8 is an excellent fit.

Olsen and Mayhew (2010) proposed a goodness-of-fit measure that uses similar

validation metrics to those considered in Anderson (2004), but they also included

structural engineering-specific metrics to account for the nonlinear structural re-

sponse such as the ratio between the maximum inelastic and elastic displacements.

The goodness-of-fit measure is calculated using equation 2.2:

GOF = 100 ∗ erfc

[
2|x− y|
x+ y

]
(2.2)
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Where erfc is the complementary error function of a normalised residual and x

and y are two sets of positive scalar metrics yielding a goodness-of-fit value be-

tween 0 and 100, with 100 indicating a perfect match. The overall goodness-of-fit

value is estimated as the weighted average of the different metrics considered for

validation. The authors proposed the following classification of the goodness-of-fit

values based on the validation they performed for the 2008 M 5.4 Chino Hills,

California earthquake: 80 to 100 is an excellent fit, 65 to 80 is a very good fit, 45

to 65 is a fair fit and 35 to 45 is a poor fit.

Recently, Dreger et al. (2015) suggested an alternative goodness-of-fit metric for

validation and implemented it in a large-scale ground motion simulation validation

exercise. Details of this metric are discussed in Section 2.4.1 below.

2.4 SCEC Broadband Platform

The Southern California Earthquake Centre (SCEC) released the Broadband Plat-

form (BBP), an open-source software distribution that enables third-party users to

compute broadband synthetic ground motions for engineering applications. The

BBP contains several physics-based ground motion simulation models, developed

by researchers, that consist of computer code incorporated in the platform by

the SCEC software development group. The output of the BBP ground motion

models provided to the user are acceleration or velocity time series. Time series

post-processing is performed within the BBP using common software tools. The

BBP also contains software utilities for evaluation and comparison of ground mo-

tion simulation results with recordings from past events and GMPEs (Baker et al.,

2014). The distribution of the BBP as open-source software provides transparency

to the scientific models and computer codes implemented within the platform and

consists a reproducible way to simulate ground motion time-series for engineering

applications.
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2.4.1 SCEC ground motion simulation validation technical

activity group

The SCEC BBP can produce large number of simulations for historical and future

events and thus, has great potential for validation studies for engineering appli-

cations. The SCEC technical activity group (TAG) on ground motion simulation

validation (GMSV) was established in 2010, with the objective to develop and im-

plement testing/rating methodologies for simulated ground motions to be used in

engineering applications and provide feedback to model developers. So far, a num-

ber of validation studies have been funded by the SCEC Software Environment

for Integrated Seismic Modeling (SEISM) project and other projects have been

funded through the annual SCEC request for proposals. Luco et al. (2013) sum-

marises the group’s progress including studies on GMSV for engineering analysis

using simple and robust proxies (Rezaeian et al., 2015; Burks and Baker, 2014),

GMSV for elastic and inelastic response of SDoF systems (Galasso et al., 2012),

GMSV for building code nonlinear response-history analysis (Burks et al., 2015),

GMSV for nonlinear response of MDoF structural systems (Galasso et al., 2013;

Bijelić et al., 2014), and application of simulated ground motions to duration-

sensitive geotechnical systems (Afshari and Stewart, 2013; Rathje and Peterman,

2013; Afshari and Stewart, 2016).

Besides these studies, the SCEC BBP has been recently used in a large-scale

GMSV exercise performed by the GMSV TAG of SCEC (Dreger et al., 2015;

Maechling et al., 2015). The ground motion simulations are generated using five

different broadband finite-source simulation methods implemented in BBP version

14.3 (as of March 2014): a stochastic source-based white-noise method (EXSIM)

(Atkinson and Assatourians, 2015), two deterministic approaches including the

composite source model (CSM) (Anderson, 2015), and the UCSB method (Crem-

pien and Archuleta, 2015), and two hybrid approaches referred to as Graves and

Pitarka (GP) (Graves and Pitarka, 2015), and SDSU (Olsen and Takedatsu, 2015).

The ground motion simulations were generated using the BBP version 14.3 for
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twelve historical earthquake events (western, central and eastern Unites States

and Japan), and four generic strike-slip and reverse scenarios for which GMPEs

are considered to be well constrained by data.

According to Goulet et al. (2015), the purpose of this validation exercise is mainly

to fill the gap in recorded datasets for pseudo-spectal accelerations (PSA) for

two ground motion hazard projects: (1) the southwestern United States utilities

project, and (2) the Pacific Earthquake Engineering Research Centre (PEER)

NGA project for the central and eastern North America region (NGA-East).

Therefore, the ground motion simulation methods are evaluated based on their

performance in matching the PSA of recordings for historical earthquakes or pre-

dictions from GMPEs for future earthquake scenarios. The selected validation

metric is the RotD50 5%-damped PSA, where RotD50 is the median value of the

resultant of two horizontal PSA components of the ground motion as computed

over each degree of rotation from 1◦ to 180◦ (Boore, 2010). The comparison of

simulations and recordings or predictions from empirical relations is done in terms

of PSA using a combined goodness-of-fit parameter, taken as the equally weighted

sum of the absolute value of the mean residuals and the mean of the absolute value

of the residuals (Dreger et al., 2015). The results from this study indicate that the

simulation methods provide reasonable estimates of PSA, however it is suggested

that additional research work is necessary to validate ground motion simulations

for other applications using different proxies and metrics.

2.5 Research gaps and proposed framework

The scope of this study is twofold. The first part of the thesis focuses on the

introduction of information theory and statistics-based metrics for the validation

of ground motion simulations used as input to NLDA to assess the seismic demand

and damage of engineering structures. The approach can be applied to any ground

motion simulation methodology (physics-based, hybrid and stochastic). In the
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second part of the thesis, the emphasis is placed on stochastic ground motion

simulation models and their potential use in PBEE and seismic risk assessment

applications. The literature review results in the identification of several technical

gaps related to the scope of this study that are discussed below.

Regarding the validation of ground motion simulations (first part of the thesis),

typically, in the literature the validation is performed as a paired comparison (i.e.,

at the same recording locations for historical events) between the recorded and

simulated IM or EDP datasets in terms of the first two moments of their empirical

distribution (mean and standard deviation). A validation approach assessing the

overall similarity of the probability distributions of the studied IMs or EDPs for

recorded and simulated ground motions would be useful when validation in terms

of the nonlinear structural demands or expected loss for a portfolio of structures

(or infrastructure) is of interest. Another useful application would be to measure

the similarity of the distributions of seismic response to sets of simulations and

recordings matching a target (elastic) response spectrum mean and variance, as

in the “similar spectra” validation approach.

Most previous studies focus on the validation of ground motion simulations using

metrics such as the peak ground values, spectral acceleration values at different

periods (Sa(Ti)), significant duration of the ground shaking and various EDPs for

SDoF and MDoF elastic and inelastic systems. In the recent years several studies

have shown the influence of the spectral-shape in the response of structures dom-

inated by higher-mode effects and structures that are expected to perform non-

linearly during strong shaking (Giovenale et al., 2004), however, spectral-shape

proxies have not been used in the literature for the validation of ground motion

simulations. Burks and Baker (2014) introduce the correlation of spectral acceler-

ation across periods as a good proxy for the spectral-shape, however this proxy is

highly dependent on GMPE estimates and it can thus, be used only in areas for

which reliable GMPEs are available.

The second part of the thesis investigates the use of stochastic site-based ground
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motion simulations for seismic risk assessment. The parameters of stochastic

ground motion models are related to seismicity and site characteristics through

predictive relationships, something that facilitates a comprehensive description of

the seismic hazard. For such applications, it is important that the output IMs

from the simulated acceleration time-histories are consistent with these prescribed

at the site of interest (e.g., Sa(T ) estimates from GMPEs) for specific structures.

That is though, not necessarily guaranteed through the current approaches in se-

lecting the predictive relationships of the stochastic ground motion model param-

eters. Past studies have investigated the selection of predictive relationships for

stochastic ground motion models so that compatibility with GMPEs is explicitly

established, though a few shortcomings have been identified.

One of the main drawbacks of these past approaches, is that the physical character-

istics of the resulting acceleration time-series are incorporated in the optimisation

merely as constraints, something that requires significant experience in ground

motion characterisation for proper definition of the optimisation problem, and can

furthermore lead to synthetic time-histories with unrealistic properties for some

seismicity scenarios. Another drawback is that past studies have focused only

on the mean model characteristics and GMPE estimates. The approaches in the

literature utilised only the mean of the predictive relationships of the stochastic

ground motion model, whereas, more importantly, match only to the median spec-

tral accelerations from GMPEs was investigated, ignoring any variability in their

predictions. That is though, an important constraint since for seismic risk assess-

ment applications, hazard compatibility is expressed in terms of both the mean

and dispersion of some target IMs. The aim of this study is to address both short-

comings of past studies and propose a methodology to modify stochastic ground

motion models for hazard compatibility, while preserving the main features of the

resultant ground acceleration time-series.

This study aims to address the gaps identified in the GMSV literature described

above through the steps summarised below:
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1. Propose a novel validation approach that is based on statistics and infor-

mation theory concepts to assess the overall similarity of the probability

distributions of the studied IMs or EDPs for recorded and simulated ground

motions.

2. Apply the proposed approach to a GMSV case-study using simple proxies for

the spectral-shape and duration of the ground motions that are indicative of

the peak and cyclic nonlinear structural response, respectively.

As a summary, Figure 2.3 presents the GMSV studies performed so far

(shown in black colour) in addition to the GMSV exercises carried out in

this study (shown in red colour) and potential future studies (shown in green

colour). The GMSV studies are placed on a line based on the level of com-

plexity of the ground motion features or structural systems considered in

the validation. In this context, moving to the right of the graph indicates a

more complex ground motion feature or structural response.

The engineering validation of simulated ground motions using spectral-shape

and duration-related IMs is placed on the axis between validation in terms

of conventional IMs (PGA, PGV, PGD, Sa(T )) and SDoF system’s inelastic

response. These spectral-shape and duration-related IMs are referred to as

advanced IMs on the graph and throughout this study to distinguish from

conventional IMs, as the former contain more information related to the

structural response. Since SDoF and MDoF system’s inelastic peak and

cyclic response is strongly correlated with the shape of the elastic response

spectra and the integral ground motion parameters (ground motion duration)

respectively (Galasso et al., 2012), the advanced IMs are good proxies for

validation of the more complex inelastic SDoF and MDoF system’s response.

The validation can further be performed in risk-based or performance-based

terms, i.e., damage and loss, but this falls outside the scope of this study.

3. Propose a computationally efficient framework to modify stochastic ground

motion models for specific seismicity scenarios with a dual goal of (i) match-

ing a target IM for a specific structure (or range of structures) while (ii)
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preserving desired trends and correlations in the physical characteristics of

the resultant ground acceleration time-series.

4. Extend the proposed modification framework of stochastic ground motion

models to (i) match the prescribed conditional hazard (mean and dispersion

of IMs) for a specific site and structure (or range of structures) while (ii)

preserving desired trends and correlations in the physical characteristics of

the resultant ground acceleration time-series, including consideration of the

variability of these characteristics.

5. Perform a validation of the proposed modification framework of the two pre-

vious steps by comparing the inelastic response of SDoF case-study struc-

tural systems to suites of hazard-compatible stochastic and recorded ground

motions.

Visual 
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Figure 2.3: Summary of validation proxies used in past studies (black colour),
in the current study (red colour) and future studies (green colour). The axis

indicates increasing levels of complexity in the validation.
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Information theory measures for

the engineering validation of

ground motion simulations

Adapted from Tsioulou, A. and Galasso, C. (2018). Information theory measures

for the engineering validation of ground motion simulations, Earthquake Engineer-

ing & Structural Dynamics 47(4): 1095-1104.

3.1 Introduction

Recent advances in high-performance computing and understanding of complex

seismic source features, path effects, and site effects, along with the scarcity or

total absence of suitable recorded ground motion for specific earthquake scenarios

(e.g., large magnitude crustal events recorded at close distance) have led to an in-

creasing interest in ground motion simulation. Simulated ground motions are now

considered a valuable supplement to recorded ground motions, fulfilling a variety

of engineering needs (e.g., Bradley et al., 2017), such as seismic hazard assessment

or assessment of seismic demand on structural and geotechnical systems through

41
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response-history dynamic analysis, within the framework of PBEE. Among engi-

neers, the general concern is that simulated ground motions may not be equivalent

to real records in estimating seismic demand, and hence, in estimating the induced

damage and loss to structures. Moreover, synthetic ground motions are not yet

widely available in the engineering practice, especially in regions where seismo-

genic faults and characteristics and the regional velocity structure are not well

established. On the other hand, in California, the recently released SCEC BBP

(Maechling et al., 2015) provides scientists and engineers with a suite of open-

source tools to compute and validate broadband synthetic ground motions by us-

ing several physics-based ground motion simulation methods. A GMSV TAG has

been established by SCEC to develop and implement testing/rating methodologies

via collaboration between ground motion modelers and engineering users. A sim-

ilar effort is also being made in Italy, through a recently released web-repository

(SYNTHESIS: SYNTHEtic SeISmograms database) containing synthetic wave-

forms for Italian scenario earthquakes coming from different simulation techniques

(D’ Amico et al., 2017).

This chapter proposes the use of information theory concepts and statistical hy-

pothesis testing to quantitatively test a specific simulation method as well as to

rate different simulation methods, consistently with the objectives of the SCEC

GMSV TAG. We focus on the engineering validation of ground motion simulations

in terms of spectral-shape and duration-related IMs. These metrics are common

proxies for assessing the similarity of the expected nonlinear structural response

and damage potential of simulated and recorded ground motions for many actual

structural types. For illustrative purposes, the proposed testing/rating methodol-

ogy is applied to the considered spectral-shape and duration-related IMs, obtained

for different systems (i.e., structural periods) considering three broadband simu-

lation methods: Graves and Pitarka’s hybrid broadband method, the composite

source model (CSM) deterministic method, and the EXSIM stochastic simulation

method. These methods are used to compute simulations for several past Califor-

nian earthquakes. In fact, past events provide an important opportunity to test



Chapter 3 43

the ability to use ground motion simulation methods to generate synthetic ground

motions consistent (i.e., at the same locations) with those observed. Following a

validation exercise, as the one presented in this article, end-users can decide re-

garding which model to use for their forward simulations of earthquake scenarios

for which no observations exist. The confidence in using simulation methods be-

yond the tested limits must also be assessed considering the science behind each

method (Goulet et al., 2015).

The next section briefly reviews some recent approaches and studies aiming at

the engineering validation of ground motion simulation. This is followed by an

introduction to the proposed validation approach. An illustrative implementation

of the proposed approach is then presented and results of the application are finally

discussed.

3.2 Engineering validation of ground motion sim-

ulations

A significant bulk of research has been developed in recent years to validate ground

motion simulation methods for engineering applications, including (1) the compari-

son of simulations and recordings in terms of waveforms (e.g., by visual inspection),

IMs and structural response for historical events; (2) the comparison in terms of

IMs of simulations and predictions from empirical models (e.g., GMPEs), for both

historical events and future scenarios; and (3) the comparison in terms of struc-

tural response of sets of simulations and recordings with similar elastic response

spectra, consistently with guidelines for ground motion selection and scaling for

building code applications. As a recent example of (1), Galasso et al. (2012)

and Galasso et al. (2013) have investigated whether simulated ground motions

are comparable to real records in terms of their nonlinear response in the domain

of SDoF and MDoF linear and nonlinear building systems. The authors consider

four historical earthquakes modeled by using the hybrid broadband ground motion
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simulation method by Graves and Pitarka (2010). The validation exercise using

various EDPs and formal statistical hypothesis testing indicates that, in most

cases, the differences found in seismic demands produced by real and synthetic

records are not significant, increasing the trust in the use of simulated motions for

engineering applications. Rezaeian et al. (2015) propose a validation framework

at the waveform level and considering three time-dependent validation metrics

capturing the nonstationary features of intensity and frequency contents of earth-

quake ground motions. The proposed validation methodology is demonstrated by

using examples of recorded and simulated ground motions from the Northridge

event computed with the method by Graves and Pitarka (2010). As a recent ex-

ample of (2), ground motion simulations computed by five different simulation

methods implemented on the SCEC BBP v14.3 are compared with records from

twelve earthquake events (western, central, and eastern Unites States and Japan),

and published GMPEs in the recent studies by Dreger et al. (2015) and Goulet

et al. (2015). The validation is performed in these studies with a focus on spectral

accelerations. Four generic strike-slip and reverse scenarios for which GMPEs are

considered to be well constrained by data are considered to compare spectral accel-

erations produced by simulation with predictions from the selected GMPEs. The

results from this study indicate that the simulation methods provide reasonable

estimates of spectral acceleration; however, it is suggested that additional research

work is necessary to validate ground motion simulations for other applications by

using different proxies and methods. As a recent example of (3), Burks et al.

(2015) have investigated the validation of hybrid broadband simulations for use

by structural engineers as input to nonlinear response-history analysis following

the ASCE Standard (ASCE, 2010). The authors consider a set of “appropriate”

hybrid broadband simulations (computed by using different simulation methods)

and a comparable set of recordings to analyze a building in Berkeley, CA, and

compare the predicted structural performance using the two sets. Results show

that the structural behaviour resulting from recordings and simulations is simi-

lar, and most discrepancies are explained by differences in directional properties

such as orientation of the maximum spectral response. These results suggest that
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when simulations meet the criteria outlined for recordings in ASCE/SEI 7-10 and

properties such as directionality are realistically represented, simulations provide

useful results for structural analysis and design. Finally, Burks and Baker (2014)

have developed a simulation validation framework combining the empirical mod-

els and similar spectra validation approaches (i.e., 2 and 3), proposing a list of

parameters for the response of complex structural systems that can be used as

proxies for the validation of ground motion simulations for engineering applica-

tions. The primary list of parameters includes correlation of spectral acceleration

across periods, ratio of maximum to median spectral acceleration across all hori-

zontal orientations, and the ratio of inelastic to elastic displacement, all of which

have reliable empirical models against which simulations can be compared. The

authors also describe secondary parameters, such as directivity pulse periods and

structural collapse capacity, that do not have robust empirical models (so, the

historical validation approach needs to be used) but are important for engineering

analysis. The authors demonstrate the application of the proposed framework to

example simulations computed by using a variety of simulation methods. Results

show that each simulation method matches empirical models for some parame-

ters and not others, indicating that all relevant parameters need to be carefully

validated.

3.3 Proposed validation approach

As discussed, the validity of simulated ground motions is typically assessed based

on criteria that are used to quantitatively evaluate the similarity of simulated and

recorded time series in terms of IMs or structural response (i.e., EDPs). One

common approach adopted by researchers involves the use of some goodness-of-fit

criteria to compare how well the simulations match the ground motion records

(e.g., Anderson, 2004; Olsen and Mayhew, 2010; Dreger et al., 2015). We propose

the use of a novel validation approach based on information theory as a possible
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testing/rating methodology for simulated ground motions to be used in engineer-

ing applications. Information theory concepts can be used to test the similarity of

two datasets, which herein refers to the considered IMs (or EDPs) for simulated

and recorded ground motions. Specifically, the relative entropy, also called the

Kullback-Leibler divergence (Kullback, 1959) or cross entropy, is proposed here to

measure the difference between two probability distributions p and q. In our ap-

plications, p(IM) represents the “true” distribution of a given IM (or EDP—IM),

i.e., the empirical distribution of the IM (or EDP—IM) values derived from the

recorded ground motions (for example, for a given past event or for a selected

hazard-compatible ground motion set), while q(IM) represents a model or approx-

imation of p(IM), i.e., the empirical distribution of the IM (or EDP—IM) values

derived from the simulated ground motions (for the given past event or selected

set and by using a given simulation method). The Kullback–Leibler divergence of

q(IM) from p(IM), denoted DKL, is a measure of the amount of information lost

when q(IM) is used to approximate p(IM) and is defined as

DKL =

∫ +∞

−∞
p(IM) log2

(
p(IM)

q(IM)

)
dIM (3.1)

If the logarithm is calculated in base 2, is expressed in terms of bits of information.

DKL has been used in earthquake engineering applications to compare the rela-

tive sufficiency of alternative IMs in predicting structural response (Jalayer et al.,

2012).

In the context of ground motion simulation validation, the empirical distribution of

the observed IMs estimated from the records, p(IM), and the empirical distribution

of the IMs calculated from the simulated ground motions, q(IM), are constructed

by using kernel density estimation (KDE) based on n available IM samples as

p(IM) or q(IM) =
1

n

n∑
i=1

1

h
K

(
IM− IMi

h

)
(3.2)
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where K(.) is the chosen kernel and h is the kernel bandwidth. in this study the

Epanechnikov kernel is employed, which is given by the following expression:

K(t) =


3
4

(1− t2) , if − 1 ≤ t ≤ 1

0, otherwise

(3.3)

with bandwidth h chosen to minimise the asymptotic mean integrated squared

error between the KDE and the target distribution to be approximated (Scott

and Sain, 2005). The entropy in Equation 3.1 can be then approximated by using

the KDE estimates of p(IM) and q(IM) in Equation 3.2, with the 1-D integral

calculated through numerical integration; for example, by using the trapezoidal

rule.

Given that the estimated DKL values are not standardised nor do they have an

upper bound, it may be challenging assessing how extreme the calculated DKL

value is and drawing conclusions regarding the similarity of the two datasets.

To overcome this, a procedure using the bootstrapping technique to construct an

empirical distribution of DKL is proposed and statistical hypothesis testing is used

to assess the similarity of the two datasets from the observed DKL value. This

procedure is summarised below, where samples of IMs estimated from real records

are called X and samples of IMs from simulations are referred to as Y for simplicity.

In the first step of the proposed procedure, we compute the Kullback-Leibler

divergence DKL between X and Y, referred to as DKL,obs. In statistical hypothesis

testing, the p-value for DKL,obs is the probability that when the null hypothesis

is true, DKL would be the same as or more extreme than the actual observed

value. In this case, the null hypothesis is that X and Y have the same probability

distribution. If this is true, then X and Y can be merged into a single sample

and be treated as being one larger draw from the same distribution. This is the

second step of the proposed procedure. The bootstrapping technique is then used

in the third step of the proposed procedure to get the empirical distribution of
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DKL for each considered IM. To achieve this, two new vectors, Xboot and Yboot,

that have the same length as X and Y are drawn, by sampling observations at

random from the combined X and Y data with replacement, so that observations

from the original X sample may end up in the bootstrapped Yboot sample and vice

versa. For each set of new vectors, Xboot and Yboot, the Kullback-Leibler divergence,

DKL,boot, can be calculated. The third step is performed many times, 1000 in this

specific exercise, yielding 1000 samples of DKL,boot. Finally, in the fourth step

of the proposed procedure, the p-value for the observed DKL,obs is computed by

finding the proportion of the 1000 DKL,boot samples that are more extreme (i.e.,

larger) than the DKL,obs value computed by using the original X and Y vectors.

The obtained p-value represents the level of statistical significance in assuming that

X and Y have the same probability distribution. Reasonable pass/fail thresholds

can be applied to the obtained p-value results, for instance 95%, as in traditional

hypothesis testing and in the illustrative application presented below. The 95th

percentile of the empirical distribution corresponds to a 5% statistical significance

level as only DKL,obs values that lie above the 95th percentile are significant. The

hypothesis test is an one-sided test in this case.

The relative entropy can be interpreted as the expected value of the information

gain about a certain IM rendered by a specific probability distribution (specific

simulation methodology) in comparison to the target distribution (from recorded

ground motions). The relative entropy would provide a mutual divergence quan-

tification; and as such, it can be used to compare different models (distributions

from different simulation methodologies) to the same target distribution. In this

case it does not seem necessary to try to bound or to express a specific judgment

on the absolute value of the entropy measured in bits of information. Nevertheless,

the bootstrap analysis can still be used for estimating the empirical distribution

for the expected value of information gain.

The proposed validation approach distinguishes itself from the past studies and

other proposed goodness-of-fit criteria by assessing the overall similarity of the

probability distributions of the studied IMs for recorded and simulated ground
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motions. Thus, it does not just provide a paired comparison (i.e., at the same

recording locations, for historical events) between the recorded and simulated IM

datasets in terms of mean and standard deviation of their distributions. This

represents a useful tool for the engineering validation of simulated ground motions

in terms of the nonlinear structural demands or expected loss for a portfolio of

structures (or infrastructure) where an overall as opposed to a paired comparison of

the records and simulations is of interest, for example for catastrophe risk modeling

purposes (Sørensen and Lang, 2015). The proposed approach can also be used to

measure the similarity of the distributions of seismic response to sets of simulations

and recordings matching a target (elastic) response spectrum mean and variance,

consistently with the current practice in ground motion selection and scaling for

building code applications (Jayaram et al., 2011).

3.4 Illustrative application

The illustrative implementation of the proposed validation approach considers

ground motion simulations generated by the SCEC BBP v13.5 and 13.6 using three

broadband, finite-source simulation methods: the hybrid approach by Graves and

Pitarka (2010), referred to as G&P (2010); the deterministic CSM approach (Zeng

et al., 1994), herein referred to as CSM; and a band-limited stochastic white-

noise method called EXSIM (Motazedian and Atkinson, 2005) based on previous

work by Boore (2009). G&P (2010), widely used in past validation studies, is a

hybrid broadband (0-10 Hz) ground motion simulation method that combines a

physics-based deterministic approach at low frequency (f ≤ 1 Hz) with a semis-

tochastic approach at high frequency (f > 1 Hz). The low- and high-frequency

waveforms are computed separately and then combined to produce a single time-

history through a matching filter. The use of different simulation approaches for

the different frequency bands results from the seismological observation that source

radiation and wave propagation effects tend to become stochastic at frequencies of

about 1 Hz and higher, primarily reflecting the relative lack of knowledge about
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these phenomena’s details at higher frequencies. The CSM method uses a kine-

matic source model for rupture on a finite fault. This source is propagated to

the station by using a flat-layered velocity model, scattering, and attenuation that

can be measured from independent seismological observations. The objective is to

reproduce the wave propagation entirely within the constraints of the measured

velocity and Q structure (Anderson, 2015). As described in Atkinson and Assa-

tourians (2015), EXSIM divides the fault plane in an array of subsources, each

of which is treated as point source. The ground motion from each subsource is

treated as random Gaussian noise of a specified duration. The duration of motion

for each subsource comes from the source duration plus the path duration.

The simulations used here are computed by the G&P (2010) and EXSIM methods

as implemented on SCEC BBP v13.6 and the CSM method implemented on SCEC

BBP v13.5, as the CSM method on BBP v13.6 is only available for validation

against GMPEs and not against recorded events (personal communication with

C.A. Goulet, 2016). The four historical events considered herein are the 1989 M

6.8 Loma Prieta, 1992 M 7.2 Landers, 1986 M 6.1 North Palm Springs, and 1994

M 6.7 Northridge. For each simulation method and each earthquake event, 50

different simulations were obtained based on the same number of realisations of

different kinematic source models (e.g., amount of slip, slip velocity, rise time),

yielding a total of 50 realisations of ground motion simulations per station. The

validation is performed on the average results from those 50 realisations. Moreover,

as explained in Goulet et al. (2015), the simulation methods do not focus much on

near-surface effects coming from nonlinear site response. In fact, a single generic

site profile with a Vs,30 value of 863m/s was used for all the simulations. To make

the simulations comparable to the as-recorded site conditions, empirical site effect

models should be applied increasing the epistemic uncertainty of the problem.

Therefore, to reduce the uncertainties arising from applying site amplification

factors, this study only includes recordings from sites with Vs,30 close enough

to the Vs,30 used for the BBP simulations (863m/s). Stations with Vs,30 values

greater than 700 m/s are identified to be of “similar” Vs,30 to the reference value
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used in the simulations (SCEC GMSV TAG). This leads to datasets of relatively

small size (less than 10 ground motions) for each considered earthquake event.

The estimation of empirical probability distributions from such small datasets

can result in unreliable values of DKL. In this case, due to the purely illustrative

nature of the application presented here, all the events for each simulation method

were combined, focusing on assessing the overall performance of a given simulation

method rather than the specific performance for a given earthquake event.

3.4.1 Considered intensity measures

An IM is a single ground motion parameter (scalar IM) or set of ground motion

parameters (vector IM), which are representative of the earthquake damage po-

tential with respect to a specific class of engineered systems. Typical engineering

applications (e.g., performance-based assessment and design) require the choice of

an IM which is suitable to predict the response of the system with the smallest

scatter (“efficiency”) and providing a significant amount of information, down-

grading the effect of other seismological parameters (“sufficiency”) to predict the

response quantities involved in the performance objectives. In addition, many

researchers have investigated other IM selection criteria, related for example to

“hazard computability”, “proficiency”, and “practicality” (Padgett et al., 2008).

Conventional IMs, including PGA, PGV, PGD, and (pseudo-) spectral accelera-

tion at the initial fundamental period (for a damping ratio of 5%), Sa(T1), are

the most commonly used IMs. In general, PGA and Sa(T1) poorly predict the

structural response of mid-rise to high-rise moment resisting frames, although the

latter IM sufficiently captures the elastic behaviour of first-mode dominated MDoF

systems, especially in the case of low to moderate fundamental periods (Shome

et al., 1998). However, the behaviour of highly nonlinear structures (sensitive

to periods greater than T1 due to period lengthening) or structures dominated

by higher-mode periods (less than T1) are not very well represented by utilising

Sa(T1), due to the lack of information on the spectral-shape provided by this IM.
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Therefore, it has become essential implementing advanced IMs that account for

the elongated periods and/or consider nonlinear demand-dependent structural pa-

rameters. Kazantzi and Vamvatsikos (2015) and Kohrangi et al. (2017) among

several others have investigated the adequacy of numerous advanced scalar IMs

that take into consideration the aforementioned parameters.

For the illustrative application presented here, we then use the advanced scalar IM

proposed by Bojórquez and Iervolino (2011). This IM, denoted as INp , is based

on Sa(T1) and the parameter Np, and is defined as

INp = Sa(T1)N
α
p (3.4)

where the parameter α is taken as α = 0.4 based on the tests conducted by the

authors and Np is defined as

Np =
Sa,avg(T1, ..., TN)

Sa(T1)
=

[
∏N

i Sa(Ti)]
1/N

Sa(T1)
(3.5)

TN corresponds to the maximum period of interest and lies within a range of 2

and 2.5T1, as suggested by the authors. In this study, INp is computed for four

different fundamental periods T1: 0.5, 1, 2, and 4 s. For the Np computation,

3 periods are considered: T1, 1.5T1 and 2T1. Figure 3.1 shows an example of

scatter plot for the structural demand in terms of inelastic displacement versus

INp for an inelastic SDoF with T1 = 1s, a strength reduction factor (Rµ) equal

to 8 (typical of severely inelastic structures), and a non-degrading elastic-plastic

with positive strain-hardening, α = 3%, model (EPH). 121, 2-component, ground

motion records from the Northridge earthquake have been used; see Galasso et al.

(2012) for details. For the considered case, INp outperforms all the conventional

and advanced scalar IMs in terms of all the criteria for optimal IMs.

Integral (i.e., duration-related) IMs, such as the Arias intensity or significant

ground motion duration, are commonly used, but they are considered to be related
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Figure 3.1: Example of scatter plot of the inelastic displacement versus INp
for an inelastic SDoF with T1 = 1s, Rµ = 8, and EPH model with, α = 3%

(Northridge earthquake). See Galasso et al. (2012) for details.

more to the cyclic energy dissipation rather than to the peak structural response.

In fact, some studies (e.g., Iervolino et al., 2006) investigated how ground motion

duration-related parameters affect nonlinear structural response and particularly

structural collapse (e.g., Raghunandan and Liel, 2013; Chandramohan et al., 2016).

It is widely acknowledged that, generally, spectral ordinates are sufficient (i.e., du-

ration does not add much information) if one is interested in the ductility demand,

while duration-related measures do play a role only if the hysteretic structural re-

sponse is to be assessed; i.e., in those cases in which cyclic deterioration and

cumulative damage potential of the earthquake are of concern. Chandramohan

et al. (2016) highlight the need to consider ground motion duration, in addition

to intensity and response spectral-shape, in regions where significant hazard due

to long duration shaking exists, such as locations susceptible to large magnitude,

subduction zone earthquakes. Finally, integral IMs are also important for several

other engineering applications, for example, in geotechnical engineering, such as

landslide and liquefaction risk assessment. Therefore, the engineering validation

of simulated ground motions in terms of duration-related parameters is also of

significant importance.

The term duration is typically used to identify only the portion of a record in

which the ground motion amplitude can potentially cause damage to engineering
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and geotechnical structures. Several definitions are proposed to this aim; the most

commonly used one is the significant duration, introduced by Trifunac and Brady

(1975), defined as the time interval over which the integral of the square of the

ground acceleration (Husid plot, Husid, 1969) is within a given range of its total

value. Usually, this range is between 5% and 95% (as in this study), denoted as

D5−95, or between 5% and 75%.

Finally, Cosenza and Manfredi (1997) introduced the dimensionless ID-factor de-

fined as

ID =

∫ tE
0
a2(t) dt

PGAPGV
(3.6)

which has proven to be a good proxy for cyclic structural response (Manfredi,

2001). Here, a(t) is the acceleration time-history and tE is the complete duration

of the ground motion (length of the record). Figure 3.2 shows an example of scat-

ter plot for the structural demand in terms of equivalent number of cycles (Ne –

i.e., the cumulative hysteretic energy normalised with respect to the largest cycle)

versus ID and D5−95 for an inelastic SDoF with T1 = 1s, a strength reduction factor

(Rµ) equal to 2 (typical of mildly inelastic structures), and a degrading/evolution-

ary model (ESD) comprising a negative strain-hardening (i.e., a softening branch),

−α = 10%, and a residual strength equal to 10% of the maximum strength. The

simple peak-oriented model is considered to account for the cyclic stiffness degra-

dation. Also in this case, 121, 2-component, ground motion records from the

Northridge earthquake have been used; see Galasso et al. (2012) for details. For

the considered case, D5−95 outperforms other integral IMs (including ID) in terms

of all the criteria for optimal IMs. However, the authors found that this result is

dependent on the considered level of nonlinearity, with ID outperforming the other

integral IMs in the case of severely inelastic structures (i.e., Rµ ≥ 4). Therefore,

both metrics are kept in our validation exercise.

It is worth noting that the main objective of the BBP validation exercise presented
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Figure 3.2: Example of scatter plot of the equivalent number of cycles versus
ID (left) and D5−95 (right) for an inelastic SDoF with T1 = 1s, Rµ = 2, and
ESD model with, α = 10% (Northridge earthquake). See Galasso et al. (2012)

for details.

in Dreger et al. (2015) was to validate elastic spectral response by using the BBP

v14.3. The parameters proposed in our study - as well as those introduced in

Burks and Baker (2014)- are intended as a supplement, not a replacement, to that

validation. It is understood that many other metrics would be necessary to fully

assess the simulation methods’ ability to produce reasonable ground motions as

a whole. An important property of the proposed validation parameters is that

they are hazard computable, i.e., empirical models or GMPEs exist (e.g., for ID

and D5−95 see Iervolino, Giorgio, Galasso and Manfredi, 2010) or may be easily

derived (e.g., for INp Bojórquez and Iervolino, 2011) combining existing tools and

can be used as a baseline comparison against simulations for a very broad range

of conditions, including future earthquake scenarios.

3.5 Validation results

All ground motions (recorded and simulated) selected for each simulation method

are used as input to compute the selected IMs described above. Only the horizontal

components of ground motions (i.e., north-south, and east-west) are used, while

the vertical component is neglected, consistently with other studies.
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Table 3.1 summarises the DKL values for all considered IM distributions for each

of the three simulation methods implemented on BBP v13.5 and 13.6, as discussed

above. The mean of the 50 values of IMs obtained from the same number of real-

izations for the two horizontal components at each station is computed and then

combined into an “average” value by using the geometric mean. In this case, as

explained above, the number of data per event is limited, and thus, the DKL values

are estimated for each simulation method by grouping the simulations from all the

earthquake events together and compare them with the records. This allows the

comparison of the performance of the three simulation methods in estimating the

probability distributions of spectral-shape and duration-related IMs. As discussed

above, the estimated DKL value is a measure of the amount of information loss

incurred from using the distribution of simulated IMs to approximate the “true”

distribution of recorded IMs. Thus, when comparing two or more ground motion

simulation methods, the method yielding the smallest DKL value performs best in

matching the distribution of recorded IMs; these cases are shown in bold font in

Table 3.1.

As explained in a previous section, statistical hypothesis testing can be performed

by using the bootstrapping technique to assess how large the observed DKL values

are in each case and draw conclusions regarding the similarity of the two datasets,

recorded and simulated, for a given simulation method. For the hypothesis tests

yielding a p-value less than 0.05 (5%), there is strong evidence to reject the null

hypothesis, and thus, the differences in the IM probability distributions from sim-

ulations and real records can be considered statistically significant. This means

that the observed DKL value lies above the 95th percentile of the empirical cu-

mulative distribution function (CDF) for DKL. These cases are highlighted with

the grey color in Table 3.1. For p-values greater than 0.05 (5%), there is not suf-

ficient evidence to reject the null hypothesis, meaning that the differences in the

IM probability distributions from simulations and real records are not statistically

significant. In this case, the observed DKL values fall below the 95th percentile of

the CDF for DKL.
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Table 3.1: DKL values for spectral-shape and duration-related IMs for each
simulation method

IM Simulation Method
DKL,obs value

T1=0.5 s T1=1 s T1=2 s T1=4 s

INp

CSM 0.33 0.37 0.19 0.27

EXSIM 0.23 0.18 0.17 0.24

G&P (2010) 0.31 0.22 0.06 0.33

ID

CSM 0.56

EXSIM 0.54

G&P (2010) 0.40

D5−95

CSM 1.42

EXSIM 3.42

G&P (2010) 0.14

The results in Table 3.1 reveal that the performance of the simulation methods

in estimating spectral-shape proxies greatly depends on the advanced IM and

period considered. In particular, CSM method performs worse than the other

two methods in estimating INp across all periods. G&P (2010) method performs

best in estimating INp only for 2s period. EXSIM method gives the most accurate

predictions for 0.5, 1 and 4 s periods for INp . Overall, EXSIM method outperforms

the other two, having the highest number of best performances for the spectral-

shape-related IMs considered. On the other hand, there is a single best performing

simulation method for all the duration-related IMs examined. Based on the results

in Table 3.1, the G&P (2010) method results in the most accurate predictions of

the ID and D5−95 distribution.

With respect to the results of the hypothesis testing, all the observed DKL values

are within the non-rejection region established through bootstrapping, except for

the DKL values for D5−95 calculated from CSM and EXSIM methods. To shed

further light on this result, histograms of the D5−95 samples from recorded and

simulated ground motions are plotted in Figure 3.3 for the CSM and EXSIM

methods. The white bars correspond to the simulated IMs, whereas the grey bars
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refer to the IMs from recorded time-histories. A histogram plot of INp samples at

2 s period for G&P (2010) that corresponds to a case of no rejection is presented

in Figure 3.4 for comparison. It is evident that large differences exist between

the resulting histograms (and derived probability density functions from KDE)

for the simulated and recorded D5−95 values for the CSM and EXSIM methods as

shown in Figure 3.3. By contrast, the histograms of the simulated and recorded

INp samples at 2 s period for G&P (2010) are very similar, making it the best

performing method for this specific validation metric, as shown in Figure 3.4.
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Figure 3.3: Histograms of the D5−95 samples from recorded (gray bars) and
simulated (white bars) ground motions for (a) the CSM, and (b) the EXSIM

methods.
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Figure 3.4: Histograms of the INp samples at 2 s period from recorded (gray
bars) and simulated (white bars) ground motions for the G&P (2010) method.

In addition to the visual comparison in Figures 3.3 and 3.4, the proposed validation

approach was compared with the more commonly used hypothesis testing method.

Standard t-tests for the equality of means of the studied IMs were performed (e.g.,

Galasso et al., 2012, 2013) and the results were consistent with the results of the
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proposed approach based on DKL values. However, since the latter approach eval-

uates the match between the full distributions (i.e., probability density functions)

of the two data sets, it is also necessary to perform hypothesis tests on higher

moments of the distribution and not just the mean (first moment) to compare

the results. Hence, F -tests for the equality of variances of the two datasets were

performed in addition to the t-tests. The results showed that there were several

rejections for the F -test that did not seem to be justified by the empirical IM

distributions (histogram plots of the IMs for these rejection cases were created to

visually assess the equality of variances, similar to Figures 3.3 and 3.4). On the

other hand, the method proposed here seems to accurately detect differences in

the full distribution of the IMs as shown in Figures 3.3 and 3.4.

3.6 Conclusions

The design of new structures or the assessment of existing ones may be complicated

by the inherent rareness or total absence of suitable recorded ground motions for

the earthquake scenarios that dominate the seismic hazard at a given site. There-

fore, broadband synthetic records may be an attractive option as input to NLDA,

if an accurate and transparent engineering validation for the considered simula-

tion method is carried out. To this aim, the focus of this chapter was on the

design of such a validation exercise by proposing a novel quantitative approach

for testing/rating ground motion simulation methods, based on information the-

ory measures coupled with statistical hypothesis testing. The proposed approach

assesses the overall similarity of the probability distributions of the recorded and

simulated IMs and uses the relative entropy to quantify their distance. Statistical

hypothesis testing relying on the bootstrapping technique is then used to test the

significance of the estimated distance. Ultimately, the approach can be used to

rank the performance of different ground motion simulation methods and it is part

of a larger, longer-term, and broader ongoing plan for the validation of simulated

ground motions for engineering applications.
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The application of the proposed evaluation criteria was demonstrated by using a

group of ground motion simulations computed by Graves and Pitarka’s (2010),

CSM, and EXSIM simulation methods implemented on v13.5 and 13.6 of the

SCEC BBP for four past earthquakes: 1989 M 6.8 Loma Prieta, 1992 M 7.2

Landers, 1986 M 6.1 North Palm Springs, and 1994 M 6.7 Northridge. The

illustrative application considers three ground motion IMs: one spectral-shape

and two duration-related that have been shown to be optimal proxies for the

(nonlinear) seismic response of actual buildings and geotechnical systems. The

proposed validation metrics are hazard computable and their empirical models

can be used as baseline for comparison for future earthquake scenarios. The list

of IMs considered in this study is not exhaustive and can be used to supplement

other validation metrics encountered in the literature. Finally, for the specific

simulated ground motion data considered in the illustrative example, the EXSIM

and Graves and Pitarka’s (2010) ground motion simulation methodologies perform

best in predicting the probability distributions of the spectral-shape and duration-

related IMs, respectively.

It is worth noting that since broadband simulation methods evolve very fast, the

intent here is not to provide a definite judgment about the specific simulation

methods, but rather to illustrate the proposed validation metrics and approaches

and discuss possible outcomes. Indeed, these types of validation exercises can

highlight the similarities and differences between simulated and recorded ground

motion for a given simulation method. The similarities should provide confidence

in using the simulation method for engineering applications, while the discrepan-

cies should help in improving the generation of synthetic records.

The proposed validation approach (Tsioulou and Galasso, 2018) has been applied

to perform validation of ground motion simulations in terms of seismic response

of skewed bridges by Galasso et al. (2018).
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Chapter 4

Modification of stochastic ground

motion models for matching

target intensity measures

Adapted from Tsioulou, A., Taflanidis, A. A. and Galasso, C. (2018a). Modifica-

tion of stochastic ground motion models for matching target intensity measures,

Earthquake Engineering & Structural Dynamics 47(1): 3-24.

4.1 Introduction

The growing interest in PBEE (Bozorgnia and Bertero, 2004; Goulet et al., 2007)

and in simulation-based, seismic risk assessment approaches (Au and Beck, 2003;

Jensen and Kusanovic, 2014) has increased in the past decades the relevance of

ground motion modeling techniques. These techniques describe the entire time-

series of seismic excitations, providing a characterisation appropriate for dynamic

time-history analysis. Undoubtedly the most popular methodology for perform-

ing this task for seismic risk assessment (or seismic design) applications is the

selection and modification of real (i.e., recorded from past events) ground motions

63
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based on a target IM level (Lin et al., 2013; Katsanos et al., 2010), e.g., an elastic

pseudo-acceleration response spectrum. For seismic risk assessment such mod-

ification is performed for specific seismicity scenarios (typically defined through

moment magnitude and source-to-site distance) contributing to the seismic hazard

for the chosen site, with the target IM commonly (McGuire, 2004) derived through

GMPEs (Stewart et al., 2016; Campbell and Bozorgnia, 2008).

An alternative philosophy for describing seismic excitations is to use simulated

ground motions (Jalayer and Beck, 2008; Galasso et al., 2013). A specific mod-

eling approach for the latter which has been steadily gaining increasing attention

by the structural engineering community (Vetter and Taflanidis, 2014; Broccardo

and Der Kiureghian, 2015) is the use of stochastic ground motion models (Reza-

eian and Der Kiureghian, 2010; Gavin and Dickinson, 2010; Yamamoto and Baker,

2013; Vlachos et al., 2016; Boore, 2003; Atkinson and Silva, 2000). These models

are based on modulation of a stochastic sequence, through functions (filters) that

address spectral and temporal characteristics of the excitation. The parameters

of these filters are related to seismicity (e.g., moment magnitude and rupture dis-

tance) and site characteristics (e.g., shear wave velocity for soil profile) through

predictive relationships (Rezaeian and Der Kiureghian, 2010; Boore, 2003). Sam-

ple ground motions for any desired seismicity scenario can be generated by de-

termining the parameters of the stochastic ground motion model through these

predictive relationships and by using a sample stochastic sequence.

The essential component of stochastic ground motion models is the development

of the associated predictive relationships, and various approaches have been es-

tablished to accomplish this, with main representatives being record-based and

physics-based models. Record-based models (also known as site-based) are devel-

oped by fitting a preselected “waveform” to a suite of recorded regional ground

motions (Rezaeian and Der Kiureghian, 2010; Vlachos et al., 2016; Papadimitriou,

1990). On the other hand, stochastic physics-based models (also known as source-

based) rely on physical modeling of the rupture and wave propagation mechanisms

(Boore, 2003; Atkinson and Silva, 2000). Emphasis in this study will be on the
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former models, though the techniques discussed can be extended to any type of

stochastic ground motion model.

An important concern related to the use of stochastic ground motion models for

structural engineering applications is the fact that through current approaches in

selecting their predictive relationships, compatibility to the seismic hazard for spe-

cific structures and sites is not necessarily obtained (Rezaeian and Der Kiureghian,

2010) (this is also shown in the illustrative example considered later). Although

validation of these models is frequently performed by comparison of their spectral

acceleration outputs to GMPEs (Rezaeian and Der Kiureghian, 2010; Yamamoto

and Baker, 2013), the match to GMPEs is not explicitly incorporated in the pre-

dictive relationships development. Such a match to some desired GMPE (or target

IMs in general) is though important for subsequent use of the stochastic ground

motion models to describe the seismic hazard. Take for example the recent FEMA

P-58 (FEMA, 2012) guidelines for seismic performance assessment of structures;

the scenario-based description of the seismic hazard requires match of the median

response to the one described by a GMPE (for the specific seismicity scenario

examined). Similarly, the intensity- and time-based descriptions in FEMA P-

58 require compatibility with seismic hazard curves which are ultimately defined

through use of GMPEs (Petersen et al., 2008).

This realisation has motivated researchers to investigate the selection of predic-

tive relationships for stochastic ground motion models so that compatibility with

GMPEs is explicitly established (Scherbaum et al., 2006). The formulation intro-

duces an explicit optimisation for matching the median predictions of the ground

motion model to the spectral acceleration estimates of GMPEs, while maintaining

physics-based principles or the matching to trends from real ground motions as

an optimisation constraint, in an attempt to preserve desired ground motion char-

acteristics. Vetter et al. (2016) recently extended the work of Scherbaum et al.

(2006) by providing a versatile and computationally efficient approach, leveraging

surrogate modeling principles, for tuning stochastic ground motion models to es-

tablish compatibility with the median GMPE predictions for a range of structural
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periods and seismicity scenarios of interest. One of the main drawbacks of this

tuning approach, though, is that the physical characteristics of the resulting ac-

celeration time-series are incorporated in the optimisation merely as constraints,

something that requires significant experience in ground motion characterisation

for proper definition of the optimisation problem and can furthermore lead to

synthetic time-histories with unrealistic properties for some seismicity scenarios.

The current study addresses this critical shortcoming and looks at the modification

of stochastic ground motion models for specific seismicity scenarios with a dual

goal of (i) matching a target IM for a specific structure (or range of structures)

while (ii) preserving desired trends and correlations in the physical characteristics

of the resultant ground acceleration time-series. This is ultimately formulated as

a multi-objective optimisation problem. The first objective is to minimise the dis-

crepancy between the median ground motion output and the target IM for a given

seismicity scenario. Any desired IM can be used for this purpose with only require-

ment to have a corresponding seismicity scenario. For instance, if the target IM

is derived through PSHA, a corresponding seismicity scenario (or “design earth-

quake”) can be derived through the disaggregation of seismic hazard (McGuire,

2004) for a given hazard level. The second objective is to establish the smallest

deviation from the model characteristics suggested by existing predictive relation-

ships. This second objective aims at maintaining regional physical characteristics

and parameter correlations with respect to existing predictive relationships. The

approach differs significantly from Vetter et al. (2016); rather than tuning the

ground motion for hazard-compatibility ignoring any existing predictive relation-

ships, goal here is the minimum modification of the existing relationships that will

yield the desired compatibility. This is ultimately posed as a multi-objective prob-

lem, to better investigate the compromise between the two different objectives, and

for efficiently solving it a surrogate modeling approach is adopted, similar to that

of Vetter et al. (2016). A surrogate model (i.e., metamodel) is trained based on

an initial database of ground motion simulations, and ultimately provides a highly

efficient approximation for the spectral acceleration predictions of the stochastic
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ground motion model. The surrogate model is then leveraged to solve the opti-

misation problem. Emphasis is also placed here on the selection of the database

to inform the metamodel development, which constitutes a significant advance-

ment over the approach by Vetter et al. (2016). Blind search and gradient-based

approaches are considered for the multi-objective optimisation and the relative

computational benefits of each are explored.

In the next section, the general problem of developing simulated ground motions

compatible with target IMs is defined and then specific aspects of the framework

are discussed in detail.

4.2 Problem formulation

Consider a stochastic ground motion model that provides acceleration time-histories

α̈(t|θ,w) by modulating a Gaussian white-noise sequence, w, through appropri-

ate time/frequency functions that are parameterised through the nθ-dimensional

model parameter vector θ = [θ1, θ2, . . . , θnθ ] ∈ Rnθ . This vector completely defines

the model and is typically composed of various excitation properties such as Arias

intensity, strong ground motion duration or parameters related to frequency char-

acteristics of the ground motion. A specific example for such a model, the one

used in the illustrative example in Section 4.5, is provided in Appendix A. This

particular record-based model efficiently addressed both temporal and spectral

nonstationarities. The former is established through a time-domain modulating

envelope function, whereas the latter is achieved by filtering a white-noise process

by a filter with characteristics that vary in time.

Synthetic time-histories can be created by relating θ to seismicity and local site

properties through predictive relationships. The vector of these properties, called

seismological parameters, is denoted as z . Common characteristics used for z

(Rezaeian and Der Kiureghian, 2010; Boore, 2003) include the fault type F, the

moment magnitude, M, the rupture distance, R, and the shear wave velocity in
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the upper 30 meters of soil, Vs,30. For record-based models the standard approach

for development of these predictive relationships (Rezaeian and Der Kiureghian,

2010; Medel-Vera and Ji, 2016) relies on first matching the waveform character-

istics to recorded ground motions (i.e., identify first θ for each of the recorded

ground motions in a given database) and then performing a regression to relate θ

to z . This leads ultimately to a probabilistic regression model for θ with mean

predictive relationship µθ(z) that is dependent on z and some associated uncer-

tainty characterization U , identified from the residuals of the regression, that is

independent of z . Typically, this is performed by first transforming the problem

to the standard Gaussian space through a nonlinear mapping for each component

θi. The transformed Gaussian vector is denoted v(θ) herein. Approach ultimately

leads to a Gaussian probability model v ∼ N(µ(z),Σ) with mean µ(z) and co-

variance matrix Σ. In this case, the uncertainty characterization U corresponds

to the covariance matrix Σ and to the fact that probability model for z is identi-

fied as Gaussian. Appendix A includes more details for a specific ground motion

model (Rezaeian and Der Kiureghian, 2010). Note that a similar description can

be established for physics-based models. In this case the predictive relationships

µθ(z) are obtained through rupture and wave propagation principles (Boore, 2003;

Boore and Thompson, 2015), whereas the uncertainty characterization U can be

established by assigning probability models for θ through an epistemic uncertainty

treatment (Vetter and Taflanidis, 2014; Atkinson, 2008).

As discussed in Section 4.1, this formulation for the predictive relationships of

stochastic ground motion models, prioritising a match to regional trends, provides

synthetic ground motions whose output IMs do not necessarily match hazard-

compatible IMs (e.g., as derived from GMPEs). For this purpose, a modification

of the model parameter vector θ is proposed for specific seismicity scenarios defined

by z with objective to (i) match a target IM vector, while (ii) maintaining similar-

ity to the predictive relationships already established for the model. Equivalently,

this can be viewed as identifying the model characteristics θ that are closest to the

established model µθ(z) (considering, when available, any additional information
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provided by U) and also match the intended hazard (described through some IM).

The IM vector may include different response quantities of interest, for example,

(i) direct characteristics of the ground motion, such as PGA, PGV and PGD; (ii)

elastic and inelastic spectral responses for different periods of an SDoF oscillator;

or (iii) more complex spectral or ground motion related quantities proposed by

different researchers (Bojórquez and Iervolino, 2011; Cosenza and Manfredi, 1997;

Cordova et al., 2000). The target for most of these IMs can be described through a

GMPE (e.g., Campbell and Bozorgnia, 2008). However, this is not necessary; any

IM description can be used, with only requirement that a corresponding seismicity

scenario is defined. Note that if match to spectral responses (i.e., a spectral plot)

is of interest, then a range of structural periods for which the match is established

needs to be determined.

To formalise these concepts mathematically, let, Yi(z); i = 1, . . . , ny denote the

target response quantities of interest and Y m
i (θ) the median predictions for the

same quantities provided through the stochastic ground motion model. The me-

dian predictions are obtained through the following process:

Step 1: Generate nw sample acceleration time-histories for different white-noise

sequences α̈k(t|θ,wk); k = 1, . . . , nw.

Step 2: For each sample evaluate the responses of interest. For spectral quantities

this will entail numerical simulation of SDoF responses.

Step 3: Estimate the statistics (median) over the established sample-set.

The modification problem is ultimately formulated as bi-objective optimisation

problem:

θ = arg min {F1(θ|z), F2(θ|z)} (4.1)
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The first objective F1 corresponds to a measure of the discrepancy from the chosen

target. One choice for this measure is the average weighted square error given by

F1 (θ|z) =
1

ny

ny∑
i=1

γ2i (Yi(z)− Y m
i (θ))2 (4.2)

with γi corresponding to the weights prioritising the match to different IM com-

ponents. A typical selection for γi is 1/Yi(z), then the quantity in Equation 4.2

corresponds to the average squared relative error. Alternative formulations for

this first objective, facilitating perhaps a better physical intuition, are the aver-

age absolute error or the maximum absolute error over the different IMs, given,

respectively by,

F1r (θ|z) =
1

ny

ny∑
i=1

γi |Yi(z)− Y m
i (θ)| (4.3)

F1m (θ|z) = max
i=1,...,ny

γi |Yi(z)− Y m
i (θ)| (4.4)

Both these objectives lead, though, to more challenging optimisation problems as

they correspond to nondifferentiable functions. Thus, preference will be here for

the objective given by Equation 4.2. The alternative measures will be used to

evaluate the suitability of different solutions.

The second objective F2 measures the discrepancy of θ from the established pre-

dictive relationships. One choice for F2(θ|z) could be [θ−µθ(z)]T [θ−µθ(z)], i.e.,

the discrepancy from the mean predictive relationships. If there is no available

uncertainty characterization U , then this is the only option that can be made. If

this characterisation is available, as is the case typically with record-based mod-

els (Rezaeian and Der Kiureghian, 2010), correlation and variability information

for the model parameters can be additionally incorporated. This is established

by considering the maximisation of the likelihood of θ based on the probability
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model described through U . For the stochastic ground motion model described in

Appendix A, this corresponds to the maximisation of the probability density for

v(θ), leading to

F2 (θ|z) =
[
v(θ)− µ(z)]TΣ−1[v(θ)− µ(z)

]
(4.5)

The covariance matrix Σ incorporates in the formulation the correlation between

the model characteristics as well as the fact that variability for each of these

characteristics is different.

Objective function F1 enforces the match to the target IMs. Objective F2 guaran-

tees compatibility of the physical characteristics of the resultant ground motions

with the regional trends observed in recorded ground motions. Solution of the

multi-objective optimisation of Equation 4.1 ultimately leads to a Pareto set of

dominant solutions {θp; p = 1, . . . , np} that express a different compromise be-

tween the competing objectives F1 and F2. A solution is characterised as dominant

(and belongs in the Pareto set) if there is no other solution that simultaneously

improves both objectives F1 and F2. The representation of the Pareto set in

the performance objective [F1, F2] space, {[F1(θp|z), F2(θp|z)]; p = 1, . . . , np} is

termed as the Pareto front. Illustrations of such Pareto fronts are included in the

example discussed later. One extreme point of this front will always correspond

to the unmodified model with θ = µθ(z), representing the minimum of objective

F2=0. Unless this point also yields a match to the targeted hazard (i.e., corre-

sponds to F1=0), optimisation of Equation 4.1 will identify points that improve

upon F1(µθ(z)|z) while deviating from the unmodified model (F2 > 0). One

can eventually select a model configuration from the identified Pareto set that

yields the desired IM-compatibility without deviating significantly from regional

ground motion characteristics. This will be further discussed in the illustrative

implementation in Section 4.5.
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Identifying the Pareto set for this problem is challenging because the computa-

tional burden in evaluation of objective F1 is significant, requiring nw · ny time-

history analyses for each objective function estimation. To facilitate an efficient

optimisation that can be repeated for any desired seismicity scenario z, a surrogate

modeling approach is adopted here, similar to the one used by Vetter et al. (2016).

Specifically, kriging is used as metamodel since it has a proven capability to ap-

proximate highly complex functions (Lophaven et al., 2002), while simultaneously

providing gradient information that will be directly exploited in the optimisation

and allowing to explicitly consider the local metamodel approximation error within

the optimisation formulation. These aspects of the optimisation problem will be

discussed in Section 4.4. The details of the kriging metamodel development are

discussed first in the next section.

4.3 Kriging metamodel development

The kriging metamodel is developed to provide an efficient approximation to the

input-output relationship θ−Y m
i (θ) considering every potential response quantity

of interest that can be eventually used for the definition of objective F1. A further

simplification can be established if the relationship between some components of

θ and the response output Y m
i (θ) is explicitly known. This is true for stochastic

ground motion models that include a parameter, denoted θs herein, that directly

controls the amplitude of the excitation. This means that Y m
i (θ) = θs · smi (x)

with x corresponding to the remaining model parameters excluding θs and smi (x)

representing the output Y m
i (θ) for θs = 1. For the model described in Appendix

A, θs =
√
Ia and x = {D5−95, tmid, ωmid, ω

′, ζf}. Without loss of generality, we will

adopt here this assumption, i.e., representation Y m
i (θ) = θs · smi (x). In this case,

the metamodel needs to be established to approximate only relationship x−smi (x).

For developing the metamodel, a database with n observations is initially obtained

that provides information for the x− smi (x) pair. For this purpose n samples for
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{xj; j = 1, . . . , n}, also known as support points or experiments, are obtained

over the domain of interest for x. This domain, denoted X, should encompass

the anticipated range that the metamodel will be implemented in and its de-

termination is discussed later in this section. The median predictions provided

through the ground motion model are then established through the 3-step process

discussed in Section 4.2 considering nw white-noise samples. Using the dataset

{xj − smi (xj); j = 1, . . . , n}, the kriging model can be formulated. Details for this

formulation may be found in the studies of Sacks et al. (1989) or Vetter et al.

(2016), with the latter reference focusing on a similar application as the one con-

sidered here, looking at approximating the predictions of stochastic ground motion

models.

This approach ultimately leads to a kriging predictor that has a Gaussian nature

with predictive mean ŝmi (x) and local prediction variance, which is also a function

of x, σ2
i (x) (Sacks et al., 1989). Each response output can be approximated

through this predictor leading to

Y m
i (θ) = θsŝ

m
i (x) + εiθsσi(x) (4.6)

where εi is a standard Gaussian variable. This facilitates a computationally ef-

ficient approximation to Y m
i (θ) for each θ. This efficiency can be improved by

ignoring the metamodel prediction error (i.e., setting εi=0) since calculation of

predictive variance σ2
i (x) entails a significant higher computational cost than es-

timation of predictive mean. The computationally intensive aspect of the entire

formulation is the development of the database {xj− smi (xj); j = 1, . . . , n}, which

requires response-history analysis for a large number of model parameters to pop-

ulate X and a sufficient number of white-noise samples to address the resultant

variability in the response. However, this needs to be performed only once. As

soon as the kriging metamodel is established based on this database, it can be

then used to efficiently predict the responses for any other θ desired. Calculation

of ŝmi (x) and σ2
i (x) can be also vectorised (Jia and Taflanidis, 2013), something
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that will be leveraged in the numerical optimisation discussed in the next section.

The accuracy of this metamodel depends on the number of experiments n used

as well as the exact selection of these experiments. A large value of n can im-

prove accuracy but at the same time can reduce significantly computational ef-

ficiency. Since the latter is important for solving the challenging multi-objective

optimisation problem discussed here, the value of n needs to be kept moderately

low. Therefore, the improvement of metamodel accuracy is primarily sought af-

ter through an adaptive design of experiments (DoE). The adaptive DoE strategy

gradually increases the number of support points, leveraging the metamodel de-

veloped through the existing support points to guide the selection of the new

experiments. This leads to an iterative identification of support points, whereas

the specific strategy adopted here for selecting the support points in each of the

iterations corresponds to a sample-based DoE (Dubourg et al., 2011; Gidaris et al.,

2015). In the first iteration, since no metamodel is yet available, the initial n1 ex-

periments are obtained using Latin hypercube sampling in X, i.e., a space-filling

DoE. Subsequent iterations adopt the adaptive DoE strategy. At the kth itera-

tion, a surrogate model is developed using the available n
(k)
av support points. The

prediction error of this metamodel is then leveraged to identify new experiments

in regions with low metamodel accuracy. This is accomplished through a sample-

based implementation: a large number of candidate experiments is first sampled

within X that are distributed proportional to σ2
i (x) (e.g., through rejection sam-

pling (Robert and Casella, 2004)) and these experiments are then clustered (e.g.,

using k-means clustering (Hartigan and Wong, 1979)) to the desired number na

of additional experiments which are added to the existing experiments for a total

of n
(k+1)
av = n

(k)
av + na support points. The clustering is important for avoiding

close-proximity support points that ultimately provide information over the same

domain in X. A new metamodel is then developed using the n
(k+1)
av experiments,

and its accuracy is assessed, e.g., by calculating error statistics through cross-

validation (Gidaris et al., 2015). If sufficient accuracy is achieved, then adaptive

DoE is terminated and n = n
(k+1)
av , else algorithm proceeds to the k+1st iteration.
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Another important feature of the metamodel development is the definition of do-

main X. This domain needs to (i) cover the entire range of values that the meta-

model will be eventually used for (to avoid extrapolations that unavoidably have

reduced accuracy) while (ii) avoiding unnecessarily broad definitions that lead to

computational effort spent in subdomains within X of no practical interest. Here

the definition of X is established by ignoring subdomains that correspond to high

values for F2(θ|z) for any potential seismicity scenario z, i.e., x values that are

away from the current predictive relationships. Solutions within such subdomains

will not be selected in the multi-objective optimisation because they correspond

to large values for one of the objectives. The X definition is established through

these steps:

Step 1: Create a range of seismicity scenarios {zlc; l = 1, . . . , nc} that are represen-

tative of the scenarios that could be eventually considered in the ground

motion model tuning.

Step 2: Define a box-bounded domain Xd that is expected to be a superset of

X, and create a large number of samples for {xjd; j = 1, . . . , ns} uni-

formly distributed in Xd. Range defined through the scenarios in Step 1,

{µθ(zlc); l = 1, . . . , nc} , can be also used to guide selection of Xd.

Step 3: For each candidate sample xjd calculate value F2(θ
j
d|zlc) for each seismicity

scenario zlc where θjd is the sample corresponding to xjd and the mean value

for θs (for the given zlc). Evaluate

Dj = min
l=1,...,nc

F2

(
θjd|z

l
c

)
(4.7)

which corresponds to the smallest distance for xjd from the current pre-

dictive relationships for any potential seismicity scenario.

Step 4: Set a threshold δd and then classify each sample xjd as belonging in set

X if Dj is smaller than δd (sample is given membership classification 1)

or not otherwise (sample is given membership classification 0). Using this
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classification information, domain X can be characterised through support

vector machine (SVM) (Schölkopf, Smola et al., 2002).
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Figure 4.1: Steps for SVM classification of X: (A) samples µθ(z) for a range

of seismicity scenarios; (B) uniform samples created within Xd; (C) samples as
belonging to X along with developed SVM (curve).

This approach ultimately leads to an SVM characterization of X. Figure 4.1

demonstrates some of the steps of this process. Finally, samples within X, as

needed for the adaptive DoE, can be generated with negligible computational

effort by creating first samples within box-bounded domain Xd and then using

the SVM classifier to maintain only the samples belonging in X.

4.4 Multi-objective optimisation to match tar-

get IMs supported by Kriging metamodeling

The multi-objective optimisation of Equation 4.1 can be efficiently performed by

using the kriging approximation given by Equation 4.6 when evaluating perfor-

mance objective F1. Note that calculating objective F2 is computationally trivial.

Additionally, the approximation error of the metamodel can be incorporated in the

objective function definition, leading to the following modification (Vetter et al.,

2016):
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F1 (θ|z) =
1

ny

ny∑
i=1

γ2i
[
(Yi(z)− θsŝmi (x))2 + θ2sσ

2
i (x)

]
(4.8)

The motivation for incorporating this error is to improve the robustness of the

optimisation and avoid convergence to erroneous solutions due to poor quality of

the metamodel. This feature will be further explored in the illustrative implemen-

tation in Section 4.5.

For solving the multi-objective optimisation a variety of numerical approaches can

be used (Marler and Arora, 2004). Here two are considered, one gradient-free and

one gradient-based, offering different advantages. The first approach adopts an

exhaustive search (Coello et al., 2007). A very large number of nbc samples for

θ are generated that are close to µθ(z), and objective functions F1 and F2 are

calculated. Estimation of objective F1 in this case leverages the computational

efficiency of the metamodel in performing vectorised predictions: the calculations

are simultaneously performed for all nbc samples, or using subsets with a lower

number of samples depending on the available computational resources (memory

can be a problem for vectorising operation). This greatly reduces computational

time for estimating F1. The dominant solutions representing the Pareto front can

be then readily identified by comparing the values for the two objectives. The

challenge in this case is that the value of nbc needs to be large in order to obtain

an adequate representation of the Pareto front. The advantage is that vectorised

calculations can be used for the metamodel predictions. For the stochastic ground

motion model described in Appendix A, the samples for θ can be generated by

obtaining samples for v from Gaussian distribution N(µ(z),Σ) and then trans-

forming these to samples for θ through the inverse of Equation A.6 in Appendix

A. This guarantees that samples will correspond to lower values for F2 (i.e., are

close to µθ(z)) and can therefore emerge as dominant solutions. Note that since

this approach does not use gradients, it can seamlessly accommodate the alterna-

tive objective functions for F1 given by Equations 4.3 and 4.4. The gradient-free

optimisation was implemented in MATLAB without any toolboxes used.
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The second optimisation approach is a gradient-based one. The epsilon constraint

approach (Mavrotas, 2009) is specifically adopted due to its ability to explicitly

define the value for one of the objectives. This method converts the multi-objective

optimisation problem to a set of single-objective constraint optimisation problems

with different constraint bounds εr. Through systematic variations of this con-

straint, different Pareto optimums can be obtained. Here objective function F2

is adopted as objective and F1 as constraint. This allows identification of the

stochastic ground motion model that provides a specific compatibility with the

target hazard (the prescribed constraint). The range of values εr of interest is

determined by identifying first the anchor points of the Pareto front, correspond-

ing to the minimum of objective functions F1(θ|z) and F2(θ|z) (unconstrained

single-objective optimisations). Evidently optimisation for F2(θ|z) yields solution

µθ(z). The range for εr corresponds then to [minF1 F1(µθ(z))] and a number of

different constraint values can be considered, with the exact number depending

on the desired resolution of the front. For each such value the single-objective,

constrained optimisation is solved

θ = arg minF2(θ|z)

subject to F1(θ|z) ≤ εr
(4.9)

This optimisation problem is not convex, and a gradient-based approach appro-

priate for constrained global optimisation problems needs to be adopted. This is

accomplished through an approximate multistart approach that addressed both

the potential existence of multiple local minima as well as challenges associated

with identifying feasible starting points for the gradient-based approach. Initially,

a large value ninit of trial solutions for θ is examined, then the solutions corre-

sponding to lower values of F2(θ|z) while satisfying constraint εr for F1(θ|z) are

taken as initial points for a gradient-based optimisation. The latter is achieved

through a SOL solver implemented through the TOMLAB optimisation environ-

ment (Holmstrom et al., 2009). The same candidate solutions are used for all
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values of εr (no need to repeat this step). Evaluation of F1(θ|z) over the ninit can-

didate solutions is vectorised, so has small burden, whereas the efficiency of the

gradient-based optimisation is improved by obtaining analytically the gradients

for both objectives. For objective F1, the components of the gradient vector are

∂F1

∂θi
=

1

ny

ny∑
i=1

γ2i

[
2 (Yi(z)− θsŝmi (x))

∂θsŝ
m
i (x)

∂θi
+
∂θ2sσ

2
i (x)

∂θi

]
(4.10)

where the partial derivatives inside the brackets can be readily obtained through

the metamodel (Vetter et al., 2016). For the specific objective function F2 that will

be used in the illustrative example later, given by Equation 4.5, the components

of the gradient vector are calculated by the chain rule as

∂F2

∂θi
=
∂F2

∂vi

∂vi
∂θi

=
∂F2

∂vi

F ′θi(θi)

φ(Φ−1(Fθi(θi)))
(4.11)

where φ(.) stands for the standard Gaussian probability density function (PDF),

the partial derivative ∂vi/∂θi was calculated by differentiating Equation A.6 in

Appendix A, and the partial derivatives ∂F2/∂vi correspond to the components of

the gradient row vector

∇vF2 = 2 [v(θ)− µ(z)]T Σ−1 (4.12)

The challenge for this optimisation approach is that a gradient-based step needs to

be repeated multiple times (for each different value of εr) and cannot leverage vec-

torised calculations for the metamodel because the metamodel is separately used

for each sequential objective function evaluation. The advantage is that gradient

information can improve computational efficiency and that the optimisation can

be performed for specific values of εr. This allows the identification of a specific

part for the Pareto-front if desired, e.g., the front that corresponds to specific

levels of compatibility to the chosen IMs.
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Once the Pareto front has been identified, a dominant solution can be adopted

using any desired criterion, e.g., the solution that provides a specific compromise

between the two objective functions. This will be further discussed in the illustra-

tive implementation of the next section.

4.5 Illustrative implementation

The illustrative implementation considers the stochastic ground motion model de-

veloped by Rezaeian and Der Kiureghian (2010) and reviewed in Appendix A. For

the target IMs, GMPEs used in the Western US are considered here (Abraham-

son and Silva, 2008; Boore and Atkinson, 2008; Campbell and Bozorgnia, 2008;

Chiou and Youngs, 2008), where the suggestions by Kaklamanos et al. (2011) were

adopted to estimate unknown inputs for some of the GMPEs. As target, IM pre-

dictions from individual GMPEs as well as the average of their predictions will

be adopted later. Note that the latter still provides a single target IM for each

structural period examined. All computations are performed in a quad-core 3.0

GHz Xeon processor with 16 Gb of RAM and all computational times reported

herein are for this processor.

4.5.1 Details for metamodel development

The box-bounded domain Xd was determined based on the ranges reported by

Rezaeian and Der Kiureghian (2010) as [5 45] s for D5−95, [0.5 40]s for tmid, [0.1

30] Hz for ωmid/2π, [-2, 0.5] Hz/s for ω′/2π, and [0.02 0.99] for ζf . For the re-

sponse output, the peak pseudo-acceleration (Y=PSA) for an SDoF system with

5% damping ratio and for 22 different periods, the ones used by the aforementioned

GMPEs, is adopted. The white-noise samples are chosen as nw=200. For the do-

main X characterisation nc=1000 seismicity scenarios are considered in range [6

8] for M , [10 100] km for R, [300 1600] m/s for Vs,30 and discrete 0,1 for F . These
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ranges correspond to the ones for which the initial predictive relationships (Reza-

eian and Der Kiureghian, 2010) were developed. The samples for the SVM-based

characterisation of X are chosen as ns=10000 with δd=9 (latter corresponding to

radius of 3 standard deviations away from mean). The adaptive DoE discussed

in Section 4.3 is implemented with n1=600 and na=300. Three different accuracy

criteria are selected, with associated coefficient of determination (averaged over

all outputs) 0.95, 0.97, and 0.985. This leads to number of support points 1500,

3000, and 4500, respectively. The SVM-characterisation and adaptive DoE was

implemented in MATLAB, whereas for the tuning of the metamodel parameters

the MATLAB toolbox DACE (Lophaven et al., 2002) was utilised.

For generating a total of 900,000 time-histories and performing the required 19,800,000

simulations to develop the database for the metamodel for the elastic responses,

close to 600 CPU hours were required. For these computations, a high performance

cluster (Persephone) was used. Although this computational burden is significant,

it should be stressed that it corresponds to an initial only overhead of the ap-

proach. Once the metamodel is developed, it can be then used for any required

predictions because the established accuracy is high. This large burden should be

also attributed to the large number of white-noise sequences (200), periods (22),

and the wide seismicity range examined. The former provides high accuracy for the

calculation of the relevant statistics, whereas the latter two support a wide appli-

cability of the developed metamodel, as it can provide accurate predictions for all

the responses of interest for the considered stochastic ground motion model (cov-

ers its range of applicability) and GMPEs (covers all the periods addressed). The

burden for a metamodel that considered smaller number of stochastic sequences

or constrained seismicity or period ranges would be drastically decreased.

Estimation of metamodel response for 10000 samples requires 4.9s, 8.8s, and 14.05s

for the metamodels with 1500, 3000, and 4500 support points, respectively. When

the metamodel prediction error variance is not computed, the corresponding times

are 3.6s, 7.5s, and 10.7s, respectively. Note that adoption of larger value of sam-

ples prohibits efficient vectorisation of operations for the n=4500 points due to
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memory restrictions. The calculation of objective function F1 along with its gra-

dient requires 0.031s, 0.052s, and 0.091s for the metamodels with 1500, 3000, and

4500 support points, respectively. When the metamodel prediction error variance

is not included in the calculation, the corresponding times are 0.008s, 0.0107s, and

0.015s, respectively. Comparison of these computational times shows that: (i) in-

crease of the support points has a considerable effect on computational efficiency,

(ii) vectorisation of calculations provides significant benefits, and (iii) inclusion

of the prediction error variance in the calculations increases the computational

burden, especially when gradient information needs to be obtained. All these as-

pects should be taken into account when choosing computational details for the

optimisation problem.

4.5.2 Comparison of optimisation approaches

The focus is first placed on the numerical solution of the optimisation problem.

The target used in this subsection, and also in the next one 4.5.3, corresponds to

structural periods Ts=[0.4 0.5 0.75 1.0 1.5 2.0] s and IM described by the average of

the considered GMPEs (Abrahamson and Silva, 2008; Boore and Atkinson, 2008;

Campbell and Bozorgnia, 2008; Chiou and Youngs, 2008). Weights are chosen

as γi=1/Yi(z), so that objective function is expressed in terms of the relative

error. In other words, no specific structural period is prioritized in evaluating

the match to the target IMs. Three reference seismicity scenarios are examined

in this section, corresponding to M=6-R=20km, M=7.8-R=30km, and M=7-

R=40km, for a strike-slip fault (F=0) and Vs,30=800 m/s. The first two scenarios

correspond to cases where the unmodified stochastic ground motion model does not

provide an adequate match to the target GMPEs (Rezaeian and Der Kiureghian,

2010) (significantly over predicts for the former, moderately under predicts for the

latter) and the last to a case where the unmodified model facilitates a good match.

The discussion will focus around specific cases of interest. The metamodel with

4500 support points is used in this section. Comparison across metamodels with
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different number of support points (and therefore accuracy) will be discussed in

the next section.
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Figure 4.2: Projection to the objective space of swarm of 50000 candidate
solutions obtained using an exhaustive search for (A,B) M=6-R=20km and (C)
M=7-R=40km. Objective F1 is calculated without the metamodel error for (A)

and (C), and with the metamodel error for (B).

Figure 4.2 presents illustrative swarms of candidate solutions in the objective space

from the exhaustive search using nbc=50000 samples for seismicity M=6-R=20km

and M=7-R=40km, in the former case examining the case with and without meta-

model error in the calculation of objective F1. For the second objective, results are

reported with respect to
√
F2, which corresponds to the distance between the ini-

tial and the modified predictive relationships (not the squared distance) and offers

a better normalisation for the results in the comparison. The solutions located at

the left boundary of the swarms in Figure 4.2 correspond ultimately to Pareto op-

timal solutions because there is no other solution that can simultaneously improve

both performance objectives. It is evident from these swarms that modification

of the predictive relationships can indeed facilitate a difference in the IM match

(check the range of F1 values obtained), whereas for smaller F1 values, the candi-

date solutions deviate more from the rest of the swarm. This means, ultimately,

that there are fewer model configurations that can provide a good match to the

target IMs (small F1 values). When the unmodified model is closer to the target

IMs (M=7-R=40km seismicity scenario), higher compatibility to these IMs can be

obtained through modification of the predictive relationships (compare case (C)
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to the other two), whereas addition of the metamodel error (compare case (B) to

(A)) increases function F1, especially for smaller F1 values.
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Figure 4.3: (A) Pareto fronts identified by exhaustive search for different
nbc values. (B) Comparison of Pareto fronts obtained by exhaustive search
and epsilon constraint approach, considering or not the metamodel error. Case

presented corresponds to seismicity scenario M=6-R=20km.

Figure 4.3 examines different approaches for the solution of the multi-objective

problem for the reference seismicity case of M=6-R=20km (similar trends hold

for the other cases). Part (A) shows the Pareto fronts identified through the ex-

haustive search using three different nbc values. Results are reported herein with

respect to
√
F1 and

√
F2 since this facilitates an easier comparison (differences of

extreme values easier to discern). Only ten representative solutions are shown,

and not the entire front. It is evident that minor differences only exist between

the identified fronts for different nbc values, and such differences occur primarily

for small F1 - large F2 combinations. This comparison shows that a value of nbc

around 200,000 to 400,000 should be considered as sufficient for efficiently iden-

tifying the front. For the remaining of the manuscript results for the exhaustive

search will be presented for a value of nbc equal to 400,000. Part (B) of Figure

4.3 then compares the Pareto fronts obtained by the exhaustive search and the

gradient-based (epsilon constraint) approaches for the case that the metamodel

error is considered or not in the objective function F1. For the epsilon constraint,

ninit is taken as 10000, whereas the gradient-based optimisation is performed us-

ing a couple only different initial points. For small F1 constraints, some challenges
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were encountered in converging to an admissible solution. This should be at-

tributed to the trend identified in Figure 4.2; for such values, a smaller number of

candidate solutions exist that can satisfy the constraint, and a potential increase

in ninit might be needed to identify feasible initial points for the gradient-based

optimisation. The comparison in Figure 4.3(B) shows that the two approaches

identify similar Pareto fronts, with the gradient-based optimisation converging to

suboptimal solutions for lower F1 values, evidently due to the existence of local

minima with greater differences in achieved performance. For such performance

ranges (i.e, with an already good match to the target IM, as indicated by the lower

F1 value), these differences might be unimportant. With respect to the computa-

tional burden, the exhaustive search requires 15 s per 10000 candidate solutions

examined (11 s if metamodel error is disregarded). For the epsilon constraint the

computational cost is 15 s for the initial 10000 trials and 20 s (2 s if metamodel

error is disregarded) for each different constraint examined. These comparisons

show that both optimisation approaches may be considered as adequate and pre-

ferred, depending on the application context. Overall, some preference exists for

the exhaustive search due to the fact that epsilon constraint method needs identi-

fication of an appropriate starting point to avoid convergence to suboptimal local

minima. The epsilon constraint approach, though, might be beneficial when a sin-

gle solution is sought after, the one that satisfies a desired match to the target IM,

rather than the entire front. Consideration or not of the metamodel error has no

effect on the differences between the optimisation approaches. The computational

efficiency for the gradient-based search is reduced, as discussed in the previous

section, when this error is included. Table 4.1 provides summary of these results,

including some details discussed in the next section.

Finally, Figure 4.4 presents a comparison between the alternative objective func-

tion selections for quantifying the discrepancy from the target IM, i.e., comparison

between F1, F1r, and F1m. Part (A) discusses F1r and part (B) F1m. The exact

Pareto front, i.e., optimisation using F1r (or F1m) and F2 as objectives, as well as

an approximate front are compared. The approximate front is obtained by using
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Table 4.1: Summary of pros/cons characteristics for the different implemen-
tation cases

Pros Cons

Optimisation algorithms

Gradient-free
exhaustive search

Can leverage vectorised
metamodel predictions for
increased computational

efficiency

Large number of evaluations
required and will identify
always the entire front.

Number of samples used in
exhaustive search has (small)

effect on solutions

Gradient-based

Very efficient when a single
only solution is sought, rather

than entire front. Allows
identification of a specific
part of the Pareto front

Requires identification of an
appropriate starting point to

avoid convergence to local
minima. Greater

computational burden when
metamodel error is considered

Metamodel characteristics

Larger number of
support points

Higher accuracy in
predictions established.

Reduces necessity to include
metamodel error for

obtaining high quality
solutions

Increased computational
burden. Remedied by the fact
that metamodel error does not

need to be considered

Inclusion of
metamodel error

Facilitates greater robustness,
avoiding identification of

erroneous points

Considerably increased
computational burden

especially when combined with
gradient-based optimisation

algorithms

F1 and F2 as objectives, identifying the Pareto set for θ and then evaluating ob-

jective F1r (or F1m) over that Pareto set. As discussed earlier, this optimisation

is less challenging but evidently identifies a sub-optimal solution. The results in

Figure 4.4 show that there is overall very good correlation between the different

objective functions and that the approximate solutions have only small deviations

from the optimal front and those only for small values of the first objective. There-

fore, use of F1 as objective may be considered as an adequate surrogate even when

the interest is in objectives F1r or F1m for quantifying discrepancy from the target

IMs.
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Figure 4.4: (A) Comparison between exact and approximate Pareto fronts for
objective functions (A) F1r and (B) F1m describing the discrepancy from the
target IMs. Case presented corresponds to seismicity scenario M=6-R=20km.

4.5.3 Impact of metamodel accuracy

The discussion moves next to the examination of the impact of the metamodel

accuracy. This is established by considering additionally the results obtained by

using the exact stochastic ground motion model (i.e., not relying on metamodel

predictions), which represents the measure for evaluating the actual hazard com-

patibility of the identified ground motion model. The details for the study are the

ones used in the previous section. Results for seismicity scenario M=6-R=20km

are presented in Figures 4.5 and 4.6. Figure 4.5 shows the Pareto fronts identified

by using the metamodels with the three different number of support points. Cases

with or without the metamodel error in the estimation of objective function F1 are

separately shown. This leads to two different Pareto sets, one without error and

one with error, and for each two different fronts are reported, one corresponding

to metamodel predictions and one to the use of the exact stochastic ground mo-

tion model. Then Figure 4.6 shows the spectral plot comparisons for the solution

(among the Pareto set identified in each case) corresponding to the minimum of

F1. The period range used in Figure 4.6 corresponds to the target structural peri-

ods Ts. In all cases, the exhaustive search is implemented with the same candidate

solutions to facilitate a consistency in the corresponding comparisons. Figure 4.7
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then shows Pareto front results for different seismicity scenario, M=7.8-R=30km.

Note that for seismicity scenario M=7-R=40km (another case discussed in the pre-

vious section), results are of limited interest since the unmodified ground motion

model provides a good compatibility to target IMs.
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Figure 4.5: Pareto fronts identified using metamodels with (A) 1500, (B) 3000,
or (C) 4500 support points and comparison to predictions by exact stochastic
ground motion model. Case presented corresponds to seismicity scenario M=6-

R=20km.
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Figure 4.6: Spectral plots for the solutions corresponding to minimum of F1

in the Pareto fronts identified in Figure 4.5.

The results show that for the higher accuracy metamodel (4500 support points)

good agreement is established between the metamodel predictions and the actual

model predictions along the Pareto front, whereas the inclusion of the metamodel

error has only a small effect on the identified Pareto front. This is observed in

both Pareto fronts (Figures 4.5 and 4.7) as well as in the corresponding spectral
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or (C) 4500 support points and comparison to predictions by exact stochas-
tic ground motion model. Case presented corresponds to seismicity scenario

M=7.8-R=30km.

plots (Figure 4.6). Different trends are observed, though, for the lower accuracy

metamodel (1500 support points). For lower F1 values, and therefore large F2 val-

ues, the Pareto optimal solutions identified when metamodel error is not included

in the problem formulation lead to erroneously modified ground motion models.

Based on the metamodel predictions, these models provide a very good match to

the target IMs (small predicted F1 value), but when response is evaluated with the

exact model larger differences are observed from the target IMs. This is particu-

larly evident in the spectral plots shown in Figure 4.6. Evidently the respective

solutions identified correspond to parameters θ for which the metamodel accuracy

is low. The moderate accuracy metamodel (3000 support points) falls in between

the two aforementioned cases, with characteristics that resemble more closely the

ones for the high accuracy metamodel.

Note that the seismicity case examined here is ideal for exploring vulnerabilities

in the optimisation associated with lower metamodel accuracy, as it corresponds

to a case at the boundary of the scenarios used to define domain X. Therefore,

for larger values of F2, the corresponding parameters θ are expected to be close

to the boundary of X, where metamodel accuracy is lower. However, even for

this challenging case, metamodels with higher accuracy (3000 or 4500 support

points) face small challenges, whereas the inclusion of the metamodel error for the
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lower accuracy metamodel (1500 support points) greatly improves the robustness

of the optimisation, leading to identified solutions with good agreement between

metamodel and actual model. Figure 4.8 sheds further light into this topic. It

focuses on the case examined in part (A) of Figure 4.6 but besides the mean

metamodel predictions it includes the predictions that are 1.5 standard deviations

(σ) from the mean based on the estimated error variance. The solution identified

when metamodel error is not included in the evaluation of F1 is associated with

a larger anticipated error (part (A) of Figure 4.8). Note that the actual model

is actually even further away than the plotted 1.5σ. When the metamodel error

is included in the evaluation of F1, such θ values with large associated σ are

avoided, since the large σ contributes to larger values for the objective function.

This ultimately contributes to identification of solutions with greater robustness,

i.e., better agreement between metamodel and actual model (part (B) of Figure

4.8).
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the Pareto fronts identified in Figure 4.5 for the metamodel with 1500 support
points. For the metamodel predictions the mean predictions and the predictions
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Overall, the above discussion shows that metamodels with higher accuracy (coeffi-

cient of determination 98%) can be considered as a good surrogate for the proposed

optimisation, whereas the inclusion of the prediction error greatly improves the

robustness of this optimisation, avoiding identification of erroneous solutions, even
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when metamodels with lower accuracy are adopted. Consideration of this error is

not necessary, though, when higher accuracy metamodels are used.

4.5.4 Implementation for different seismicity scenarios

With the computational details ironed out, the discussion moves finally to the

IM compatibility established by the proposed modification of the ground motion

model. Figure 4.9 shows results for three seismicity scenarios targeting PSA given

by the average of the aforementioned GMPEs for two different ranges for Ts:

Ts=[0.4 0.5 0.75 1.0 1.5 2.0] s and Ts=[0.4 0.5 0.75] s. These two different cases

are referenced herein as long and short, respectively, period ranges. The proposed

approach identified in each case a Pareto front that clearly demonstrates the com-

promise between the two objectives, with different characteristics in each case,

depending on how close the unmodified ground motion model was to the target

IM. Choosing a shorter period range for this target facilitates an overall better

match; this is anticipated because objective F1 imposes less strict requirements in

terms of IM compatibility (fewer number of components to match).

The question finally arises which point should be selected within the identified

Pareto set. Various approaches have been proposed in the greater multi-objective

optimisation literature for making this choice (Keeney and Raiffa, 1993). Perhaps

the most common one is to select the solution that has the smallest normalised

distance from the utopia point, defined as the point in the Pareto front (i.e., objec-

tive function space) that corresponds to the minimum of the two objectives across

the front. This utopia point represents the best but unachievable performance

[minF1 minF2]. Normalisation is typically established with respect to the maxi-

mum of each performance objective across the Pareto front, leading to distance

metric
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Dp(θ) =

√√√√∑
i=1,2

(
Fi(θ|z)−minFi
maxFi −minFi

)2

;

maxFi = max
{θp;i=1,...,np}

(Fi), minFi = min
{θp;i=1,...,np}

(Fi)

(4.13)

Instead of F1 and F2, this can be implemented for
√
F1 and

√
F2 due to the better

normalisation properties. This point is identified in all cases in Figure 4.9. An-

other choice would have been to choose the solution that satisfies a predetermined

threshold for the match to the targeted IMs. Perhaps this is better set with respect

to objectives F1r or F1m rather than F1.
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Figure 4.9: Pareto fronts for different seismicity cases considering match to
long (black) or short (gray) period range IMs. In each plot the Pareto point

with minimum distance from utopia point is shown with x.

These selections are finally demonstrated for a wide range of seismicity scenarios

(M in range [6 8] and R in range [10 100] km) in Figures 4.10 to 4.12. For each

scenario, three different Pareto points are selected, the one with smallest distance

Dp(θ) from the utopia point and the ones with average absolute relative error
√
F1 smaller than 0.15 or 0.05. These three cases are denoted, Ut, Cl, and Cs,
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respectively. The thresholds for Cl and Cs modifications were chosen so that to

reflect medium and small, respectively, incompatibility to the target hazard. In

addition, results for the unmodified model are presented denoted Un. Figure 4.10

shows plots for (i - first row)
√
F1 for Ut and Un (

√
F1 is constrained for the other

two cases) and for (ii – second and third rows)
√
F2 for Ut, Cl, and Cs (

√
F2 is zero

for Un). To better demonstrate the differences, results are presented separately

for Ut (second row) and for the pair Cl and Cs (third row) in the latter case. The

three different columns in the figure correspond to three different implementation

cases: target IM given by the average of the aforementioned four GMPEs for both

the (A) long and (B) short period ranges as well as (C) target IM given only by

GMPE Boore and Atkinson (2008) for the long period range. These scenarios are

denoted herein as SC1, SC2, and SC3, respectively. Figure 4.11 shows spectral

plots for a smaller selection of seismicity scenarios, defined by combinations of

M [6.2, 6.8, 7.4, 8] and R [30, 60, 90] km, for SC1. For each of the 12 M -R

combinations the curves corresponding to the target IM, the unmodified model

and the predictions by the three aforementioned model modifications are shown

to facilitate comparisons. Finally, Figure 4.12 shows for all examined seismicity

scenarios the model parameters θ for the unmodified ground motion model as well

as for the modified model corresponding to the Pareto point with smallest distance

from the utopia point (Ut case) for SC1. Note that some of the curves shown in

these figures have nonsmooth characteristics. This should be attributed to multiple

facts: (i) a discrete representation of the Pareto front is identified, rather than the

actual Pareto front; (ii) problem has multiple local minima as discussed earlier,

especially for larger F2 values; and (iii) algorithms used for the optimisation have

characteristics of stochastic search, well known to lead to discontinuous results.

The unmodified model Un does not provide a good match to the target IMs for the

entire seismicity range, with trends observed in first row of Figure 4.10 and in the

spectral plots in Figure 4.11 being similar to the ones reported by Rezaeian and

Der Kiureghian (2010), i.e., greater challenges in lower moment magnitudes and

combination of higher magnitudes and larger distances. Figure 4.10 shows that
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Figure 4.10: Results for
√
F1 and

√
F2 for unmodified ground motion model

(Un) and modified ground motion model corresponding to three different selec-
tion criteria: Minimum distance form utopia point (Ut) and value

√
F1 smaller

than 0.15 (Cl) or 0.05 (Cs). Implementations in the different columns corre-
spond to (A) long and (B) short period ranges for matching to the average
considered GMPEs and (C) long period ranges for match to GMPE Boore and

Atkinson (2008).

the proposed modification (cases Ut, Cl and Cs) improves this match, establishing

a balance between F1 and F2, with the characteristics of the balance depending on

the criteria for selection of the final model among the Pareto optimal solutions (i.e.,

which specific case is chosen). When the unmodified model has larger discrepancies

from the target IMs, then the modifications lead to larger values for F2, but still
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successfully identify models, independent of the implementation case, that provide

an improved match to the IM target. The Ut modification identifies a model with

moderate discrepancy from the unmodified one, corresponding to values of F2 in

the range of 0.3-1, whereas the two other modification approaches, Cl and Cs,

identify models with greater variability across the different seismicity scenarios.

For scenarios in the range ofM=7-7.5 the unmodified model provides a good match

to the target IMs and therefore modification of it provides limited advantages. This

is perhaps better captured by the Cl case. This discussion shows that selection of

the Pareto optimal model based on a targeted accuracy to the GMPEs, i.e, value

for F1 below a certain threshold as in the Cs and Cl cases, provides a more rational

selection for the final model as it allows a more direct recognition of the seismicity

ranges where modification is not truly required. However, when that threshold

is selected small (Cs case) and the unmodified model has larger discrepancy from

the target IM, then the modification leads to identification of a model with big

differences from the original one (large F2 values). This model will typically be

far away from the Ut case and will belong in a steep part of the Pareto front,

meaning that small improvements in F1 come at a large increase of F2 (check the

Pareto fronts shown in previous figures). A multilevel selection criterion seems

therefore more appropriate: select the Pareto optimal solution that satisfies a

certain accuracy threshold for F1 unless this solution leads to a greater F2 value

than the Pareto optimal solution with minimum distance from the utopia point. If

the latter happens, then select the Pareto optimal solution with minimum distance

from the utopia point.

With respect to the different implementation cases shown in Figure 4.10, selection

of a shorter period range [compare cases (B) and (A)] promotes, as also identified

earlier, an easier match to the target (smaller overall values for F1 and F2). This

demonstrates the importance of carefully selecting the target IMs, as this selection

affects the ability to match this target, and of the availability of a framework, as

the one developed here, that allows you to do so. The exact selection of the target

[compare cases (A) and (C)] does not impose any additional constraint in the
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Figure 4.11: Spectral plots for seismicity scenarios (different subplots) cor-
responding to combinations of M [6.2, 6.8, 7.4, 8] and R [30, 60, 90] km, for
the target IM (target), the unmodified ground motion model (Un) and modified
ground motion model corresponding to three different selections criteria: min-
imum distance form utopia point (Ut) and value

√
F1 smaller than 0.15 (Cl)

or 0.05 (Cs). Implementation scenario shown corresponds to matching to the
average considered GMPEs and long period range.

optimisation implementation, though the results evidently change.

The spectral plots in Figure 4.11 provide further validation for the observed accu-

racy of the different examined cases, showing the decomposition of the overall F1

match to the different structural periods. The ground motion model modification

greatly improves the match to the target spectral curves, with Cs modification

always providing a better match compared to the Cl one. The Ut modification

exhibits a varying behaviour, frequently in between the Cl and Cs cases, in other

instances outside their envelope, with characteristics that ultimately depend as

discussed above (based on Figure 4.10) on the ability of the unmodified model to
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provide an adequate match to the target IMs (i.e., how much is the modification

truly needed). Of course the proper evaluation of the proposed modifications comes

from examining both F1 and F2 values, as detailed above (discussion focusing on

Figure 4.10).

The physical ground motion model parameters θ for the unmodified Un and modi-

fied ground motion models Ut and Cs for the 12 seismicity scenarios of Figure 4.11

are presented in Table C.1 in Appendix C. The spectral acceleration estimates

(PSA) shown in Figure 4.11 are presented for the same ground motion model

cases along with the target IMs (average of four GMPEs) in Table C.2.
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Figure 4.12: Physical ground motion model parameters θ corresponding to
unmodified ground motion model (Un) and modified ground motion model with
minimum distance form utopia point (Ut) for implementation scenario of match-

ing to the average considered GMPEs and long period range.

Finally, the results for the ground motion model parameters in Figure 4.12 show

that the model modification leads to similar trends as observed for the unmodified

model. This is the direct results of incorporating the difference between these
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parameters as an objective in the problem formulation (objective F2) rather than

merely as a constraint. Parameters Ia, ζf , and ω′ show bigger variability compared

with their initial values. This should be attributed to a greater sensitivity with

respect to them of the resultant ground motions.

The overall discussion shows the importance of the established framework: once

the initial metamodel is developed, through the adaptive guidelines established

here, it can support the efficient identification of ground motion models that (i)

match any desired IMs for any chosen period range while (ii) maintaining a small

deviation from the initial predictive relationships. This can be seamlessly repeated

for any seismicity scenario. The final ground motion model modification can be

chosen based on the criteria discussed earlier.

4.6 Conclusions

The modification of stochastic ground motion models to match target IMs for

specific seismicity scenarios was presented in this chapter. This was formulated as

a multi-objective optimisation problem with first objective (F1) quantifying the

discrepancy between the ground motion predictions and the target IMs, and the

second objective (F2) corresponding to the discrepancy between the new model

characteristics and the model characteristics suggested by existing predictive rela-

tionships (i.e., the unmodified model). The second objective explicitly incorporates

in the modification process physical characteristics and parameter correlations de-

scribed in the initial ground motion model. The developed framework facilitates a

match to any desired IM or to a collection of them, e.g., spectral accelerations over

a period range, for any chosen seismicity scenario. Repeating process for different

seismicity scenarios can then facilitate the development of a suite of models that

can support comprehensive seismic risk assessment. Computational efficiency was

achieved by adopting a metamodel for approximating the median ground motion
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model predictions for the targeted IMs. Although the upfront cost for develop-

ment of this metamodel is significant, once established, it can be used to support

a highly efficient multi-objective optimisation. Gradient-based and gradient-free

approaches were discussed for the latter whereas to reduce the computational bur-

den for the metamodel development, an adaptive DoE was proposed for selecting

the database informing the metamodel.

The framework was demonstrated in an illustrative example considering a re-

cently developed record-based stochastic ground motion model and IMs described

through ground motion prediction equations. It was shown in the context of this

example that the metamodel-aided optimisation can support an accurate identi-

fication of the Pareto front of dominant solutions, provided that the metamodel

accuracy is significantly high, and that inclusion of the metamodel error in the opti-

misation formulation greatly improves the robustness of this optimisation, avoiding

the identification of erroneous solutions. Comparisons between the two optimisa-

tion approaches showed that the gradient-free one demonstrates overall preferable

attributes, since the gradient-based one might converge to suboptimal local min-

ima, especially for lower F1 values. However, the gradient-based approach provides

greater relative efficiency when identification of a single solution, rather than of the

entire front, is desired. Still, an adequate representation of the overall Pareto front

can be obtained in as little as two minutes using the blind search, gradient-free

optimisation, which should be considered as an acceptable computational burden.

Different approaches can be then used to select the final ground motion model,

e.g., the Pareto optimal point that has the minimum distance from the utopia

point or the point that satisfies a desired compatibility to the target IMs (i.e.,

value of F1 smaller than a threshold). Implementation for a range of seismicity

scenarios showcased the advantages of the proposed framework: small modifica-

tions of the original ground motion model (small to moderate F2 values) provided

significant improvement for the match to the target IM (F1 value) for seismicity

ranges where the unmodified model faces challenges in matching the target IMs.
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With respect to the selection of the final ground motion model the following sug-

gestion is provided, after carefully examining the various trends observed: select

the Pareto optimal solution that satisfies a certain accuracy threshold for F1 un-

less this solution leads to a greater F2 value than the Pareto optimal solution with

minimum distance from the utopia point. If the latter happens, then select the

Pareto optimal solution with minimum distance from the utopia point.

One of the limitations of this framework is that it utilises only the mean of the

predictive relationships of the stochastic ground motion model, whereas, more

importantly, match only to some target IMs (e.g., median spectral accelerations

from GMPEs) was investigated, ignoring any variability in the IM predictions.

This is a significant constraint for seismic risk assessment applications, where haz-

ard compatibility is expressed in terms of both mean and dispersion of some target

IMs. Chapter 5 addresses this limitation by extending the proposed framework to

modify stochastic ground motion models for hazard compatibility.
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Hazard-compatible modification

of stochastic ground motion

models

Adapted from Tsioulou, A., Taflanidis, A. A. and Galasso, C. (2018b). Hazard-

compatible modification of stochastic ground motion models, Earthquake Engi-

neering & Structural Dynamics 47(8): 1774-1798.

5.1 Introduction

As discussed in Chapter 4, stochastic ground motion models (Rezaeian and Der Ki-

ureghian, 2010; Gavin and Dickinson, 2010; Yamamoto and Baker, 2013; Vlachos

et al., 2016; Boore, 2003; Atkinson and Silva, 2000) is as an alternative approach

for describing seismic excitations used in PBEE (Goulet et al., 2007; Gidaris and

Taflanidis, 2015) and simulation-based probabilistic seismic risk assessment (Au

and Beck, 2003; Jensen and Kusanovic, 2014; Gidaris et al., 2016). They are

based on a parametric description of the spectral and temporal characteristics of

101
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the excitation, with synthetic time-histories obtained by filtering a stochastic se-

quence through the resultant frequency and time domain modulating functions.

The parameters involved in this description are related to seismicity (e.g., moment

magnitude and rupture distance) and site characteristics (e.g., shear wave velocity

for soil profile) through predictive models/relationships (Rezaeian and Der Ki-

ureghian, 2010; Boore, 2003). Sample ground motions for a specific seismicity

scenario and site can be generated by determining the parameters of the stochas-

tic ground motion model through these predictive relationships and by utilising

a sample stochastic sequence. This approach may ultimately support a compre-

hensive description of the seismic hazard (Gidaris and Taflanidis, 2015), and its

essential component is the predictive models relating seismicity/site characteristics

to ground motion model parameters.

The two main methodologies for establishing such stochastic ground motion mod-

els are record-based and physics-based approaches. Record-based models are de-

veloped by fitting a preselected “waveform” to a suite of recorded regional ground

motions. Regression analysis is used for establishing the predictive models, which

leads to a probabilistic characterisation described by mean predictions along with

an associated variability (Rezaeian and Der Kiureghian, 2010; Vlachos et al., 2018).

On the other hand, stochastic physics-based models rely on physical modeling of

the rupture and wave propagation mechanisms (Boore, 2003; Atkinson and Silva,

2000). The predictive relationships in this case are typically described by deter-

ministic models that represent the underlying mean physical properties, though

approaches exist for addressing variability in these properties (Vetter and Taflani-

dis, 2014; Atkinson, 2008). Similar to Chapter 4, emphasis here will be on record-

based models, though the techniques discussed can be extended to any type of

stochastic ground motion model, with the assumption that the corresponding pre-

dictive models are characterised by both a mean prediction and an associated

variance.

As discussed in Chapter 4 important concern related to the use of stochastic ground
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motion models for structural engineering applications is the fact that through cur-

rent approaches in selecting their predictive models, compatibility to the seismic

hazard for specific structures and sites is not necessarily obtained. This hazard

is typically characterised through PSHA (McGuire, 2004), for example through

disaggregation that identifies the seismicity scenarios, described through relevant

seismicity characteristics, mainly the moment magnitude and rupture distance,

that have the largest contribution to the hazard for a specific structure. Essential

part of PSHA are the GMPEs. GMPEs provide predictions, as function of seis-

micity characteristics, for both the median and the dispersion of IMs, determining

ultimately the conditional hazard for seismic events corresponding to these char-

acteristics. In other words, for a given seismicity scenario, defined for example

by the moment magnitude and source-to-site distance, the conditional hazard is

described through the mean and the dispersion of some structure-specific IMs.

Recognising the importance of matching stochastic ground motion models to some

target IM, the modification of the stochastic ground motion model for accommo-

dating such a match was examined in Chapter 4. The proposed modification was

performed for specific seismicity scenarios and identified the ground motion model

that achieves the minimum modification of the existing predictive relationships

that will yield the desired compatibility with the target IM.

The study in Chapter 4 and all past studies focused, though, on the mean model

characteristics and associated hazard. Optimisation utilised only the mean of the

predictive relationships of the stochastic ground motion model, whereas, more im-

portantly, match only to a target IM vector (taken to represent the mean hazard)

was investigated, ignoring any variability in the IM predictions. The latter is

an important constraint because for seismic risk assessment applications hazard

compatibility is expressed in terms of both the mean and dispersion of the target

IMs (McGuire, 2004). From a practical standpoint, capturing the actual variabil-

ity of target IMs is essential to capture extreme structural response values and,

therefore, in properly assessing the likelihood of consequences due to such extreme

seismic demand values.
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The current chapter extends the approach presented in Chapter 4 to (i) match the

prescribed conditional hazard (not simply mean IMs) for a specific site and struc-

ture (or range of structures) while (ii) preserving desired trends and correlations

in the physical characteristics of the resultant ground acceleration time-series,

including consideration of the variability of these characteristics. This is again

formulated as a bi-objective optimisation problem. The first objective is to min-

imise the discrepancy between the statistics (mean and dispersion) of the outputs

for a suite of acceleration time-histories obtained from the ground motion model

and the target IM statistics for a given seismicity scenario. The second objec-

tive is to establish the smallest deviation from the model characteristics suggested

by existing predictive models, examining both the mean and the variance of the

model parameters. Both objectives are expressed as comparison between proba-

bility distributions, and the relative entropy is adopted to quantify them. This

setting creates a fundamental difference to the previous study in Chapter 4 with

respect to both the optimisation characteristics (alter both mean and variance of

predictive models) as well as the goal (match to mean and dispersion for condi-

tional hazard). In Chapter 4 the ground motion model was tuned so that outputs

from a single parametric description of the ground motion model match a target

IM vector for each seismicity scenario. The goal of the current study is to produce

an ensemble of ground motion models whose output statistics yield the desired

compatibility with the hazard (IM mean and dispersion) for that scenario. For

efficiently solving the multi-objective optimisation problem a surrogate modeling

approach is adopted (Vetter et al., 2016; Tsioulou et al., 2018a) for approximat-

ing the desired IMs for specific values of the ground motion model parameters.

Emphasis is placed here on the efficient estimation of the response statistics for

the modified ground motion model output, leveraging Monte Carlo techniques.

This requires further extension of the surrogate modeling framework, compared

with the approach adopted in Chapter 4, for facilitating this estimation. Different

assumptions are also examined for the evaluation of the entropy for the first objec-

tive. The corresponding bi-objective optimisation is finally solved using a random
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search approach. The novelty of the current work stems from both the fundamen-

tally different theoretical framework for formulating the stochastic ground motion

modification as well as the computational advances required for efficiently calcu-

lating the response statistics for the first objective and performing the associated

optimisation.

In the next section, the general problem of developing simulated ground motions

compatible with target IM distributions is defined, and then specific aspects of the

framework are discussed in detail.

5.2 Problem formulation

5.2.1 Preliminaries and baseline predictive relationships

formulation

The foundation of the problem formulation is the same as in Chapter 4. A

stochastic ground motion model is considered that provides acceleration time-

histories α̈(t|θ,w) by modulating a discretised Gaussian white-noise sequence, w,

through appropriate time/frequency functions that are parameterised through the

nθ-dimensional model parameter vector θ = [θ1, θ2, . . . , θnθ ] ∈ Rnθ . θ completely

defines the parametric description of the model, i.e., along with w facilitates the

generation of a time-history α̈(t|θ,w), and is typically composed of various ex-

citation properties such as Arias intensity, strong ground motion duration or pa-

rameters related to frequency characteristics of the ground motion. It should be

noted that θ corresponds typically to a low-dimensional vector and w to a high-

dimensional sequence.

Predictive models/relationships are utilised to relate θ to seismicity and local site

characteristics, such as the fault type F , the moment magnitude, M , the rupture

distance, R, and the shear wave velocity in the upper 30 m of soil, Vs,30 (Rezaeian
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and Der Kiureghian, 2010; Boore, 2003). The vector of these characteristics is

denoted as z. For record-based models the standard approach for development

of these predictive relationships (Rezaeian and Der Kiureghian, 2010; Medel-Vera

and Ji, 2016) relies on first matching the waveform of recorded ground motions

(i.e., identify first θ for each of the recorded ground motions in a given database)

and then carrying out a regression to relate θ to z. Typically, this is performed

by first transforming problem to the standard Gaussian space through a nonlinear

mapping for each component θi (Rezaeian and Der Kiureghian, 2010). The trans-

formed Gaussian vector is denoted v. Approach ultimately leads to a Gaussian

probability model v ∼ N(µr(z),Σr) with mean µr(z) and covariance matrix Σr.

Note that the latter is independent of z. The notation N(a, b) stands for Normal

distribution with mean α and covariance b whereas notation c ∼ d stands for ran-

dom variable c following distribution d. The resultant probability model for θ is

denoted p(θ|µr(z),Σr) and determines the predictive model for the ground motion

model parameters. Note that a similar description can be readily established for

physics-based models (Tsioulou et al., 2018a), with the uncertainty characterisa-

tion stemming from an explicit treatment of the epistemic uncertainties associated

with the physics-based formulation (Vetter and Taflanidis, 2014; Atkinson, 2008).

The predictive model for θ will be denoted herein as p(θ|µr(z),Σr), with the un-

derstanding that it is not necessarily constrained to models established through

regression analysis, rather simply can be parameterised by quantities µr(z) and

Σr, with µr(z) representing the mean predictions, and Σr the variability of these

predictions.

5.2.2 Modification of predictive models for hazard match-

ing

As discussed in Section 5.1, the formulation of the predictive model for θ provides

synthetic ground motions whose statistics (mean and dispersion) of output IMs

do not necessarily match the intended hazard for specific structures and sites. For
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accommodating such a match a modification of the existing predictive model for θ

is proposed for specific seismicity scenarios defined through z, with objective to get

a suite of acceleration time-series for that scenario whose (i) mean and dispersion

match a target IM mean and dispersion vectors, while (ii) maintaining similarity

to the predictive relationships already established for the model. Equivalently

this can be viewed as identifying the updated probabilistic model p(θ|µ,Σ) that

is closest to the established model p(θ|µr(z),Σr) and also matches the intended

conditional hazard. µ and Σ represent the updated parametric description for the

probability model of θ. In the context of record-based models these correspond,

respectively, to the mean vector and covariance matrix for v. The IM vector may

include different response quantities of interest as discussed in Chapter 4, e.g.,

direct characteristics of the ground motion, such as PGA or elastic and inelastic

spectral responses for different periods of an SDoF oscillator. The conditional

hazard for most of these IMs may be described through a GMPE (Bozorgnia

et al., 2010; Stewart et al., 2016). Since the proposed modification refers to the

conditional hazard, for simplifying terminology for the remainder of the paper,

the description as “conditional” will be removed: term hazard corresponds to

conditional hazard.

To formalise these concepts mathematically, let, Yi(z); i = 1, . . . , ny denote the

IMs of interest. The target hazard for them is quantified through a probabilistic

description, denoted by pt(ln(Yi)|z) . As is common in earthquake engineering and

without loss of generality, the statistics are assumed here to be determined for the

logarithm of the IM. To better align approach with current GMPE standards a log-

normal underlying model is assumed, leading to ln(Yi(z))t ∼ N(ln(Ȳi(z)), σ2
i (z))

with ln(Ȳi(z)) and σ2
i (z) corresponding to the mean and variance, respectively,

of the logarithmic IM. Note, though, that the computational framework can sup-

port any probabilistic IM description pt(ln(Yi)|z), not constrained to one provided

by GMPEs or defined through a lognormal probabilistic model. Also, the su-

perscripts/subscripts t and g (the latter defined in the next paragraph) are used

herein to distinguish between target prediction and prediction facilitated through
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the stochastic ground motion model.

To quantify the hazard predictions through the stochastic ground motion model,

let Y g
i (θ,w) denote the estimate for Yi established through this model for spe-

cific values of the model parameter vector θ and a specific white-noise sequence

w (i.e., for a specific ground motion time-history α̈(t|θ,w)). Y g
i (θ,w) will be

referenced herein as response output of the ground motion model. The statistical

characterisation for ln(Yi) through the stochastic ground motion model for the

updated parametric description is denoted by pg(ln(Yi)|µ,Σ) and using the total

probability theorem is equal to:

pg(ln(Yi)|µ,Σ) =

∫∫
p(ln(Y g

i )|θ,w,µ,Σ)p(θ,w, |µ,Σ) dθ dw

=

∫∫
p(ln(Y g

i )|θ,w)p(θ|µ,Σ)p(w) dθ dw

(5.1)

where p(w) is the probability distribution for the stochastic sequence w, which by

definition is independent of p(θ|µ,Σ). In deriving the second equality in Equation

5.1 the fact that the stochastic ground motion model is completely defined by pair

θ,w was also used. This simplifies p(ln(Y g
i )|θ,w,µ,Σ) = p(ln(Y g

i )|θ,w) because

knowledge of µ and Σ is redundant if θ is also known. Note that Y g
i is itself a

random variable with randomness in its description stemming from both w and θ.

In this context, Y g
i (θ,w) may be viewed as a realisation of the random variable.

Distribution pg(ln(Yi)|µ,Σ) can be approximated through KDE as discussed in

Appendix B. To further simplify framework, the same hypothesis as for the haz-

ard can be adopted, assuming a lognormal distribution, leading to ln(Yi)
g ∼

N(ln(Ȳ g
i (µ,Σ)), (σgi (µ,Σ))2), where the mean and variance for ln(Yi)

g, consid-

ering the variability in both the low-dimensional θ and high-dimensional w, are:

ln(Ȳ g
i (µ,Σ)) = E[ln(Yi)

g] =

∫∫
ln(Y g

i (θ,w))p(θ|µ,Σ)p(w) dθ dw (5.2)
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σgi (µ,Σ))2 = Var[ln(Y g
i )] =

∫∫ [
ln(Y g

i (θ,w))− ln(Ȳ g
i (µ,Σ))

]2
p(θ|µ,Σ)p(w) dθ dw

(5.3)

with E[.], Var[.] denoting the expectation and variance operators, respectively.

The functional dependence of the statistics of ln(Yi(z))g on µ and Σ is explicitly

noted herein to facilitate an easier understanding of the ground motion model

modification framework. The lognormal assumption will be primarily used for

pg(ln(Yi)|µ,Σ), and its validity will be examined in the illustrative example later

by comparing to the KDE-based estimation.

The hazard-compatible modeling corresponds to modification of the probability

model for θ, ultimately of the parametric description defined through µ and Σ,

and is formulated as multi-objective optimisation problem with two competing

objectives

[µ,Σ]∗ = arg min {Fp1(µ,Σ|z), Fp2(µ,Σ|z)} (5.4)

The first objective Fp1 corresponds to the weighted discrepancy of the target seis-

mic hazard to the hazard predicted through the ground motion model, i.e., to a

comparison between pg(ln(Yi(z))|µ(z),Σ) and pt(ln(Yi)|z). The relative entropy,

a popular measure to quantify differences between distributions (Gibbs and Su,

2002), is utilised as metric for this discrepancy, given by:

D[pg(ln(Yi)|µ,Σ)||pt(ln(Yi)|z)] =

∫
R
pg(ln(Yi)|µ,Σ) log

[
pg(ln(Yi)|µ,Σ)

pt(ln(Yi)|z)

]
d ln(Yi)

(5.5)

This leads to definition of Fp1 as
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Fp1(µ,Σ|z) =
1∑ny
i=1 γi

ny∑
i=1

γiD[pg(ln(Yi)|µ,Σ)||pt(ln(Yi)|z)]

=
1∑ny
i=1 γi

ny∑
i=1

γiD[pg(ln(Yi)|µ,Σ)||N(ln(Ȳi(z)), σ2
i (z))]

(5.6)

with γi corresponding to the weights prioritising the match to different IM com-

ponents (e.g., spectral accelerations at different structural periods). For the as-

sumption of lognormal distribution for Y g
i , this simplifies to

Fp1(µ,Σ|z) =
1∑ny
i=1 γi

ny∑
i=1

γiD[N(ln(Ȳ g
i (µ,Σ)), (σgi (µ,Σ))2)||N(ln(Ȳi(z)), σ2

i (z))]

(5.7)

with closed-form solution (Gibbs and Su, 2002):

D[N(ln(Ȳ g
i (µ,Σ)), (σgi (µ,Σ))2)||N(ln(Ȳi(z)), σ2

i (z))] =(
ln(Ȳ g

i (µ,Σ))− ln(Ȳi(z))
)2

2σ2
i (z)

+
1

2

[
(σgi (µ,Σ))2

σ2
i (z)

− 1− ln

(
(σgi (µ,Σ))2

σ2
i (z)

)] (5.8)

Objective Fp2 measures that discrepancy between the initial predictive model for

θ, p(θ|µr(z),Σr), and the modified one, p(θ|µ,Σ). The relative entropy is utilised

again as measure to quantify differences:

Fp2(µ,Σ|z) = D[p(θ|µ,Σ)||p(θ|µr(z),Σr)]

=

∫
Rnθ

p(θ|µ,Σ) log

[
p(θ|µ,Σ)

p(θ|µr(z),Σr)

]
dθ

(5.9)

Since the relative entropy is invariant under a coordinate transformation for θ

(Gibbs and Su, 2002), the comparison can be established in the transformed Gaus-

sian space, leading to
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Fp2(µ,Σ|z) = D[N(µ,Σ)||N(µr(z),Σr)] (5.10)

with the latter expression readily evaluated (Gibbs and Su, 2002) as

D[N(µ,Σ)||N(µr(z),Σr)] =

1/2
[
tr[ΣΣ−1r ] + (µr(z)− µ)TΣ−1r (µr(z)− µ)− nθ − ln

(
det[ΣΣ−1r ]

)] (5.11)

where tr[.] and det[.] stand for trace and determinant, respectively.

Objective Fp1 enforces hazard compatibility (mean and dispersion), whereas ob-

jective Fp2 guarantees compatibility of the physical characteristics of the resultant

ground motions with the regional trends observed in recorded ground motions.

Solution of the multi-objective optimisation of Equation 5.4 ultimately leads to

a Pareto set of dominant solutions {(µp,Σp); p = 1, . . . , np} that expresses a dif-

ferent compromise between the competing objectives Fp1 and Fp2. A solution is

characterised as dominant (or Pareto optimal) and belongs in the Pareto set if

there is no other solution that simultaneously improves both objectives Fp1 and

Fp2. The representation of the Pareto set in the performance objective [Fp1,Fp2]

space, {[Fp1(µp,Σp), Fp2(µp,Σp)]; p = 1, . . . , np} is termed as the Pareto front.

Illustrations of such Pareto fronts are included in the example discussed later.

One can eventually select a model configuration from the identified Pareto set

that yields the desired hazard compatibility without deviating significantly from

regional ground motion characteristics. This will be further discussed in the il-

lustrative implementation. Note that a Pareto set for optimisation of Equation

5.4 always exists apart from the extreme case that the original stochastic ground

motion model provides an exact match to the hazard, i.e., Fp1(µr(z),Σr|z)=0. In

that case, the entire set corresponds to a single point (µr(z),Σr).
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Identifying the Pareto set is, though, challenging because the computational bur-

den in evaluation of objective Fp1 is significant, requiring calculation of the mul-

tidimensional integrals of Equations 5.2 and 5.3 (or samples needed for the KDE

approximation discussed in Appendix B) which can be only performed numeri-

cally and entails hundreds estimates of the response output of the ground motion

model. To facilitate an efficient optimisation that can be repeated for any de-

sired seismicity scenario z, a surrogate modeling (i.e., metamodeling) approach is

adopted, specifically selecting kriging as metamodel due to its proven capability

to approximate well even complex functions (Lophaven et al., 2002). As input for

the metamodel, the low-dimensional vector θ is chosen. This choice corresponds

to the smallest possible dimension for the metamodel input, something that can

greatly enhance accuracy (Lophaven et al., 2002), a very important consideration

since metamodel will be eventually used for optimisation, and larger metamodel

errors can lead to identification of suboptimal solutions. Alternative choices were

to additionally include w in the metamodel input definition which is completely

impractical (due to high-dimensionality of w), or to use directly pair {µ,Σ} as

the metamodel inputs (and statistics of Equations 5.2 and 5.3 as outputs) which

significantly increases, however, the input dimension. Under this selection of θ

as metamodel input, the metamodel output corresponds to the response output

statistics considering variability with respect to w only (i.e., conditional on θ

statistics). Here statistics refers to all quantities needed to eventually calculate

Fp1. The variability with respect to θ in quantifying the hazard (and ultimately

objective Fp1) will be addressed through the approach discussed in Section 5.4.

This creates a similar setting as in Chapter 4 for the metamodel formulation, with

the additional requirement, though, to eventually incorporate variability stemming

from θ in the overall framework, so that variability in both θ and w is explicitly

considered. The kriging metamodel development is briefly reviewed in the next

section, and the details of the kriging-aided optimisation problem are discussed

in Section 5.4. A schematic of the overall optimisation approach is provided in

Figure 5.1.
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Figure 5.1: Overview schematic of the hazard-compatible stochastic ground
motion modeling approach.

5.3 Kriging metamodel development

As discussed in the previous section, θ is chosen as metamodel input. A modi-

fication of this input should be further adopted if the relationship between some

components of θ and the response output Y g
i (θ,w) is explicitly known. This is

true for stochastic ground motion models that include a scaling parameter, de-

noted θs herein, that directly controls the amplitude of the excitation as shown

in Chapter 4. For example, for the model that will be used in the illustrative ex-

ample (Rezaeian and Der Kiureghian, 2010) θs corresponds to the Arias intensity.

This means that Y g
i (θ,w) = f(θs)si(x,w) with x corresponding to the remain-

ing model parameters excluding θs, representing the output Y g
i (θ,w) for θs=1

and f(θs) being a simple function of θs. Without loss of generality we will adopt

here this assumption, i.e., representation Y g
i (θ,w) =

√
θssi(x,w). The choice of
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square root for function f(.) is made here simply to match the model used in the

illustrative example. Numerical approach discussed herein can accommodate any

other function. This setting leads to modification of the metamodel input to x,

and respectively of metamodel output to the statistics of si(x,w) conditional on

x. Once the latter statistics are known, the statistics for Y g
i (θ,w) conditional on

θ can be easily obtained as will be shown in Section 5.4, because the relationship

to the remaining component of vector θ, θs, is explicitly known. This modifica-

tion ultimately reduces the dimension of the metamodel input, which as discussed

earlier facilitates improved accuracy. Note that similar to Y g
i , si is also a random

variable with randomness in its description stemming from w and x.

The approximated statistics, the ones required for calculating Fp1, are the condi-

tional on x mean and variance of ln(si), given by

ln(s̄i(x)) = E[ln(si)|x] =

∫
ln(si(x,w))p(w) dw (5.12)

(σsi (x))2 = Var[ln(si)|x] =

∫
[ln(si(x,w))− ln(s̄i(x))]2 p(w) dw (5.13)

where independence of w from x was used in deriving the last equalities in both

expressions. These statistics define the metamodel output. It should be pointed

out that this output is independent of the predictive relationships; rather is simply

functions of x (reason for introducing the functional dependence on x notation).

This is what contributes to the efficiency of the approach: the surrogate model is

established with respect to the low-dimensional vector x and can be then leveraged

to evaluate the required statistics for different selections of the predictive models

(i.e. different µ and Σ) as detailed in the next section.

For developing the metamodel, a database with n observations is initially ob-

tained that provides information for the x− ln(s̄i(x)) and x−σsi (x) input/output

pairs. For this purpose, n samples for {xj; j = 1, . . . , n} also known as support
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points or experiments are obtained over the domain of interest for x. This do-

main, denoted X, should encompass the anticipated range that the metamodel

will be implemented in to avoid extrapolations, i.e., domain covered by p(θ|µ,Σ),

approximated in this case as domain for p(θ|µr(z),Σr). The definition of X is

discussed in detail in Chapter 4. The predictions provided through the ground

motion model for each xj are then established through the following process:

Step 1: Generate nw sample acceleration time-histories for different white-noise

sequences {wk; k = 1, . . . , nw} using θs=1 for all samples;

Step 2: For each sample evaluate the response outputs of interest {si(xj,wk); i =

1, . . . , ny} using response-history analysis for spectral IMs;

Step 3: Estimate the statistics (logarithmic mean and variance) over the sample-

set to obtain ln(s̄i(x
j)) and σsi (x

j).

Using this database the surrogate model can be formulated following the approach

presented in Chapter 4. Only difference is that the output for metamodel also

includes σsi (x). The computationally intensive aspect of the formulation is the

development of the database which requires response-history analysis. This needs

to be performed, though, only once. As soon as the metamodel is established

using this database, it can predict ln(s̄i(x)) and σsi (x) for any other x desired.

Metamodel predictions can be also vectorised (Jia and Taflanidis, 2013), something

that will be leveraged in the numerical optimisation discussed in the next section.

The accuracy of the metamodel depends on the number of experiments n as well

as the exact selection of these experiments. Chapter 4 presents details for both

these tasks, including a sequential, adaptive metamodel formulation that gradually

increases n, stopping when pre-specified accuracy criteria are satisfied.
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5.4 Multi-objective optimisation to match con-

ditional hazard supported by Kriging meta-

modeling

5.4.1 Calculation of statistics of interest

Evaluation of objective Fp1 boils down to estimation of Equations 5.2 and 5.3.

Using representation Y g
i (θ,w) =

√
θssi(x,w) this simplifies to

ln(Ȳ g
i (µ,Σ)) = E[ln(Y g

i )] = E[ln(
√
θssi)] = E[ln(θs)]/2 + E[ln(si)] (5.14)

(σgi (µ,Σ))2 = Var[ln(
√
θssi)] = Var[ln(θs)]/4 + Var[ln(si)] + Cov[ln(θs), ln(si)]

(5.15)

where Cov[a, b] stands for the covariance between random variables a and b. The

statistics with respect to θs, that is the mean E[ln(θs)] and variance Var[ln(θs)]

can be readily calculated using the marginal distribution p(θs|µ,Σ). The statistics

that involve si may be calculated using the metamodel to approximate variability

with respect to w. Using the laws of total expectation and variance we have for

these statistics

E[ln(si)] = E[E[ln(si)|x]] = E[ln(s̄i(x))] =

∫
ln(s̄i(x))p(x|µ,Σ) dx (5.16)
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Var[ln(si)] = E[Var[ln(si)|x]] + Var[E[ln(si)|x]] = E[(σsi (x))2] + Var[ln(s̄i(x))]

=

∫
(σsi (x))2p(x|µ,Σ) dx+

∫
(ln(s̄i(x))− E[ln(s̄i(x))])2p(x|µ,Σ) dx

(5.17)

Cov[ln(θs), ln(si)] = E[ln(θs) ln(si)]− E[ln(θs)]E[ln(si)]

= E[E[ln(θs) ln(si)|x]]− E[ln(θs)]E[ln(si)]

= E[ln(θs)E[ln(si)|x]]− E[ln(θs)]E[ln(si)]

= E[ln(θs) ln(s̄i(x))]− E[ln(θs)]E[ln(si)]

=

∫
ln(θs) ln(s̄i(x))p(θ|µ,Σ) dθ − E[ln(θs)]E[ln(si)]

(5.18)

where the expectation (integrals) with respect to x or θ have been explicitly

expressed in all these equations. These integrals address the variability stem-

ming from the predictive relationships and need to be calculated through Monte

Carlo simulation (MCS). Rather than performing two different MCS: one for the

integrals involved in the expectation E[ln(si)] and variance Var[ln(si)], which re-

quire samples from the marginal distribution p(x|µ,Σ), and one for the covariance

Cov[ln(θs), ln(si)], which requires samples from joint distribution p(θ|µ,Σ), a sin-

gle MCS is performed, utilising a common set of samples for all these statistics.

This leads to the following approximations for the quantities needed for Equations

5.14 and 5.15

E[ln(si)] ≈
1

Ns

Ns∑
j=1

ln(s̄i(x
j)) (5.19)

Var[ln(si)] ≈
1

Ns

Ns∑
j=1

(σsi (x
j))2 +

1

Ns

Ns∑
j=1

(ln(s̄i(x
j))− E[ln(si)])

2 (5.20)
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Cov[ln(θs), ln(si)] ≈
1

Ns

Ns∑
j=1

ln(θjs) ln(s̄i(x
j))− E[ln(θs)]E[ln(si)] (5.21)

where [θjs,x
j] correspond to samples from p(θ|µ,Σ), Ns is the total number of

samples used, and ln(s̄i(x)) and σsi (x) are approximated through the kriging meta-

model for each one of these samples. Utilising vectorised manipulations for the

metamodel predictions both these quantities can be calculated with very small

computational effort, meaning that the MCS-based estimation of Equations 5.19

to 5.21 can be performed very efficiently. Further numerical details (computational

times) are provided in the illustrative example.

For reducing the relative importance of the MCS estimation error within the multi-

objective problem of Equation 5.4, common random numbers (CRN) are utilised

(Spall, 2003). This is facilitated by getting first samples in the standard Gaussian

space (which is independent of µ and Σ) and then transforming them to the desired

samples for θ. Approach is equivalent to transforming integrals in Equations 5.16

to 5.18 to standard Gaussian space and for record-based model is easily performed,

as these models typically entail (Rezaeian and Der Kiureghian, 2010) a Gaussian

predictive model for v. The CRN is implemented by using the same sample set for

the standard Gaussian samples across the entire optimisation as also shown earlier

in Figure 5.1. Adoption of CRN creates a consistent estimation error in the MCS

application for the different examined µ and Σ values and therefore improves the

optimisation accuracy for identifying the correct Pareto front (Spall, 2003). In

other words, it allows use of smaller value for Ns because it reduces the relative

importance of the MCS estimation error within the optimisation.

5.4.2 Multi-objective optimisation

Calculation of statistics given by Equations 5.14 and 5.15, utilising MCS estimates

of Equations 5.19 to 5.21, facilitates an efficient approximation for performance ob-

jective Fp1 given by Equation 5.8. If the lognormal assumption for the distribution



Chapter 5 119

of Y g
i is not used, then Fp1 can be estimated through the approach discussed in Ap-

pendix B, leveraging again MCS principles. Note that calculation of objective Fp2

is computationally trivial. Therefore, through the introduction of the metamodel

an efficient estimation of both objectives involved in the optimisation described by

Equation 5.4 can be established. It should be noted that in Chapter 4 the explicit

incorporation in the optimisation of the metamodel error was also considered, es-

tablished through appropriate modification of the equivalent objective function

Fp1. It was shown, though, that this reduces computational efficiency and is not

necessary if the underlying surrogate model has high accuracy. As calculation of

objective Fp1 requires Ns evaluations of the metamodel in a MCS setting (only

one evaluation was needed in the framework of Chapter 4) the inclusion of the

metamodel error is not advocated here as the computational burden is expected

to be higher. Additionally, the benefits of explicitly including this error in the

current formulation are expected to be smaller because objective Fp1 represents

a statistical quantity over θ. In evaluating the necessary statistic, the response,

and therefore associated metamodel errors over different θ values are averaged.

Potential large errors that may exist for specific θ values end up averaged with

smaller errors from other θ’s and therefore do not impact Fp1 estimates as much

as they would if these θ values were the only contribution to Fp1 as was the case

in Chapter 4.

For solving the resultant multi-objective optimisation, a variety of numerical ap-

proaches can be utilised (Marler and Arora, 2004). In Chapter 4, two such ap-

proaches were examined, one gradient-free and one gradient-based, and preference

was ultimately given to the former since it can support higher robustness and com-

putational efficiency for identifying the entire Pareto front. This recommendation

is adopted here and a gradient-free, random search approach is implemented as

follows. A large number of nbc candidate solutions for µ and Σ are generated that

are close to µr(z) and Σr. This is established by creating uniform random samples

centered around µr(z) and Σr. The range for these samples is chosen so that the
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value of Fp2 does not become excessively large, because the latter indicates signif-

icant departure of the modified model from the initial one, which might produce

ground motions with unrealistic characteristics. Since estimation of Fp2 is simple,

a pre-screening can be implemented, rejecting any candidate solution with (large)

value of Fp2 over some desired threshold. Value close to 10 is appropriate for the

latter threshold. This choice corresponds to modification of the standard deviation

up to 50% and modification of µ within a hypersphere 5 standard deviations away

from µr(z). Once all nbc candidate solutions are obtained, objective functions Fp1

and Fp2 are calculated for each of them. Estimation of objective Fp1 in this case

leverages the computational efficiency of the metamodel in performing vectorised

predictions: the calculations are simultaneously performed for all nbc candidate

solutions, or using subsets with a lower number of members depending on the

available computational resources (memory can be a problem for vectorised oper-

ations depending on n and nbc). The dominant solutions representing the Pareto

front can be then readily identified by comparing the values for the two objectives

over all candidate solutions. The only challenge is that the value of nbc needs to

be large in order to obtain an adequate representation of the Pareto front. Proper

selection for nbc is examined in the illustrative example. Once the Pareto front

has been identified, a solution (among the Pareto set) can be adopted using any

desired criterion. This will be further discussed in the illustrative implementation.

5.5 Illustrative implementation

The illustrative implementation considers the stochastic ground motion model de-

veloped by Rezaeian and Der Kiureghian (2010) and presented in Appendix A with

model parameter vector including the arias intensity Ia, the significant duration

D5−95, the time corresponding to 50% of the intensity tmid and the associated spec-

tral frequency ωmid, the rate of change for that frequency ω′, and the damping ratio

ζf for the excitation spectrum. The arias intensity simply scales the ground mo-

tion, so it corresponds to parameter θs in representation Y g
i (θ,w) =

√
θssi(x,w),
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with the five remaining parameters corresponding to x. For the target hazard,

GMPEs used in the Western US are selected here (Abrahamson and Silva, 2008;

Boore and Atkinson, 2008; Campbell and Bozorgnia, 2008; Chiou and Youngs,

2008), whereas the suggestions in Kaklamanos et al. (2011) are adopted to esti-

mate unknown inputs for some of the GMPEs. As target, IM predictions of the

logarithmic mean and variance from individual GMPEs as well as the average of

their predictions is used. Note that the latter provides single target hazard for

each structural period examined, simply that hazard is obtained by averaging in-

formation from multiple GMPEs. All computations are performed in a quad-core

3.0 GHz Xeon processor with 16 Gb of RAM and all computational times reported

herein are for this processor. Fault and site characteristics are taken, respectively,

as strike-slip fault and shear wave velocity in upper 30 m of soil Vs,30=800 m/s.

For moment magnitude M and rupture distance R different values will be exam-

ined. As IM for the seismic hazard description, the peak pseudo-acceleration PSA

(Sa) for an SDoF system with 5% damping ratio is utilised. Different ranges of

structural periods will be examined for Sa and, unless otherwise specified, the ob-

jective function Fp1 is estimated as the weighted average of the entropies for each

scalar IM as in Equation 5.7, with the weights chosen as γi=1, so that no specific

structural period is prioritised.

5.5.1 Details for metamodel development

For the characterisation of domain X and the selection of the support points for the

metamodel development, the same approach as in Chapter 4 is adopted, the only

difference being that a larger domain is considered here with a relative increase

of 70% compared to that considered in Chapter 4. The reason for the latter is

to support higher accuracy in the MCS implementation: in Chapter 4, evaluation

only at the new (modified) predictive relationships was required so proximity to

the initial predictive relationships needed to account only for that modification,

whereas here the MCS estimation will need to utilise the metamodel predictions
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for parameters even further away from the modified (and therefore from the initial)

mean predictive relationships.

Logarithmic mean and variance for Sa for different periods, the ones used by the

aforementioned GMPEs, is adopted as the response output for the metamodel de-

velopment whereas the white-noise samples are chosen as nw=100. Three different

accuracy criteria with associated coefficient of determination 0.92, 0.94 and 0.96

are selected for the adaptive metamodel development as presented in Chapter 4.

This leads to metamodels with 1500, 3000 and 4500 number of support points, re-

spectively. Note that the accuracy of the established metamodels is much higher

for prediction of the logarithmic mean rather than the logarithmic variance. For

example for the metamodel with 4500 support points the average coefficient of

determination is 0.99 for the logarithmic mean and 0.94 for the logarithmic vari-

ance. This trend agrees with past studies (Gidaris et al., 2015) that have examined

the use of metamodels in approximating seismic hazard when stochastic ground

motion models are utilised for the description of the latter. This should be also

viewed as a positive attribute of the metamodel approximation for the purposes

of this study: the logarithmic mean has a higher importance towards the hazard

description for the typical earthquake engineering applications that have logarith-

mic variance smaller than 1 (the scaling of difference of logarithmic means by

1/σ2
i (z) > 1 in Equation 5.8 when estimating discrepancy form target also reveals

this), which means that a higher degree of confidence exists for properly approx-

imating this hazard than the average coefficient of determination (averaged over

both logarithmic mean and variance) indicates, because the accuracy for the more

important component (logarithmic mean) is higher.

Estimation of metamodel response for 10000 samples requires 3.6, 7.5, and 10.7 s

for the metamodels with 1500, 3000, and 4500 support points, respectively. Note

that adoption of larger value of samples prohibits efficient vectorisation of opera-

tions for the n=4500 points due to memory restrictions. Calculation of objective

function Fp1 for Ns=100 MCS samples requires 0.005, 0.10, and 0.16 s for the

metamodels with 1500, 3000, and 4500 support points, respectively. It should be
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stressed that, as advocated earlier, evaluation of the metamodel across multiple

candidate solutions is simultaneously performed to better leverage the computa-

tional efficiency allotted by the vectorised metamodel evaluation. For example,

for Ns=100, 100 different candidate solutions are examined; this leads to a total

of 100·100=10000 samples for the metamodel evaluation, which avoids memory

problems even for the metamodel with 4500 support points.

5.5.2 Validation of lognormal distribution assumption
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Figure 5.2: Comparison for Fp1 evaluated either through lognormal assump-
tion for Y g

i or KDE approximation utilising samples for actual ground motion
model (top row) and metamodel predictions (bottom row). Columns correspond

to three different Yi, representing, respectively, PSA for 0.01, 0.5 or 2 s.

First the validation of the lognormal assumption for the response output Y g
i dis-

tribution is examined. This is performed separately for the response output from

the exact stochastic ground motion model as well as for the metamodel approxi-

mation. Distribution pg(ln(Yi)|µ,Σ) is approximated though KDE (Equation B.1)

as discussed in Appendix B using ns=1000 samples of Y g
i . Comparison is primar-

ily expressed though objective Fp1 because this is the critical quantity utilised in
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the proposed framework. The target hazard corresponds to the average of the

aforementioned four GMPEs. The predictive model proposed in Rezaeian and

Der Kiureghian (2010), referenced herein as unmodified model, is used for defin-

ing µ and Σ, but comparison extends over a wide range of seismicity scenarios,

M in range [6 8] and R in range [10 100] km. The latter guarantees that val-

idation extends over the wider range that the optimisation is going to examine

with respect to the predictive relationships. Figure 5.2 shows Fp1 evaluated either

through the lognormal assumption or through the KDE approximation for three

periods Ts=[0.01 0.5 2] s (columns of the figure). In this instance Fp1 is evaluated

for each period separately to assess impact over specific structural characteristics,

rather than averaged over the different IMs. Top row corresponds to compari-

son with respect to the actual stochastic ground motion model and bottom row

to comparison with respect to the metamodel approximation. The comparisons

in this figure show exceptionally close agreement for objective Fp1 between the

lognormal assumption and the KDE approximation (compare the two curves in

each subplot) over the entire seismicity range and for all structural periods. This

agreement holds for both the actual model and the metamodel. The results in the

figure allow for some additional observations. First there is a very good agreement

between the metamodel and the actual model (compare the results across the

rows). This provides a preliminary validation, examined further in the following

sections, of the proposed, metamodel-based framework. Secondarily, for certain

seismicity ranges, the unmodified model has large discrepancy (large Fp1 values)

from the target hazard. This validates the claim that motivated this study, that

existing approaches for selecting predictive relationships do not necessarily provide

a close match to the desired hazard for some structures or seismicity scenarios.

For assessing what constitutes large value of Fp1 based on Equation 5.8, values

close to 0.005 should be considered as small, values close to 0.02 as moderate and

values over 0.05 as large.

The compatibility with respect to the lognormal assumption is further examined

in Figure 5.3, which shows the CDF for Y g
i for a particular seismicity scenario,
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corresponding to M=6 and R=20 km. Similarly to Figure 5.2 each column cor-

responds to a different period Ts. The results in Figure 5.3 show, again, a very

good match not just between the CDFs using the KDE approximation or the log-

normal assumption but also between the CDFs using the actual model and the

metamodel. Overall, the comparisons in Figures 5.2 and 5.3 justify the use of a

lognormal assumption for the distribution of Y g
i . Additionally, they provide a first

validation for the accuracy of the metamodel approximation, when compared with

the actual ground motion model, with respect to both the entropy (Figure 5.2)

but also the exact distribution of Y g
i (Figure 5.3).
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Figure 5.3: Comparison for the CDF Y g
i = PSA (P [PSA < x]) based on log-

normal assumption or KDE approximation utilising samples for actual ground
motion model and metamodel predictions. Cases correspond to PSA for (A)

0.01, (B) 0.5 or (C) 2 s.

5.5.3 Optimisation details and metamodel accuracy

This section examines details of the numerical solution of the optimisation prob-

lem. For the MCS of Equations 5.19 to 5.21, Latin hypercube sampling (LHS) was

adopted, and for the sample size Ns different values in range [20 150] were exam-

ined. The selection of the exact value of Ns is a compromise between numerical

efficiency (it proportionally impacts the computational burden) and robustness of

the multi-objective optimisation (identification of correct Pareto front). After sen-

sitivity analysis, a value of Ns=70 was chosen. The coefficient of variation (CoV)

for Fp1 using MCS estimates of Equations 5.19 to 5.21 with Ns=70 was found to

be in range 3% to 4% which should be deemed sufficient considering the fact that
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CRN are further utilised (Spall, 2003) to reduce the importance of the associated

estimation error in the comparisons established across the optimisation.

The discussion moves next to the impact of the number of points used in the ran-

dom search nbc. The considerations are similar to the selection of Ns (efficiency

versus robustness) although in this case the selection is not as straightforward

because there are no simple statistics like the CoV to compare. The sensitivity

analysis is performed instead by solving the optimisation problem for different

values of nbc. The target used in this section corresponds to structural periods

Ts=[0.4 0.5 0.75 1.0 1.5 2.0] s and hazard described by the average of the consid-

ered GMPEs. Three different seismicity scenarios M=6-R=20km, M=7-R=30km,

and M=8-R=50km are considered. The first scenario represents a case that the

unmodified model provides a poor match to the target hazard, the second one

achieves a good match, and the last case lies in between the other two. Figure 5.4

presents the Pareto fronts identified through random search for different number

of points nbc. The metamodel with 4500 support points is used in this case. Only a

few representative solutions and not the entire front are shown for clarity. Results

are reported in this figure and in the remaining of the manuscript with respect to√
Fp1 and

√
Fp2 to facilitate an easier comparison (differences of extreme values

easier to discern). Figure 5.4 shows that the differences between the identified

fronts for different nbc values are only minor, and they occur primarily for small√
Fp1 - large

√
Fp2 combinations. Note that the objective function

√
Fp1 values

for the M=7-R=30km scenario are very low (due to an already good match of the

unmodified model to the target hazard); therefore, any identified differences be-

tween the Pareto fronts for different number of points nbc are of smaller relevance.

This comparison shows that a value of nbc around 100,000 to 250,000 should be

considered as sufficient for identifying an adequate representation of the Pareto

front. An nbc value equal to 150,000 is adopted for the random search results

presented in the remaining of the manuscript.

The impact of the metamodel accuracy is examined next. This is established by

considering additionally the results obtained by using the exact stochastic ground
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Figure 5.4: Pareto fronts identified by random search for different number
of candidate solutions nbc for different seismicity scenarios (A) M=6-R=20km,

(B) M=7-R=30km, and (C) M=8-R=50km.
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tic ground motion model. Two seismicity scenarios examined M=6-R=20km

[black] and M=8-R=50km [gray].

motion model, which represents the measure for evaluating the actual hazard

compatibility of the identified ground motion model. Comparison is performed

across different Pareto optimal solutions. The Pareto fronts identified by using

the metamodels with the three different number of support points are presented

in Figure 5.5 for seismicity scenario M=6-R=20km and M=8-R=50km. Note that

for seismicity scenario M=7-R=30km which was also presented in Figure 5.4, the

results are of limited interest since the unmodified ground motion model provides

a good compatibility to the target hazard. This is the reason that this seismicity

scenario is not presented here. In all cases, the random search is implemented
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with the same candidate solutions, to facilitate a consistency in the corresponding

comparisons. Then, Figure 5.6 presents spectral plot comparisons for the solution

(among the Pareto set identified in each case) corresponding to the minimum of

Fp1 for the seismicity scenario M=6-R=20km. Similar trends hold for the M=8-

R=50km seismicity scenario. In all plots the predictions using the metamodel and

the actual ground motion model are reported. Figure 5.6 offers comparisons in

context of both average response (top row) using curves corresponding to median

and 14th to 86th percentiles (denoted as median ±σlog herein), and logarithmic

standard deviation (bottom row). The former assesses the hazard compatibility

with respect to different IM statistics and the latter explicitly with respect to the

IM dispersion.
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Figure 5.6: Spectral plots for the solutions corresponding to minimum of Fp1
in the Pareto fronts identified in Figure 5.5 for the M=6-R=20km seismicity
scenario. Top row shows curves corresponding to median and median ±σlog for

the response. Bottom row shows logarithmic standard deviation (σlog).

The results show that good agreement is established between the metamodel pre-

dictions and the actual model predictions along the Pareto front for all three

metamodel cases: 1500, 3000, and 4500 support points. This is evident in both

the Pareto fronts (Figure 5.5) and the corresponding spectral plots (Figure 5.6),
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the latter indicating a good match in terms of both the mean and variability of

the hazard. For the lower accuracy metamodel utilising only 1500 support points

greater differences exist, especially for smaller Fp1 values, but the discrepancies

even for it are overall quite small, significantly smaller than the ones reported in

Chapter 4 where this metamodel was shown to lead to erroneous results, identify-

ing suboptimal solutions when the metamodel error was not explicitly considered

in the optimisation. This should be attributed to the fact, discussed also in Sec-

tion 5.4.2, that objective Fp1 represents a statistical quantity over θ, and averaging

over different θ values for evaluating Fp1 reduces the potential influence of larger

errors for specific θ values. This discussion and the good agreement reported in

Figures 5.5 and 5.6 also further validate the choice to avoid the explicit considera-

tion of the metamodel prediction error in the problem formulation (see discussion

in Section 5.4.2). This consideration would increase the computational burden

while providing negligible benefits in terms of the quality of the identified Pareto

fronts. Overall, all examined here metamodels provide adequate accuracy in the

identification of the Pareto front, with no need to explicitly consider the meta-

model prediction error, with preference towards the metamodel with 3000 or 4500

support points. The latter will be utilised in all remaining comparisons in this

manuscript.

Some final remarks are warranted with respect to the overall computational cost.

The primary computational burden of optimisation of Equation 5.4 stems from

the Ns · nbc evaluations of the metamodel required for the MCS of Equations 5.19

to 5.21 across the search for the Pareto front. For the scenario advocated earlier

with Ns=70, nbc=150,000 and use of metamodel with 4500 support points, the

time is 180 minutes per seismicity scenario. If the metamodel with 3000 support

points is used instead the required time reduces to 120 minutes. Compared with

the study in Chapter 4 this represents an important increase of the computational

cost: there is ultimately a Ns-fold increase of this cost for same nbc value, stemming

from the MCS step.
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5.5.4 Implementation for different seismicity scenarios

With the computational details ironed out the discussion moves next to the haz-

ard compatibility established by the proposed modification of the ground motion

model. Figure 5.7 shows results for six seismicity scenarios targeting seismic haz-

ard given by the average of the aforementioned GMPEs for two different ranges

of Ts: Ts=[0.4 0.5 0.75 1.0 1.5 2.0] s and Ts=[0.4 0.5 0.75] s. These two different

cases are referenced herein as long and short, respectively, period ranges. The pro-

posed framework identifies in each case a Pareto front that clearly demonstrates

the compromise between the two objectives, with different characteristics in each

case, depending on how close the unmodified ground motion model was to the

target hazard. Choosing a shorter period range for the target IMs facilitates an

overall better match (smaller Fp1 values); this is anticipated because objective Fp1

imposes less strict requirements (fewer number of components to match) in this

case.
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to long (black) or short (gray) period range IMs for defining the seismic hazard.
In each plot, the Pareto point with minimum distance from utopia point is
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To select a solution within the identified Pareto set, one of the most common

approaches within the multi-objective optimisation literature (Keeney and Raiffa,

1993) is to choose the one that has the smallest normalised distance from the

utopia point, defined as the point in the Pareto front that corresponds to the

idealised (unachievable) minimum of the two objectives across the front. Following

the guidelines in Chapter 4 for choosing the normalisation, the following distance

metric is chosen

Dp(θ) =

√√√√∑
i=1,2

(√
Fpi(θ|z)−min

√
Fpi

max
√
Fpi −min

√
Fpi

)2

;

max
√
Fpi = max

{θp;i=1,...,np}
(
√
Fpi), min

√
Fpi = min

{θp;i=1,...,np}
(
√
Fpi)

(5.22)

The corresponding point is identified in all cases in Figure 5.7. Another option

would have been to choose the solution that satisfies a pre-determined threshold

for the match to the targeted IMs.

These selections are finally demonstrated for a wide range of seismicity scenarios,

M in range [6 8] and R in range [10 100] km, in Figures 5.8 to 5.13. For each

scenario, three different Pareto points are selected, the one with smallest distance

Dp(θ) from the utopia point and the ones with objective
√
Fp1 smaller than 0.15 or

0.075. These three cases are denoted, Ut, Cl, and Cs, respectively. The thresholds

for Cl and Cs modifications were chosen so that to reflect medium and small,

respectively, incompatibility to the target hazard. In addition, results for the

unmodified model are presented, denoted Un. Figure 5.8 shows plots for (i - first

row)
√
Fp1 for Ut and Un (

√
Fp1 is constrained for the other two cases) and for

(ii – second and third rows)
√
Fp2 for Ut, Cl and Cs (

√
Fp2 is zero for Un). To

better demonstrate the differences, results are presented separately for Ut (second

row) and for the pair Cl and Cs (third row) in the latter case. The three different

columns in the figure correspond to three different implementation cases: target

hazard given by the average of the aforementioned four GMPEs for both the (A)

long and (B) short period ranges as well as (C) target hazard given only by GMPE
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Boore and Atkinson (2008) for the long period range. These scenarios are denoted

herein as SC1, SC2 and SC3 respectively. Figures 5.9 to 5.11 show spectral plots

for a selection of seismicity scenarios, defined by combinations of M [6.2, 6.8,

7.4, 8] and R [30, 60, 90] km, for SC1. For each of the 12 M -R combinations

spectral curves corresponding to the target hazard, the unmodified model and the

predictions by the three aforementioned model modifications are shown to facilitate

comparisons. More specifically, Figure 5.9 shows curves corresponding to different

statistics of the response (median and median ±σlog) for the unmodified model and

the model corresponding to the Pareto point with smallest distance from the utopia

point (Ut case). Figure 5.10 presents the same curves for the models corresponding

to the Pareto points with average relative entropy thresholds Cl and Cs. Figure

5.11 presents same comparison directly in terms of logarithmic standard deviation

(i.e., IM dispersion). In all these figures the curves corresponding to the target

are also shown.

Finally, Figures 5.12 and 5.13 show the predictive relationships for all examined

seismicity scenarios for the modified model corresponding to the Pareto point

with smallest distance from the utopia point (Ut case) for SC1. In particular,

Figure 5.12 shows the mean model parameters θ of the modified predictive model

(corresponding to µ for the aforementioned Pareto point). The unmodified ground

motion model parameters (corresponding to µr) as well as another case that will

be discussed in the next section are also included. Then, Figure 5.13 shows the

ratio of standard deviation for the modified and unmodified model (comparison

of square root of the diagonal points of Σ for the aforementioned Pareto point

and Σr). Note that some of the curves shown in these figures have non-smooth

characteristics. As discussed in Chapter 4 this should be attributed to the fact

that a discrete representation of the Pareto front is obtained and to the random

search characteristics of the adopted optimisation algorithm for identifying the

Pareto front.
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Figure 5.8: Results for
√
Fp1 and
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Fp2 for unmodified ground motion model
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√
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The baseline trends observed in the figures are similar to the ones in Chapter 4.

These trends are enhanced in this study with additional considerations with re-

spect to the variability associated with the seismic hazard. The unmodified model

does not provide a good match to the target hazard for the entire seismicity range

as observed in first row of Figure 5.8 and also in the spectral plots in Figures 5.9

and 5.11. This is particularly true for the logarithmic mean, i.e., median (Fig-

ure 5.9), with logarithmic variance, i.e., dispersion (Figure 5.11), showing better
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Figure 5.9: Spectral plots of average response for seismicity scenarios (different
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corresponding to median and median ±σlog shown.

compatibility to start with. The proposed modification (cases Ut, Cl, and Cs)

significantly improve the match to the hazard (Figure 5.8), establishing a balance

between Fp1 and Fp2, with the characteristics of the balance depending on the cri-

teria for selection of the final model among the Pareto optimal solutions. Similar

to Chapter 4 when the unmodified model has larger discrepancies from the target

hazard, then the modifications lead to larger values for Fp2, but still successfully

identify models, independent of the implementation case, that provide an improved

match to the IM target mean and variance. This is clearly observed for Cl and

Cs cases; Cs imposes a smaller discrepancy between the modified model and the

target hazard and the modification leads to identification of a model with bigger
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differences from the original one (larger values for Fp2). The Ut modification iden-

tifies a model with moderate discrepancy from the unmodified one, corresponding

to values of
√
Fp2 in the range of 0.2 to 0.8, whereas the two other modification

approaches, Cl and Cs, identify models with greater variability across the differ-

ent seismicity scenarios. For scenarios in the range of M=7-7.5, the unmodified

model provides a good match to the target hazard and therefore modification of

it provides limited benefits. This is perhaps better captured by the Cl case, which

corresponds to low
√
Fp2 values for this seismicity range, significantly lower than

the Ut modification. This indicates that a satisfactory match to the target hazard,

i.e., a match satisfying the predefined compatibility threshold, is established with

no need to greatly modify the initial predictive models. Thus, selection of the

Pareto optimal model based on a targeted accuracy to the GMPEs, i.e., value for

Fp1 below a certain threshold as in the Cs and Cl cases, provides a more rational

selection for the final model as it allows a more direct recognition of the seismicity

ranges where modification is not truly required. Selection of a small threshold (Cs

case), however, results in identification of a model with large discrepancies from

the unmodified model (large Fp2 values). This model will typically be far away

from the Ut case and belong in a steep part of the Pareto front (check Figure 5.7

earlier), meaning that small improvements in Fp1 come at a large increase of Fp2.

A multi-level selection criterion similar to the one proposed in Chapter 4 may

be therefore advocated: select the Pareto optimal solution that satisfies a certain

accuracy threshold for Fp1 unless this solution leads to a greater Fp2 value than

the Pareto optimal solution with minimum distance from the utopia point. If the

latter happens, then select the Pareto optimal solution with minimum distance

from the utopia point.

From the comparison of the different implementation cases shown in Figure 5.8,

it is evident that selection of a shorter period range (compare cases (B) and (A))

establishes an easier match to the target, as it results in smaller overall values

for Fp1 and Fp2. The selection of a different target (compare cases (A) and (C)),
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Figure 5.10: Spectral plots of average response for same seismicity scenarios
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√
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(Cl) or 0.075 (Cs). Implementation scenario shown corresponds to matching to
the average considered GMPEs and long period range. Curves corresponding

to median and median ±σlog shown.

although not imposing any additional constraint in the optimisation implementa-

tion, leads to different results. Overall, the discrepancy between the unmodified

model and the target hazard follows the same trends in all implementation cases.

This demonstrates the versatility of the proposed framework as the modification

facilitates an enhanced hazard compatibility for all IMs and hazard targets con-

sidered.

The spectral plots in Figures 5.9 to 5.11 provide the decomposition of the overall

Fp1 match to the different structural periods and the statistics of the IM distri-

bution (median and dispersion). The comparison between the unmodified and

modified cases shows that the match to both the target median and dispersion
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Figure 5.11: Spectral plots for logarithmic standard deviation of response for
the same cases examined in Figures 5.9 and 5.10.

are separately addressed within the proposed optimisation. This is also supported

by the trends in Figures 5.12 and 5.13; not only the mean (Figure 5.12) but also

the standard deviation (Figure 5.13) of the predictive model is adjusted. Overall

for the ground motion model examined here, the match to the target dispersion

offered by the unmodified model, and subsequently by the modified one, is quite

good (compare relative discrepancies for Un in Figures 5.8 and 5.11). Although the

proposed modifications also impact this dispersion (Figure 5.11), the impact on

the median (Figures 5.9 and 5.10) is more substantial. This should be attributed

to ability to influence value of objective Fp1 more by adjustments in ln(Ȳ g
i (µ,Σ))

rather than σgi (µ,Σ) (formulation of Equation 5.8 and scaling of differences from

the target for the former by σ2
i (z) also reveals that), something automatically

leveraged by the optimisation. With respect to the different modifications, the Cs

always provides a better match compared with Cl one, although the spectral curves

of the two modifications are very close to each other especially for lower magnitude
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ranges M=6.2-6.8. The Ut modification also provides a good match to the target,

frequently very close to the Cl and Cs cases, depending on the original match

of the unmodified model (i.e., how much the modification is truly needed). This

observation further supports the multi-level selection criterion discussed earlier.

The results in Figures 5.12 and 5.13 show that the model modification leads to

similar characteristics as observed for the unmodified model. This guarantees that

the proposed ground motion model modification does not deviate significantly from

observed regional trends and was achieved by incorporating this deviation as an

objective in the problem formulation (objective Fp2). Parameters Ia, ζf , and ω′

show bigger variability compared with their initial mean values (Figure 5.12). This

should be attributed to a greater sensitivity with respect to them of the resultant

ground motions and agrees with the trends reported in Chapter 4. With respect

to the adjustment of the variability of the predictive model, the ratio of standard

deviations remains close to 1 (Figure 5.13) with values in the range of 0.8 to 1.05,

indicating small (but not negligible) overall adjustment.

The physical ground motion model parameters θ corresponding to the mean pre-

dictive relationships of the unmodified Un (i.e., µr) and modified ground motion

models Ut and Cs (i.e., µ) for the 12 seismicity scenarios of Figure 5.9 are presented

in Table C.3 in Appendix C. Table C.4 shows the coefficient vector β that can be

used to derive the covariance matrix of the modified predictive relationships Σ as

C ·B ·CT , where C is the Cholesky decomposition of the original covariance ma-

trix Σr and B is a diagonal matrix whose main diagonal comprises the elements

of vector β. The median and σlog spectral acceleration estimates (PSA) are shown

for the same ground motion model cases along with the target estimates (average

of four GMPEs) in Tables C.5 and C.6, respectively.

The overall discussion shows the importance of the established framework: once

the initial metamodel is developed, it can support the efficient identification of

ground motion models that (i) match conditional hazard for any desired IMs and
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Figure 5.12: Mean for physical ground motion model parameters θ corre-
sponding to unmodified ground motion model (Un), modified ground motion
model with minimum distance from utopia point for matching the complete
probabilistic hazard (Ut) or the hazard corresponding to mean predictive re-
lationships (Utm). Implementation scenario corresponds to matching to the

average considered GMPEs and long period range.

chosen period range while (ii) maintaining a small deviation from the initial predic-

tive models. This can be seamlessly repeated for any seismicity scenario. The final

ground motion model modification can be chosen based on the criteria discussed

earlier.

5.5.5 Comparison to modification of mean value charac-

teristics only

As discussed in Section 5.5.3 the computational cost of the proposed modifica-

tion to match the probabilistic seismic hazard is significantly higher than previous

efforts to match only the IM predictions corresponding to the mean predictive
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Figure 5.13: Ratio of standard deviations for the ground motion model pa-
rameters between modified and unmodified ground motion model (Un and Ut

cases in Figure 5.12).

relationships for the ground motion model presented in Chapter 4, i.e., completely

ignoring the variability stemming from Σ in the predictive model for θ (using

Σ=0). This increase in computational burden stems ultimately from the need

to estimate the statistics of the response when the variability of the predictive

model p(θ|µ,Σ) is considered. It is therefore of interest to examine whether

the computationally less demanding problem of matching only the IM predictions

corresponding to the mean of the predictive relationships (approach presented in

Chapter 4) can be adopted as a surrogate for the problem of interest here. This

is equivalent to assuming Σ=0 in the optimisation of Equation 5.4 and leads to

modification of the mean only predictive relationships, while greatly reduces com-

putational cost of the numerical optimisation as it entails no MCS step (because

Σ=0). This facilitates a Ns-fold reduction of the computational burden as dis-

cussed earlier. The resultant modification of the predictive relationships will be

denoted µm herein.

The quality of the solution obtained from this approximate problem may be then

assessed by evaluating objectives Fp1 and Fp2 assuming distribution p(θ|µm,Σr),

i.e., adopting the initial variability of the predictive models Σr, or p(θ|µm, 0), i.e.,
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√
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(Un) and modified ground motion model with minimum distance form utopia
point for matching the complete probabilistic hazard(Ut) or the hazard cor-
responding to mean predictive relationships (Utm). For the latter estimation
of objectives adopts variability of the initial (Un) predictive model but with
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the average considered GMPEs and (C) long period ranges for match to GMPE

Boore and Atkinson (2008).

ignoring any variability in the predictive models and utilising only the variability

stemming from the white-noise to calculate response statistics. The comparison

can be performed with respect to the entire Pareto front for limited number of

seismicity scenarios or with respect to a specific solution along the front over a

wider range of scenarios. The latter comparison is reported here, with specific

solution chosen as the point with minimum distance from the Utopia point. The

solution available from Chapter 4 is directly utilised for µm. The case correspond-

ing to p(θ|µm,Σr) is denoted as Utm and case corresponding to p(θ|µm, 0) as

Utmn. Results are shown in Figures 5.14 and 5.15, following same guidelines as

the study reported in Figures 5.8 and 5.9. Figure 5.14 compares Un, Ut, and Utm

across both objectives over a range of seismicity scenarios (i.e., adds Utm curve in

the results reported in Figure 5.8), and Figure 5.15 presents spectral plots for the
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target seismic hazard, Utm and Utmn. Latter figure should be compared directly

to Figure 5.9 to evaluate the relative advantages of Ut (adding that curve in this

plot is avoided to improve clarity of the presentation). Solution for the physical

parameters corresponding to µm has been also reported earlier in Figure 5.12.

Note that this solution is same for both Utm and Utmn.
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Figure 5.15: Spectral plots for seismicity scenarios (different subplots) cor-
responding to combinations of M [6.2, 6.8, 7.4, 8] and R [30, 60, 90] km, for
the target hazard (target), and modified ground motion model with minimum
distance from utopia point for matching the hazard corresponding to mean pre-
dictive relationships. For the latter the cases adopting variability of the initial
predictive model (Utm) or no variability (Utmn) are shown. Implementation
scenario shown corresponds to matching to the average considered GMPEs and
long period range. Curves corresponding to median and median ±σlog shown.

With respect to Utmn first (Figure 5.15) the results show the importance of con-

sidering the variability of the predictive relationships. Reliance only on the vari-

ability stemming from the white-noise provides significantly lower variability for

the seismic hazard than the variability prescribed by GMPEs (compare median

and median ±σlog curves for target and Utm cases). This ultimately leads to large
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values for Fp1 for Utmn which is the reason that results for it are not reported

in Figure 5.14. Comparison now between Ut and Utm in Figure 5.14 shows that

the explicit optimisation for the probabilistic hazard provides for some scenarios

a noticeably better match (smaller Fp1 values for Ut) for the same level of modi-

fication of the initial probability model (similar Fp2 values for Ut and Utm). Utm

modifications even underperform the unmodified model Un for some scenarios,

corresponding to cases for which Un provides an adequate match to the target

hazard to start with. Same trends are observed in the spectral plots in Figure

5.15. Overall Utm is shown to provide an improvement over Un when the initial

match to the hazard is not adequate, though it might underperform Ut due to

its inability to explicitly accommodate the hazard variability. It should be also

pointed out that based on the results in Figure 5.12, even the mean value vectors

for the predictive relationships identified by different modification approaches (Ut

and Utm) are different. A final interesting comparison can be established with re-

spect to the mean spectral response for Utm and Utmn (black curves in Figure 5.15).

Consideration of the variability in the predictive model after the optimisation (Utm

case) impacts even the mean of the predicted response, not only the variability

of that response, and overall moves that response further away from the desired

target, which, recall, was the objective in the underlying modification for the mean

predictive relationships µm. This discussion shows that even though the surrogate

optimisation for only µm may provide an improvement over the unmodified model

for scenarios of high initial discrepancy from the target probabilistic hazard, the

post-consideration of variability in the predictive models is problematic. Setting

initially Σ=0 to identify µm and then calculating the hazard for predictive model

(µm, Σr) provides ultimately a lower quality fit to the target hazard. Despite the

higher computational burden associated with it, the simultaneous modification of

the entire predictive model for θ (both µ and Σ) is therefore advocated.
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5.6 Conclusions

The modification of stochastic ground motion models to establish hazard compati-

bility for specific seismicity scenarios was discussed in this chapter. The hazard for

each scenario was described with respect to some IM of interest and a probabilistic

description was adopted for it, for example defined through mean and dispersion

characteristics. The modification of the ground motion model was defined as

an adjustment of the probabilistic predictive models/relationships that relate the

parameters of the ground motion model to seismicity characteristics. Both the

mean of the predictive model and the associated variance were adjusted. The pro-

posed modification was defined as a bi-objective optimisation with dual objective

of minimising the discrepancy between the hazard for a given structure/site and

the predictions established through the stochastic ground motion model, while

maintaining a small deviation from the original predictive relationships, assumed

to facilitate similarity to observed regional trends. This setting extends the work

of the previous Chapter 4 that examined modification of only the mean predictive

relationships with goal to match the corresponding IM predictions, ignoring any

variability in either of these two components. The relative entropy was adopted

as metric to quantify the objectives considered in the multi-objective optimisation

problem, whereas the same surrogate modeling framework as in Chapter 4 was

utilised for an efficient optimisation. Emphasis was placed on the estimation of

the various response statistics needed for the entropy calculation, and a MCS ap-

proach was advocated for it coupled with assumption for lognormal distribution

of the response when considering the variability of the predictive models/rela-

tionships. The computational approach explicitly considered the fact that most

ground motion models involve a separate parameter that impacts their scaling.

This parameter was separately treated with respect to both the surrogate model

development and the MCS. Different statistical assumption for the distribution

of the ground motion model output was also examined for the evaluation of the

entropy for the first objective.
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In the illustrative example, the proposed framework was applied using a recently

developed record-based stochastic ground motion model. It was shown that log-

normal distribution assumption for calculating the first objective provides an ad-

equate approximation for the application at hand, whereas the metamodel-aided

optimisation can facilitate an accurate identification of the Pareto front even when

lower accuracy metamodels are utilised, a feature that did not hold in the study

presented in Chapter 4. The necessity to calculate response statistics through MCS

increases, though, the computational burden of the approach. Application to wide

range of seismicity scenarios and different approaches for determining the seismic

hazard (different IMs or sources for the target values) were examined, illustrating

the advantages for the proposed framework: it allows significant improvements

to the target hazard match, especially for seismicity scenarios for which the un-

modified model provides a poor initial fit, with minor only modifications to the

original predictive model, something that can guarantee a good agreement with

observed regional trends. With respect to selection of the final model across the

identified Pareto front, same recommendation as in Chapter 4 is made: select the

Pareto optimal solution that satisfies a certain accuracy threshold for match to

the target hazard (Fp1 constraint) unless this solution leads to a greater modifi-

cation for the predictive model (Fp2 value) than the Pareto optimal solution with

minimum distance from the Utopia point. Finally, the approach presented in this

chapter was compared with the approach of Chapter 4: modification of only the

mean predictive relationships to match the corresponding hazard for these mean

predictions. It was shown in this case that the latter approach may provide an

adequate surrogate for seismicity scenarios with high initial discrepancy to the

target hazard, though overall it is better to explicitly consider the impact of the

variability in the predictive models (i.e., calculate response statistics) and simul-

taneously modify the entire predictive model (i.e., not only focus on the mean of

the predictive relationships).

The main limitation of the approach is the significant computational burden for

performing the multi-objective optimisation to identify the Pareto front, a burden
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stemming from the MCS step. Considering the fact that the proposed modification

needs to be repeated for each seismicity scenario of interest, further reduction

of this burden, which will have to come from a more computationally efficient

implementation of the surrogate model predictions, is an important extension of

this work, which is not part of the scope of this thesis.

Finally, the validation of the proposed stochastic ground motion modification ap-

proaches presented in Chapters 4 and 5 is performed next in Chapter 6.
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Validation of stochastic ground

motion model modification by

comparison to seismic demand of

recorded ground motions

Adapted from Tsioulou, A., Taflanidis, A. A. and Galasso, C. Validation of stochas-

tic ground motion model modification by comparison to seismic demand of recorded

ground motions, Bulletin of Earthquake Engineering. (under review).

6.1 Introduction

Chapters 4 and 5 presented a computationally efficient framework to modify ex-

isting stochastic ground motion models with a dual goal of (i) facilitating compat-

ibility with the target conditional hazard described through any chosen IM while

(ii) preserving desired trends and correlations in the physical characteristics of

the resultant ground acceleration time-series. For a given seismicity scenario the

framework identifies the modified predictive relationships of the stochastic ground

147
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motion model that can sufficiently match the target conditional hazard while main-

taining similarity to preexisting predictive relationships, so that observed regional

physical characteristics of ground motions are retained. The conditional target

hazard is described through the conditional mean and the dispersion of some tar-

get IM (Chapter 5) or simply through only the conditional mean (Chapter 4). The

modification is posed as a multi-objective optimisation problem, with different cri-

teria established for selecting the final predictive relationships.

This chapter extends this effort through a validation study by comparing the

seismic demand of hazard-compatible recorded ground motions to the demands

of stochastic ground motion models that are modified to match the same target

hazard. Suites of recorded and stochastic ground motions, whose spectral accelera-

tion statistics match the mean and variance of target spectra within a period range

of interest, are utilised as input to perform response-history analysis of inelastic

SDoF case-study systems. The resultant EDP distributions are then compared to

perform the desired validation. Validation extends to different seismicity scenarios

and different inelastic and hysteretic characteristics for the SDoF systems.

6.2 Stochastic ground motion model and pro-

posed modification

Similar to the applications in Chapters 4 and 5, the stochastic ground motion

model considered (and modified) is the one developed by Rezaeian and Der Ki-

ureghian (2010), which combines a time-domain modulating envelope function

with a frequency-spectrum with time varying spectral properties. The model pa-

rameter vector, denote as θ herein, consists of: the parameters of the envelope

function corresponding to the Arias intensity Ia, the significant duration D5−95,

and the time at the middle of the strong-shaking phase tmid; and the parameters

of the frequency-spectrum corresponding to the damping ratio ζf , the spectral



Chapter 6 149

frequency ωmid at tmid, and the rate of change for that frequency ω′ (linear varia-

tion is assumed for the spectral frequency). These model parameters are related

through predictive relationships to seismicity and local site parameters: the mo-

ment magnitude, M , the rupture distance, R, the fault type, F , and the shear

wave velocity in the upper 30 meters of soil, Vs,30. The vector of these four param-

eters is denoted as z herein. The predictive relationships developed by Rezaeian

and Der Kiureghian (2010) ultimately define a conditional probability distribution

that relates θ to z, denoted herein as p(θ|µr(z),Σr), where µr(z) are the mean

predictions and Σr represents the variability of these predictions. This ground mo-

tion model description ultimately provides a probabilistic prediction for any IM of

interest, with variability in the predictions stemming from both (i) the stochastic

characteristics of the ground motion model (i.e., fact that it entails a white-noise

sequence); and (ii) the probabilistic description of the predictive relationship be-

tween z and θ (i.e., the fact that Σr exists). For spectral acceleration at a given

period Ti, which is the IM utilised in this chapter, the probabilistic description

through the ground motion model is denoted as pg(ln(Sa(Ti))|µr(z),Σr) and, as

shown in Chapter 5, can be approximated very well as a lognormal distribution

utilising simply the median and dispersion (under the aforementioned two sources

of variability (i-ii)) of Sa(Ti). A complete mathematical description of all these

statistics is available in Chapter 5.

The modification framework developed and discussed in Chapter 5 adjusts µr(z)

and Σr (replaces them with µ and Σ, respectively) for each examined z so that

the conditional (to the seismicity scenario defined by z) seismic hazard established

through the modified model, pg(ln(Sa(Ti))|µ,Σ), provides a closer match to the

desired target seismic hazard for the IM, pt(ln(Sa(Ti))|z). In the context of this

study, the latter is determined through GMPE predictions for the mean and dis-

persion of Sa(Ti) considering a range of periods Ti. This ultimately facilitates a

GMPE-based (or scenario-based) spectra compatibility of the modified stochastic
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ground motion model. This modification is expressed as a multi-objective optimi-

sation problem with two competing objectives. The first objective, F1, is to min-

imise the discrepancy of the target seismic hazard to the hazard predicted through

the ground motion model, i.e., to a comparison between pg(ln(Sa(Ti))|µ,Σ) and

pt(ln(Sa(Ti))|z). The second objective, F2, is to establish the smallest deviation

between the updated probability model p(θ|µ,Σ) and the initial predictive rela-

tionships p(θ|µr(z),Σr), so that consistency of the physical characteristics of the

resultant ground motion simulations with the regional trends observed in recorded

ground motions is achieved. The relative entropy is utilised to quantify both these

objectives, corresponding ultimately to the difference between probability distribu-

tions, and a computational framework relying on surrogate modeling is leveraged

to efficiently solve the resultant multi-objective optimisation. A simplified imple-

mentation of this framework is presented in Chapters 4, where variability in the

predictive relationships is completely ignored, i.e., enforces Σ = Σr = 0 (variabil-

ity stemming from stochastic features of ground motion model still considered),

and establishes compatibility with respect to the median IM predictions, rather

than the complete hazard (median and dispersion of predictions). This simpli-

fied version yields significantly higher computational efficiency with the caveat, of

course, that the dispersion of the predictions is not explicitly optimised. Objective

F1 is expressed in this case as the average squared relative error for Sa(Ti) between

the ground motion predictions and the GMPE-target across the considered peri-

ods, whereas objective F2 as the weighted squared difference between µ and µr(z).

The simplified implementation is references herein as IMC (IM compatibility) with

the full one referenced as HC (Hazard compatibility). Scaling of objectives F1 and

F2 by 1/2 is utilised in this chapter for the IMC case compared to the study in

Chapter 4 to facilitate a more direct comparison to the HC case, since in the rel-

ative entropy-based quantification (HC) the squared differences appearing in the

IMC objectives shown in Chapter 5 are scaled by factor 1/2.

The solution of this multi-objective optimisation problem for either case leads to

a Pareto set of dominant solutions expressing a different compromise between the
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two competing objectives. The representation of the Pareto set in the performance

objective [F1, F2] space, is termed as the Pareto front. For better comparative

normalisation of the solutions the front is represented through the square root

of the objectives [
√
F1,
√
F2]. Figure 6.1 shows representative Pareto fronts for

all seismicity scenarios discussed later in this paper. The front ranges from the

unmodified model, denoted Un, corresponding to F2 = 0 and higher discrepancy

from the IM-target (larger F1 values), to models that establish high compatibility

to the IM-target (small F1 values) at the expense of significant deviation of the

model characteristics from the initial predictive relationships (large F2 values).

Further reduction of F1 (ultimately achieving F1 = 0) is achieved by deviation

from the initial predictive relationships that might yield unrealistic characteristics

for the resultant ground motions and this part of the front is not identified through

the use of appropriate constraints in the multi-objective optimisation as discussed

in Chapters 4 and 5. One can eventually select a model configuration from the

identified Pareto set that yields the desired hazard compatibility (or strictly IM

compatibility for IMC) based on objective F1 without deviating significantly from

regional ground motion characteristics based on objective F2. Following recom-

mendations in Chapters 4 and 5, three specific points are examined, also shown

in Figure 6.1. The first one, denoted Ut, is the point with minimum distance from

the Utopia point, corresponding to the minimum of the two objectives across the

Pareto front (this performance is unachievable due to the conflicting nature of the

objectives). Ut offers a balanced compromise between the competing objectives

and, as shown also in Figure 6.1, improvement of one objective is typically estab-

lished away from that point with greater sacrifices in the other objective (front has

steep slope). The other two chosen points are defined as the ones that achieve a

predetermined compatibility with respect to target hazard, i.e., a specific thresh-

old value of objective F1. The first of these points, denoted Cs, corresponds to

high compatibility (small F1 threshold), whereas the second point, denoted Cl, is

defined following the multi-level criterion proposed in Chapters 4 and 5: select the

point that provides a moderate compatibility (larger threshold for F1 compared

to Cs) unless that point provides a larger compatibility to the target than Ut;
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for those instances update Cl = Ut. This update avoids defining a Cl point that

belongs to the steep part of the Pareto front with respect to objective F2. Also

for the Cs case, if no point in the Pareto front satisfies the desired threshold, the

extreme of the front with respect to F1 is used instead. The thresholds for
√
F1

defining Cs and Cl points are taken as 0.014 and 0.05 for the IMC and HC cases,

respectively, for Cs and 0.07 and 0.15 for the IMC and HC cases, respectively, for

Cl. These thresholds are chosen to represent high and moderate compatibility for

Cs and Cl respectively based on the features of objective F1 for each of the cases

examined.
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Figure 6.1: Pareto fronts for the stochastic ground motion modification for
IMC (black) and HC (gray).

Each of the models corresponding to these three modifications (Ut, Cs and Cl)

or the unmodified model (Un) represents a different stochastic ground motion

model, always for the specific scenario defined by the vector z. For the IMC

case, each model corresponds to a single set of ground motion model parameters

since variability in the predictive model for θ is ignored. Synthetic acceleration

time-histories are obtained by utilising different white-noise sequence samples each
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time, using always the same model parameter vector. For the HC case, a complete

probabilistic description is established for θ. Synthetic acceleration time-histories

are obtained by utilising different white-noise sequence samples along with different

model parameter samples drawn from this probabilistic description.

6.3 Characteristics for validation study

6.3.1 Seismicity scenarios and target IM description

As in similar past studies (e.g., Galasso et al., 2012; Iervolino, De Luca and

Cosenza, 2010; Seifried and Baker, 2016), the validation of the stochastic ground

motion modification approach discussed in the previous section is performed for

specific seismicity scenarios. Six different scenarios are selected, corresponding to

combination of moment magnitude values M = [6, 6.9, 7.8] and rupture distance

values R = [20, 70] km for a strike-slip fault, with shear wave velocity Vs,30 = 600

m/s. Note that these are the four characteristics needed to define the stochastic

ground motion model input (vector z). For the remainder of this paper seismicity

scenarios with M=[6, 6.9, 7.8] and R=20 km are referred to as Scenarios 1, 2 and

3, respectively, and scenarios with M=[6, 6.9, 7.8] and R = 70 km as Scenarios

4, 5 and 6, respectively. As target IMs, Sa(Ti) in the period range 0.2T1-1.5T1 are

utilised, where T1 is the fundamental period of the structure. An elastic period

of T1=1 s is selected, which is typically used as representative fundamental pe-

riod of mid-rise buildings. Note that the aforementioned period range is chosen

based on ASCE 7 (ASCE, 2010) provisions. The median and dispersion for the

target IMs are given for each Ti as the average of four GMPEs used in the West-

ern US (Abrahamson and Silva, 2008; Boore and Atkinson, 2008; Campbell and

Bozorgnia, 2008; Chiou and Youngs, 2008). Note that this is simply chosen for

consistency with Chapters 4 and 5; any other GMPEs, or any other approach that

would define an IM description to match (Lin et al., 2013; Bradley, 2010), could

have been used instead. The suggestions by Kaklamanos et al. (2011) are adopted
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to estimate unknown inputs for some of the GMPEs that need info beyond M ,

R, Vs,30 and fault type. For each of the seismicity scenarios the stochastic ground

motion model modification is implemented as outlined in the previous section,

resulting in the Pareto fronts presented in Figure 6.1. For the Un, Ut, Cs and Cl

models, 200 synthetic acceleration time-histories are then obtained for the IMC

and HC cases to be used as input for NLDA. It should be pointed out that the

initial (unmodified) model established by Rezaeian and Der Kiureghian (2010) was

developed strictly from the perspective of a HC implementation, with predictive

models for θ established explicitly considering the associated variability. Still Un

is examined in both IMC and HC cases here, to demonstrate the benefits of the

stochastic ground motion model modification.

6.3.2 Recorded ground motions

The ground motion record set that are utilised as reference in the study, de-

noted as SR herein, are selected using REXEL (Iervolino, Galasso and Cosenza,

2010), a software that is freely available at http://www.reluis.it/ and al-

lows users to select records from the European strong motion database (or ESD,

http://www.isesd.hi.is/), the Italian Accelerometric Archive (http://itaca.

mi.ingv.it/ItacaNet/), and the Selected Input Motions for Displacement-Based

Assessment and Design database (or SIMBAD database, Smerzini et al., 2014),

which on average match a code-based or user-defined elastic spectrum in a desired

period range and with specified upper and lower bound tolerances. REXEL is

able to identify ground motions with desired seismicity and site characteristics (in

terms of magnitude, source-to-site distance, and soil profile), which is the reason

preferred for this study, as the identified reference ground motions need to have

physical properties consistent with the seismicity scenario examined. For each of

these six scenarios, a reference set of 30 ground motion records from the SIMBAD

database was selected matching the median GMPE predictions discussed in the

previous section in period range 0.2T1-1.5T1 with a deviation from the target of

http://www.reluis.it/
http://www.isesd.hi.is/
http://itaca.mi.ingv.it/ItacaNet/
http://itaca.mi.ingv.it/ItacaNet/
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± 20%. Note that most of the chosen ground motions also belong to the NGA

database (Chiou et al., 2008); this is important since the stochastic ground mo-

tion model considered here was calibrated against that database (Rezaeian and

Der Kiureghian, 2010). Therefore, a consistent comparison is established between

the recorded and stochastic ground motions utilised. The average values of magni-

tude and distance of the chosen records were [6, 21 km] for Scenario 1, [6.9, 22 km]

for Scenario 2, [7.1, 24 km] for Scenario 3, [5.9, 66 km] for Scenario 4, [6.9, 70 km]

for Scenario 5, and [7.5, 79 km] for Scenario 6. For the high-magnitude cases the

constraint on M was relaxed, as it was not possible to identify the desired large

number of ground motion records with the specific seismicity characteristics (lack

of large magnitude records in the database). A uniform scaling was applied to all

the records so that they match exactly the IM target for the fundamental period

T1=1 s. This was done so that for the elastic SDoF response examined later the

reference case is identical to the set target, since SR is taken as the benchmark

reference for the response-history analysis (so reasonable to expect match to the

target IM for elastic response). Given the relatively small deviation of the selected

records from the target, this uniform scaling was in most cases small.

6.3.3 SDoF system characteristics and demand measures

The validation study is performed for a number of inelastic SDoF systems with

peak-oriented hysteretic behaviour, strain hardening, and (potentially) degrading

characteristics as shown in Figure 6.2. The initial (elastic) SDoF stiffness kel is

determined based on the fundamental period T1 of 1 s whereas a constant mass-

proportional viscous damping coefficient corresponding to a 5% critical damping

ratio (based on elastic stiffness characteristics) is used. With respect to the char-

acteristics of the inelastic behaviour, the following variations are considered to

establish a comprehensive validation setting:

• Strength reduction factors (Rµ). The yield strength, Fy, is chosen based on

the elastic demand of the SDoF system through Rµ, defined as the ratio
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of elastic base shear demand (peak elastic restoring force) to Fy. Different

values of Rµ are considered to describe structural behaviour ranging from

mildly inelastic (Rµ=2 and 4) to severely inelastic structures (Rµ=6 and 8).

The linear behaviour (Fy = ∞) is also considered in this study and, for

unification of presentation, it will be frequently referenced as Rµ=1.

• Hysteretic behaviour. Two different systems are examined, a non-degrading

one (Figure 6.2a), and a degrading one (Figure 6.2b), referenced herein as

EPH and ESD, respectively. Both of them have a strain hardening branch

post-yield defined through the ratio α, and a peak-oriented hysteretic be-

haviour. The ESD system has an additional softening branch after the dis-

placement ∆u defined through the ratio β, and a residual strength of γFy.

For the EPH system, two different values of α will be examined: 3% and

10%. For the ESD system, α and β are taken to be 3% and 5%, respectively,

with value of γ taken as 10% (all correspond to common values appearing

in literature). The displacement for the onset of deterioration, ∆u, is chosen

to be proportional to the yield displacement, ∆y, and the strength reduction

factor Rµ, i.e., ∆u = Rµ ·∆y. This leads to higher ductility to systems with

higher Rµ value, an assumption aligned with current design codes.

Displacement

Fy

Δy

Base shear (restoring force)

αkel
-βkel

γFy

Δu

(b)

kelDisplacement

Fy

Δy

Base shear (restoring force)

αkel

(a)

kel

Fu

Figure 6.2: Hysteretic behavior model for (a) EPH system and (b) ESD system

For determining the elastic base shear demand, and therefore the values for Rµ

and Fy, two different approaches are adopted: (a) achieve the same value of Rµ

for each record examined; or (b) achieve the same value of Fy for each seismicity
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scenario so that desired value of Rµ is obtained in an average sense for the records

in the corresponding dataset. Approach (a) will be denoted herein as “constant-

Rµ” and approach (b) as “constant-strength”. For the “constant-Rµ” approach,

the yielding strength of the structure Fy varies, ultimately, from record to record.

For each record, the peak elastic base shear, Fel, is first calculated assuming linear

behaviour (equivalent to Rµ=1) and then, for each Rµ value examined, the yield

force is set to Fy = Fel/Rµ. This “constant-Rµ” approach guarantees a similar

degree of nonlinearity per examined record (same, Rµ value), directly addressing

the variability between ground motions by appropriately scaling SDoF strength

for each of them. The “constant-strength” approach on the other hand, examines

the behaviour of SDoF structures with the same characteristics (same strength)

across all examined records and therefore corresponds to the implementation that

better represents practical applications (e.g., based on current codes and stan-

dards). Strength Fy for each seismicity scenario is chosen based on the median

IM target for that scenario, Sat(T1), as Fy = mSat(T1)/R, where m corresponds to

the SDoF mass. This implementation ultimately takes the median IM target to

represent the design earthquake for that Scenario and designs the SDoF structure

according to that earthquake. Rather than the same Rµ for each ground motion

record, this approach enforces the target Rµ on average across each examined

dataset while adjusting for deviations from design demand Sat(T1); ultimately the

average strength reduction factor achieved is RµSam(T1)/Sat(T1) where Sam(T1)

is the average Sa(T1) for the dataset. As discussed above, this implementation

better represents practical applications: same SDoF structure with characteristics

designed for each Scenario based on the design event for that Scenario.

Two different EDPs are used as representations of SDoF response: peak inelastic

displacement, ∆in, and the hysteretic energy, EH , given by the work of the SDoF

restoring force, or equivalently by the area under the restoring force/displacement

curve (Figure 6.2). These parameters are considered in order to investigate, re-

spectively, the peak displacement demand and the cyclic behaviour as also done

in past SDoF studies (Galasso et al., 2012; Iervolino, De Luca and Cosenza, 2010).
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EH will be presented normalised by SDoF mass m.

6.4 Comparison of synthetic and recorded ground

motions to target spectra

Before discussing the validation study in terms of inelastic structural response, the

elastic spectra for the synthetic and recorded ground motions are first presented

and compared in this section. Figure 6.3 shows the average spectral estimates from

the suite of recorded SR and stochastic ground motions corresponding to models

Un, Ut, Cs and Cl for the IMC case and for all six Scenarios. The target spectra

are also shown. For SR statistics are shown for the motions obtained directly

from REXEL, without the scaling that was utilised to create the reference ground

motion set. Figure 6.4 presents the results for the HC case. Figure 6.5, finally,

presents the dispersion of the spectral estimates for all implementations examined,

covering both the IMC and HC cases for the stochastic ground motion models.

The recorded SR ground motions have high compatibility with the target as shown

in Figures 6.3 and 6.4, something attributed to the use of small tolerance (20%)

and the fact that the constraints on seismicity characteristics were relaxed for

some of the Scenarios in order to satisfy this tolerance. The REXEL optimisation

routine exploited this relaxation to provide suites of ground motions with small

discrepancy from the target. The dispersion (Figure 6.5) of the stochastic ground

motions for the IMC case is much lower than the target as expected because only

the white-noise is contributing to the observed dispersion in this case. On the other

hand, the HC stochastic ground motions have a higher dispersion that is compa-

rable to the target. The stochastic ground motion model modification achieves

a better match to the target dispersion compared to the unmodified model case.

Finally, the dispersion of the recorded ground motions (SR) is higher than that

of IMC modifications and, for some scenarios, reaches or exceeds the target. Any

discrepancies from the target are justifiable since the REXEL optimization only
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tries to match the target spectrum through the selection of ground motions and

not, additionally, the dispersion of these ground motions (which is only indirectly

controlled through the chosen tolerances).
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Figure 6.3: Spectral plot comparison of target spectra and average predictions
of recorded (SR) and stochastic ground motions for IMC.

For the stochastic ground motion suites, the results agree with the ones presented

earlier in Figure 6.1 with respect to the discrepancy from the target (F1 values).

The unmodified model, Un, does not provide a good match to the desired target for

some seismicity Scenarios, overpredicting the resultant spectral acceleration values

for small M values and underpredicting them for large M values. Note that this

trend agrees with the results reported by Rezaeian and Der Kiureghian (2010)

when comparing their model to some of the GMPEs utilised here. The HC case

(Figure 6.4) provides better match than the IMC case (Figure 6.3) for Un, which

should be expected since, as also commented earlier, the predictive models were

developed by Rezaeian and Der Kiureghian (2010) assuming a HC implementation.

The proposed modification (Ut, Cs and Cl models) now, facilitates in all instances

an improved match for both the IMC (Figure 6.3) and the HC cases (Figure
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Figure 6.4: Spectral plot comparison of target spectra and average predictions
of recorded (SR) and stochastic ground motions for HC.

6.4) with Cs achieving in all instances very high compatibility, even better than

SR. This further validates the ability of the modification framework proposed in

Chapters 4 and 5 in facilitating an improved match to a target IM. With respect to

the dispersion (Figure 6.5), all IMC models significantly underestimate the target

variability. This is attributed to the fact that the only source of variability for the

response stems from the stochastic nature (white-noise sequence) of the models

since the variability in the predictive relationship for θ is ignored. This leads to

smaller response dispersion compared to the one observed in the recorded ground

motions, and corresponds to an important shortcoming of the IMC modification

approach when that dispersion is also of importance (e.g., when assessing collapse

risk due to more extreme ground motion records). The HC case, on the other hand,

can explicitly control this dispersion through adjustment of Σ in the predictive

relationships, and as evident from Figure 6.5, high compatibility is achieved for

the modified models Ut, Cs and Cl improving upon the unmodified one Un.
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Figure 6.5: Comparison of dispersion of target, recorded (SR) and stochastic
ground motions (Un, Ut, Cs) for IMC and HC.

6.5 Comparison of inelastic demand for “constant-

Rµ” approach

Focus is shifted next to the validation study in terms of structural response. For

each seismicity Scenario, the suites of recorded and simulated ground motions are

used as input to the different SDoF systems to perform nonlinear response-history

analysis. For each considered system and EDP, ∆in and EH , the statistics, namely

median and CoV, are estimated across each suite. Results are reported for different

values of Rµ and further distinction is established between EPH and ESD SDoFs.

For the synthetic ground motions, results are reported for the IMC and HC cases

together in each figure using color pattern black and gray, respectively. To more

clearly depict differences with respect to the reference (benchmark) SR results,

the relative error between the response output for any stochastic ground motion

modification case and SR is introduced, calculated for the output statistic s as



Chapter 6 162

E(s) =
s(SM)− s(SR)

s(SR)
(6.1)

where s(SM) is the output statistic (median or CoV) from the simulated ground

motions and s(SR) is the same output statistic from the recorded ground motions.

Results for the “constant-Rµ” approach are first discussed in this section.

Figures 6.6 to 6.10 present results for the EPH system with α=3%. Figure 6.6

presents the normalised results for the median ∆in estimates, ∆̄in, while Figure 6.7

the relative error E(∆̄in). Normalisation in Figure 6.6 is established with respect

to the elastic spectral displacement Sd. Figure 6.8 presents results for the median

hysteretic energy burned EH , ĒH . The relative error for the hysteretic energy

E(ĒH) is presented in Appendix D. Figures 6.9 and 6.10 show dispersion results

(expressed through the CoV) for ∆in and EH , respectively. For these, and all

remaining figures, the cases where Cl=Ut is not explicitly denoted (as was done in

previous figures); simply Cl is not reported for these instances, corresponding to

Scenarios 1 and 3 to 6 for IMC and Scenarios 1 and 6 for HC.
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Results show that the proposed modification facilitates overall a better match to

the reference results of the recorded ground motions in terms of median response

statistics. Exceptions to this general trend exist only for significant degree of in-

elastic behavior (Rµ value equal to 8) and for scenarios for which the unmodified

model provided a good match to the (elastic) target hazard to start with (Sce-

narios 2 and 5). In those instances, the unmodified ground motion model has a

better match to the SR statistics. Note, though, that the error of the proposed

modification in these instances is still small. Overall, the absolute error of all

the modified ground motion models stays consistently below 40% to 50% (and in

most instances in range of 20% to 30%), with exception of large values of Rµ for

Scenario 6. This is not true for the unmodified model which has errors exceeding

100% in some instances. The modification also contributes to smaller sensitivity

of the behaviour across the different examined scenarios; even though great vari-

ability is observed for the unmodified model Un across the different scenarios, this

variability is reduced for the results of the modified ground motion models. This

variability is small for Rµ=1 as expected (since modification matches the target for
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elastic behaviour) and increases as degree of inelastic behaviour increases (larger

values of Rµ). For small values of Rµ, there is a strong correlation of the results

to the Rµ=1 case for ∆in and therefore to the results reported in Figures 6.3 and

6.4 or the reported F1 values in Figure 6.1. Note that for large values of Rµ, the

nonlinear structural response is sensitive to spectral ordinates at periods much

larger than the fundamental one (e.g., due to period elongation stemming from

the strong nonlinear behaviour); the chosen period range for spectral compatibility

(i.e., 0.2T1-1.5T1) may not be conservative in those cases (Katsanos and Sextos,

2015), yielding the observed large variability for larger values of Rµ.
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Figure 6.8: Median hysteretic energy for EPH system with α=3% for
“constant-Rµ” approach.

In general, the IMC and HC modification cases yield very similar trends for the

median response and similar results, except for some large Rµ value instances for

Scenario 3. Comparing the different modification implementations, Cs provides

overall the smallest errors, except for large values of Rµ for Scenarios 3 and 6. This

might lead someone to conclude that the significant alteration of ground motion

physical characteristics, established in the Cs case, might have an impact when

looking at high levels of inelastic behaviour. The discrepancies observed could be
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attributed, though, to the fact that SR implementation for these two scenarios

led to ground motions with different seismicity characteristics than the targeted

M , R values, and therefore, possibly, to different physical characteristics for the

ground motions than expected for these scenarios. As such, any discrepancies

for large degree of inelastic behaviour, that is for the instances these physical

characteristics are influential, might not be surprising. Still even for these two

scenarios the recommended modification, corresponding to Cl (which recall is equal

to Ut in some instances), yields small errors. All these trends hold for both the peak

displacement (Figures 6.6 and 6.7) as well as for the hysteretic energy (Figure 6.8).

This is an important feature as both these EDPs are commonly used to describe

performance in earthquake engineering applications (Ruiz-Garćıa and Miranda,

2003; Deniz et al., 2017).

The information theory-based approach proposed in Chapter 3 for the validation of

ground motion simulations was applied to the peak inelastic displacements for the

EPH system with α=3%. More specifically, the ∆in distributions for the modified

Ut, Cs and unmodified Un stochastic ground motion models were compared with

the “benchmark” distribution for the recorded ground motions. The observed DKL

values and the corresponding p-values for HC case and Scenario 1 are presented in

Tables 6.1 and 6.2, respectively. The cases of rejection characterised by p-values

smaller than 0.05 are highlighted gray in the Tables. The case with the smallest

DKL in each column is the one that matches best the “benchmark” distribution

and is shown in bold font in Table 6.1. The results show that Un model provides

a poor fit to the ∆in distributions from recorded ground motions for all Rµ values

considered, except for the elastic case Rµ=1. This can also be observed from the

fact that the modified stochastic ground motion models provide the best match

to the recorded distribution for all Rµ cases. The Ut case has large discrepancies

for large Rµ values (6 and 8), while the Cs case shows rejection for Rµ=4. In

general, the higher DKL values in Table 6.1 are associated with smaller p-values

in Table 6.2. The results are in agreement with Figures 6.6 or 6.7. For cases

where the median peak inelastic displacements have large discrepancies from the
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“benchmark” recorded case, the distance between the two distributions is large

leading to small p-values. The approach was applied to other EDP cases, SDoF

systems and Scenarios and similar trends were observed.

Table 6.1: DKL values for ∆in for HC case and Scenario 1

DKL Rµ=1 Rµ=2 Rµ=4 Rµ=6 Rµ=8

Ut 0.385 0.335 0.339 0.502 0.605

Cs 0.216 0.196 0.767 0.542 0.283

Un 0.416 1.173 0.588 1.237 0.928

Table 6.2: p-values for ∆in for HC case and Scenario 1

p-value Rµ=1 Rµ=2 Rµ=4 Rµ=6 Rµ=8

Ut 0.084 0.236 0.254 0.025 0.008

Cs 0.275 0.368 0.027 0.07 0.349

Un 0.146 0.001 0.07 0 0
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Figure 6.9: Dispersion (expressed through CoV) of peak inelastic displacement
for EPH system with α=3% for “constant-Rµ” approach.

For the dispersion characteristics (Figures 6.9 and 6.10), the variability trends

reported in Figure 6.5 extend to the inelastic behaviour. Significant differences
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Figure 6.10: Dispersion (expressed through CoV) of hysteretic energy for EPH
system with α=3% for “constant-Rµ” approach.

exist for this statistic between the IMC and HC applications, as expected, with

HC providing enhanced compatibility to the target or reference/benchmark values.

This, once more, demonstrates the importance of facilitating hazard compatibility,

rather than simply IM compatibility (Tsioulou et al., 2018b; Lin et al., 2013).

In general, results for most modification implementations are very similar. This

should be attributed to the fact that the unmodified model is close to the target

dispersion (so small modifications are only required) and the fact that as explained

in Chapter 5 matching of the median statistics is typically more important than

matching dispersion statistics for facilitating hazard compatibility, characteristic

that leads to smaller modification of the dispersion statistics. Variation of Rµ

in general, does not significantly affect the observed dispersion patterns. For

the seismicity scenarios for which the spectral dispersion from records (SR) is

close to the target, the former is also close to the HC modification. For other

scenarios the differences between SR and the HC modifications remain similar to

the differences between SR and the target dispersion, apart from Scenario 2 for

which SR itself demonstrates a bit of irregular trend, with significant variation of
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dispersion across different Rµ values. Overall, trends are again consistent for both

the peak displacement and the hysteretic energy.

Figure 6.11 repeats results of Figure 6.6 but for the EPH system with α=10%.

Results show exceptionally similar patterns indicating little sensitivity to value of

α (as long as latter is in reasonable range). Similar pattern holds for the other

statistics, included in Appendix D, thus focus is placed herein on the α=3% case.
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Figure 6.11: Normalised median peak inelastic displacements for EPH system
with α=10% for “constant-Rµ” approach.

Figures 6.12 to 6.14 present results for the ESD system for ∆in. Results for

EH are included in Appendix D, since they are practically identical to the trends

observed for EPH with some reduction in the EH values for large Rµ values, due to

the reduced energy dissipation capabilities when structure enters softening branch

of backbone curve.

Differences to the EPH case appear only for the large nonlinearity cases (Rµ=6 or

8), since for lower Rµ values system does not move significantly into the soften-

ing branch. Discrepancies are amplified for the ESD model with respect to both

the median response (Figures 6.12 and 6.13) as well as dispersion (Figure 6.14).
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Figure 6.12: Normalised median peak inelastic displacements for ESD system
for “constant-Rµ” approach.
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Figure 6.13: Relative error compared to reference SR response for the peak
inelastic displacements for ESD system for “constant-Rµ” approach.

For the Rµ=8 case and for a considerable portion of the simulations (over 10%

for most Scenarios), structure reached residual strength, so high variability and
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larger discrepancies (Figure 6.14) can be also attributed to that; once the residual

strength is reached, the response output is very sensitive to small changes in the

ground motion features. For the median statistics, errors are especially ampli-

fied for the modification cases that had large errors for the EPH model (e.g., Cs

model for Scenarios 3 and 6). For the dispersion statistics the agreement to the

reference/benchmark results deteriorates overall.
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Figure 6.14: Dispersion (expressed through CoV) of peak inelastic displace-
ment for ESD system for “constant-Rµ” approach.

6.6 Comparison of inelastic demand for “constant-

strength” approach

This section extends comparison to “constant-strength” approach. Figures 6.15

and 6.16 show results for the EPH system with α=3%: the relative error E(∆̄in)

and coefficient of variation for ∆in, respectively. Figures 6.17 and 6.18 present

results for the relative error E(∆̄in) and coefficient of variation for ∆in, respectively
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for the ESD system. The results for ∆̄in are included in Appendix D and the trends

are same as these discussed next for E(∆̄in).
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Figure 6.15: Relative error compared to reference SR response for the peak
inelastic displacements for EPH system with α=3% for “constant-strength” ap-

proach.

Results for the median response (Figures 6.15 and 6.17) have similar trends, with

notable higher error with respect to reference SR for the Un compared to the

respective plots for “constant-Rµ” (Figures 6.7 and 6.13). Specifically, they show

even higher error estimates for Scenarios 1 and 4 and even lower estimates for

Scenarios 2, 3, 5 and 6. This difference stems from the significant discrepancies

for the elastic case Rµ=1 for Un which contributes to higher or lower strength

compared to the benchmark case for the two groups of Scenarios, respectively.

For the modified stochastic ground motion model, on the other hand, only small

differences exist with respect to the “constant-Rµ” approach, keeping the errors

moderately low. This is expected; since the modification leads to a good match

to the target (Rµ=1 case), not significant differences are expected between the

“constant-Rµ” and “constant-strength” implementations. This further stresses

the importance of the proposed modification, as it is able to facilitate good match

to the benchmark results compared to the unmodified ground motion model for
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the “constant-strength” implementation which corresponds, as mentioned earlier,

to the implementation that is more comparable to practical applications.
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Figure 6.16: Dispersion (expressed through CoV) of peak inelastic displace-
ment for EPH system with α=3% for “constant-strength” approach.

Finally, results in Figures 6.16 and 6.18 show that the “constant-strength” ap-

proach leads to higher dispersion estimates for the peak inelastic displacement

ratios for the HC modification and SR cases. A possible reason for this is that the

higher variability of the ground motion response in these sets is affected more by

the adoption of a constant yield strength that results in higher dispersion estimates

for this EDP. Still though, there is a similar level of agreement between HC and

SR as in the “constant-Rµ” approach. Results for EH are included in Appendix

D and the trends are identical for EPH and ESD systems. It is worth noting that

for some Scenarios ĒH is zero or very small for the unmodified Un model and case

of Rµ=2. This implies that the SDoF systems do not reach the inelastic region

and leads to inaccurate dispersion estimates for EH (unreasonably high CoV esti-

mates) in these cases. These plots are included in the thesis to showcase potential

challenges Un model faces when match to the target is not achieved.
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It is worth noting that both the simulated and recorded ground motions follow

the equal displacement rule for both SDoF systems considered herein.
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Figure 6.17: Relative error compared to reference SR response for the peak
inelastic displacements for ESD system for “constant-strength” approach.
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Figure 6.18: Dispersion (expressed through CoV) of peak inelastic displace-
ment for ESD system for “constant-strength” approach.
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6.7 Conclusions

A validation study for the stochastic ground motion model modification proposed

in Chapters 4 and 5 was performed in this chapter by comparing the seismic

demand for inelastic SDoF systems of hazard-compatible recorded ground motions

to the demand of stochastic ground motion models that are modified to match

the same target hazard. Comparison was performed for two different EDPs, peak

displacement and hysteretic energy, and for SDoF systems with different degrees of

inelastic behaviour, corresponding to different values of strength reduction factor

Rµ, and different nonlinear and hysteretic characteristics. For the latter a peak-

oriented hysteresis model was chosen with different values for post-yield stiffness,

considering non-degrading (EPH system) or degrading (ESD system) strength

characteristics. Six different seismicity scenarios were examined, corresponding

to different values of moment magnitude and rupture distance for seismic events.

The recorded ground motions were obtained through the REXEL software while

for the modified stochastic ground motion model, different modification degrees

were examined.

Results show that the proposed modification improves significantly the match to

the reference (benchmark) results corresponding to the recorded ground motion

model. As the degree of inelastic behaviour increases, that is for larger value or

Rµ or for ESD system (compared to EPH system), the differences to the reference

results increase. Also, for large degrees of modification, larger errors may exist

for such instances of significant inelastic behaviour. The moderate modification

approach proposed in Chapters 4 and 5 appears to consistently yield good results

across all seismicity scenarios and types of inelastic behaviour. Trends were similar

for both considered EDPs. With respect to the two types of modifications exam-

ined, IM compatibility (IMC) and hazard compatibility (HC), while both match

the median statistics similarly well, HC was shown to provide an enhanced match

to the target dispersion, with IMC constrained to small dispersion values. It is

worth noting that the intent of this study was not to provide a definite judgment
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about the specific stochastic ground motion simulation method, but rather to il-

lustrate and validate the proposed modification and discuss possible outcomes.

The identified similarities to recorded ground motions should provide confidence

in using the modification method for engineering applications, while the discrep-

ancies observed for some seismicity scenarios for highly inelastic response cases,

emphasises domains of potential improvement for future stochastic ground motion

simulation methods or their potential modification.





Chapter 7

Conclusions

7.1 Summary and conclusions

Ground motion simulations are a valuable alternative or supplement to recorded

ground motions that have gained increasing interest within the earthquake en-

gineering community in the past decades. They can be grouped in three cate-

gories: physics-based, stochastic-process-based (or stochastic) and hybrid, that

are a combination of the other two methods. Physics-based and hybrid models

have developed rapidly in the past few years because of advances in computing

power and the better understanding of source characteristics and wave propaga-

tion. They are based on numerical models that simulate the physics of the rupture

and wave propagation phenomena and can thus, be used for future predictions.

Stochastic methods can be further grouped into source-based and site-based mod-

els. Stochastic source-based models describe the fault rupture at the source and

the propagation of the seismic waves at the site of interest and they are similar to

physics-based models in that sense. Site-based models on the other hand, describe

the ground motion time-history at a specific site by fitting a statistical process to

recorded ground motions with known earthquake and site characteristics. They

are fast to compute and do not require thorough knowledge of various seismological

177
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parameters, therefore they have potential to be used by practicing engineers.

The contributions, detailed next, established in this thesis related to the field of

ground motion simulation are summarised as:

• A novel approach for validation of ground motion simulations

• A stochastic ground motion model modification framework

• Validation of the proposed stochastic ground motion model modification

framework

7.1.1 Proposed validation approach

An important consideration regarding ground motion simulations that rely on

physics-based modeling and seismological information (physics-based, stochastic

source-based and hybrid methods) is that they need to be properly validated to

be used with confidence for future predictions. There are three main validation

methods: historical method where simulations are compared to records of a histor-

ical earthquake, empirical model method that compares simulations to empirical

models (i.e., GMPEs), and similar spectra method where simulations and record-

ings with similar elastic spectra are compared. Several goodness-of-fit measures

have been proposed as validation metrics in addition to statistical approaches (i.e.,

hypothesis testing) to perform a paired comparison between the recorded and sim-

ulated IM or EDP datasets in terms of their mean and dispersion. This study

proposed a validation approach based on the relative entropy DKL coupled with

statistical hypothesis testing to assess the overall similarity of the probability dis-

tributions of the studied IMs or EDPs for recorded and simulated ground motions.

The approach was demonstrated by using ground motion simulations generated

by all three ground motion simulation methods: physics-based, stochastic and hy-

brid. The validation approach also allows the user to rate the simulation methods,

not just provide a judgment about the fit for each method. Simple spectral-shape
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and duration-related proxies that are easy to compute and correlate well with

the seismic response of more complicated structural systems were introduced as

validation metrics. The ground motion simulation methods considered, overall

performed well in matching the recorded ground motions. However, since simu-

lation methods evolve very fast, this study was not intended as an evaluation of

specific methods, but as a development of a validation approach that can be used

in the future.

7.1.2 Proposed stochastic ground motion model modifica-

tion framework

This study also focused on a class of stochastic site-based ground motion simu-

lations that are based on modulation of a stochastic sequence, through functions

(filters) that address spectral and temporal characteristics of the excitation. The

parameters of these filters are related to seismicity (e.g., moment magnitude and

rupture distance) and site characteristics (e.g., shear wave velocity for soil pro-

file) through predictive relationships. For these models to be used in engineering

applications, it is important that the output IMs from the simulated acceleration

time-histories are consistent with these prescribed at the site of interest (e.g., Sa(T )

estimates from GMPEs) for specific structures. That is though, not necessarily

guaranteed through the current approaches in selecting the predictive relationships

of the model parameters.

To address this issue, this study has proposed a computationally efficient frame-

work (IMC) to modify stochastic ground motion models for specific seismicity

scenarios with a dual goal of (i) matching a target IM for a specific structure

while (ii) preserving desired trends and correlations in the physical characteristics

of the resultant ground acceleration time-series. The latter goal was identified as

a shortcoming of past studies and for that reason was explicitly incorporated as

an objective rather than a constraint within the predictive relationship tuning.

This was set as an optimisation problem with a dual objective and computational
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efficiency in its solution was achieved by adopting a metamodel for approximating

the median ground motion model predictions for the targeted IMs. Although the

upfront cost for development of this metamodel was significant, this only needs

to be performed once and it can subsequently be used to support a highly effi-

cient multi-objective optimisation. To reduce the computational burden for the

metamodel development and prediction, an adaptive design of experiments was

proposed for selecting the database informing the metamodel. Gradient-based

and gradient-free approaches were discussed to solve the resultant optimisation

problem, whereas the inclusion or not of the metamodel error was also considered.

The framework was demonstrated in an illustrative example considering an ex-

isting record-based stochastic ground motion model and IMs described through

GMPEs. It was shown that the metamodel-aided optimisation can support an

accurate identification of the Pareto front of dominant solutions, provided that

the metamodel accuracy is significant high, and that inclusion of the metamodel

error in the optimisation formulation greatly improves the robustness of this opti-

misation. Comparisons between the two optimisation approaches showed that the

gradient-free one demonstrates overall preferable attributes, since the gradient-

based one might converge to suboptimal local minima. An adequate representa-

tion of the overall Pareto front can be obtained in as little as two minutes using

the blind search, gradient-free optimisation, which should be considered as an

acceptable computational burden. The gradient-based approach provides greater

relative efficiency when identification of a single solution, rather than of the entire

front, is desired. It was shown that the proposed framework can lead to significant

improvement for the match to the target IM.

The developed framework was extended (HC) to perform modification of stochas-

tic ground motion models to (i) match the prescribed conditional hazard (mean

and dispersion of IMs) for a specific site and structure while (ii) preserving desired
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trends and correlations in the physical characteristics of the resultant ground ac-

celeration time-series, including consideration of the variability of these character-

istics. The proposed modification was defined again as a bi-objective metamodel-

optimisation and the relative entropy was adopted as metric to quantify the two

objectives. A MCS approach was utilised for the estimation of the various re-

sponse statistics needed for the entropy calculation, where the metamodel was used

to approximate median and dispersion of ground motion model IM predictions.

The metamodel-aided optimisation can facilitate an accurate identification of the

Pareto front even when lower accuracy metamodels are utilised. The necessity to

calculate response statistics through MCS increases, though, the computational

burden of the extended approach.

With respect to selection of the final model across the identified Pareto front, same

recommendation is made for both approaches: select the Pareto optimal solution

that satisfies a certain accuracy threshold for match to the target hazard (or target

IM) unless this solution leads to a greater modification for the predictive model

than the Pareto optimal solution with minimum distance from the Utopia point,

in which case select the latter solution.

The HC approach was also compared with the IMC approach, where modification

of only the mean predictive relationships to match the corresponding hazard for

these mean predictions is performed. It was shown that the latter may provide

an adequate surrogate for seismicity scenarios with high initial discrepancy to the

target hazard, though overall, it is better to explicitly consider the impact of the

variability in the predictive models and simultaneously modify the entire predictive

model.
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7.1.3 Validation of the proposed stochastic ground motion

model modification framework

A validation study of the proposed modification framework (IMC or HC imple-

mentation) was performed by comparing the seismic demand of recorded ground

motions to the demand of stochastic ground motion models established through

the proposed modification. Suites of recorded and stochastic ground motions,

whose spectral acceleration statistics match the mean and variance of target spec-

tra within a period range of interest, were utilised as input to perform response-

history analysis of inelastic SDoF systems with different degrees of inelastic be-

haviour, corresponding to different values of strength reduction factor Rµ, and dif-

ferent nonlinear and hysteretic characteristics. A peak-oriented hysteresis model

was chosen with different values for post-yield stiffness, considering non-degrading

(EPH system) or degrading (ESD system) strength characteristics. For determin-

ing the elastic base shear demand two approaches were adopted: a “constant-Rµ”

approach, where the yielding strength of the structure varies from record to record,

and a “constant-strength” approach, where the structural yielding strength is con-

stant. Comparison was performed for two different EDPs, peak displacement and

hysteretic energy that have been used in past validation studies. Different seismic-

ity scenarios were examined, corresponding to different values of moment magni-

tude and rupture distance for seismic events. The recorded ground motions were

obtained through the REXEL software while for the modified stochastic ground

motion model, different modification degrees were examined.

Results showed that the proposed modification improves significantly the match

to the reference results corresponding to the recorded ground motion model, es-

pecially for larger value or Rµ or for ESD system (compared to EPH system). For

large degrees of modification of the stochastic ground motion model, larger errors

may exist for such instances of significant inelastic behaviour. The moderate mod-

ification approach proposed in this study (discussed in the last paragraph of the

previous section) appears to consistently yield good results across all seismicity
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scenarios and types of inelastic behaviour. Trends were similar for both considered

EDPs. With respect to the two types of modifications examined, IMC and HC,

while both match the median statistics similarly well, HC was shown to provide

an enhanced match to the target dispersion, with IMC yielding small dispersion

values.

7.2 Impact

This work contributes to better seismic risk and resilience assessment prediction,

that can be used in turn for different purposes. The impact of this study can be

seen in societal, economic and academic terms.

With respect to the societal impact, results of this study may ultimately be used

by public and private organisations to develop emergency response plans, eval-

uate cost-effective seismic retrofitting actions and risk mitigation strategies, and

evaluate rapid damage-estimation algorithms for effective disaster response. This

study is a contribution toward reduction of economic, life and business interruption

losses due to earthquakes through advanced, improved, earthquake risk assessment

models and tools.

With respect to the economic impact, the outputs of this study may provide the

insurance and re-insurance industry, providers of basic services (e.g., civil pro-

tection and emergency managers), as well as multidisciplinary consultancy firms

with an improved characterisation of seismic risk to enable them to operate more

competitively in the global market.

Finally, this study addresses major intellectual challenges by going beyond the

state-of-the-art of ground motion simulation and validation, and the academic

impact is summarised below for each contribution.
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7.2.1 Proposed validation approach

In the first part of this study, a novel ground motion simulation validation approach

has been proposed based on the relative entropy DKL coupled with statistical hy-

pothesis testing. Although the proposed approach was applied to ground motion

simulations of historical earthquakes (following the historical method), it is generic

enough to be applied to cases where the empirical or similar spectra methods are

utilised. In fact, the proposed spectral-shape and duration-related validation met-

rics are hazard computable and their empirical models can be used as baseline

for comparison for future earthquake scenarios as in the empirical method. The

proposed approach can readily be used to measure the similarity of the distribu-

tions of seismic response to sets of simulations and recordings matching a target

(elastic) response spectrum mean and variance (similar spectra approach). It is

worth noting that the validation metrics used in this study are intended as a sup-

plement, not a replacement to other proposed validation metrics. Aligned with the

broader objectives of the SCEC GMSV TAG, the proposed validation approach

expands the efforts of the group (e.g., Galasso et al., 2012, 2013; Burks and Baker,

2014; Burks et al., 2015; Rezaeian et al., 2015) toward the engineering validation

of ground motion simulations obtained through BBP. It is thus, expected to be

of particular interest to SCEC GMSV TAG or any group that works on GMSV,

ground motion simulation developers and seismologists.

7.2.2 Proposed stochastic ground motion model modifica-

tion framework

The proposed stochastic ground motion model modification framework (extended

and simplified implementation) is highly versatile as it facilitates a match to any

desired IM (defined through any GMPEs, or any other approach that would define

a target IM description) or to a collection of them, e.g., spectral accelerations over
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a period range, for any chosen seismicity scenario. It can also achieve compati-

bility to any target spectrum for ground motion selection purposes, e.g., uniform

hazard spectrum derived through PSHA or conditional (mean) spectrum since

these are associated with a single seismicity scenario. Repeating process for dif-

ferent seismicity scenarios can then facilitate the development of a suite of models

that can support comprehensive seismic risk assessment. Although the framework

was demonstrated using a specific record-based stochastic ground motion model,

the approach can be applied to any stochastic ground motion model as long as a

link between the probability distributions of ground motion model parameters and

earthquake and site characteristics through predictive relationships is established.

The proposed framework (extended or simplified) can provide significant improve-

ment for the match to the target hazard or IM, respectively for seismicity ranges

where the unmodified model faces challenges in matching the target hazard/IMs,

with minor only modifications to the original predictive model, something that

can guarantee a good agreement with observed regional trends. Therefore, the

developed framework can provide a useful tool for engineering users to generate

hazard or spectrum-compatible simulated ground motions for seismic risk and loss

assessment applications following the approach shown in Figure 1.3. More gener-

ally, the developed framework can provide the basis for addressing open problems

in risk assessment for different natural hazards.

7.2.3 Validation of the proposed stochastic ground motion

model modification framework

The validation study highlighted the impact of the proposed modification frame-

work on the SDoF system response. The proposed modification provides an en-

hanced match to the EDP statistics estimated through the benchmark recorded

ground motion case compared to the unmodified stochastic ground motion that

can exceed relative errors of 100% for some scenarios and Rµ factors. These errors
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are even higher and can reach values of 200% when the “constant-strength” mod-

eling reference is utilised for the SDoF system, that is the most common modeling

option for practical applications. When this modeling reference is adopted, the

unmodified model fails to cause the SDoF system to move into the inelastic region

for some scenarios and slightly inelastic behaviour (Rµ equal to 2). The modified

model also leads to some discrepancies for large degrees of modification factor and

significant inelastic behaviour, however, the adoption of a moderate modification

approach has good behaviour overall and is the proposed approach.

This study showed that stochastic ground motion models are a promising alter-

native to ground motion records that can be used with confidence by practicing

engineers, if appropriate modifications to match target hazard are performed. In

accordance with the objectives of this research, the modified stochastic ground

motion models can be used with confidence to replace the most commonly used

approach of scaling ground motion records for seismic risk and loss assessment of

a single structure or portfolio of structures as shown in Figure 1.3.

7.3 Limitations and future work

7.3.1 Proposed validation approach

In the proposed validation approach we used parameters that are used as prox-

ies for peak inelastic and cyclic response of more complicated structural systems.

These parameters have robust empirical models and can be used in an empiri-

cal validation approach. This list of proposed validation proxies is though, not

extensive and it would be necessary to include other metrics to fully assess the

simulation methods’ ability to produce reasonable ground motions as a whole.

For example, significant duration is important for many geotechnical engineering

applications (Afshari and Stewart, 2016) and spatial correlation of IMs (Jayaram,

Park, Bazzurro and Tothong, 2010) is important for distributed systems or building
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portfolios. Furthermore, validation using metrics that relate to more complicated

structural behaviour such as response amplification due to basin effects, landslide

displacement and financial losses is necessary.

The ground motion simulations obtained through BBP v13.5 and 13.6 did not

include site effects and that created challenges for the validation, since the records

from the historical events contain local site effects. To overcome this problem, a

large number of ground motions that were recorded on soft soil sites and their

corresponding simulations were eliminated from the validation. This significantly

decreased that sample size and could influence the outcome of the validation. Site

response is currently an active topic of research and the advances in this area are

expected to improve the simulation methods implemented on the BBP.

Finally, the aim of this study was not to provide a definite judgment about the

predictive capabilities of the considered ground motion simulation methods, but to

develop a validation framework that could be used in future validation exercises

to promote their use by the engineering community. The proposed validation

framework is recommended to be used as a supplement to other existing validation

procedures.

7.3.2 Proposed stochastic ground motion model modifica-

tion framework

The proposed stochastic ground motion model modification framework is very

efficient when modification of the mean predictive relationships to match target

IMs ignoring variability is considered. An adequate representation of the overall

Pareto front can be obtained in as little as two minutes, whereas this can be more

efficient when only a single solution from the Pareto front is needed. However, the

extended implementation of the framework where variability is also considered,

comes with significant computational burden for performing the multi-objective

optimisation to identify the Pareto front, a burden stemming from the MCS step.
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Considering the fact that the proposed modification needs to be repeated for each

seismicity scenario of interest, further reduction of this burden is an important

extension of this work. This reduction will have to come from a more compu-

tationally efficient implementation of the surrogate model predictions. Once an

improved efficiency implementation is established, the proposed framework can

be applied in an automated standalone tool that will enable non-technical end-

users to generate hazard-compatible stochastic ground motions for use in PBEE

or probabilistic seismic risk assessment.

Another limitation of the proposed framework is that it provides a modified ground

motion model for a single scenario at a time. This is because a single Pareto

front is estimated for each specific seismicity scenario. Therefore, for multiple

scenarios (as in PSHA) the modification needs to be performed for each different

scenario. Given the significant computational cost for estimating the Pareto fronts

for multiple scenarios when variability is also considered, it would be very useful to

investigate possible adjustment to the developed framework to facilitate a match

to a selection of scenarios at the same time.

7.3.3 Validation of the proposed stochastic ground motion

model modification framework

The validation of the proposed modification was performed in terms of inelastic

response of SDoF systems. Although different ranges of inelastic behaviour and

different nonlinear and hysteretic characteristics were examined, the structural

systems, EDPs and fundamental periods considered in this study correspond to

first-mode-dominated and moderate height buildings. Therefore, a study consid-

ering different period ranges and MDoF systems is an extension of this work that

will highlight the impact of the modification on other structural systems.

In this study the match to the target spectrum was established for a period range

0.2T1-1.5T1 in accordance with ASCE 7 (ASCE, 2010) provisions. For large values
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of Rµ, though, the nonlinear structural response is sensitive to spectral ordinates

at periods much larger than the fundamental one and the chosen period range

for spectral compatibility may not be conservative. These were the cases where

the largest discrepancies for the stochastic ground motion model were observed.

Further study extending the spectral compatibility to larger periods would verify

this claim.

The validation was performed with respect to two EDPs: the peak inelastic dis-

placement and hysteretic energy that have been used in past validation studies.

An important extension of this work is the validation of the proposed stochastic

ground motion model modification with respect to history-dependent EDPs, such

as the residual deformation, that are important for cumulative damage assessment

for a seismic sequence (i.e., aftershocks).

With respect to the ground motion records, this study used 30 ground motion

records that was considered a good compromise between accuracy and efficiency.

Sensitivity analysis using different number of ground motions per suite would be

useful to show the influence of the selected record sample size in the final results.

Finally, the dispersion of the recorded ground motions was not explicitly matched

to the dispersion of the target spectra, since this is not the current practice, and

was in some cases significantly higher or lower than the target. This could have

an effect on the discrepancies observed between the benchmark recorded and the

stochastic model cases. A validation of the approach where an explicit match to

the target dispersion is established for the records may shed light on this matter.





Appendix A

Details for stochastic ground

motion model considered in this

thesis

The specific ground motion model used in this study is the record-based model

proposed by Rezaeian and Der Kiureghian (2010) that efficiently addresses both

temporal and spectral nonstationarities. The unfiltered discretised time history of

the ground motion according to this model is expressed as

α̈˜(t|θ,w) = q(t,θ)
k∑
i=1

h[t− ti, θ(ti)]√∑k
j=1 h[t− tj, θ(tj)]2

w(i∆t); k∆t < t < (k + 1)∆t

(A.1)

where w = [w(i∆t) : i = 1, 2, . . . , NT ] is a Gaussian white-noise sequence, ∆t

is the chosen discretisation interval (assumed constant and equal to 0.005s in

this study), q(t,θ) is the time-modulating function, and h[t− τ, θ(τ)] an impulse

response function corresponding to the pseudo-acceleration response of an SDoF

linear oscillator with time varying frequency ωf (τ) and damping ratio ζf (τ), in

191
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which τ denotes the time of the pulse

h[t− τ, θ(τ)] =
ωf (τ)√

1− ζ2f (τ)
exp [−ωf (τ)ζf (τ)(t− τ)] sin

[
ωf (τ)

√
1− ζ2f (τ)(t− τ)

]
; τ ≤ t

= 0; otherwise

(A.2)

For the time varying characteristics a linear function has been proposed for the

frequency and a constant for the damping

ωf (τ) = ωmid + ω′(τ − tmid) ζf (τ) = ζf (A.3)

with ωmid (central frequency), ω′ (frequency variation), and ζf ultimately corre-

sponding to model parameters for the filter and tmid corresponding to the mid-time

of the strong motion duration (defined next). The time envelope q(t,θ) is given

by Rezaeian and Der Kiureghian (2010)

q(t, Ia, α2, α3) =
√
Ia

[√
(2α3)2α2−1

Γ (2α2 − 1)

]
tα2−1 exp(−α3t) (A.4)

where Γ(.) is the gamma function, Ia is the Arias intensity expressed in terms of

g · π/2 (i.e., scaled by that term), and {α2, α3} are additional parameters control-

ling the shape and total duration of the envelope that can be related to physical

parameters. As advocated by Rezaeian and Der Kiureghian (2010), the strong

motion duration D5−95 (defined as the duration for the Arias intensity to increase

from 5% to 95% of its final value) and tmid corresponding to the time Arias inten-

sity achieves 45% of its final value are used. The pair {α2, α3} can be then easily

determined based on the values of {D5−95, tmid} (Rezaeian and Der Kiureghian,

2010). To assure zero residual velocity, the simulated process is eventually high-

pass filtered (Rezaeian and Der Kiureghian, 2008). This filter corresponds to a
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critically damped oscillator, and the corrected acceleration record is obtained as

the solution of the differential equation

α̈(t|θ,w) + 2ωcα̇(t|θ,w) + ω2
cα(t|θ,w) = α̈˜(t|θ,w); ωc = 0.5π (A.5)

This filter has minimal effect on the response beyond the corner frequency, ωc

(Rezaeian and Der Kiureghian, 2008).

The ground motion model has model parameters θ = {Ia, D5−95, tmid, ωmid, ω
′, ζf},

with the first one directly affecting (scaling) the output (thus input-output rela-

tionship is known) and the remaining five having a complex nonlinear relationship

to that output. Predictive relationships have been established for θ by fitting the

stochastic model to a subset of the NGA relationships strong motion database

(Rezaeian and Der Kiureghian, 2010). These predictive relationships relate θ to

the following earthquake and site characteristics, defining seismicity vector z: the

moment magnitude, M , the rupture distance, R, the type of fault F (F=0 denot-

ing strike slip and F=1 reverse fault) and the shear wave velocity of the top 30m

of the site soil, Vs,30. The predictive relationships were established by first trans-

forming the initial parameters in the standard Gaussian space leading to vector

v with components vi, i = 1, . . . , 6, each of which is related to a component θi of

vector θ through

vi(θi) = Φ−1[Fθi(θi)]; i = 1, . . . , 6 (A.6)

where Φ corresponds to the standard Gaussian CDF and Fθi corresponds to the

CDF for the fitted probability distribution to the ith component of vector θ (Reza-

eian and Der Kiureghian, 2008), given in Table A.1 where the two-sided exponen-

tial referenced in this table is
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pω′/2π(ω′/2π) =


4.85 exp(6.77ω′/2π) −2 < ω′/2π < 0

4.85 exp(−17.10ω′/2π) 0 < ω′/2π < 0.5

0 otherwise

(A.7)

Table A.1: Fitted probability distributions

Parameter
Fitted

distribution
Distribution

bounds
Mean

Standard
deviation

Ia (sg) Lognormal (0, ∞) 0.0468 0.164

D5−95 (s) Beta [5, 45] 17.3 9.31

tmid (s) Beta [0.5, 40] 12.5 7.44

ωmid/2π (Hz) Gamma (0, ∞) 5.87 3.11

ω′/2π (Hz/s)
Two-sided
exponential

[-2, 0.5] -0.0892 0.185

ζf Beta [0.02, 1] 0.213 0.143

The predictive relationships for v are then obtained through regression analysis,

providing a probabilistic characterisation with mean vector µ(z) having compo-

nents (Rezaeian and Der Kiureghian, 2010)

µ1(z) = c1,0 + c1,1F + c1,2

(
M

7

)
+ c1,3 ln

(
R

25km

)
+ c1,4 ln

(
Vs

750m/s

)
µi(z) = ci,0 + ci,1F + ci,2

(
M

7

)
+ ci,3

(
R

25km

)
+ ci,4

(
Vs

750m/s

)
; i = 2, . . . , 6

(A.8)

where ci,j are the regression coefficients provided in Table A.2, and covariance

matrix Σ corresponding to standard deviation σvi and correlation coefficient ρij

for each component that are also shown in Table A.2.
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Table A.2: Regression coefficients for mean predictive relationships and total
standard deviation and correlation coefficients for covariance matrix

i ci,0 ci,1 ci,2 ci,3 ci,4 σvi ρi1 ρi2 ρi3 ρi4 ρi5 ρi6

1 -1.844 -0.071 2.944 -1.356 -0.265 0.654 1 -0.36 0.01 -0.15 0.13 -0.01

2 -6.195 -0.703 6.792 0.219 -0.523 0.730 1 0.67 -0.13 -0.16 -0.20

3 -5.011 -0.345 4.638 0.348 -0.185 0.658 1 -0.28 -0.20 -0.22

4 2.253 -0.081 -1.810 -0.211 0.012 1.001 Symmetric 1 -0.20 0.28

5 -2.489 0.044 2.408 0.065 -0.081 0.962 1 -0.01

6 -0.258 -0.477 0.905 -0.289 0.316 1.021 1





Appendix B

Kernel-based approximation of

the probability distribution of the

ln(IM) for the ground motion

model and entropy estimation

This Appendix considers the estimation of pg(ln(Yi)|µ,Σ) and of objective Fp1

when the lognormal assumption is not invoked for the distribution of Y g
i . Ap-

proach relies on obtaining samples from pg(ln(Yi)|µ,Σ), which when using the

actual ground motion model is established through the following process. First

generate nd samples for θ from p(θ|µ,Σ), {θd; d = 1, . . . , nd}, and nd sample

white-noise sequences, {wd; d = 1, . . . , nd}, and obtain the corresponding accel-

eration time-histories α̈(t|θd,wd); d = 1, . . . , nd. For each sample, the response

output of interest is estimated providing samples of {ln(Y g,d
i ); d = 1, . . . , nd} from

pg(ln(Yi)|z). The latter can be approximated using KDE based on these samples

as
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p̃g(ln(Yi)|µ,Σ) =
1

nd

nd∑
d=1

1

h
K

(
ln(Yi)− ln(Y g,d

i )

h

)
;

K(t) =
1√
2π
e
−t2
2

(B.1)

where K(.) is the chosen kernel and h is the Kernel bandwidth. In this study,

the widely used Gaussian kernel is employed, shown also in Equation B.1 with

bandwidth chosen as (Scott, 2015) h = 1.06 · n−1/5d σd where σd is the standard

deviation of the samples {ln(Y g,d
i ); d = 1, . . . , nd}. The entropy in Equation 5.6

can be then approximated using the KDE estimate in Equation B.1, with the

scalar integral calculated through numerical integration (trapezoidal rule).

When the IM is approximated through use of the metamodel Y g
i (θ,w) =

√
θssi(x,w),

then the approach for obtaining the samples {ln(Y g,d
i ); d = 1, . . . , nd} changes

and requires, additionally, another statistical assumption for the distribution of

Y g
i (θ,w) under the influence of w. Note that this is a different setting than in-

voking a specific distribution for Y g
i , since in this case the assumption pertains

only to the influence of the white-noise. The standard statistical approximation,

with proven accuracy in a number of studies (Gidaris et al., 2015), is lognormal

assumption. In this case, the desired samples are obtained through the following

process. First generate nd samples for θ from p(θ|µ,Σ), {θd; d = 1, . . . , nd}, and

estimate through the metamodel outputs ln(s̄i(x
d)) and σsi (x

d) for d = 1, . . . , nd.

Generate nd samples {ed; d = 1, . . . , nd} from a standard Gaussian distribution

and obtain each of the desired samples as

ln(Y g,d
i ) = ln(s̄i(x

d)) + σsi (x
d)ed +

1

2
ln θds (B.2)

Once these samples are obtained, then the KDE estimation of pg(ln(Yi)|µ,Σ) and

the calculation of Fp1 follow same approach as in the case that actual ground

motion model was utilised.
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Additional stochastic ground

motion model data for Chapters 4

and 5

Table C.1: Physical ground motion model parameters θ for the unmodified

Un and modified ground motion models Ut and Cs

Scenario
PF θ

point Ia
2
π

(sg) D5−95 (s) tmid (s) ωmid
2π

(Hz) ω′

2π
(Hz/s) ζf

M=6.2 Ut 0.0116 12.493 6.996 6.080 -0.1071 0.1815

– Un 0.0165 10.876 6.375 6.627 -0.1026 0.2696

R=30km Cs 0.0043 20.122 10.791 3.560 -0.2695 0.0338

M=6.2 Ut 0.0031 14.243 8.927 6.023 -0.0915 0.1742

– Un 0.0043 13.209 9.188 5.803 -0.0909 0.2102

R=60km Cs 0.0047 15.977 10.355 6.590 -0.4212 0.0541

M=6.2 Ut 0.0016 16.735 11.341 5.171 -0.2238 0.1166

– Un 0.0020 15.971 12.568 5.051 -0.0798 0.1591

R=90km Cs 0.0003 23.828 18.896 2.423 -0.1374 0.1000
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M=6.8 Ut 0.0244 16.930 8.520 5.157 -0.2211 0.2018

– Un 0.0237 16.615 9.039 6.114 -0.0730 0.2838

R=30km Cs 0.0347 23.818 16.814 5.415 -0.2608 0.0590

M=6.8 Ut 0.0070 16.359 9.968 5.019 -0.0433 0.2347

– Un 0.0062 19.781 12.395 5.334 -0.0629 0.2228

R=60km Cs 0.0029 32.373 21.587 2.981 -0.1607 0.0571

M=6.8 Ut 0.0040 21.217 15.349 4.625 -0.0437 0.2052

– Un 0.0028 23.138 16.164 4.624 -0.0534 0.1697

R=90km Cs 0.0014 32.370 19.862 2.517 -0.1010 0.1703

M=7.4 Ut 0.0458 22.394 12.179 5.548 -0.0683 0.3200

– Un 0.0341 23.871 12.223 5.628 -0.0476 0.2984

R=30km Cs 0.0378 21.423 10.914 5.524 -0.0353 0.3781

M=7.4 Ut 0.0140 24.339 15.319 4.639 -0.0330 0.2993

– Un 0.0089 27.259 15.976 4.891 -0.0390 0.2358

R=60km Cs 0.0074 27.790 17.408 3.607 -0.2170 0.2355

M=7.4 Ut 0.0076 26.603 18.022 4.110 -0.0215 0.2488

– Un 0.0040 30.511 19.935 4.223 -0.0310 0.1809

R=60km Cs 0.0037 32.826 21.189 3.028 -0.1566 0.2585

M=8 Ut 0.0905 28.314 14.871 5.747 -0.0164 0.4070

– Un 0.0489 31.180 15.789 5.168 -0.0261 0.3133

R=30km Cs 0.0463 33.614 20.359 3.742 -0.1561 0.4215

M=8 Ut 0.0225 32.870 20.521 3.683 -0.0097 0.3130

– Un 0.0127 34.100 19.744 4.474 -0.0189 0.2492

R=60km Cs 0.0151 37.748 24.451 2.766 -0.1522 0.2754

M=8 Ut 0.0068 38.688 27.440 2.221 -0.0821 0.1623

– Un 0.0058 36.654 23.672 3.846 -0.0123 0.1924

R=90km Cs 0.0078 38.687 26.624 2.241 -0.1096 0.2583
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Table C.2: Spectral acceleration values (PSA) for the unmodified Un, modified

ground motion models Ut and Cs and target IMs

Scenario Case
PSA (g)

T=0.4 s T=0.5 s T=0.75 s T=1 s T=1.5 s T=2 s

Ut 0.1227 0.0996 0.0695 0.0549 0.0382 0.0286

M=6.2- Un 0.1724 0.1400 0.1001 0.0780 0.0549 0.0419

R=30km Cs 0.1357 0.1102 0.0693 0.0501 0.0309 0.0226

Target 0.1399 0.1135 0.0745 0.0533 0.0315 0.0206

Ut 0.0608 0.0492 0.0338 0.0270 0.0186 0.0142

M=6.2- Un 0.0817 0.0655 0.0451 0.0359 0.0249 0.0191

R=60km Cs 0.0714 0.0543 0.0372 0.0262 0.0159 0.0117

Target 0.0701 0.0577 0.0388 0.0279 0.0166 0.0109

Ut 0.0502 0.0375 0.0228 0.0177 0.0113 0.0085

M=6.2- Un 0.0527 0.0414 0.0276 0.0220 0.0153 0.0121

R=90km Cs 0.0460 0.0400 0.0257 0.0184 0.0113 0.0083

Target 0.0461 0.0385 0.0264 0.0191 0.0115 0.0076

Ut 0.2207 0.1710 0.1132 0.0879 0.0591 0.0451

M=6.8- Un 0.1963 0.1607 0.1118 0.0893 0.0625 0.0489

R=30km Cs 0.2288 0.1800 0.1204 0.0901 0.0571 0.0429

Target 0.2136 0.1791 0.1246 0.0932 0.0586 0.0409

Ut 0.1186 0.0934 0.0635 0.0496 0.0343 0.0270

M=6.8- Un 0.0951 0.0764 0.0519 0.0418 0.0295 0.0236

R=60km Cs 0.1163 0.0985 0.0666 0.0498 0.0333 0.0250

Target 0.1150 0.0980 0.0699 0.0526 0.0333 0.0233

Ut 0.0830 0.0646 0.0436 0.0347 0.0242 0.0191

M=6.8- Un 0.0615 0.0471 0.0318 0.0258 0.0182 0.0144

R=90km Cs 0.0791 0.0699 0.0472 0.0347 0.0232 0.0179

Target 0.0787 0.0681 0.0495 0.0376 0.0240 0.0168
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Ut 0.2742 0.2265 0.1576 0.1288 0.0911 0.0723

M=7.4- Un 0.2241 0.1826 0.1270 0.1026 0.0733 0.0585

R=30km Cs 0.2727 0.2247 0.1581 0.1272 0.0903 0.0718

Target 0.2584 0.2255 0.1709 0.1349 0.0923 0.0683

Ut 0.1661 0.1339 0.0919 0.0728 0.0516 0.0414

M=7.4- Un 0.1119 0.0883 0.0612 0.0492 0.0343 0.0277

R=60km Cs 0.1563 0.1316 0.0966 0.0769 0.0555 0.0447

Target 0.1490 0.1323 0.1029 0.0819 0.0564 0.0418

Ut 0.1276 0.0982 0.0665 0.0521 0.0363 0.0295

M=7.4- Un 0.0792 0.0585 0.0389 0.0301 0.0212 0.0169

R=60km Cs 0.1119 0.0968 0.0717 0.0568 0.0407 0.0329

Target 0.1063 0.0959 0.0762 0.0611 0.0423 0.0314

Ut 0.3768 0.3138 0.2247 0.1814 0.1305 0.1063

M=8- Un 0.2670 0.2164 0.1516 0.1222 0.0873 0.0707

R=30km Cs 0.3523 0.3012 0.2281 0.1857 0.1364 0.1100

Target 0.3304 0.2970 0.2402 0.1978 0.1449 0.1124

Ut 0.2390 0.1863 0.1265 0.1011 0.0703 0.0563

M=8- Un 0.1387 0.1068 0.0730 0.0582 0.0418 0.0338

R=60km Cs 0.2176 0.1985 0.1511 0.1218 0.0914 0.0731

Target 0.2054 0.1881 0.1560 0.1297 0.0953 0.0741

Ut 0.1768 0.1573 0.1142 0.0843 0.0580 0.0437

M=8- Un 0.0996 0.0713 0.0479 0.0371 0.0267 0.0213

R=90km Cs 0.1620 0.1492 0.1176 0.0938 0.0715 0.0558

Target 0.1537 0.1429 0.1208 0.1012 0.0747 0.0581
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Table C.3: Mean ground motion model parameters θ for the unmodified Un

(corresponding to µr) and modified predictive model Ut and Cs (corresponding

to µ for each Pareto point)

Scenario
PF θ

point Ia
2
π

(sg) D5−95 (s) tmid (s) ωmid
2π

(Hz) ω′

2π
(Hz/s) ζf

M=6.2 Ut 0.0094 13.489 6.410 7.465 -0.1137 0.2560

– Un 0.0165 10.876 6.375 6.627 -0.1026 0.2696

R=30km Cs 0.0059 8.405 3.798 3.803 -0.1424 0.0624

M=6.2 Ut 0.0030 15.323 9.377 6.281 -0.0929 0.1747

– Un 0.0043 13.209 9.188 5.803 -0.0909 0.2102

R=60km Cs 0.0015 10.632 8.465 3.555 -0.2035 0.0507

M=6.2 Ut 0.0014 18.362 12.787 5.487 -0.0817 0.1297

– Un 0.0020 15.971 12.568 5.051 -0.0798 0.1591

R=90km Cs 0.0004 12.206 12.895 2.999 -0.0461 0.1760

M=6.8 Ut 0.0190 13.823 7.745 5.191 -0.0648 0.2151

– Un 0.0237 16.615 9.039 6.114 -0.0730 0.2838

R=30km Cs 0.0192 17.638 10.306 3.898 -0.0365 0.1342

M=6.8 Ut 0.0050 18.068 11.847 3.928 -0.0531 0.1595

– Un 0.0062 19.781 12.395 5.334 -0.0629 0.2228

R=60km Cs 0.0052 17.894 11.513 4.115 -0.0410 0.1604

M=6.8 Ut 0.0029 21.312 15.032 4.089 -0.0312 0.1767

– Un 0.0028 23.138 16.164 4.624 -0.0534 0.1697

R=90km Cs 0.0026 21.502 16.437 3.901 -0.0439 0.1650

M=7.4 Ut 0.0315 23.987 12.909 4.734 -0.0360 0.3002

– Un 0.0341 23.871 12.223 5.628 -0.0476 0.2984

R=30km Cs 0.0357 23.346 11.980 5.474 -0.0440 0.3080

M=7.4 Ut 0.0107 27.604 16.894 3.831 -0.0351 0.2126

– Un 0.0089 27.259 15.976 4.891 -0.0390 0.2358

R=60km Cs 0.0118 26.338 16.042 4.167 -0.0191 0.2452
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M=7.4 Ut 0.0058 29.301 19.199 3.677 -0.0163 0.2014

– Un 0.0040 30.511 19.935 4.223 -0.0310 0.1809

R=60km Cs 0.0047 30.085 20.270 3.181 -0.0549 0.1822

M=8 Ut 0.0652 30.325 15.855 4.416 -0.0084 0.3239

– Un 0.0489 31.180 15.789 5.168 -0.0261 0.3133

R=30km Cs 0.0556 30.221 14.423 4.333 0.0011 0.3448

M=8 Ut 0.0208 32.591 19.806 3.819 -0.0287 0.2993

– Un 0.0127 34.100 19.744 4.474 -0.0189 0.2492

R=60km Cs 0.0208 32.110 19.659 3.207 -0.0098 0.2716

M=8 Ut 0.0095 34.925 23.590 2.712 -0.0039 0.2119

– Un 0.0058 36.654 23.672 3.846 -0.0123 0.1924

R=90km Cs 0.0097 36.969 27.713 2.277 -0.0234 0.1729
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Table C.4: Coefficient β used to derive the covariance matrix of the modified

predictive relationship Σ

Scenario
PF β

point Ia
2
π

(sg) D5−95 (s) tmid (s) ωmid
2π

(Hz) ω′

2π
(Hz/s) ζf

M=6.2 Ut 1.0133 1.0293 1.0505 0.9431 0.8963 0.8649

– Un 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R=30km Cs 0.6987 0.7845 0.4190 1.0239 1.0389 0.6829

M=6.2 Ut 0.9056 0.8564 1.0428 0.8443 1.0528 1.0164

– Un 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R=60km Cs 0.6019 0.7165 0.5397 0.7593 0.4386 0.8946

M=6.2 Ut 0.9056 0.8564 1.0428 0.8443 1.0528 1.0164

– Un 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R=90km Cs 0.9914 0.3970 0.8664 0.2094 0.9196 0.9050

M=6.8 Ut 0.7645 1.0768 0.6610 0.7785 0.8907 1.0814

– Un 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R=30km Cs 0.6115 0.5926 0.6371 0.9442 0.4136 1.0116

M=6.8 Ut 0.6961 0.7438 0.5929 1.0750 0.8104 1.0603

– Un 1.000 1.000 1.000 1.000 1.000 1.000

R=60km Cs 0.6811 0.7792 0.5410 1.0255 0.6465 1.0080

M=6.8 Ut 0.6593 0.7522 1.0674 1.0620 0.6202 0.9653

– Un 1.000 1.000 1.000 1.000 1.000 1.000

R=90km Cs 0.8812 1.0776 0.9140 0.9734 0.8768 1.0211

M=7.4 Ut 0.8865 1.0318 0.8451 1.0616 0.8611 1.0597

– Un 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R=30km Cs 0.9489 1.0023 1.0523 1.0469 1.0471 1.0435

M=7.4 Ut 0.9329 0.9352 0.8115 1.0272 0.9102 0.9058

– Un 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R=60km Cs 0.9241 0.8629 0.9744 1.0443 0.8988 0.8458
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M=7.4 Ut 0.9046 0.8715 1.0853 0.9483 1.0187 0.8398

– Un 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R=60km Cs 0.9900 0.8263 0.8145 1.0272 0.9964 1.0856

M=8 Ut 0.9241 0.8629 0.9744 1.0443 0.8988 0.8458

– Un 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R=30km Cs 0.8531 0.8763 1.0636 1.0565 1.0829 0.6929

M=8 Ut 0.9736 0.8853 0.9369 1.0793 0.9953 1.0858

– Un 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R=60km Cs 1.0487 0.8416 1.0682 1.0900 0.8855 1.0623

M=8 Ut 1.0487 0.8416 1.0682 1.0900 0.8855 1.0623

– Un 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R=90km Cs 0.9003 0.8545 0.9478 1.0128 1.0325 0.6029
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Table C.5: Median spectral acceleration values (PSA) for the unmodified Un,

modified ground motion models Ut and Cs and target IMs

Scenario Case
PSA (g)

T=0.4 s T=0.5 s T=0.75 s T=1 s T=1.5 s T=2 s

Ut 0.1162 0.0945 0.0654 0.0510 0.0363 0.0283

M=6.2- Un 0.1791 0.1458 0.0989 0.0763 0.0537 0.0415

R=30km Cs 0.1233 0.1032 0.0660 0.0475 0.0291 0.0213

Target 0.1310 0.1054 0.0684 0.0491 0.0290 0.0188

Ut 0.0659 0.0525 0.0344 0.0266 0.0184 0.0144

M=6.2- Un 0.0921 0.0747 0.0490 0.0377 0.0258 0.0200

R=60km Cs 0.0663 0.0555 0.0340 0.0243 0.0150 0.0110

Target 0.0650 0.0531 0.0353 0.0255 0.0152 0.0099

Ut 0.0449 0.0355 0.0229 0.0175 0.0118 0.0092

M=6.2- Un 0.0619 0.0505 0.0332 0.0251 0.0167 0.0129

R=90km Cs 0.0445 0.0371 0.0232 0.0167 0.0106 0.0079

Target 0.0425 0.0353 0.0240 0.0175 0.0106 0.0069

Ut 0.2079 0.1687 0.1103 0.0839 0.0576 0.0444

M=6.8- Un 0.2130 0.1743 0.1184 0.0925 0.0649 0.0509

R=30km Cs 0.2006 0.1734 0.1127 0.0841 0.0547 0.0415

Target 0.2027 0.1686 0.1158 0.0868 0.0548 0.0377

Ut 0.1049 0.0913 0.0632 0.0480 0.0312 0.0237

M=6.8- Un 0.1072 0.0884 0.0598 0.0461 0.0317 0.0249

R=60km Cs 0.1043 0.0899 0.0611 0.0463 0.0302 0.0230

Target 0.1080 0.0913 0.0643 0.0487 0.0310 0.0214

Ut 0.0739 0.0645 0.0446 0.0338 0.0224 0.0174

M=6.8- Un 0.0713 0.0600 0.0409 0.0310 0.0208 0.0163

R=90km Cs 0.0739 0.0643 0.0450 0.0340 0.0224 0.0173

Target 0.0735 0.0631 0.0455 0.0348 0.0223 0.0156
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Ut 0.2523 0.2182 0.1539 0.1199 0.0830 0.0656

M=7.4- Un 0.2441 0.2038 0.1417 0.1111 0.0782 0.0622

R=30km Cs 0.2559 0.2148 0.1497 0.1173 0.0824 0.0655

Target 0.2471 0.2126 0.1579 0.1240 0.0847 0.0617

Ut 0.1462 0.1294 0.0936 0.0718 0.0484 0.0380

M=7.4- Un 0.1239 0.1048 0.0724 0.0557 0.0384 0.0306

R=60km Cs 0.1524 0.1340 0.0946 0.0727 0.0497 0.0392

Target 0.1415 0.1239 0.0944 0.0750 0.0516 0.0378

Ut 0.1074 0.0940 0.0679 0.0520 0.0351 0.0276

M=7.4- Un 0.0824 0.0708 0.0497 0.0381 0.0260 0.0205

R=60km Cs 0.0977 0.0897 0.0700 0.0542 0.0361 0.0282

Target 0.1002 0.0892 0.0695 0.0559 0.0388 0.0286

Ut 0.3517 0.3067 0.2201 0.1733 0.1214 0.0968

M=8- Un 0.2839 0.2408 0.1702 0.1339 0.0948 0.0761

R=30km Cs 0.3325 0.2942 0.2149 0.1699 0.1190 0.0947

Target 0.3186 0.2811 0.2212 0.1794 0.1295 0.0980

Ut 0.1996 0.1797 0.1354 0.1075 0.0748 0.0596

M=8- Un 0.1448 0.1237 0.0880 0.0688 0.0480 0.0383

R=60km Cs 0.1984 0.1839 0.1438 0.1137 0.0778 0.0616

Target 0.1962 0.1764 0.1426 0.1173 0.0852 0.0648

Ut 0.1358 0.1275 0.1023 0.0806 0.0544 0.0429

M=8- Un 0.0973 0.0845 0.0610 0.0471 0.0323 0.0257

R=90km Cs 0.1393 0.1364 0.1139 0.0917 0.0623 0.0489

Target 0.1448 0.1323 0.1095 0.0913 0.0669 0.0511
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Table C.6: Logarithmic standard deviation (σlog) of the spectral acceleration

(PSA) for the unmodified Un, modified ground motion models Ut and Cs and

target IMs

Scenario Case
σlog

T=0.4 s T=0.5 s T=0.75 s T=1 s T=1.5 s T=2 s

Ut 0.6577 0.6509 0.06457 0.6414 0.6380 0.6374

M=6.2- Un 0.6925 0.6873 0.6741 0.6686 0.6654 0.6687

R=30km Cs 0.6709 0.7020 0.6952 0.6673 0.6165 0.6064

Target 0.6322 0.6372 0.6506 0.6549 0.6672 0.6772

Ut 0.6560 0.6543 0.6234 0.6250 0.6310 0.6359

M=6.2- Un 0.6980 0.7004 0.6611 0.6548 0.6601 0.6627

R=60km Cs 0.6514 0.6917 0.6757 0.6477 0.6165 0.6042

Target 0.6323 0.6373 0.6506 0.6550 0.6672 0.6772

Ut 0.6801 0.6774 0.6143 0.6074 0.6139 0.6192

M=6.2- Un 0.6994 0.7086 0.6689 0.6495 0.6457 0.6476

R=90km Cs 0.6322 0.6556 0.6771 0.6516 0.6429 0.6452

Target 0.6324 0.6373 0.6506 0.6550 0.6672 0.6773

Ut 0.6427 0.6504 0.6158 0.6087 0.6155 0.6197

M=6.8- Un 0.6789 0.6767 0.6452 0.6409 0.6425 0.6423

R=30km Cs 0.6173 0.6731 0.6642 0.6486 0.6244 0.6118

Target 0.6134 0.6208 0.6383 0.6458 0.6606 0.6722

Ut 0.6110 0.6323 0.6518 0.6391 0.6089 0.5997

M=6.8- Un 0.6800 0.6843 0.6452 0.6366 0.6357 0.6362

R=60km Cs 0.6177 0.6506 0.6594 0.6460 0.6194 0.6089

Target 0.6135 0.6209 0.6384 0.6458 0.6606 0.6723

Ut 0.6042 0.6454 0.6779 0.6626 0.6279 0.6158

M=6.8- Un 0.6688 0.6844 0.6589 0.6366 0.6187 0.6202

R=90km Cs 0.6363 0.6538 0.6809 0.6575 0.6236 0.6149

Target 0.6136 0.6209 0.6384 0.6458 0.6606 0.6723
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Ut 0.6193 0.6474 0.6411 0.6336 0.6244 0.6206

M=7.4- Un 0.6562 0.6577 0.6272 0.6251 0.6252 0.6264

R=30km Cs 0.6452 0.6499 0.6218 0.6193 0.6190 0.6190

Target 0.6071 0.6153 0.6343 0.6427 0.6584 0.6706

Ut 0.6173 0.6361 0.6662 0.6457 0.6139 0.6096

M=7.4- Un 0.6506 0.6680 0.6509 0.6325 0.6225 0.6239

R=60km Cs 0.6272 0.6602 0.6758 0.6654 0.6470 0.6413

Target 0.6073 0.6154 0.6343 0.6427 0.6584 0.6706

Ut 0.6109 0.6350 0.6755 0.6589 0.6312 0.6279

M=7.4- Un 0.6552 0.6729 0.6756 0.6502 0.6256 0.6257

R=60km Cs 0.6381 0.6226 0.6700 0.6522 0.6067 0.5989

Target 0.6073 0.6155 0.6343 0.6427 0.6584 0.6707

Ut 0.6157 0.6394 0.6502 0.6416 0.6331 0.6311

M=8- Un 0.6405 0.6508 0.6354 0.6236 0.6221 0.6253

R=30km Cs 0.6037 0.6276 0.6554 0.6519 0.6446 0.6407

Target 0.6071 0.6153 0.6342 0.6427 0.6584 0.6705

Ut 0.6033 0.6138 0.6303 0.6213 0.6048 0.6048

M=8- Un 0.6398 0.6560 0.6591 0.6412 0.6307 0.6315

R=60km Cs 0.6096 0.6159 0.6670 0.6699 0.6473 0.6443

Target 0.6072 0.6153 0.6343 0.6427 0.6584 0.6706

Ut 0.6090 0.6093 0.6840 0.6891 0.6608 0.6618

M=8- Un 0.6288 0.6524 0.6884 0.6673 0.6462 0.6487

R=90km Cs 0.5973 0.5761 0.6343 0.6459 0.6133 0.6112

Target 0.6072 0.6154 0.6343 0.6427 0.6584 0.6706
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Additional figures for Chapter 6
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Figure D.1: Relative error compared to reference SR response for the hys-
teretic energy for EPH system with α=3% for “constant-Rµ” approach.

211



Appendix D 212

-0.2

0

0.2

0.4

0.6

0.8

1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-0.6

-0.4

-0.2

0

0.2

0.4

1
-0.2

0

0. 2

0. 4

0. 6

0. 8

1

1. 2

-0.6

-0.4

-0.2

0

0.2

0.4

-1

-0.5

0

0.5

1

M=6-R=20 km M=6.9-R=20 km M=7.8-R=20 km

M=7.8-R=70 kmM=6.9-R=70 kmM=6-R=70 km

Cs

UCl

Un

t

Black=IMC

Grey=HC

1 2 4 861 2 4 86 1 2 4 86
R

μ
R

μ
R

μ

 
(

)
in

E
Δ

 
(

)
in

E
Δ

Figure D.2: Relative error compared to reference SR response for the peak in-
elastic displacements for EPH system with α=10% for “constant-Rµ” approach.
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Figure D.3: Median hysteretic energy for EPH system with α=10% for
“constant-Rµ” approach.
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Figure D.4: Dispersion (expressed through CoV) of peak inelastic displace-
ment for EPH system with α=10% for “constant-Rµ” approach.
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Figure D.5: Dispersion (expressed through CoV) of hysteretic energy for EPH
system with α=10% for “constant-Rµ” approach.
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Figure D.6: Median hysteretic energy for ESD system for “constant-Rµ” ap-
proach.
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Figure D.7: Dispersion (expressed through CoV) of hysteretic energy for ESD
system for “constant-Rµ” approach.
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Figure D.8: Normalised median peak inelastic displacements for EPH system
with α=3% for “constant-strength” approach.
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Figure D.9: Median hysteretic energy for EPH system with α=3% for
“constant-strength” approach.
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Figure D.10: Dispersion (expressed through CoV) of hysteretic energy for
EPH system with α=3% for “constant-strength” approach.
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Figure D.11: Normalised median peak inelastic displacements for ESD system
for “constant-strength” approach.
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Figure D.12: Median hysteretic energy for ESD system for “constant-
strength” approach.
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Figure D.13: Dispersion (expressed through CoV) of hysteretic energy for
ESD system for “constant-strength” approach.
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