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Abstract 

Background 

The ability to manipulate the activity of interneurons with optogenetic tools offers the possibility to 

interfere with diseases caused by altered neuronal inhibition and synchrony, including epilepsy and

schizophrenia. To develop vectors for therapeutic approaches, targeting optogenetic constructs to 

interneurons is therefore a key requirement. We asked if the interneuron-specific promoters 

glutamic acid decarboxylase (GAD)67 and cholecystokinin (CCK) allowed targeted lentiviral 

delivery of opsins to interneurons as a whole, or specifically CCK-positive(+) interneurons. 

Methods 

We generated lentiviral (LV) plasmids encoding channelrhodopsin (ChR2) and halorhodopsin 

(NpHR) tagged with fluorophores and driven by GAD67 or CCK promoters. Adeno-associated virus

(AAV) and LV vectors carrying opsins driven by pyramidal cell promoters were used as controls. 

We transduced neuronal cultures and rodent brain in vivo, immunostained specimens 6-8 weeks 

following in vivo injection, 7-14 days after in vitro transduction, and evaluated volume and 

specificity of expression by confocal microscopy. 

Results 

In vitro 90% (19/21) of LV-CCK-NpHR2.0-EYFP expressing neurons were CCK+. In vivo LV-

GAD67-ChR2-mCherry was expressed in 2.6%(5/193), LV-GAD67-NpHR2.0-EYFP in 

~15%(43/279), LV-CCK-NpHR2.0-EYFP in 47%(9/19) of hippocampal GABA+ interneurons. 

GAD67 vectors expressed in larger volumes than CCK-driven constructs, AAV vector controls 

achieved the largest expression volumes. 

Conclusions 

LV-CCK-NpHR2.0-EYFP may be useful to target CCK+ interneurons in culture. GAD67/CCK-

driven lentiviral constructs are expressed in vivo, but expression is not specific for interneurons. 

Overall, expression levels are low compared to opsins driven by pyramidal cell promoters. Better 

understanding of GAD67 and CCK promoter structure or alternative techniques are required to 

reliably target opsins to interneurons using viral vectors. 



1. Introduction

Optogenetic techniques [1,2] combine optical and genetic tools, and allow targeted optical control 

of firing in neurons through expression of opsins on neuronal cell membranes. Excessive or altered

neuronal synchrony underlies common nervous system diseases, such as epilepsy and 

schizophrenia [3]. As interneurons are responsible for timing and synchronizing pyramidal cell 

activity [4], and are known to prevent seizure spread [5], targeting opsins to these inhibitory cells is

key to influence interneuron function for therapeutic purposes. Augmenting interneuron activity or 

altering their firing patterns could be used as treatment tool, to interfere with epileptiform activity 

[6], or to re-synchronize oscillating neuronal ensembles in schizophrenia and Parkinson's disease, 

but also to dissect the roles of different subclasses of interneurons in various diseases of the 

nervous system [6,7]. 

Targeting interneurons in vitro and in vivo can be achieved by either using opsin-carrying 

neurotropic viral vectors, or transgenic models. In both cases, a cell-type specific promoter drives 

opsin expression. The advantage of using viral vectors is that they transduce a limited volume of 

tissue, which allows precise targeting of very specific areas of interest. A further advantage of viral 

vectors includes their potential translational applications, such as their use in human patients. To 

date, transcription of virally delivered genes in the nervous system has been achieved by either 

using strong but non-specific neuronal promoters (including synapsin-1 [8], elongation factor 1a 

(EF-1a) [9], neuron-specific enolase[10]), or by using weaker but more specific promoters such as 

calcium calmodulin-binding kinase 2a (Camk2a [11], specific for excitatory neurons) and glutamic 

acid decarboxylase 1 (Gad1, equivalent to GAD67 in mouse and specific for GABAergic 

interneurons as a whole [12]). Other cell-type specific promoters used are prepro-hypocretin (Hcrt, 

specific for hypocretin neurons [13]), glial fibrillary acidic protein (GFAP, specific for astrocytes 

[14]), tyrosine hydroxylase (for targeting catecholaminergic neurons [15]) and neurofilament [16]. 

An alternative technique to achieve expression of virally delivered genes in the nervous system 

consists of adding enhancing cassettes or intronic sequences to the transgene of interest [17, 18]. 

To understand how manipulation of inhibitory interneuron excitability alters pyramidal cell activity 

[19] and influences epileptic networks [20], we set out to investigate if targeted viral delivery of the 

two major opsins channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR) to interneurons was 

feasible in vivo and in vitro. 

Very few mammalian promoters have been characterized sufficiently enough to allow viral 

expression of transgenes specific to interneurons: these include fragments of the GAD67 promoter 

to target γ-amino butyric acid (GABA)ergic interneurons as a whole [21, 22, 12], and 

cholecystokinin (CCK) [23, 24], to target a subset of CCK-expressing interneurons. In both cases 



these promoter sequences span over 3 kb. Whilst successful expression of fluorophores in 

interneurons has been reported using a GAD67 promoter-carrying adeno-associated virus (AAV) 

vectors [21, 22, 12], the remaining AAV payload is too small to also carry an opsin gene. 

Targeted expression of opsins to interneurons has so far only been achieved by injection of vector 

carrying a floxed-stop opsin construct into Cre-mice lines expressing Cre-recombinase under a 

promoter specific for interneurons. Examples include Cre-driver lines under the promoters 

parvalbumin (PV) and somatostation (SST), specific for subsets of GABAergic interneurons [25, 

26, 27, 6], and glutamic acid decarboxylase 2 (Gad2), specific for GABAergic interneurons as a 

whole [6]. 

We asked if a lentivirus (LV) vectors (LVV) incorporating the GAD67 or CCK-promoter could 

reliably target opsins to interneurons in wild-type tissue in vitro and in vivo. Targeting opsins to 

interneurons as a whole, or to CCK-positive interneurons, using lentiviral vectors has not been 

previously described. We chose to employ lentiviral constructs as they have a large transgene 

capacity of 8-10 kb, allowing them to carry the genes for promoter, opsin and fluorophore. A further

advantage considering future clinical applications is the lack of immune response to LVVs and the 

possibility of large scale production of clinical grade vectors. 

We were able to demonstrate that our opsin carrying lentiviral constructs driven by the interneuron-

specific promoters GAD67 and CCK are expressed in neuronal cultures and rat motor cortex and 

hippocampus. In cultures enriched in interneurons, such as those from the ganglionic eminence, 

LV-CCK-NpHR2.0-EYFP may be useful to target CCK+ interneurons. Expression levels in vivo, 

however, were low and expression was not specific for interneurons. Our results suggest that, in 

their current form, the two promoters may not contain all regulatory sequences necessary to target 

opsins to interneurons in cortex and hippocampus [21], or may indicate that LVVs are less suitable 

than other viral vectors to target inhibitory neurons [28]. 

2. Materials and Methods

Plasmid Design and Construction

Lentiviral plasmids used to target excitatory neurons contained NpHR2.0–EYFP (enhanced yellow 

fluorescent protein, EYFP) and hChR2(H134R)-mCherry under the excitatory neuron specific 

promoter Camk2a (gift of K.Deisseroth, Stanford University [11]). They were used as backbones to

generate the constructs carrying the GAD67 (gift of S. Kasparov [22]) and CCK promoters (gift of 

K. Ressler [23, 24]). The vectors have a truncated HIV 3'LTR, contain the HIV-1 central polypurine 

tract (cPPT) [29] and the Woodchuck Hepatitis Virus Post-transcriptional Regulatory Element 

(WPRE) [30] to improve transduction efficiency. To construct the vectors pLenti-CCK-NpHR–EYFP

and pLenti-CCK-ChR2-mCherry, an XbaI site was inserted into pLenti-CCKpro-GFP (green 



fluorescent protein, GFP) by mutagenizing it with the following primers: forward 

5’-acaaaaacaaattacaaaaattcaaaattttatctagatttcccagggaagatgaagaa-3’ and 

reverse 5’-ttcttcatcttccctgggaaatctagataaaattttgaatttttgtaatttgtttttgt-3’. The ~3 kb CCK promoter 

sequence was subsequently removed (XbaI/BamHI fragment) and ligated into pLenti-Camk2a-

NpHR2.0–EYFP and pLenti-Camk2a-ChR2-mCherry cut with the restriction enzymes XbaI/BamHI. 

Plasmids were purified using conventional kits (Qiagen) and all sequences were confirmed by 

restriction enzyme digestion and sequencing. GAD67 subcloning was outsourced to Entechelon 

GmBH, Regensburg, Germany. The adenoviral vector (AVV) shuttle carrying 3.7 kb of GAD67 

promoter sequences was mutagenized and a PacI site inserted 5’-upstream of the PmlI site. The 

Camk2a promoter was subsequently removed from pLenti-Camk2a-NpHR2.0–EYFP and pLenti-

Camk2a-ChR2-mCherry via restriction digest with PacI/PmlI and the GAD67 promoter cloned in. 

Viral Production and Titration

VSVg pseudotyped lentiviral vectors were generated according to local protocols: 293FT cells 

(Invitrogen) were seeded 24 hours prior to transfection in order to reach 90% confluence the 

following day. Cells were co-transfected with the transfer vector, p8.91 (gag/pol expressor) and 

pMD.G (VSVg expressor) in Fugene 6 (Roche), Optimem and sterile Tris-

Ethylenediaminetetraacetic acid buffer (both Invitrogen), pH 8. LVV-containing supernatant was 

harvested approximately 24, 48 and 72 hours after transfection. LVV was concentrated by 

ultracentrifugation at 20,000 rpm for 2 hours at 4 °C in a swing-out rotor ultracentrifuge (Beckman 

Coulter). After centrifugation, the vector was re-suspended, aliquoted and stored long term at -80 

°C. The concentrated viral titer was determined by reverse transcriptase quantitative polymerase 

chain reaction (RT-qPCR) to be between 108 and 109  copies/ml. 

pAAV5-hSyn-eNpHR3.0-2A-ChR2-EYFP (AAV-eNPAC [31] serotype 5, purchased from UNC 

vector core, titres 1x1012 vector genome(vg)/ml), carrying a strong pan-neuronal promoter, and 

pLenti-Camk2a-NpHR2.0–EYFP/pLenti-Camk2a-ChR2-mCherry, carrying a promoter specific for 

excitatory neurons, were used as a control vectors for in vivo experiments. 

Viral Transduction in Vitro

Neuronal cultures from the medial ganglionic eminence (embryonal day 14) were a gift of W. 

Andrews  (J. Parnavelas laboratory, Department of Cell and Developmental Biology, UCL). Day 7 

neuronal cultures were transduced with serial dilutions of the LVV. Images were taken using a 

Leica Fluorescence microscope. Cultures were incubated at 37 °C for 7–14 days before fixation in 

4 % paraformaldehyde for subsequent immunofluorescence. 

Stereotactic Surgery and Viral Transduction in Vivo for Targeting Opsins to Interneurons 

Male postnatal day 20 (p20) Sprague-Dawley rats were used for in vivo viral vector injections. The 

correct coordinates for the hippocampal injection site were established through calibration 



experiments by injection of Trypan Blue into the target area. All animals were housed on a 12-hour 

light/dark cycle in a temperature- and humidity-controlled environment with free access to food and

water. All efforts were made to minimize animal suffering and to reduce the number of animals 

used. Animal experiments were conducted in accordance with the Animals (Scientific Procedures) 

Act 1986. 

For stereotactic injections each rat was anaesthetized with isoflurane (Forane; Abbot). Animals 

were placed in a stereotactic frame (Kopf instruments). Surgery was performed under a Leica S6E 

microscope. LVV was injected directly with a Hamilton syringe (5 µl Hamilton Syringe, 900 Series, 

liquid tight with reinforced plunger; 33 G blunt needle; injection rate 200 nl/min with a microinjector 

unit). Injection volume was of 1 µl to cortex at the following stereotaxic coordinates AP -1.5 , L -1.5,

V -1.45, and 1.5 µl to dorsal CA1/3 at AP -2.8 , L +3.6, V -2.9 and ventral CA3: AP -4.1, L +4.45, V 

+5.35. Before lightening anaesthesia, rats were injected with 0.05 mg/kg subcutaneous (s.c.) 

buprenorphine analgesia and 1–2 ml s.c. 0.9% saline and the animal allowed to recover. 

Tissue Processing 

Animals were sacrificed by an overdose of pentobarbitone up to 6–8 weeks following viral vector 

injection. For immunohistochemistry, rats were perfused transcardially with ice-cold artificial 

cerebrospinal fluid, decapitated and the brains removed and post-fixed for 24 h in 4% 

paraformaldehyde (PFA; adjusted to pH 7.4 with 1 M HCl) at 4°C. They were then transferred to a 

solution containing 30% sucrose in 1x phosphate buffered saline (PBS) and left at 4°C until they 

had sunk. Using a Leica freezing vibratome, 30 µm coronal sections were cut through the targeted 

brain regions. 

Immunohistochemistry

Immunohistochemical staining was conducted on free floating sections. Sections were washed in 

PBS and permeabilized in 0.2% Triton X-100 for 10 minutes and then blocked with DAKO-blocking 

medium (dako) for 1 hour on a shaker. Series of sections were incubated for 2 days in the primary 

antibodies against γ-amino butyric acid (GABA, 1:100-1:200, Thermo Scientific, PA1-18027), 

cholecystokinin-8 (CCK-8, 1:100-1:200, Thermo Scientific, PA1-18016), Camk2a (1:100-1:200, 

Thermo Scientific, #MA1-048), green-fluorescent protein (GFP, 1:3000, abcam, ab13970 or aves 

1:800), dsRed and mCherry (1:200, Living Colors®; DsRed or mCherry Monoclonal Antibody, 

catalogue no. 632392 and 632543). Following washing in PBS (3 x 15 min), the sections were 

incubated in secondary antibodies (1:1000, all abcam and labelled with Alexa Fluor (AF) 488, AF 

568 or Tetramethylrhodamine (kindly gifted by A. Cariboni and J. Parnavelas) overnight at 4°C. 

After further washing in PBS, sections were incubated in 4´,6-Diamidino-2-phenylindole 

dihydrochloride (DAPI) to visualize cell nuclei. Free-floating sections were mounted onto 

microscope slides, allowed to dry and then coverslipped using Mowiol Mounting Medium (gift of A. 

Cariboni and J. Parnavelas). The same protocol was used to stain cultured neurons. As fixation 



with 4% PFA greatly reduces the fluorescent signal, constructs carrying NpHR-EYFP were always 

stained with primary antibodies against EYFP and secondaries labelled with AF 488 to detect 

expression of the vector, constructs carrying ChR2-mCherry were counterstained with primaries 

against dsRed or mCherry and secondaries labelled with AF 561 or Tetramethylrhodamine. For 

colocalization studies, primary antibodies  against GABA, CCK and Camk2a were labelled with 

secondaries conjugated to a red fluorophore (for the NpHR-EYFP expressing slices) or a green 

fluorophore (for the ChR2-mCherry expressing slices). Slices from adult male GAD67-GFP mice 

expressing GFP in interneurons were used as positive controls for anti-GAD67, anti-CCK and anti-

Camk2a antibodies (Supplementary Fig. 1). 

Morphological Analysis

The evaluation and acquisition of morphological data were performed on a Leica DM2500 Upright 

confocal microscope with a 40x oil immersion objective and the following excitation laser lines: 488

nm, 532 nm, 405 nm. Slices were first analyzed by fluorescence microscopy for expression of the 

fluorochrome in the targeted area. Image acquisition was performed with Leica LAS AF software. 

The colocalization of opsin expressing cells and neuronal or glial cell markers (GABA, CCK, 

Camk2a) was analyzed in the cortex and hippocampus. To compare the extent of viral vector 

expression volumes of different constructs, the size of the area exhibiting EYFP fluorescence was 

measured at 5–10-fold magnification in the cortex and hippocampus. Volumetric analysis was 

performed using Octave open source analysis software. Immunostained sections were digitized by 

means of a high-resolution video camera. All stained sections were evaluated. Image analysis and 

cell counting was performed using GIMP (GNU Image Manipulation Program) and Image J open 

source software. 

3. Results

GAD67- and CCK-driven plasmids were first tested in human embryonic kidney (HEK) cells by 

transfection, to ensure that cloning of the GAD67 and CCK promoters allowed transcription of the 

downstream opsin-fluorophore construct (Supplementary Fig. 2). Transduction of viral particles 

was then assessed in neuronal cultures. 

CCK- and GAD67-driven NpHR-EYFP expresses in ganglionic eminence neuronal cultures

We transduced neuronal cultures from the ganglionic eminence (GE; kindly provided by A. Zito and

W. Andrews, Parnavelas lab, UCL) as a culture model rich in inhibitory cells (Fig.1). In rodents, 

GAD67 mRNA is expressed from embryonic day 10.5 (E10.5) [32], CCK mRNA from E12.5  [33]. 

E14 cultures were transduced at days 5-7 in vitro with 106 copies/ml LVV per well and imaged two 

weeks later. Fluorescence was visible for LV-GAD67-NpHR2.0-EYFP and LV-CCK-NpHR2.0-

EYFP: ~90 % of cells expressing LV-CCK-NpHR2.0-EYFP also stained for anti-CCK antibody 



(19/21 cells, 4 visual fields (VFs)). 40% of LV-GAD67-NpHR2.0-EYFP expressing neurons were 

also anti-GABA antibody positive(+) (73/181 cells, 4 VFs). Our culture data suggests that LV-CCK-

NpHR2.0-EYFP may be useful in targeting CCK+ interneurons in GE cultures. 

GAD and CCK driven opsin vectors are not specific for interneurons in vivo

Fluorescence was visible in unstained, acutely sliced sections of rodent brain injected with LVV 

encoding NpHR2.0-EYFP under either Camk2a, GAD67 or CCK-promoters and AAV-eNPAC 

(Table 1, Supplementary Fig. 3, Supplementary Table 1), the highest achievable viral titre for each 

construct was used (ranging from 3 – 5 x 108 copies ml for LVV and 1012 vg/ml for AVV) in both 

cortex and hippocampus. Conversely, LV vectors expressing ChR2-mCherry under the Camk2a, 

GAD67 and CCK promoters were only visible on stained sections (Fig. 2 and 4). This may have 

been due to low expression levels, or to protein misfolding, allowing ChR2-mCherry to become 

visible only after immunostaining.

The vector LV-GAD67-ChR2-mCherry  was not selective for interneurons in CA1 and CA3: only 

7.5% (5/67) of cells expressing LV-GAD67-ChR2-mCherry were also GABA positive (Fig.2a-d), 

whilst of all GABA+ interneurons, only 2.6% (5/193) expressed LV-GAD67-ChR2-mCherry. 2.4% 

(27/1121) of pyramidal cells also expressed the transgene (Fig.2e). 

In a separate set of experiments we tested the vector LV-GAD67-NpHR2.0-EYFP:  82% (91/110) 

of LV-GAD67-NpHR2.0-EYFP expressing neurons were positive for Camk2a (Fig. 3a-c, g), 21% 

(43/207) were GABA+ (Fig. 3d-f, h). Approximately 15% (43/279) of GABA+ interneurons 

expressed  LV-GAD67-NpHR2.0-EYFP.

LV-CCK-ChR2-mCherry stained very few neurons in the hippocampal pyramidal layer, and 

expression was difficult to find by microscopy despite repeated experiments. Eight LV-CCK-ChR2-

mCherry - positive neurons were identified in four visual fields, seven of which co-stained with anti-

GABA antibodies (Fig. 4a-d). The difficulty in visualizing ChR2-mCherry in vivo was thought to be 

due to either low expression levels or to opsin-fluorophore misfolding, as the antibodies targeted to

mCherry demonstrated that the protein had been expressed. 

26% (9/34) of LV-CCK-NpHR2.0-EYFP expressing neurons were positive for GABA antibody. LV-

CCK-NpHR2.0-EYFP stained 2% (2/98) of anti-Camk2a (Fig.5a-c, g), and 47% (9/19) of anti-

GABA (Fig.5d-f, h) positive neurons. 

Expression volumes of GAD/CCK driven constructs are small

The total volume of viral vector expression was calculated for a whole injection area per vector by 

summing the fluorescent volume of each slice (area exhibiting strongly fluorescent neurons under 

5x or 10x magnification multiplied with thickness of the slice). In the hippocampus, expression 

volumes of GAD67 promoter driven constructs were larger than those of CCK-driven vectors. The 

control vector AAV-eNPAC achieved the largest expression volumes (Fig.6 and Table 1). In the 

cortex, expression volumes were again largest for AVV injected animals (Supp. Fig. 3 and Supp. 



Table  1). 

Discussion

GAD67 Promoter-driven Opsins

Expression of the GAD67 promoter-driven opsin constructs was not specific for interneurons both 

in cultures and slices. The GAD67 promoter construct used in our vectors contains 3.7 kb of 5’ 

upstream sequences (’short’ GAD67 promoter [21, 22]), containing the first intron and part of the 

second exon of the GAD67 promoter. This ’short’ promoter has been previously used to target 

GABAergic interneurons in the nucleus of solitary tract in organotypic slice cultures [22]. If 

increasingly longer 5’ upstream regulatory sequences are included in the GAD67 promoter 

construct [21], the expression of reporter genes becomes more specific. However, transgenic 

mouse lines containing up to 7 kb of 5’ upstream sequences (’medium’ and ’long’ promoters) of the

GAD67 promoter still showed variable staining of hippocampal interneurons [21], as well as ectopic

expression in hippocampal pyramidal neurons that express low levels of GAD mRNA [34]. Only the

longest construct (9 kb of 5’ upstream sequences) correctly labelled cerebellar Purkinje cells, whilst

still showing patterns of mixed correct and ectopic expression both in hippocampus and cortex 

[21]. In concordance with these observations, the ’short’ GAD67 promoter we used, may contain all

regulatory sequences for correct expression in brain regions of high GABA content, which develop 

early [21], but may not be specific for the targeting of interneurons in the hippocampus or cortex. 

CCK Promoter-driven Opsins

In cultures from the ganglionic eminence Nearly all cells expressing CCK-driven NpHR-EYFP were

positive for CCK, although only a limited number of cells was tested. In vivo, however, CCK-driven 

expression levels were small and less specific, making these vectors unsuitable for 

electrophysiology applications. The CCK promoter (gift of K. Ressler) has been used to label 

interneurons of the hippocampus and the basolateral amygdala [23, 24], which were 

counterstained with CCK-mRNA in situ hybridization techniques. In our experiments, LV-CCK-

NpHR2.0-EYFP achieved good expression in the polymorphic layer of the dentate gyrus, but 

stained only few cells in CA1 which were undoubtedly pyramidal, both in their morphology and 

antibody staining pattern (Fig. 3d). One possible explanation for the discrepancy of these results  

may be that neurons expressing CCK-mRNA are different or more numerous than those also 

expressing the CCK octopeptide, e.g. CCK-mRNA is found in the somata of neurons in many brain

regions including CA3 pyramidal cells [35]. Staining for the CCK peptide, rather than using in situ 

hybridization, may be a more specific way to detect expression of the actual neurotransmitter. 



Choice of Viral Vectors

AVVs serotype 2 and 5 are known to transduce mostly neurons [36] and our opsins delivered with 

AVV were strongly expressed within the hippocampus and cortex, and in a larger volume than 

constructs delivered with lentiviruses. AVV preparations are known to achieve higher titres than 

LV-vector preparations, and due to their smaller size (~ 25nm) [36], AAV vector particles (size 

~100 nm) spread over a larger volume than LV-vectors.  A diffuse spread of vector has the 

additional advantage that a single injection may be sufficient for experimental or future therapeutic 

purposes. The motivation to use lentiviral vectors, was their large transgene capacity (8-10 kb in 

LV vs 4.5 kb in AAV), which allowed us to clone the relatively large GAD67 and CCK promoter 

sequences (3.5 and ~3 kb, respectively) ahead of the opsin-fluorophore constructs. An alternative 

approach may involve splitting large transgenes onto 2 complementary AAVs, but the techniques 

are complex, and the success rate in generating the constructs may be lower. A further 

disadvantage of AVVs is their potential for inducing neutralizing antibodies. Conversely, LVVs are 

relatively invisible to the immune system, as viral proteins are not expressed on the surface of 

transduced cells. This is a clear advantage if considering viral vectors as future therapeutic tools. 

Conclusion

The ability to study and influence the activity of excitatory and inhibitory interneurons separately, is 

one of the main goals of modern neuroscience and a requirement for future gene therapy of 

nervous system diseases. Opsins are ideal candidates to accomplish this task, but targeting 

separate neuronal populations with GAD67 and CCK promoter-carrying vectors is not possible in 

their current form. More work is required to understand, at the molecular level, which regulatory 

elements and epigenetic mechanisms determine promoter function and how cell-type specific 

expression is achieved in inhibitory interneurons. 

Figure Legends

Figure 1 CCK- and GAD67-driven opsins express in ganglionic eminence neuronal cultures. 

LV-CCK-NpHR2.0-EYFP (a-c and g): Approximately 90% (19/21) of LV-CCK-NpHR2.0-EYFP 

expressing neurons (a, in green) also stain for anti-CCK antibody (b, in red). Overlay in c. Arrows 

depict examples of colocalizing neurons, arrowheads non-colocalizing neurons. LV-GAD67-

NpHR2.0-EYFP (d-f and h): 40% (73/181) of LV-GAD67-NpHR2.0-EYFP expressing neurons (d, 

in green) also stain for GABA-antibody (e, in red). Overlay in f. Arrows and arrowheads used as 

above. (Antibody (Ab), positive (+).) 



Figure 2 Immunofluorescence study of LV-GAD67-ChR2-mCherry expression in 

hippocampus and cortex. (a) LV-GAD67-ChR2-mCherry-expressing neurons (in red, 

arrowheads) do not colocalize with (b) anti-GABA positive interneurons (in green). (c) overlay (with

DAPI). Experiments with anti-GABA and anti-CaMKIIa antibodies were not performed in the same 

slices. (d) 7.5% of vector expressing cells (5/67) were positive for GABA (n=3 slices, 20 VF 

counted, 1 animal, total number of cells in brackets). The remaining vector expressing neurons 

may have been non GABA-ergic neurons, e.g. excitatory principal neurons, cholinergic non-

GABAergic non-principal cells, granule cells.(e) 30% (27/91) of vector expressing cells were 

excitatory neurons and stained with Camk2a antibody (n=4 slices, 22 VF counted, 3 animals, total 

number of cells in brackets). The remainder of vector expressing cells may have been GABAergic 

neurons, cholinergic non-GABAergic non-principal cells, principal cells expressing a different 

CaMKII isoform,  granule cells or neurogliaform cells. Whilst the % of positive neurons will depend 

on the viral titre, we used the highest titre achievable in our hands, which resulted in non-specific 

staining. Lower titres were not tested as they were predicted to achieve even lower expression. 

The scale bar is 25 µm for all images. Stratum radiatum (rad.), pyramidale (pyr.; dotted lines) and 

oriens (or); positive (+); visual field (VF).

Figure 3 Colocalization of LV-GAD67-NpHR2.0-EYFP with Camk2a or GABA in 

hippocampus. (a-c, g) LV-GAD67-NpHR2.0-EYFP-expressing neurons in green, anti-Camk2a 

positive pyramidal cells in red and overlay with DAPI to visualize cell nuclei. Arrows point to 

colocalizing, arrowheads to non-colocalizing neurons. 82% (91/110) of LV-GAD67-NpHR2.0-EYFP

expressing neurons are pyramidal cells (12 VF, 2 animals, total number of cells in brackets). (d-f, 

h) LV-GAD67-NpHR2.0-EYFP-expressing neurons in green, anti-GABA positive interneurons in 

red and overlay with DAPI (23 VF, 3 animals, total number of cells in brackets). Arrows and 

arrowheads used as above. The scale bar is 25 µm for all images. Stratum radiatum (rad.), 

pyramidale (pyr.; dotted lines) and oriens (or); visual field (VF).

Figure 4 Immunofluorescence and colocalization of LV-CCK-ChR2-mCherry in stratum 

oriens (or). (a) LV-CCK-ChR2-mCherry-expressing neurons in red (arrows), (b) anti-GABA 

positive cells in green and (c) overlay with DAPI to visualize cell nuclei. (Arrows indicate 

colocalizing, arrowheads not co-localizing cells). (d) 7/14 anti-GABA antibody stained neurons also

expressed LV-CCK-ChR2-mCherry (4 VFs, 1 animal). 7/8 LV-CCK-ChR2-mCherry positive cells 

stained for anti-GABA antibody. Numbers of cells counted in brackets. The scale bar is 25 µm for 

all images; visual field (VF).

Figure 5 Colocalization study of LV-CCK-NpHR2.0-EYFP in hippocampus. (a-c, g) LV-CCK-

NpHR2.0-EYFP-expressing neurons in green, anti-Camk2a positive pyramidal cells in red and 



overlay with DAPI to visualize cell nuclei (n=7 VF, 3 slices, 2 animals). Arrowheads points to LV-

CCK-NpHR2.0-EYFP-expressing neurons, which do not colocalize with anti-Camk2a+ cells. (d-f, 

h) LV-CCK-NpHR2.0-EYFP-expressing neurons in green, anti-GABA positive interneurons in red 

and overlay with DAPI (n=3 VF counted from 2 animals). Arrowheads points to LV-CCK-NpHR2.0-

EYFP-expressing neurons, which do not colocalize with anti-GABA+cells. Numbers of cells 

counted in brackets. Stratum radiatum (rad.), pyramidale (pyr.; dotted lines) and oriens (or); visual 

field (VF).

Figure 6 Comparison of expression levels in hippocampus. Fluorescence micrographs 

showing extent of expression in hippocampus injected with 1.5 μl of either (a) LV-CCK-NpHR2.0-

EYFP, (b) LV-GAD67-NpHR2.0-EYFP (both 10x magnification), or (c) 1 μl AAV-eNPAC (5x 

magnification). Slices were counterstained with anti-GFP antibodies and AF 488 secondary 

antibodies to amplify the GFP signal; Stratum radiatum (rad.), pyramidale (pyr.; dotted lines) and 

oriens (or); visual field (VF).

Table 1 Comparison of expression in hippocampal slices injected with LVVs carrying 

different promoters and LVV vs. AVV

Supplementary Figure Legends

S1 Immunohistochemistry on control sections 

Fluorescent micrographs from GAD67-GFP mice used as positive controls for anti-GAD67, anti-

CCK and anti-Camk2a antibodies. (a), (d), (g) Interneurons expressing GFP under the GAD67 

promoter. (b) Anti-Camk2a stains neurons in the pyramidal layer of the hippocampus (n = 97) and 

none of the GFP+ neurons (n = 23; arrowheads). (c) shows overlay images of the green (a), red 

(b) and blue (DAPI) channels. (e) All GABA-antibody stained neurons (n = 14) expressed green 

fluorescence (arrows). (f) showing overlay images of (d), (e) and the blue (DAPI) channel. (h) 

CCK-antibody stained neurons in red (i) overlay image: 80% (7/9) of CCK+ neurons (red) 

expressed GFP (green) . One third of GFP expressing interneurons (green) also stained for CCK-

antibody (9/27; arrows). Stratum radiatum (rad.), pyramidale (pyr.; dotted lines) and oriens (or). 

S2 Transfected HEK cells express transgene 

Cloned lentiviral constructs and assessment of promoter activity in vitro. (a-c) Left panels: 

schematic of the viral vector; right panels: fluorescence micrographs of transfected HEK cells. 

Micrograph a2 and b2 were taken with a different filter setting. 

S3 Expression volumes in cortex 

Comparison of expression levels in cortex. Fluorescence Micrographs at 10x magnification 



obtained from cortex of animals injected with (a) LV-CCK-NpHR2.0-EYFP, (b) LV-Camk2a-

NpHR2.0-EYFP and at (c) 5x magnification showing expression of AAV-eNPAC. Continuous line 

denotes the area of fluorescence, dashed line the pial surface. Slices were counterstained with 

anti-GFP antibodies and AF 488 secondaries to amplify the GFP signal; injection volume 1–1.25 

μl.  

S Table 1 Comparison of expression in cortical slices injected with LVV vs. AVV.
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Tables

Table 1

Hippocampus
LV-CCK-NpHR2.0-
EYFP

LV-GAD67-NpHR2.0 
EYFP

AAV5-eNpHR3.0-2A-ChR2-EYFP
(eNPAC)

Viral Titre 10  copies/ml⁸ 10  copies/ml⁸ 2 x 1012 vg/ml

Injection 
Volume 1.5 µl 1.5 µl 1 µl

Expression 
Volume 0.009 mm³ 0.013 mm³ 0.08 mm³

Supplementary Table 1

Cortex
LV-Camk2a-NpHR2.0-
EYFP

AAV5-eNpHR3.0-2A-ChR2-EYFP 
(eNPAC)

Viral Titre 10  copies/ml⁸ 2 x 1012  vg/ml

Injection 
Volume 1.25 µl 1 µl

Expression 
Volume 0.04 mm³ 0.09 mm³
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Figure 1 CCK- and GAD67-driven opsins express in ganglionic eminence neu-
ronal cultures.
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Figure 2 Immuno�uorescence study of LV-GAD67-ChR2-mCherry expression in
hippocampus and cortex.
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Figure 3 Colocalization of LV-GAD67-NpHR2.0-EYFP with Camk2a or GABA
in hippocampus.
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Figure 5: Colocalization study of LV-CCK-NpHR2.0-EYFP in hippocampus.
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Table 1: Comparison of expression in hippocampal slices injected with LVs
carrying di�erent promoters and LV vs. AAV .

Hippocampus

LV-CCK-

NpHR2.0-EYFP

LV-GAD67-NpHR2.0 EYFP

AAV5-

eNpHR3.0-2A-

ChR2-EYFP

(eNPAC)

Viral

Titre
108TU/ml 108TU/ml

2 x 10

12TU/ml

Injection

Volume
1.5µl 1.5µl 1µl

Expression

Volume
0.009mm3 0.013mm3 0.08mm3
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S Table 1 Comparison of expression in cortical slices injected with LV vs. AAV.

Cortex LV-Camk2a-NpHR2.0-EYFP

AAV5-eNpHR3.0-2A-ChR2-EYFP

(eNPAC)

Viral Titre 108 TU/ml 2 x 10 12 TU/ml

Injection

Volume 1.25µl 1µl

Expression

Volume 0.04mm3 0.09mm3
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