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Cell-based models of the blood-brain barrier (BBB) are important for increasing the knowledge
of BBB formation, degradation and brain exposure of drug substances. Human models are pre-
ferred over animal models because of interspecies differences in BBB structure and function.
However, access to human primary BBB tissue is limited and has shown degeneration of BBB
functions in vitro. Human induced pluripotent stem cells (iPSCs) can be used to generate relevant
cell types to model the BBB with human tissue. We generated a human iPSC-derived model of
the BBB that includes endothelial cells in coculture with pericytes, astrocytes and neurons. Evalu-
ation of barrier properties showed that the endothelial cells in our coculture model have high
transendothelial electrical resistance, functional efflux and ability to discriminate between CNS
permeable and non-permeable substances. Whole genome expression profiling revealed tran-
scriptional changes that occur in coculture, including upregulation of tight junction proteins, such
as claudins and neurotransmitter transporters. Pathway analysis implicated changes in the WNT,
TNF, and PI3K-Akt pathways upon coculture. Our data suggest that coculture of iPSC-derived
endothelial cells promotes barrier formation on a functional and transcriptional level. The infor-
mation about gene expression changes in coculture can be used to further improve iPSC-derived
BBB models through selective pathway manipulation. STEM CELLS 2018; 00:1-12

SIGNIFICANCE STATEMENT

To improve blood-brain barrier (BBB) models and understand BBB function in health and dis-
ease there is a need to increase knowledge around molecular mechanisms behind the restricted
permeability across the BBB. To our knowledge, this is the first publication describing whole
genome expression changes that occur in induced pluripotent stem cell-derived endothelial cells
upon co-culture with induced pluripotent stem cell-derived astrocytes, neurons and pericytes.
The ability of the endothelial cells to restrict permeability is increased after co-culture, our anal-
ysis increases understanding of molecular mechanisms that govern this permeability restriction.
Our results can be used to design novel improvement strategies for BBB models.

(CNS) have specific properties that allow them
to restrict permeability between the blood and

INTRODUCTION

The blood-brain barrier (BBB) constitutes the
interface between the blood and the brain tis-
sue. Its primary function is to maintain the
tightly controlled microenvironment of the
brain [1]. At the basolateral (brain) face of the
endothelial cells (EC), the extracellular basal
lamina surrounds the EC and embeds the peri-
cytes. Astrocytic end-feet are in contact with
the EC and the basal lamina. This unit of astro-
cytes, pericytes, basal lamina, and EC is often
referred to as the neurovascular unit (NVU)
[2,3]. The EC of the central nervous system

STEM CELLS 2018;00:1-12 www.StemCells.com

the brain [3]. The tight cellular interactions
between the CNS EC in the BBB act as a physi-
cal barrier for pathogens, cells, proteins, and
water-soluble agents. Specific transport pro-
teins control the supply of nutrients and the
transfer of other small molecules to the brain.
A highly active enzyme pool acts as a meta-
bolic barrier within the EC and efflux transport
proteins maintain the homeostasis of small
gaseous and lipophilic compounds that diffuse
across the endothelial apical (blood) mem-
brane [4].

© 2018 The Authors STEM CELLS published by
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Models of the BBB are important tools in drug development
and support the evaluation of the brain-penetrating properties
of novel drug molecules. Current models of the BBB range from
in vivo animal models to more complex cell models with cocul-
tures of several primary cell types, as well as computer-based
in silico models [5-10]. in vivo animal models of BBB permeabil-
ity, using techniques such as brain perfusion, are currently con-
sidered the most accurate. However, these models are time-
consuming, expensive and have low-throughput compared with
cell models [11]. Primary porcine and bovine cells have high
barrier integrity and low permeability [9, 12]. However, primary
cells require resource-demanding isolation procedures, have
limited availability, and suffer from batch-to-batch variation.
Additionally, when the BBB is modeled using animal cells it is
important to consider interspecies differences. For example,
there are species differences in the expression of BBB trans-
porters, including the important efflux transporter P-
glycoprotein (P-gp) [13,14] and differences between humans
and rodents in permeability of P-gp substrates [15].

The availability of primary human brain cells is very limited
and samples are typically residual tissue from patient biopsies
or postmortem brains. While the use of immortalized cell lines
from human and animal origin can circumvent issues with
reproducibility and batch-to-batch variation, many of the
human brain EC lines fail to form tight cellular interactions
[9,16,17]. In addition, isolated primary brain EC rapidly lose
their BBB properties when cultured in vitro [18, 19]. Therefore,
it is plausible that the BBB properties are not intrinsic to the
human brain EC but rather depend on the specific microenvi-
ronment that all components of the NVU create together. Sev-
eral coculture models have been described that demonstrate
improved barrier properties compared to EC alone
[5,6,20-22]. The molecular mechanisms underpinning how
coculturing cells affect the barrier properties of EC are poorly
characterized but signaling through the WNT, NOTCH, and
Sonic Hedgehog pathways have been implicated [17, 23, 24].

Recently, models using human induced pluripotent stem
cell (iPSC)-derived cells have gained large interest and several
coculture models have been reported [25-28]. These have sev-
eral advantages including their human origin, availability and
high reproducibility. Previous models have shown, that iPSC-
derived EC cocultured with neural cell types can serve as a
predictive model system for BBB permeability [27, 28].

In the present study, we compared of two different proto-
cols to derive EC and used these iPSC-derived EC to establish
in vitro coculture models of the BBB. Whole genome expres-
sion profiling was performed to elucidate transcription changes
behind the BBB specification of EC initiated during coculture.

METHODS

Cell Culture

Two iPSC lines were used to derive EC, SFC-SB-AD2-01, and r-
iPSC 1j. r-iPSC 1j was generated from human fibroblasts (ATCC)
(male, newborn) using mRNA reprogramming [29], SFC-SB-
AD2-01 (Innovative Medicines Initiative Joint Undertaking
StemBancc) was generated from fibroblasts (male, 51 years
old) using Sendai virus reprogramming. SFC-SB-AD2—-01 and r-
iPSC 1j were maintained in DEF-CS culture system (Takara Bio).
iPSC-derived astrocytes and neurons (both Cellular Dynamics)

©2018 The Authors STEM CELLS published by
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were cultured according to the vendor’s instructions. Blood—
brain barrier hCMEC/D3 cell line (EMD Millipore) was cultured
according to the vendor’s instructions. Primary human brain
microvascular endothelial cells (hnBMEC) (ACBRI 376, Cell Sys-
tems) were cultured in complete classic medium with serum
and CultureBoost (Cell Systems).

Differentiation to EC and Pericytes

Differentiation to EC was performed according to two previ-
ously published protocols. Protocol 1 uses a shorter differenti-
ation, relying predominantly on spontaneous differentiation
capacity [22,30]. Protocol 2 applies an approach using direct-
ing mitogens and immunomagnetic separation for purification
[31] and generates both EC and pericytes. Hereafter, EC
derived using Protocol 1 are referred to as iPS-EC1 and EC
derived with Protocol 2 are referred to as iPS-EC2.

Protocol 1

iPSCs were seeded at 10,000 cells/cm? in DEF-CS 2 days before
differentiation start. Once the cells had reached 30,000 cells/cm?
differentiation was initiated by changing to unconditioned media
[UM, DMEM/F12 + glutamax, 20% KOSR, X1 Nonessential amino
acids and 0.1 mM beta-mercaptoethanol (Gibco)]. Cultures were
given fresh UM daily, for 6 days. On Day 6, UM was changed to
endothelial cell media 1 [ECM1, ES-SFM (Life Technologies), 1%
platelet poor serum (Alfa Aesar), 10 pM Retinoic acid (Sigma
Aldrich), and 20 ng/ml bFGF (Peprotech)]. On Day 8, cells were
passaged at 1,000,0000 cells/cm? on to collagen IV (400 pg/ml,
EMD Millipore)/fibronectin (100 pg/ml Sigma Aldrich)-coated
24 well 0.4 pm pore polyester membrane Transwell inserts
(Corning) or at 250,000 cells/cm? on to collagen/fibronectin-
coated CellBind Surface 96 well plates (Corning). At day nine
media was changed to ECM1 without bFGF and Retinoic acid.

Protocol 2

iPSCs were seeded at 70,000 cells/cm? in DEF-CS, the day after
differentiation was initiated by changing the media to Meso-
derm induction media [APEL2 (Stem Cell Technologies) with
5% PFHM-II Protein-Free Hybridoma Medium (Gibco), 25 ng/ml
Activin A (Peprotech), 30 ng/ml BMP4 (R&D Systems), 50 ng/ml
VEGF (Sigma Aldrich), and 1.5 pM Chir99021 (Tocris)], media
was changed daily for 3 days. On Day 3, media was changed
to Vascular specification media [APEL2 (Stem Cell Technolo-
gies) with 5% PFHM-II Protein-Free Hybridoma Medium
(Gibco), 50 ng/ml VEGF (Sigma Aldrich), and 10 pM SB431542
(Tocris)], media was changed every other day until Day
11, when immunomagnetic separation was performed. Cells
were separated using Dynabeads CD31 Endothelial cell
(Invitrogen) according to the manufacturer’s instruction. After
sorting, CD31 positive cells were further expanded by seeding
at 10,000 cells/cm? on gelatin-coated surfaces (0.01%) in endo-
thelial cell media 2 [ECM2, EC-SFM (Life Technologies) with 1%
platelet poor serum (Alfa Aesar), 30 ng/pl VEGF (Sigma
Aldrich), and 20 ng/ml bFGF (Peprotech)]. When confluent,
cells were passaged at 1,000,000 cells/em? on to collagen
(400 pg/ml)/fibronectin (100 pg/ml) covered 24 well 0.4 pm
pore polyester membrane transwell inserts (Corning) or at
250,000 cells/cm? in collagen/fibronectin-coated CellBind Sur-
face 96 well plates (Corning). CD31 negative cells were
expanded on 0.01% gelatin (Sigma Aldrich) coated surfaces in
EGM2 media (Lonza) and then further differentiated to
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pericytes by culturing in pericyte differentiation media
[DMEM/F12 (Gibco) with 10% FBS (Stem Cell Technologies),
2 ng/ml TGF-B3 (Sigma Aldrich), and 4 ng/pl PDGF-bb (R&D
Systems)] for 3 days. Pericytes were then maintained in
DMEM/F12 (Gibco) with 10% FBS (Stem Cell Technologies).

Coculture Setup

Astrocytes were seeded at 40,000 cells/cm? on matrigel
(Corning) coated 24-well plates (Corning), 2 days before the
start of coculture. The day before the start of coculture, peri-
cytes were seeded at 50,000 cells/cm? on to the lower side of
collagen/fibronectin-coated transwell inserts. Neurons were
seeded at 25,000 cells/cm? on top of the astrocytes. EC were
seeded at 1,000,000 cells/cm? on Transwell membranes coated
with collagen/fibronectin as described above, and allowed to
attach for at least 6 hours. Coculture was initiated by changing
the media in the astrocyte-neuron coculture to 1 ml endothe-
lial media, and inserting the Transwell membrane with peri-
cytes on the bottom and EC on top. Analyses were performed
at 3, 5, and 8 days after coculture initiation. A schematic of
the coculture setup is shown in Figure 1C.

Immunocytochemistry

Cells were seeded at 250,000 cells/cm® in CellBind Surface
96-well plates (Corning) as described in the cell culture section,
at least 24 hours before fixation. Cells were washed with 100 pl
PBS and subsequently incubated with 50 pl methanol (Sigma
Aldrich) at —20°C or 4% PFA (Ninolab) at RT, for 20 minutes.
The cells were then washed three times with 100 pl PBS and
incubated at RT for 1 hour with 100 pl blocking and permeabi-
lizing buffer containing 10% FBS (Life Technologies) and 0.1%
Triton-X (Sigma Aldrich) in PBS. Primary antibodies were diluted
in antibody buffer (PBS containing 5% FBS and 0.1% Triton-X)
according to Supporting Information S1. The 50 pl primary anti-
body solution was incubated with the cells at RT for 2 hours,

followed by three washes with 100 pl PBS. The secondary anti-
bodies used were Alexa Fluor 488-conjugated anti-mouse (Life
Technologies) and Alexa Fluor 594-conjugated anti-rabbit (Life
Technologies) diluted 1,000% in antibody buffer. The 50 pl sec-
ondary antibody solution was incubated with the cells for
40 minutes at RT followed by 10 minutes incubation with 50 pl
of 4',6-diamidino-2-phenylindole (DAPI) solution. DAPI solution
contained 1 pg/ml DAPI (Invitrogen) in antibody buffer. Finally,
cells were washed with 100 pl PBS 4 times. Image acquisition
was performed with an ImageXpress Micro XLS Widefield High-
Content Analysis System (Molecular Devices).

Transendothelial Electrical Resistance Measurements

Transendothelial electrical resistance (TEER) measurements
were carried out using an EVOM [2] Epithelial Voltohmmeter
(World Precision Instruments). The resistance value was calcu-
lated using the equation below. Empty filters coated with colla-
gen/fibronectin were used as blanks. All TEER measurements
were performed in triplicates.

(TEER2 X cm?) = (TEER(EC) — TEER(blank)) x Area of culture

Sodium Fluorescein Permeability

Cells were washed with HBSS (Life Technologies) before addi-
tion of Sodium Fluorescein (NaF, Sigma Aldrich) at 1 pM in
HBSS to the apical chamber and HBSS to the basolateral cham-
ber. Cells were incubated on a rotating platform for 60 minutes
at 37°C. NaF concentration in the basolateral compartment
was calculated after measuring fluorescence on a plate reader
(485 nm excitation and 535 nm emission).

Efflux Transporter Activity

Efflux transporter activity was assessed by the permeability of
P-gp substrate rhodamine 123 (Sigma Aldrich) or BCRP

Protocol 1 s
Media change
. dé
d -2 seeding do ds
Media
change Passage
Protocol 2 Passage
Endothelial
cells
Vascul : s
spe:f,f:a;;" Endothelial specification
DMEF’;ISIE% Pericytes
d-1 43
seeding ~ d0 Media di1 di5
change CD31 Passage Media
MACS change
@@  Endothelial cell
% Astrocyte
—~4—— Neuron
[ 3 Pericyte
Monoculture Co-culture

Figure 1. Overview of differentiation protocols for conversion of iPSCs
used to derive EC from iPSCs. (B): Schematic overview of the BBB model
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to EC and the coculture setup. (A): Schematic overview of protocols
setup. Monocultures (right) are compared to cocultures (left).
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substrate dantrolene (AstraZeneca) with and without the addi-
tion of the P-gp inhibitor verapamil (AstraZeneca) at 50 pM or
the BCRP inhibitor Ko 143 (Tocris) at 5 pM. iPSC-derived EC in
monoculture or coculture were preincubated with or without
inhibitor in HBSS (Life Technologies) for 30 min. The cells were
then incubated with 10 pM rhodamine 123 or 1 pM dantro-
lene, with or without inhibitor, for 1 hour. All incubations were
performed at 37°C on a rotating platform. For rhodamine per-
meability experiments fluorescence was measured on a plate
reader (485 nm excitation and 535 nm emission) and reported
as the normalized permeability. Dantrolene levels were mea-
sured by LC—MS and reported as normalized permeability.

Permeability Experiments

The apparent permeability (P,p,) Of six substances across EC in
monoculture and coculture were investigated on a rotating plat-
form at 37°C after 3 days of coculture. Atenolol, erythromycin,
verapamil, dantrolene, phenytoin (AstraZeneca), and propranolol
(Merck) were diluted to a final concentration of 1 uM in transport
buffer [HBSS (Gibco) with 25 mM HEPES (Gibco) pH 7.4)]. Cells
were washed once before addition of the substances with either
the apical (200 pl) or basolateral side (800 pl), substance-free
buffer was added to the other side. Samples were taken at 10, 30,
and 60 minutes. The concentration of each substance in the sam-
ples was determined by LC-MS, and apparent permeability and
efflux ratio were calculated as previously described [32]. All per-
meability studies were performed in triplicate and were preceded
and followed by TEER measurements to ascertain retained EC
monolayer integrity. The substances were selected based on their
chemical properties, see Supporting Information S8.

mRNA Expression Analysis

A minimum of 200,000 EC were collected and RNA was puri-
fied using the RNeasy Mini Kit (Qiagen) with DNase treatment
according to the manufacturer’s instructions. RNA was reverse
transcribed using the High-Capacity cDNA Reverse Transcrip-
tion kit (Applied Biosystems). cDNA amounts were detected
using TagMan gene expression assays (Applied Biosystems)
(Supporting Information S2) on a 7900HT Sequence Detection
System (Applied Biosystems). Three technical replicates of
three independently differentiated biological samples were
used at each data point. Expression data were analyzed and
related to the level of GAPDH using the dCt method [33].

mRNA Library Construction and Sequencing

RNA was isolated as described above. The RNA quality was
assessed by a Fragment Analyzer (Advanced Analytical Technol-
ogies). One microgram of total RNA was used for each library.
Illumina TrueSeq Stranded mRNA LT Sample Prep Kit (lllumina)
was used to construct poly(A) selected paired-end sequencing
libraries according to TrueSeq Stranded mRNA Sample Prepara-
tion Guide (lllumina). All libraries were quantified with the Frag-
ment Analyzer (Advanced Analytical Technologies), pooled and
quantified with Qubit Fluorometer (Invitrogen) and sequenced
using lllumina NextSeq 500 sequencer (lllumina). Three biologi-
cal replicates were sequenced per condition.

RNAseq Processing and Analysis

RNAseq data were processed using Blue Collar Bioinformatics
(bcbio-nextgen). The sequencing reads were aligned to the
human genome (hg38) via Hisat2, and read counts were

©2018 The Authors STEM CELLS published by
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summarized and annotated using Sailfish and Htseg-count. Dif-
ferentially expressed genes were identified using the DESeq2
algorithm using the Wald test with false discovery rate (FDR)
adjustment for multiple comparisons [34]. A combined criteria
of fold change (FC) > 1.5 and p < .01, was applied to compare
the different conditions. The GO enrichment analysis was
based on the PANTHER classification system [35]. We further
investigated junction associated proteins [36,37], ABC trans-
porters [38] and SLC transporters [39] commonly associated
with the BBB. To search for differentially expressed pathways
between the monoculture and coculture of iPS-EC1, the DAVID
tools [40] were used to search the KEGG database [41].

Statistical Analysis

Student’s t test with two-tailed distribution, assuming equal
standard deviation, was used for statistical analysis if not oth-
erwise specified.

RESULTS

Protocols and Differentiation

Two different protocols for EC generation from iPSCs were
evaluated (Fig. 1A). Brightfield images display the characteristic
morphology of cells during differentiation (Supporting Informa-
tion S3). Cultures were setup in Transwells with EC seeded on
the top of the membrane (Fig. 1B). In cocultures, pericytes
were seeded on the bottom of the membrane with astrocytes
and neurons on the bottom of the plate. The two protocols
were tested with two iPSC lines; r-iPSC 1 (Fig. 2—-3), SFC-SB-
AD2-01 (Supporting Information S4) with similar results.

Characterization of EC-Derived with Either Protocol
1 (iPS-EC1) or Protocol 2 (iPS-EC2)

We characterized the iPS-EC1 and iPS-EC2 cells by immunos-
taining for EC markers, tight junction-associated protein zonula
occludens-1 (Zo-1), tight junction protein claudin 5, cellular
adhesion protein CD31, glucose transporter Glut-1, von Willeb-
rand factor (VWF), tight junction protein occludin, adherence
junction protein VE-cadherin, and caveolae-related protein
caveolinl. The iPS-EC1 (Fig. 2A) and iPS-EC2 (Fig. 2B) show
staining for Zo-1, claudin 5, CD31, Glutl, vWF, and caveolinl.
CD31 and VE-cadherin staining appear more distinct in iPS-EC2
than in iPS-EC1. iPS-EC1 show uniform Glut-1 and occludin
staining while iPS-EC2 only show Glut-1 staining for a subset of
cells and no occludin staining. iPS-EC2 shows stronger staining
for caveolinl and vVWF compared to iPS-EC1. The BBB hCMEC/
D3 cell line and hBMEC were included as controls (Fig. 2C and
Supporting Information S5). Both show staining for Zo-1, clau-
din 5 (partial for hCMEC/D3), CD31 (partial for hCMEC/D3),
and vVWF. hCMEC/D3 show more distinct cell junction staining
for VE-cadherin. Glutl staining is lower in hBMEC than in
hCMEC/D3. Only iPS-EC1 shows distinct occludin staining.

Characterization of Astrocytes, Pericytes, and Neurons

In the BBB model, EC were cocultured with astrocytes, peri-
cytes, and neurons. Immunocytochemistry of these cell types
are shown in Supporting Information S6. Pericytes derived
from iPSCs using Protocol 2, expressed caldesmon, partial-
smooth muscle actin alpha (SMA), and smooth muscle-specific
protein 22 (SM22). Astrocytes expressed the astrocyte-specific
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Figure 2. Characterization of induced pluripotent stem cell (iPSC)-derived EC with protocol 1 (iPS-EC1) and protocol 2 (iPS-EC2). (A-C): Rep-

resentative immunocytochemistry staining images of iPS-EC1 (A), iPS-EC2 (B), and hCMEC/D3 (C). Cells were stained for zonula occludens-1
(ZO-1), tight junction proteins claudin 5, cellular adhesion protein CD31, glucose transporter Glutl, von Willebrand factor (VWF), adherence
junction proteins occludin, and VE-cadherin (VE-cad), and caveolinl. DAPI (in blue) is staining the nuclei. Scale bar 50 pm. (D): Cell layer
tightness as measured by transendothelial electrical resistance (TEER) after 3, 5 and 8 days in monoculture or coculture. Data shown as
mean =+ SD of at least three individual experiments, significance in a Student’s t test is indicated by *(p < .05), **(p < .01), and ***(p < .001).
(E): Permeability of sodium fluorescein at 3, 5, and 8 days of monoculture and coculture. (F): P-glycoprotein efflux activity measured by rho-
damine 123 permeability in the absence [C] or presence of P-glycoprotein (P-gp) inhibitor verapamil [I]. Data shown as mean normalized per-

meability of three individual experiments + SD, significance in Student’s t test is indicated by *(p < .05).

intermediate filament glial fibrillary acid protein (GFAP) and
S100B. Neurons expressed the neuron-specific tubulin Tujl and
were mostly negative for the neural progenitor marker nestin.

Comparison of Barrier Properties of iPS-EC1 and iPS-
EC2 in Monoculture and Coculture

Coculture of the EC with other cell types of the NVU has previously
been shown to influence their barrier properties [5, 6, 20-22]. We
investigated the effect of coculturing with astrocytes, pericytes,
and neurons in terms of TEER, Sodium Fluorescein (NaF) perme-
ability and P-gp efflux activity. Efflux activity was assayed by rhoda-
mine 123-permeability in the absence [C] or presence of the P-gp
inhibitor verapamil [I]. Cell layer tightness, as measured by TEER
(Fig. 2D), was clearly higher for iPSC-EC1 in both the monoculture
and the coculture compared to iPS-EC2. TEER was significantly
increased in the coculture compared to the monoculture for iPS-
EC1 (Day 3, 1,267 + 68 and 773 + 52 Ohm X cm?, respectively,
p <.001), iPS-EC2 (Day 3, 150 + 3 and 52 4+ 3 Ohm X cm?, respec-
tively, p < .001) and hCMEC/D3 (Day 3, 67 £+ 5 and
45 + 2 Ohm X cm?, respectively, p < .01) (Fig. 2D). In iPS-EC1, the

www.StemCells.com

TEER decreased between Days 3 and 8 in both monoculture and
coculture (TEER; monoculture p < .001, coculture p < .001). TEER
was unchanged over the investigated time period for iPS-EC2. Pas-
sive permeability as measured by NaF permeability (Fig. 2E) was
more than 6-fold higher in iPS-EC2 and hCMEC/D3 compared to
iPS-EC1, both in monoculture and coculture. NaF permeability was
significantly lower in the coculture compared to the monoculture
for iPS-EC1. In iPS-EC1, NaF permeability increased significantly
between days 3 and 8 in both monoculture and coculture (mono-
culture p < .05, coculture p < .01). Rhodamine 123 permeability
increased 28% after treatment with P-gp inhibitor in iPS-EC1
(p < .05), but was not changed for iPSC-EC2 and hCMEC (Fig. 2F).
The relative mRNA levels of BCRP, P-gp, Glutl, CD31, Zo-1,
VE-Cadherin, Caveolinl, Claudin 5, Occludin, and vWF display
differences between the protocols (Fig. 3A-J). iPS-EC1 and iPS-
EC2 show similar expression for P-gp, Zol, and Glutl. However,
iPS-EC2 show higher expression of CD31, VE-cadherin, caveolinl,
claudin 5 and vVWF, compared to iPS-EC1. iPS-EC1 shows higher
expression for BCRP compared to iPS-EC2. Occludin mRNA levels
are similar between iPS-EC1 and iPS-EC2 in monoculture but

©2018 The Authors STEM CELLS published by
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Figure 3. Comparison of the barrier properties of iPS-EC1 and iPS-EC2 in monoculture and cocultures after 3 days of monoculture and

coculture. (A-J): Relative mRNA expression of transporters BCRP, P-gp, Glut-1, junction associated proteins CD31, ZO-1, VE-cadherin, clau-
din 5, occludin, and caveolinl and vWF. Data shown as mean + SD of individual experiments. The Y-axis is in logarithmic scale. Signifi-
cance in a Student’s t test is indicated by *(p < .05), **(p < .01), and ***(p < .001). White bar represents iPS-EC1 in monoculture, light
gray bar represents iPS-EC1 in coculture with astrocytes, pericytes, and neurons, dark gray bar represents iPS-EC2 in monoculture, black
bar represents iPS-EC2 in coculture with astrocytes, pericytes, and neurons. Left leaning striped bar represents hCMEC/D3 in monoculture
and right leaning striped bar represents hCMEC/D3 in co-culture. (K): The apparent permeability of six substances, ordered in rising pre-
dicted permeability, across EC iPS-EC1 and iPS-EC2 in coculture with astrocytes, pericytes, and neurons. Apparent permeability was mea-
sured in the apical to basolateral direction. Data is presented as mean =+ SD, statistically significant differences between CNS permeable
and non-CNS permeable substances in a student’s t test is indicated with ***(p < .001). (L): BCRP efflux activity measured by dantrolene
permeability in the absence [C] or presence of BCRP inhibitor Ko143 [I]. Data shown as mean normalized permeability of three individual

experiments + SD, significance in Student’s t test is indicated by *(p < .05).

higher for iPS-EC2 in coculture. The hCMEC/D3 line, iPS-EC1,
and iPS-EC2 have similar expression levels for Zo-1 and Glut-1.
Expression levels of CD31, claudin 5, VE-cadherin, and VWF are
lower in hCMEC/D3 than iPS-EC2 but higher in hCMEC than iPS-
EC1. iPS-EC1 has higher expression of BCRP than hCMEC/D3
and hCMEC/D3 have higher expression of P-gp than both iPS-
EC1 and iPS-EC2. iPS-EC2 has higher expression of caveolinl
than both iPS-EC1 and hCMEC/D3. Notably, the mRNA expres-
sion of BCRP increased in both iPS-EC after coculture (p < .05).
The expression of P-gp was increased in iPS-EC1 after coculture
(p < .05) and Glut-1 and occludin expression was increased in
iPS-EC2 after coculture (p < .05). Caveolinl mRNA levels were
decreased after coculture in both iPS-EC1 and iPS-EC2. mRNA
levels at days 3, 5, and 8 of monoculture or coculture reveal
changes over time (Supporting Information S7), with levels of
some mRNA increasing and some decreasing. However, no gen-
eral benefit of longer culture time than 3 days could be

©2018 The Authors STEM CELLS published by
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distinguished. For iPS-EC1 the maximum tightness in terms of
TEER and NaF permeability is at day 3, these measurements did
not change over the investigated time period for iPS-EC2.
Hence, the permeability and transcriptome analysis were inves-
tigated at day 3 of coculture. Taken together, the mRNA levels
of P-gp and efflux activity data suggest that iPS-EC1 cells have
functional P-gp efflux while iPS-EC2 cells do not.

Permeability of Drug Substances

To investigate transport properties and model these, the perme-
ability of six drug substances was analyzed. The apparent per-
meability in the apical to basolateral direction was determined
for cocultures and monocultures (Fig. 3K and Table 1). The per-
meability across iPS-EC1 in the coculture was lowest for atenolol
followed by erythromycin, verapamil, dantrolene, propranolol,
and phenytoin. Substance permeability data across iPS-EC1 in
coculture distinguished the substances considered CNS-
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Table 1. Apparent permeability of drug substances

Atenolol Erythromycin Verapamil Dantrolene Phenytoin Propanolol
Protocol 1 iPS-EC1 monoculture 10.5 £ 3.1 11.6 + 3.0 12.5 + 0.9 22.1+23 25.7 + 1.6 25.1 +4.9
iPS-EC1 coculture 4.7 £ 1.0* 99 +25 11.2 + 4.0 15.2 £3.1 35.6 £ 3.4 226 £5.5
Protocol 2 iPS-EC2 monoculture 30.4 + 0.9 21.54+3.0 223 +09 413 + 538 29.2 £5.2 318 £3.5
iPS-EC2 coculture 346 + 8.1 31.8 + 6.2% 183 + 2.8 45.6 + 3.7 29.4 £+ 10.9 10.7 £+ 1.2%

Apparent permeability in apical to basolateral direction across endothelial cells derived with Protocol 1 (iPS-EC1) or Protocol 2 (iPS-EC2) in
monoculture or coculture with astrocytes, pericytes, and neurons. Data presented as mean =+ SD (x 10~ cm/s) of three biological replicates.

“Indicates significant difference compared to monoculture (p < .05).

permeable from the CNS-nonpermeable (p < .001), see Support-
ing Information S8. The least permeable substance, atenolol,
had a significantly lower permeability in the iPS-EC1 coculture
compared to the monoculture (p < .05). The permeability across
iPSC-EC2 in coculture was lowest for verapamil followed by pro-
pranolol, phenytoin, erythromycin, atenolol, and dantrolene.
The permeability across iPS-EC2 was similar for CNS-permeable
and CNS-nonpermeable substances. Propranolol had lower per-
meability and erythromycin had higher permeability in iPS-EC2
coculture compared to monoculture (p < .05).

Efflux Ratio of Drug Substances

The efflux ratio is the ratio between the transport in the apical to
basolateral direction and the transport in the basolateral to apical
direction. It can be used to evaluate if substances are effluxed by
specific transporters. As shown in Table 2, the efflux transporter
substrates erythromycin, verapamil, and dantrolene were effluxed
to some extent in the iPS-EC1, but not in the iPS-EC2. Higher
efflux ratios in the coculture compared to the monoculture were
most notable for dantrolene in iPS-EC1, with an efflux ratio of 2.7
in the monoculture and 6.1 in the coculture. However, none of
the changes in efflux ratio between monoculture and coculture
were found significant. To verify BCRP efflux activity, the perme-
ability of BCRP substrate dantrolene was investigated in the pres-
ence [I] and absence [C] of BCRP inhibitor Ko143 (Fig. 3(L)).
Dantrolene permeability was increased by 64% in the presence of
BCRP inhibitor in iPS-EC1 coculture, no change was detected in
iPS-EC1 monoculture or iPS-EC2. In summary, iPS-EC1 in coculture
has efflux activity for both P-gp and BCRP substrates.

Transcriptomics Analysis

To characterize molecular mechanisms behind the improved
barrier properties of EC in coculture, whole genome expression
analysis was performed. iPS-EC1 showed a notably higher num-
ber of differentially expressed genes (DEGs) between monocul-
ture and coculture at the given cutoff levels (Fig. 4A). Genes
associated with either junction formation or BBB transport were
evaluated and displayed as heat maps of normalized counts in
monoculture and coculture (Fig. 4C and 4D). Comparing the
expression of junction associated genes between the protocols
showed that iPS-EC2 had high expression of CLDN5, ICAM1,

Table 2. Efflux ratio of drug substances

ICAM2, PECAM1 (CD31), CDH5 (VE-cadherin), JAM3, and
ESAM1, while iPS-EC1 had high expression of CLDN4, CLDNS6,
and CLDN?7. Both iPS-EC 1 and iPSEC2 had high expression of
Zo-1 mRNA (TJP1). Among the genes in the heat maps, four
junction-associated genes and three transporter genes showed
log, FC > 1.5 between monoculture and coculture for both pro-
tocols (Fig. 4B). The expression of TJP3 increased for both proto-
cols, while CLDN8, CLDN19, and VCAM only increased for iPS-
EC1, and CLDN6 only increased for iPS-EC2. The neurotransmit-
ter transporter SLC6A15 increased significantly between mono-
culture and coculture for both iPS-EC1 and iPS-EC2. iPS-EC1 also
showed increased expression of ABCB1 (P-gp) and neurotrans-
mitter transporter SLC6A13 in the coculture compared to the
monoculture. GO enrichment analysis was performed to further
elucidate the impact of coculture on both protocols. Table 3
shows enriched GO-CC terms among the DEGs between the
monoculture and coculture of iPS-EC1 (adjusted p value <.05)
that are of high relevance to BBB processes. iPS-EC2 showed
fewer enriched GO-CC terms, however all terms identified for
iPS-EC2 were also identified for iPS-EC1. Differentially expressed
KEGG pathways between the monoculture and coculture of iPS-
EC1 were identified. These include the ECM receptor interaction
(p = 1.23 x 107*?), cell adhesion molecules (p = 6.38 x 107°),
focal adhesion (p = 1.08 x 107%), neuroactive ligand-receptor
interaction (p = 3.79 x 107%), the WNT signaling pathway
(p = 4.38 x 1073), the TNF signaling pathway (p = 6.65 x 107°),
and the PI3K-Akt signaling pathway (p = 1.53 x 1077).

To understand how different protocols for deriving EC from
iPSCs affect the ability to create an in vitro BBB model, we com-
pared two differentiation protocols and analyzed barrier prop-
erties in coculture BBB models. The whole genome expression
changes between EC in monoculture and coculture were inves-
tigated. In terms of functionally restricting permeability iPSC-
EC1 in coculture showed highest performance with high TEER,
low NaF permeability, and functional efflux, comparable to
other models using similar protocols to derive EC [22, 27]. How-
ever, the measured TEER values are lower than some of the

Atenolol Erythromycin Verapamil Dantrolene Phenytoin Propranolol

Protocol 1 iPS-EC1 monoculture 1.18 £ 0.7 210+ 1.1 0.93 £ 0.7 2.27 +£ 0.7 1.62 £ 0.2 0.73 £ 0.2
iPS-EC1 coculture 0.70 £0.3 216 £ 0.1 1.88 £ 0.6 6.57 + 3.0 1.13 £0.2 0.67 £0.1

Protocol 2 iPS-EC2 monoculture 0.71 £0.2 0.94 £0.2 097 £0.1 0.84 £0.1 1.65+0.3 0.55£0.2
iPS-EC2 coculture 0.61+£0.3 0.97 £ 0.0 0.67 £0.2 091 +0.2 1.61 £04 0.52 +£0.1

Efflux ratio in endothelial cells derived with Protocol 1 (iPS-EC1) or Protocol 2 (iPS-EC2) in monoculture or coculture with astrocytes, pericytes, and
neurons. Data presented as ratio of means + SD from three biological replicates.
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Figure 4. Transcriptome profile comparison between monoculture and cocultures of iPS-EC1 and iPS-EC2. (A): Bars show the number of differ-
entially expressed genes between monoculture and coculture. Differentially expressed genes are defined by log, fold change (FC) > 1.5 and
p < .01. (B): FC between monoculture and coculture for each protocol of genes identified from heat maps to have a log, fold increase > 1.5 and
p < .01. (C): Normalized counts for junction associated genes in monoculture and coculture for each protocol. Data shown as mean of
log(counts). (D): Normalized counts for transporter genes in monoculture and coculture for each protocol. Data shown as mean of log(counts).

highest reported values for iPSC-derived ECs [25, 26, 28], and
previous reports demonstrate that different iPSC lines give dif-
ferent maximum TEER [25, 30]. iPSC-EC2 showed substantially
lower TEER and higher NaF than iPSC-EC1, however, in the same
range as hCMEC/D3 and other models using similar protocols to
derive EC for BBB models [42]. Even though iPS-EC1 shows
superior tightness and permeability restriction of the barrier,
low expression of proteins and/or mRNA for CD31, VE-cadherin,
and vVWF, than iPS-EC2 and hCMEC/D3 were observed. These
differences highlight an interesting discrepancy between
marker expression and functionality in the models. In contrast
to our findings, VE-cadherin has been reported to be distinctly
detectable with immunocytochemistry in EC derived with Pro-
tocol 1 [22,27,28]. In our experiments, VE-cadherin staining is
much weaker in iPS-EC1 and hBMEC than iPS-EC2 and hCMEC/
D3. The mRNA levels for CD31 and VE-cadherin were lower for
hCMEC/D3 and iPS-EC1 than for iPS-EC2, demonstrating that
VE-cadherin and CD31 are very highly expressed in iPS-EC2. For
CD31 this is not surprising as EC in this protocol are selected

©2018 The Authors STEM CELLS published by
Wiley Periodicals, Inc. on behalf of AlphaMed Press 2018

based on CD31 expression in magnetic sorting. EC are com-
monly recognized by their expression of tight junction proteins
VE-cadherin [43] and claudin 5 [44], while epithelial cells are
recognized by expression of other tight junction proteins such
as claudin 7 [45]. In iPS-EC1 mRNA expression of VE-cadherin
and claudin 5 are lower while the mRNA expression of claudin
7 and other claudins are higher, this may resemble a more epi-
thelial like phenotype. However, iPS-EC1 expresses other endo-
thelial specific mRNAs, such as the EC specific adhesion
molecule ESAM [46] and several brain endothelial cell specific
transporters. Hence, iPS-EC1 may have a somewhat mixed
endothelial and epithelial phenotype. Contrary to iPS-EC2 and
hCMEC/D3, iPS-EC1 shows expression of occludin detectable
with immunocytochemistry. Interestingly, occludin levels were
reported to be higher in EC in neural tissue than in other EC
[47]. These differences in junction associated proteins and
mRNA expression may provide clues to why EC derived using
different approaches display large differences in TEER and NaF
permeability, further discussed below.

STEM CELLS
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Table 3. GO-CC terms enriched in iPS-EC1 after coculture

Name ID

integrin complex G0:0008305
cell junction G0:0030054
extracellular matrix component G0:0044420
protein complex involved in cell adhesion G0:0098636
proteinaceous extracellular matrix G0:0005578
anchored component of membrane G0:0031225
basement membrane G0:0005604
cation channel complex G0:0034703
collagen trimer G0:0005581
endomembrane system G0:0012505
intrinsic component of membrane G0:0031224
membrane microdomain G0:0098857
membrane raft G0:0045121
plasma membrane G0:0005886
plasma membrane bounded cell projection G0:0120025
potassium channel complex G0:0034705
receptor complex G0:0043235
side of membrane G0:0098552
transporter complex G0:1990351
voltage-gated potassium channel complex G0:0008076

Enrichment determined using multiple test correction and adjusted
p value <.05.

Coculture with astrocytes, pericytes, and neurons had promi-
nent effects on the paracellular tightness of the EC as measured
by TEER and NaF permeability. Both iPS-EC1 and iPS-EC2 showed a
significant increase in TEER after the coculture. For iPS-EC1
reduced NaF permeability after coculture was observed. Moreover,
iPS-EC1 showed increased mRNA expression and functional efflux
by P-gp and BCRP in coculture. The mRNA levels of the investi-
gated transporters P-gp and Glut-1 were similar in iPS-EC1 and iPS-
EC2, while BCRP mRNA levels were higher in iPS-EC1. The BCRP
activity was dependent on coculture while the P-gp activity was
not, showing that iPS-EC1 in coculture have improved restriction
of both passive and BBB specific permeability. Interestingly, both
iPS-EC1 and iPS-EC2 have lower mRNA levels of caveolinl in cocul-
ture compared to monoculture. Caveolinl is the main component
of caveolae, which are endocytic vesicles providing a route of entry
into the brain through the EC. Caveolinl is downregulated in
mature human brain EC [48] and the downregulation of caveolinl
have been suggested as a biomarker of barrier maturation [49].

Other iPSC-derived BBB models, that use Protocol 1 to
derive EC, have reported increased TEER but no expression
changes in the investigated markers and transporters after
coculture [27,28]. However, one of the studies reported a signif-
icant decrease in discontinuous junctions [27]. Other iPSC-
derived BBB models have reported an increase in permeability
of rhodamine 123 of 40%-50% after treatment with P-gp inhibi-
tors [26,27], which is slightly higher than the 28% observed in
our model. Similar to our results, these studies do not show
changes in P-gp efflux activity between monoculture and cocul-
ture. In summary, coculture with the iPSC-derived specific NVU
cell types improved the TEER for both iPS-EC1 and iPS-EC2, and
increased expression of two efflux transporters in iPS-EC1. This
indicates that the in vivo-like culture environment created by
multiple, readily available cell types improve to the barrier prop-
erties of the model. Both iPS-EC1 and iPS-EC2 have lower P-gp
than hCMEC suggesting that increased P-gp expression may be
one of the improvements needed for iPSC derived models.

To do an initial investigation of how well our iPSC-derived
coculture model mimics different forms of barrier transport, we
tested the permeability of six drug substances. Substance

www.StemCells.com

permeability was most restricted in iPS-EC1 in coculture. Appar-
ent permeability across BBB from in vivo mouse studies was
reported to be in the range of 107 for atenolol, 10~ for verapa-
mil, 10™* for phenytoin, and 10~ for propranolol [50]. Our model
shows similar permeability to this in vivo model for the low per-
meability substances; atenolol and verapamil, and lower perme-
ability for the high passive permeability substances; phenytoin
and propranolol. Human data for these substances are not avail-
able. Importantly, iPS-EC1 can distinguish between CNS-
permeable and non-CNS-permeable substances, whereas iPS-EC2
cannot. Future permeability assessment should focus on sub-
stances with available data from human in vivo studies to enable
further validation the model.

In drug development, it is desirable that BBB models can dis-
tinguish which new drug candidates are substrates for efflux
transporters. In this study, we focused on BCRP and P-gp as efflux
by these transporters is critically limiting the BBB-penetrating
capacity of many drug substances [51]. iPS-EC1 has efflux activity
for P-gp and BCRP substrates. iPS-EC2 cells express some P-gp
and BCRP mRNA but do not efflux the substrates for these trans-
porters. It is possible that efflux transporters are present and
active, although their activities are not measurable due to the
low tightness and paracellular leakage in iPS-EC2. To our knowl-
edge, there is no previously published data available on efflux
ratios of the tested compounds in iPSC-derived EC. The efflux
ratio of human primary brain EC has been reported to be 1.4 for
verapamil [9], which is similar to efflux ratio for iPS-EC1 in mono-
culture. In conclusion, substances that are affected by efflux are
more clearly distinguishable using iPSC-EC1.

The mechanisms behind BBB formation are poorly understood
and to gain more insight into these processes, we investigated
transcriptional changes in the iPSC-derived EC in coculture. A
larger number of genes were affected by the coculture for iPS-EC1
as compared to iPS-EC2. Together with the larger changes in tight-
ness seen in iPS-EC1, this suggests that cells derived with iPS-EC1
are more susceptible to cues from surrounding cells than iPS-EC2.
By investigating the expression of junction-associated proteins and
transporters, we show important differences between iPS-EC1 and
iPS-EC2. iPS-EC2 have high expression of CLDN5, ICAM1, ICAM2,
PECAM1 (CD31), CDH5 (VE-cadherin), JAM3, and ESAM1, while
iPS-EC1 have high expression of CLDN4, CLDN6, and CLDN?7. If the
differences are present also at protein level, it suggests the possi-
bility to have tight cell—cell adhesion without high expression of
many common EC markers. Similarly, claudin 1, 3, 4 have been
found to be expressed at higher levels than claudin 5 in ECs
derived with protocol 1 [28]. Both VE-cadherin and CD31 have
shown to be required for endothelial tube formation in vitro [52],
but it is unclear how important they are for cell—cell adhesion in
monolayers. iPS-EC1 and iPS-EC2 express different claudin mRNAs
and have substantially different TEER. These results implicate the
importance of several members of the claudin family for tight junc-
tion formation. Other reports have also discussed this matter, for
example, CLDN5 knockout mice retain BBB structure and perme-
ability restriction of larger molecules through tight junction forma-
tion by other claudins [53]. Our data support previous reports that
expression levels of OCLN, CLDN3, CLDN4, CLDNS5, CDHS5, and TJP1
are not increased after coculture [27,28]. Interestingly, TIP3
increased for both protocols while CLDN8, and CLDN19 only
increased for the iPS-EC1 and CLDNG6 increased only for the iPS-
EC2. CLDNG is already highly expressed in iPS-EC1 in both mono-
culture and coculture. Moreover, expression of CLDN19 and CLDN8
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in epithelial cells has previously been described to increase para-
cellular tightness [54, 55]. Notably, both CLDN8 and CLDN19 have
low expression in iPS-EC2, which show higher permeability. We
speculate that the junction-associated genes with a significant
increase between monoculture and coculture, are contributing to
the increase in tightness seen for both protocols in the coculture
condition.

The transporter gene SLC6A15 increased significantly in
expression between monoculture and coculture for both iPS-
EC1 and iPS-EC2. The iPS-EC1 also showed increased expression
of ABCB1 and SLC6A13 in coculture compared to monoculture.
ABCB1 (P-gp) are among the most abundant transporters found
in human brain microvessels [56], SLC6A13 and SLC6A15 are
involved in the transport of neurotransmitters across the BBB
[57]. The increased expression of these genes suggests that the
coculture is affecting the maturity of the EC through increased
expression of specific BBB transporters.

GO terms and pathways associated with the genes that are
affected by the coculture represent many processes important
for the formation of tight cell layers such as cell adhesion, cell
junctions, and extracellular matrix. Providing further evidence
that coculture is aiding maturation of the EC toward a BBB phe-
notype. The WNT signaling pathway, the TNF signaling pathway,
and the PI3K-Akt signaling pathway were identified as changing
in coculture and several mechanisms controlled by these path-
ways may be important for the BBB formation. TNF signaling
impacts the expression of junction-associated proteins in a BBB
cell model [24]. In addition, the activity in PI3K-Akt pathway has
recently shown to be important for BBB integrity in both mouse
and rat [58,59], and the WNT signaling pathway has previously
been indicated in governing BBB formation [17, 24]. In our stud-
ies, the expression of BCRP and P-gp were upregulated in cocul-
ture. Interestingly, these results correspond well with previous
reports that BCRP levels are influenced by the PI3K-Akt and the
WNT signaling pathways and that P-gp level are influenced by
the TNF and the PI3K-Akt pathways [60]. In other BBB models,
coculturing cell types have been suggested to affect EC matura-
tion through the Notch and the Sonic hedgehog pathways [23].
Notably, our analysis did not show significantly changed activity
in these pathways after coculture. We hypothesize that cocultur-
ing of iPSC-derived cell types may affect EC tightness and matura-
tion through the WNT, PI3K-Akt, and TNF signaling pathways.

CONCLUSION

Our results show that an iPSC-derived BBB model with high
tightness, efflux activity, and ability to discriminate between
CNS permeable and non-permeable substances can be produced
with iPS-EC1. Coculture is affecting the maturity of the EC both

in terms of gene expression and important functionality. The
information gained from investigation of the whole genome
expression changes that occur in iPSC-derived EC upon coculture
will be instrumental in designing novel improvement strategies
for in vitro BBB models.
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