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Abstract The diffraction problem of hydroelastic waves beneath an ice sheet bymultiple bottom-mounted circular
cylinders is considered. The elastic thin-plate theory is adopted to model the ice sheet, while the linearized velocity
potential theory adopted for the fluid flow. The velocity potential corresponding to each cylinder is expanded into a
series of eigenfunctions, and the total potential is expressed as a summation of these expansions over the entire NC
number of cylinders. For each cylinder, the Green’s second identity is used outside its domain to obtain a set of linear
equations. For each different cylinder, the domain used is different. NC cylinders give NC sets of coupled linear
equations. Investigations are made for different arrangements of cylinders, piercing through ice sheets. Results for
the wave forces on the cylinders with clamped and free conditions of the ice edge are obtained. Physical phenomena
corresponding to cylinders arranged in square, in an array, in a double-array and in a staggered double array are
discussed.

Keywords Free/clamped edge conditions · Hydroelastic wave diffraction · Ice sheet · Multiple cylinders and
cylinder arrays

1 Introduction

Vertical circular columns are commonly adopted in ocean engineering as components of coastal and offshore
structures, such as bridge pylons and tension leg platforms. The wave forces acting on these columns are usually
of major interest. Extensive research has been conducted on the water wave diffraction by vertical cylinders in
open water. Havelock [1] considered the diffraction problem of a single vertical circular cylinder in regular wave
of infinite depth and derived an exact solution. MacCamy and Fuchs [2] used the method of separation of variables
involving Hankel function for a circular cylinder in the finite water depth. For a vertical cylinder with an elliptic
cross section, Chen and Mei [3] adopted the variable separation method involving Mathieu functions in the elliptic
cylindrical coordinate system. Williams [4] adopted both semi-analytical and numerical methods for the diffraction
problem of an elliptic cylinder. The first one was based on elliptic eccentricity, and the Mathieu functions in the
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obtained exact solution can be expanded in series of Bessel functions. The second one was a boundary element
method based on the Green’s theorem; the elliptical contour was divided into small segments where the potential in
each segment is assumed to be constant. The wave diffraction problem of uniform vertical cylinders with arbitrary
cross section has been investigated numerically by Isaacson [5], Wu and Price [6], Zhu and Moule [7] and Mansour
et al. [8]. Recently, semi-analytical methods were also adopted to get solutions of such problems. Liu et al. [9]
adopted the method of separation of variables using the expression form of potential given by MacCamy and Fuchs
[2] for circular cylinder and expanding the radial functions of the body surface as well as Bessel functions into a
Fourier series with unknown coefficients. Dişibüyük et al. [10] used an asymptotic approach by defining a small
parameter ε corresponding to the variation of the radius from a circular cylinder and calculating the boundary value
problem on the circular surface to obtain a fifth-order asymptotic solution.

In addition to studies on a single cylinder mentioned above, there have been works on multiple vertical cylinders
arranged in an array or in a group, as done by Ohkusu [11], Kagemoto and Yue [12], Linton and Evans [13], Eatock
Taylor and Chau [14], Malenica, Eatock Taylor and Huang [15]. It is interesting to see what was observed in the
work of Maniar and Newman [16]. They considered the wave diffraction by a large array of cylinders, and found
that a very large wave force could be exerted on middle cylinders when the wavenumber was close to the trapped
mode (e.g. Ursell [17]). Evans and Porter [18] further studied the wave force and mean second-order drift forces
on vertical cylinders in circular arrangement and found large forces at certain frequencies. Duclos and Clément
[19] considered cylinders randomly displaced from regular arrays based on a disorder parameter and found that
a small level of spacing irregularity can greatly reduce the large forces on cylinders. Instead of regular incident
waves, Walker and Eatock Taylor [20] investigated the diffraction of a NewWave, a focused wave group used to
predict extreme situations from random wave spectra, from an array of cylinders, and large forces and free surface
elevations were found to occur. While the above work is all conducted in the frequency domain, Wang and Wu [21]
adopted a finite element method in the time domain to investigate the second-order water wave diffraction by an
array or a group of vertical cylinders.

In addition to the work above on interaction between cylinders with the free surface waves, the interaction of
hydroelastic waves with ocean structures also has become increasingly relevant and important for polar engineering.
These kinds of problems elicited strong interest frommany authors, for example: two-dimensional works by Sturova
[22–24], Ren et al. [25], and Li et al. [26–28]—for a submerged/floating body in a polynya; and similar three-
dimensional work by Ren et al. [29]. In some cases, the free surface in the polynya may become frozen as well, and
the surface of offshore structures becomes directly connected to the edge of ice sheet. The two-dimensional problem
of hydroelastic waves interacting with vertical wall was investigated by Brocklehurst et al. [30] and Bhattacharjee
and Soares [31]. For three-dimensional problems, Malenica et al. [32] investigated wave scattering of a bottom-
mounted vertical cylinder frozen in a finite annular ice sheet by the eigenfunction expansion method, with the
ice edge being clamped into the cylinder, while at the other end, the edge contacting open water is assumed free.
Brocklehurst et al. [33] further considered a single vertical cylinder piercing through an ice sheet of infinite extent
using a Weber transform. Results for the deflection and strain of the ice sheet, the horizontal wave forces as well as
the vertical shear forces due to the clamped edge were provided. Recently, Korobkin et al. [34] further considered
hydroelastic waves scattering by a vertical cylinder of an arbitrary cross section using a vertical mode method.

In the present work, we consider the diffraction of hydroelastic waves withmultiple cylinders. The ice edge, or the
intersection of the ice sheet with the cylinder surface, is not limited to clamped condition, and other edge conditions
including free or simply supported can be incorporated into the formulation. Based on the method of eigenfunctions
expansions and using the Green’s second identity in an artificial domain, the problem can be solved in a highly
effective manner. The paper is organized as below. In Sects. 2 and 3, we outline respectively the mathematical
formulation and the solution procedure of the present problem. In Sect. 4, the results and discussions are provided
for cylinders in different arrangements, including four cylinders in square arrangement, cylinders in one array and
cylinders in two side by side arrays. Conclusions are provided in Sect. 5.
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2 Mathematical formulation

The coordinate systems used in the present work are introduced first. For each cylinder j , we set up a local cylindrical
coordinate system

(
r j , θ j , z

)
, with its origin on the mean free surface, and its z-axis along the centre line of the

cylinder and pointing upwards. Apart from the local coordinate systems, fixed global Cartesian and cylindrical
coordinate systems are also defined, respectively, as O-xyz and O-rθz, with x = r cos θ and y = r sin θ . The radius
for cylinder j is denoted as c j . The centre of cylinder j is at

(
X j ,Y j

)
in the global Cartesian coordinate system.

Based on the assumption that the fluid below the ice is inviscid and incompressible, and the flow is irrotational,
the velocity potential theory can be adopted. For waves sinusoidal in time, the potential can be written as

�(x, y, z, t) = Re
{
φ (x, y, z) × e−iωt

}
, (1)

φ satisfies the governing equation

∇2φ + ∂2φ

∂z2
= 0 (2)

in the fluid domain, where ∇2 is the two-dimensional Laplacian defined as

∇2 = ∂2

∂x2
+ ∂2

∂y2
= ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2
∂2

∂θ2
.

The linearized boundary condition on the ice sheet Sice can be written as Fox and Squire [35]

(
L∇4 − miceω

2 + ρg
) ∂φ

∂z
= ρω2φ, z = 0, r j > c j for j = 1, 2, . . . , NC, (3)

where L = Eh3/
[
12
(
1 − ν2

)]
and mice = ρiceh are, respectively, the effective flexural rigidity and the mass per

unit area of the ice sheet. E, ν and ρice are the Young’s modulus, Poisson’s ratio and density of the ice, respectively.
In the present work, these physical parameters have been taken as constants. ρ in the equation is the density of
water and g is the acceleration due to gravity.

On the flat seabed SB (z = −H) and the wetted surfaces Sk0 of the rigid cylinder k (rk = ck, k = 1, 2, . . . ,NC),
we have

∂φ

∂n
= 0, (4)

where n is the normal vector pointing out of the fluid domain. In the far-field, the radiation boundary condition on
S∞ gives

∂φd

∂r
= iκ0φd as r → ∞, (5)

to ensure that the disturbed wave will propagate outwards, where φd refers to the total diffraction potential below
the ice sheet and κ0 is the wavenumber. In addition to all these, edge conditions should also be satisfied at the
intersection of the ice sheet with each cylinder, depending on whether the ice edge is clamped, free or simply
supported. In present work, different edge conditions can be incorporated into the formulation, and case studies are
made for the clamped edge and free edge conditions. For the former, there will be no deflection and slope on the
ice edges, which can be given as (e.g. Timoshenko and Woinowsky-Krieger [36])

∂φ

∂z
= 0 and

∂

∂rk

∂φ

∂z
= 0 (rk = ck). (6)
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For the latter, there is no bending moment and shear force on the ice edges. We have (e.g. Timoshenko and
Woinowsky-Krieger [36])

∇2 ∂φ

∂z

∣∣
∣∣
z=0,rk=ck

=
{

(1 − ν)

ck

{
1

ck

∂2

∂θ2k
+ ∂

∂rk

}
∂φ

∂z

}

z=0,rk=ck

, (7a)

∂

∂rk

{
∇2 ∂φ

∂z

}∣∣∣∣
z=0,rk=ck

=
{

− (1 − ν)

c2k

(
∂3

∂θ2k ∂rk
− 1

ck

∂2

∂θ2k

)
∂φ

∂z

}

z=0,rk=ck

. (7b)

3 Solution procedure

The incident potential due to a periodic wave from infinity can be written in the global system as

φI (x, y, z) = −A
ig

ω
× cosh κ0 (H + z)

cosh κ0H
× eiκ0(x cosβ+y sin β), (8)

where A is the amplitude of the incident wave and β is the angle of incidence relative to x axis. In the local cylindrical
system corresponding to cylinder j , this can be also written as

φI
(
r j , θ j , z

) = −A
ig

ω
× cosh κ0 (H + z)

cosh κ0H
× eiκ0R j cos(� j−β) × eiκ0r j cos(θ j−β), (9)

which can be expanded in a series of Bessel function as Abramowitz and Stegun [37]

φI
(
r j , θ j , z

) = −A
ig

ω
× cosh κ0 (H + z)

cosh κ0H
× eiκ0R j cos(� j−β) ×

∞∑

m=−∞
im × Jm

(
κ0r j

)× eim(θ j−β), (10)

where
(
R j ,� j

)
are the horizontal coordinates of the centre of cylinder j in the global cylindrical system, with

X j = R j cos� j ,Y j = R j sin� j . The diffraction potential due to cylinder j can be written through the Hankel

functions H (1)
m as

φDj
(
r j , θ j , z

) =
∞∑

n=−2

∞∑

m=−∞
a( j)
nm × ψ

( j)
nm , (11)

where

ψ
( j)
nm = H (1)

m
(
κnr j

)

H (1)
m
(
κnc j

) × eimθ j × cosh κn (z + H)

cosh κnH
(12)

and κn are the solutions of the dispersion equation given below: (e.g. Fox and Squire [35])

κn × tanh κnH = ρω2

Lκ4
n + ρg − miceω2 , n = −2,−1, 0, 1, 2 . . . (13)

in which κ0 is the positive real root, κ−2 and κ−1 are the two complex roots with positive imaginary part, and
κn (n = 1, 2, 3 . . .) are the positive pure imaginary roots. Here ψ

( j)
nm satisfies the boundary conditions on the

bottom, ice sheet and at infinity. The unknown coefficients a( j)
nm in Eq. (11) are to be determined by the body surface

and the edge boundary conditions.
The total diffraction potential below the ice sheet can be expressed as the summation of the individual diffracted

potentials due to each cylinder relative to the local system (rk, θk) as
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Fig. 1 The definition of parameters for Graf’s addition theorem

φd (r, θ, z) =
NC∑

j=1

φDj
(
r j , θ j , z

)
. (14)

To impose the body surface boundary condition on cylinder k, the potential in Eq. (14) should be written in
terms (rk, θk, z). To do that, the diffraction potential φDj in the cylindrical coordinate system

(
r j , θ j , z

)
should be

transformed into the cylindrical system (rk, θk, z). Here we define
(
α jk, R jk

)
as the polar coordinates of Ok with

respect to Oj . Particularly, α jk is defined as an angle between the line linking Oj Ok and x axis, as shown in Fig. 1.
They can be determined by Xk − X j = R jk cosα jk and Yk − Y j = R jk sin α jk .

Using the Graf’s addition theorem for Bessel functions (e.g. Abramowitz and Stegun [37]), we have

H (1)
m

(
κnr j

)× eimθ j =
∞∑

l=−∞
H (1)
m+l

(
κn R jk

)× Jl (κnrk) × (−1)l × e−ilθk × ei(m+l)α jk , j �= k.

It should be noted that as the above equation requires R jk > rk , it does not apply to the case of j = k. Then Eq.
(14) can be transformed into the following form:

φd (rk, θk, z) =
∞∑

n=−2

∞∑

m=−∞

⎛

⎝a(k)
nm × ψ(k)

nm +
NC∑

j=1, j �=k

a( j)
nm × ξ

( j)
nm

⎞

⎠, (15)

where

ξ
( j)
nm = 1

H (1)
m
(
κnc j

) × cosh κn (z + H)

cosh κnH
×

∞∑

l=−∞

(
H (1)
m+l

(
κn R jk

)× Jl (κnrk) × (−1)l × e−ilθk × ei(m+l)α jk
)
. (16)

In the present work, we use the Green’s second identity to impose boundary conditions on each cylinder surface
and at the edge. For cylinder k, we have

�

S

[
φ

∂ψ

∂n
− ψ

∂φ

∂n

]
dS = 0, (17)

where φ = φDk, ψ = ψ
(k)
n′,−m′ , and S = Sk0 + S∞ + SB + SI − SkF is the entire boundary outside the cylinder

k. Sk0 is the wetted surface of the kth cylinder as defined before Eq. (4). SkF is the cross section of cylinder k cut
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though by the ice sheet, and SI is the entire upper surface of z = 0. It is worth mentioning that we have included
the ice surface occupied by all other cylinders in S, which makes the procedure different from the conventional one.
The reason is that the Green’s second identity can be valid for any closed boundary, if there is no singularity in ϕ

and ψ on S and in its closed domain. Based on the boundary conditions of the bottom surface SB and the far-field
surface S∞, the integrals over these two surfaces are equal to zero. Also, as φDk and ψ

(k)
n′,−m′ satisfy the boundary

condition in Eq. (3) on SI − SkF , it allows the surface integral over SI − SkF to be converted into a line integral of
the edge of cylinder k only based on the Gauss theorem. Following Ren et al. [29], Eq. (17) can then be written as

−
∫ ∫

Sk

[

φDk
∂ψ

(k)
n′,−m′

∂rk
− ψ

(k)
n′,−m′

∂φDk

∂rk

]

dS

− L
ρω2 × ∮

c

⎛

⎜
⎝

∂ψ
(k)
n′,−m′
∂z × ∂

∂rk
∇2 ∂φDk

∂z − ∂
∂rk

∂ψ
(k)
n′,−m′
∂z × ∇2 ∂φDk

∂z

− ∂φDk
∂z × ∂

∂rk
∇2 ∂ψ

(k)
n′,−m′
∂z + ∂

∂rk
∂φDk
∂z × ∇2 ∂ψ

(k)
n′,−m′
∂z

⎞

⎟
⎠

rk=ck ,z=0

ck dθk = 0.

(18)

Noticing that φDk = φ − φI −∑NC
j=1, j �=k φDj , where φ is the potential in Eq. (2) near cylinder k, and using the

relationship obtained the Laplace equation ∇2φ =
(

∂2

∂r2k
+ 1

rk
∂

∂rk
+ 1

r2k

∂2

∂θ2k

)
φ = − ∂2

∂z2
φ, Eq. (18) can be further

written as

∫ 2π

0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0∫

−H

(
∂φ

∂rk
× ψ

(k)
n′,−m′ − φDk × ∂ψ

(k)
n′,−m′

∂rk

)

dz

− L

ρω2 ×

⎛

⎜⎜⎜
⎜
⎝

− ∂ψ
(k)
n′,−m′

∂z
× ∂

∂rk

∂3φ

∂z3
+ ∂

∂rk

∂ψ
(k)
n′,−m′

∂z
× ∂3φ

∂z3

+ ∂φ

∂z
× ∂

∂rk

∂3ψ
(k)
n′,−m′

∂z3
− ∂

∂rk

∂φ

∂z
× ∂3ψ

(k)
n′,−m′

∂z3

⎞

⎟⎟⎟
⎟
⎠

rk=ck ,z=0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dθk

=
∫ 2π

0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0∫

−H

⎛

⎝ ∂

∂rk

⎛

⎝φI +
NC∑

j=1, j �=k

φDj

⎞

⎠× ψ
(k)
n′,−m′

⎞

⎠ dz

− L

ρω2 ×

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

−∂ψ
(k)
n′,−m′

∂z
× ∂

∂rk

∂3

∂z3

⎛

⎝φI +
NC∑

j=1, j �=k

φDj

⎞

⎠

+ ∂

∂rk

∂ψ
(k)
n′,−m′

∂z
× ∂3

∂z3

⎛

⎝φI +
NC∑

j=1, j �=k

φDj

⎞

⎠

+ ∂

∂z

⎛

⎝φI +
NC∑

j=1, j �=k

φDj

⎞

⎠× ∂

∂rk

∂3ψ
(k)
n′,−m′

∂z3

− ∂

∂rk

∂

∂z

⎛

⎝φI +
NC∑

j=1, j �=k

φDj

⎞

⎠× ∂3ψ
(k)
n′,−m′

∂z3

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

rk=ck ,z=0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dθk .

(19)

An advantage of using Green’s second identity is that it makes application for the edge conditions easier. On the
left-hand side of Eq. (19), the terms in the linear line integral involving various derivatives can be directly replaced
by the corresponding edge conditions, see Eq. (6) or (7). The body surface boundary on the cylinder surface in Eq.
(4) can be used in the first term in the surface integral. For the terms in the line integral, different edge conditions,
depending on whether the edge is clamped, free or simply supported, can be incorporated.
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To treat with the clamped edge case, we substitute the body surface condition and clamped edge conditions
(Eq. 6) into Eq. (19); by taking all the terms of ∂φ

∂rk
,

∂φ
∂z and ∂

∂rk
∂φ
∂z as zero, we can obtain

2π∫

0

⎧
⎨

⎩

0∫

−H

(

−φDk × ∂ψ
(k)
n′,−m′

∂rk

)

dz − L

ρω2 ×
(

−∂ψ
(k)
n′,−m′

∂z
× ∂

∂rk

∂3φDk

∂z3
+ ∂

∂rk

∂ψ
(k)
n′,−m′

∂z
× ∂3φDk

∂z3

)

rk=ck ,z=0

⎫
⎬

⎭
dθk

=
2π∫

0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0∫

−H

⎛

⎝ ∂

∂rk

⎛

⎝φI +
NC∑

j=1, j �=k

φDj

⎞

⎠× ψ
(k)
n′,−m′

⎞

⎠ dz

− L

ρω2 ×
(

∂

∂z

⎛

⎝φI +
NC∑

j=1, j �=k

φDj

⎞

⎠× ∂

∂rk

∂3ψ
(k)
n′,−m′

∂z3

− ∂

∂rk

∂

∂z

⎛

⎝φI +
NC∑

j=1, j �=k

φDj

⎞

⎠× ∂3ψ
(k)
n′,−m′

∂z3

)

rk=ck ,z=0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dθk .

(20)

Finally, by substituting Eqs. (10)–(16) into Eq. (20) and performing the integrations with respect to θk and z, we
can obtain a system of linear equations as below:

∞∑

n=−2

a(k)
nm′ × A(k) (n, n′,m′)

+
NC∑

j=1, j �=k

∞∑

n=−2

∞∑

m=−∞
a( j)
nm × H (1)

m−m′
(
κn R jk

)× (−1)−m′ × ei(m−m′)α jk

H (1)
m
(
κnc j

) × B(k) (n, n′,m′) (21)

= A
ig

ω
× eiκ0Rk cos(�k−β) × im

′ × e−im′β × C (k) (n, n′,m′) ,

where

A(k) (n, n′,m′) = κn′ × H (1)′
−m′ (κn′ck)

H (1)
−m′ (κn′ck)

× X (κn, κn′) + Y (κn′ , κn)

×
⎛

⎝κn′ × H (1)′
−m′ (κn′ck)

H (1)
−m′ (κn′ck)

− κn × H (1)′
m′ (κnck)

H (1)
m′ (κnck)

⎞

⎠ ,

B(k) (n, n′,m′) = X (κn, κn′) × κn × J ′
−m′ (κnck) − Y (κn, κn′)

×
⎛

⎝J−m′ (κnck) × κn′ × H (1)′
−m′ (κn′ck)

H (1)
−m′ (κn′ck)

− κn × J ′
−m′ (κnck)

⎞

⎠ ,

C (k) (n, n′,m′) = X (κ0, κn′) × κ0 × J ′
m′ (κ0ck) + Y (κ0, κn′)

×
⎛

⎝κ0 × J ′
m′ (κ0ck) − Jm′ (κ0ck) × κn′ × H (1)′

−m′ (κn′ck)

H (1)
−m′ (κn′ck)

⎞

⎠

and

X (x1, x2) = x1 tanh x1H − x2 tanh x2H

x21 − x22
, Y (x1, x2) = L

ρω2 × x1 × tanh x1H × x32 × tanh x2H.

We may notice that Eq. (21) is non-diagonal. This means that integral in the vertical direction based on the Green
second identity is non-orthogonal. There have been some attempts to use orthogonal inner product (Sahoo et al.
[38]). However, the final matrix is not diagonal in this case. In fact, it is common for an orthogonal inner product,
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when the potential or the derivative of the potential is entirely replaced by the boundary conditions to form an
equation, the left-hand side of the identity will have only one unknown, while the right-hand side is known. As a
result, the final matrix equation will be diagonal. In this case, however, the potential or the derivative in the surface
integral is replaced by another unknown potential or derivative based on the continuity condition. The right-hand
side therefore involves also the unknowns. Thus, the overall matrix is not diagonal.

For the free-edge case, the free edge conditions can be applied through replacing the terms ∂3

∂z3
∂φ
∂rk

and ∂3φ

∂z3
on the

left side of equal sign respectively by − ∂
∂rk

{
∇2 ∂φ

∂z

}
and −∇2 ∂φ

∂z in Eq. (19). When we substitute the body surface

condition and free edge conditions into Eq. (19), we can obtain

2π∫

0

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0∫

−H

(

−φDk × ∂ψ
(k)
n′,−m′

∂rk

)

dz − L

ρω2 ×

⎛

⎜⎜⎜
⎜⎜
⎝

− ∂ψ
(k)
n′,−m′
∂z × (1−ν)

c2k

(
∂3

∂θ2k ∂rk
− 1

ck
∂2

∂θ2k

)
∂φ
∂z

− ∂
∂rk

∂ψ
(k)
n′,−m′
∂z × (1−ν)

ck

{
1
ck

∂2

∂θ2k
+ ∂

∂rk

}
∂φ
∂z

+ ∂φDk
∂z × ∂

∂rk

∂3ψ
(k)
n′,−m′
∂z3

− ∂
∂rk

∂φDk
∂z × ∂3ψ

(k)
n′,−m′
∂z3

⎞

⎟⎟⎟
⎟⎟
⎠

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

dθ

=
2π∫

0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0∫

−H

(
∂

∂rk

(
φI +

∑NC

j=1, j �=k
φDj

)
× ψ

(k)
n′,−m′

)
dz

− L
ρω2 ×

(
− ∂ψ

(k)
n′,−m′
∂z × ∂

∂rk
∂3

∂z3

(
φI +∑NC

j=1, j �=k φDj

)

+ ∂
∂rk

∂ψ
(k)
n′,−m′
∂z × ∂3

∂z3

(
φI +∑NC

j=1, j �=k φDj

))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dθ.

(22)

Similarly, by substituting Eqs. (10)–(16) into Eq. (22), we can obtain the system of linear equations as

∞∑

n=−2

a(k)
nm′ × D(k) (n, n′,m′)+

NC∑

j=1, j �=k

∞∑

n=−2

∞∑

m=−∞
a( j)
nm × 1

H (1)
m
(
κnc j

) × H (1)
m−m′

(
κn R jk

)× (−1)−m′

× ei(m−m′)α jk × E (k) (n, n′,m′)

= A
ig

ω
× eiκ0Rk cos(�k−β) × im

′ × e−im′β × F (k) (n, n′,m′) , (23)

where

D(k) (n, n′,m′) = κn′ × H (1)′
−m′ (κn′ck)

H (1)
−m′ (κn′ck)

× X (κn, κn′) + Z (κn, κn′)

×

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

(

κn × H (1)′
m′ (κnck )

H (1)
m′ (κnck)

− 1
ck

)

× (1−ν)

c2k
× m′2

+
(

m′2
ck

− κn × H (1)′
m′ (κnck)

H (1)
m′ (κnck )

)

× κn′ × H (1)′
−m′(κn′ck)

H (1)
−m′(κn′ck)

× (1−ν)
ck

+
(

κn′ × H (1)′
−m′(κn′ck)

H (1)
−m′(κn′ck)

− κn × H (1)′
m′ (κnck )

H (1)
m′ (κnck )

)

× κ2
n′

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

,
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E (k) (n, n′,m′) = κn × J ′
−m′ (κnck) × X (κn, κn′) + Z (κn, κn′)

×

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

⎛

⎝
κn × J ′

−m′ (κnck)

− J−m′ (κnck) × κn′ × H (1)′
−m′(κn′ck)

H (1)
−m′(κn′ck)

⎞

⎠× κ2
n

+m′2 ×
(

κn × J ′
−m′ (κnck)

− 1
ck

× J−m′ (κnck)

)

× (1−ν)

c2k

+
(

m′2
ck

× J−m′ (κnck)
− κn × J ′

−m′ (κnck)

)

× κn′ × H (1)′
−m′(κn′ck)

H (1)
−m′(κn′ck)

× (1−ν)
ck

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

,

F (k) (n, n′,m′) = κ0 × J ′
m′ (κ0ck) × X (κ0, κn′) + Z (κ0, κn′)

×

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

⎛

⎝
κ0 × J ′

m′ (κ0ck)

− Jm′ (κ0ck) × κn′ × H (1)′
−m′(κn′ck)

H (1)
−m′(κn′ck)

⎞

⎠× κ2
0

+m′2 ×
(

κ0 × J ′
m′ (κ0ck)

− 1
ck

× Jm′ (κ0ck)

)
× (1−ν)

c2k

−
(
Jm′ (κ0ck) × (−m′2)× 1

ck+ κ0 × J ′
m′ (κ0ck)

)
× κn′ × H (1)′

−m′(κn′ck)
H (1)

−m′(κn′ck)
× (1−ν)

ck

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

,

and Z (x1, x2) = L
ρω2 × x1 × tanh x1H × x2 × tanh x2H .

Through solving the system of linear equations given by Eqs. (21) and (23) respectively, we can obtain the
unknown coefficients a(k)

nm, k = 1, 2, . . . , NC for the clamped and free edge problems. In the practical calculation,
the infinite series in Eq. (15) needs to be truncated. Specifically, n ranges from −2 to N − 3 for κn , and m ranges
from −M to M . N and M should be chosen large enough to ensure that the convergence of the results has been
achieved.

Once the velocity potential been obtained, thewave forces, or the horizontal forces, on cylinder k can be calculated
based on the following equation:

{
F (k)
x

F (k)
y

}

= iωρ

∫ ∫

Sk0

φ ×
{
nx
ny

}
dS

=
{
i
1

}
× πωρck ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A ig
ω

× tanh κ0H
κ0

× eiκ0Rk cos(�k−β) × i

×
(
J−1 (κ0ck) × eiβ +

{−1
1

}
× J1 (κ0ck) × e−iβ

)

+∑∞
n=−2

(
a(k)
n,−1 +

{
1

−1

}
× a(k)

n,1

)
× tanh κn H

κn

−∑NC
j=1, j �=k

∑∞
n=−2

∑∞
m=−∞

a( j)
nm

H (1)
m (κnc j)

× tanh κn H
κn

×
⎛

⎝
H (1)
m+1

(
κn R jk

)× J1 (κnck) × ei(m+1)α jk

+
{

1
−1

}
× H (1)

m−1

(
κn R jk

)× J−1 (κnck) × ei(m−1)α jk

⎞

⎠

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (24)

where nx , ny are, respectively, the components of the normal vector of the body surface pointing outwards, along
x-axis and y-axis.

The vertical shear stress Qk can be given as (e.g. Eq. 2.2 in Ugural [39])

Qk = −L × ∂

∂rk

(
∇2w

)

rk=ck
. (25)
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Fig. 2 Force on middle
body of an array of nine
cylinders
(β = 0, c = H = 1,
d = 2, h = 0, X j = 2
( j − 1) d, Y j = 0, j = 1,
2, . . . 9)

Substituting w = i
ω
φz into (25), we have

Qk = −L × ∂

∂rk

(
∇2w

)

rk=ck

= L × i

ω
×

⎛

⎜⎜⎜⎜⎜
⎜
⎝

−A ig
ω

× κ4
0 × tanh κ0H × eiκ0Rk cos(�k−β) ×∑∞

m=−∞ im × J ′
m (κ0ck) × eim(θk−β)

+∑∞
n=−2

∑∞
m=−∞ a(k)

nm × H (1)′
m (κnck)

H (1)
m (κnck)

× eimθk × κ4
n × tanh κnH

+∑∞
n=−2

∑∞
m=−∞

∑NC
j=1, j �=k a

( j)
nm × 1

H (1)
m (κnc j)

× κ4
n × tanh κnH

×∑∞
l=−∞ H (1)

m+l

(
κn R jk

)× J ′
l (κnck) × (−1)l × e−ilθk × ei(m+l)α jk

⎞

⎟⎟⎟⎟⎟
⎟
⎠

. (26)

The shear force Q(k)
tot on the cylinder can be obtained by integrating Qk along the intersection line of the cylinder

with the ice sheet:

Q(k)
tot =

2π∫

0

Qk × ck dθk (27)

= L × i

ω
× 2πck ×

⎛

⎜⎜⎜⎜⎜
⎜⎜
⎝

−A ig
ω

× κ4
0 × tanh κ0H × eiκ0Rk cos(�k−β) × J ′

0(κ0ck)

+∑∞
n=−2 a

(k)
n0 × H (1)′

0 (κnck )

H (1)
0 (κnck )

× κ4
n × tanh κnH

+∑∞
n=−2

∑∞
m=−∞

∑NC
j=1, j �=k a

( j)
nm × 1

H (1)
m (κnc j )

× κ4
n

× tanh κnH

×H (1)
m (κn R jk) × J ′

0(κnck) × eimα jk

⎞

⎟⎟⎟⎟⎟
⎟⎟
⎠

.

4 Results and discussion

4.1 Validation

We first consider a special case of h = 0. In such a case, n = −1,−2 should be removed from Eq. (11). This is
in fact the case of open water. Simulation is made for an array of 9 equally spaced cylinders of the same radius c
along the x-axis, with X j = 2 ( j − 1) d,Y j = 0, j = 1, 2, . . . 9. The wave force Fx for β = 0 and d = 2 on the
cylinder at the centre, or j = 5, is provided in Fig. 2. Convergence has been achieved for N = 10 and M = 10. It
can be found that our result is in good agreement with that of Maniar and Newman [16], including the local peaks
physics of which have been discussed by Maniar and Newman [16].

We then consider a case of single cylinder with the radius of c piercing through the ice sheet with the clamped
edge. The problem has been solved by Brocklehurst et al. [33] using the Weber transform. We adopt the same
parameters as those in Fig. 8 in [33]. To be consistent with the equation of incident wave potential in [33], we
set A in Eq. (6) as iaω2

gκ0×tanh κ0H
and a = 0.02 m. The force Fx from N = 20, which has been found to provide

converged results, against the wavenumber is provided in Fig. 3a and the comparison with that from [33] shows a
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Fig. 3 Forces on a single
cylinder piercing through
ice sheet with the clamped
edge (H = 350m,

ν = 0.33,
ρice = 917 kgm−3,

ρ = 1026 kgm−3,

E = 4.2 × 109 Nm−2).
a Horizontal wave force
(h = 1.6m), b vertical shear
force (c = 3.5 m)

(a) 

(b) 

very good agreement. Comparison for the vertical shear force on a single cylinder is also made with that in Fig. 7
of Brocklehurst et al. [33] and shown in Fig. 3b. It can be seen that a good agreement has been achieved, which
further verifies the present method.

4.2 Four cylinders in square arrangement

The typical values for parameters used in the present work are given below:

E = 5GPa, ν = 0.3, ρice = 922.5 kgm−3, ρ = 1025 kgm−3, g = 9.8m/s2

unless stated otherwise, which are consistent with those used in Sturova [24] and Ren et al. [25]. The nondimension-
alization for the variables in our computation is based on the following basic parameters, namely, the gravitational
acceleration g, the density of water ρ as well as the radius of cylinder c. Therefore, the wave force is, for example,
nondimensionalized by ρgc3, which is further normalized by A/c as in Fig. 2.

For the first case study, we consider a configuration of four cylinders in square arrangement which are commonly
seen on an offshore platform. The sketch of the configuration is given in Fig. 4a, b. The cylinders marked 1–4
are located at (−√

2d, 0), (0,
√
2d), (

√
2d, 0) and (0,−√

2d), respectively. We first consider the following sea, or
β = 0, which means that the wave comes from x = −∞ and propagates along the positive direction of the x-axis.

In the present case, the geometric parameters are chosen as h = 0.1, d = 2, H = 10 and c j = c, j = 1, 2, 3, 4
where c is used as the characteristic length. The wave forces on cylinders 1, 2, 3 in the x direction are shown in
Fig. 5a–c, respectively, as the force on cylinder 4 is the same as that on cylinder 2. Figure 5d provides the force in
the y direction on cylinder 4, magnitude of which is the same as that on cylinder 2, while it is zero on cylinders
1 and 3. Results for both free and clamped edges are provided, together with those for the open water case for
comparison.

At a given κ0, ω is obtained from Eq. (13) at n = 0. We can see that as ω is dependent on the ice thickness
h, the incident potential in Eq. (9) is also dependent on h. However, in Eq. (25), we can see that its first term,
corresponding to the contribution of incident potential to the force on the cylinder, is independent of ω. This means
that the contributions of the incident potential to the force in the open water and in the ice sheet are the same. At
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Fig. 4 Sketch of the four cylinders in incident hydroelastic waves

(a) (b)

(d)(c)

Fig. 5 Wave forces on cylinders shown in Fig. 4 with β = 0 and d/c = 2. Dashed lines: free edge; solid lines: clamped edge; dotted
lines: open water (h = 0) (h = 0.1, d = 2, H = 10, c j = c = 1, j = 1, 2, 3, 4,mice = 0.09, L = 4.5582)

small κ0, the diffraction effect is small, and therefore all the forces curves in Fig. 5a–c are very close to each other.
For F (4)

y in Fig. 5d, the contribution from the incident wave is zero because of symmetry. The force is entirely due
to diffraction, and therefore the difference between the free and clamped edge cases is visible even at small κ0. As
κ0 increases, the diffraction effect becomes important for all the forces. This effect will be different for different
ice sheet properties together with the edge condition.

We further investigate the difference between the cases in the open water and in the water covered by an ice
sheet. At a given κ0, we shall obtain different ω from Eq. (13) in these two cases. Due to the fourth power, the
term Lκ4

0 increases with κ0 very quickly, and its effect on ω becomes more obvious. For other κn with n �= 0, the
difference in the two cases is further caused by the term Lκ4

n −miceω
2 in the case with ice sheet. This leads to two

complex eigenvalues κ−2 and κ−1 magnitudes of which are infinite and effects of which do not exist in the case of
open water. Also, when n increases, the effect of the thickness of ice sheet, h, becomes more obvious, in particular
at larger κ0. It is therefore not surprising to see when κ0 becomes larger, the effect of h becomes more significant
even when L itself may be quite small. Another reason for the difference in the solutions of Eq. (21) is that the
eigenfunctions in the ice-covered case is non-orthogonal, leading to the off-diagonal terms in the matrix equations.
This is further complicated by the line integral term along the ice edge, contribution of which is different for the
free edge and clamped edge cases.
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Fig. 6 Wave forces on cylinders in Fig. 4 for clamped edge case with β = 0. Dotted lines: d/c = 1.25; solid lines: d/c = 2.00;
dashed-dotted lines: d/c = 4.00 (h = 0.1, H = 10, c j = c = 1, j = 1, 2, 3, 4,mice = 0.09, L = 4.5582)

Results at a smaller and larger d/c, or d/c = 1.25 and 4, for clamped edge case are provided in Fig. 6 to compare
with the case for d/c = 2.We can find that the curves becomemore oscillatory with d/c becoming larger. Generally,
the oscillation period is related to κ0d for this type of interaction problem, for example, as observed in a related
problem (e.g. Li et al. [27]). Thus, when the results are plotted against κ0c, the curve is more oscillatory for a larger
d.

We further consider cases of different wave directions, with β = π/6 and π/4, respectively. The horizontal total

wave forces, or F (i)
h =

√(
F (i)
x

)2 +
(
F (i)
y

)2
, for clamped edge case are provided in Fig. 7 to compare with the

results of β = 0. From the figure, we can see that the magnitude of the force is not very much affected by the
direction of the wave at small κ0c. This is once again because the force is dominated by the incident potential at
small κ0c, magnitude of which is independent to the wave direction. For force on the second cylinder, it generally
tends to decrease with the increase of β for most of the range of wavenumber in the figure, while the tendency is
opposite for other three cylinders.

The total vertical shear forces
∣
∣∣Q(k)

tot

∣
∣∣ on each of these four cylinders are shown in Fig. 8. Due to symmetry, the

results on the 2nd cylinder and the 4th cylinder are the same, and thus only that on the 2nd cylinder is displayed.
From this figure and Fig. 5, we can find that the vertical shear force on each cylinder is much larger than the
horizontal force. The vertical shear force on the 1st cylinder is larger than those on the 2nd and 3rd cylinders within
the range of the wavenumber in the figures. It can be seen, when κ0c is small, the vertical shear forces on all cylinder
are close. However, the forces are smaller than that on the cylinder in isolation.

4.3 A single array of cylinders

We then consider a single array of cylinders piercing through the ice sheet. All these cylinders are assumed to have
the same radius c and be equally placed along the x-axis in the global Cartesian coordinate system. The distance
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Fig. 7 Wave forces on cylinders in Fig. 4 with d/c = 2. Solid lines: β = 0; dashed lines: β = π/6; dashed dotted lines: β = π/4
(h = 0.1,mice = 0.09, L = 4.5582)

Fig. 8 Vertical shear forces on cylinders shown in Fig. 4 with β = 0 and d/c = 2. Solid line: on the 1st cylinder; dashed line: on the
2nd cylinder; dotted line: on the 3rd cylinder; circles: on a single cylinder. (h = 0.1, d = 2, H = 10, c j = c = 1, j = 1, 2, 3, 4,
mice = 0.09, L = 4.5582)

Fig. 9 Sketch of a single array of cylinders in incident hydroelastic waves

between two axes of adjacent cylinders is 2d. The origin of the global system is set on the centre of the first cylinder
(Fig. 9).

Simulations aremade using two different edge conditions. Thewave forces on cylinders in ice sheet with different
thicknesses h are obtained. Results for the open water problem are also provided for comparison. We first consider
a single array of nine cylinders in the head wave, or β = 0, and show the force along x-axis on the middle cylinder
with respect to the wavenumber in Fig. 10, while the force in the y direction is zero due to the symmetry. From the
figure, we can find that the local peaks in the curves for open water problem observed in Fig. 2 also appear in the
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Fig. 10 Wave force on the middle body of a single array of 9 cylinders. Dashed lines: free edge cases (Dashed lines: h = 0.1,
mice = 0.09, L = 4.5582; dashed lines with open circle: h = 0.05,mice = 0.045, L = 0.5698; dashed lines with filled star: h = 0.001,
mice = 0.0009, L = 4.5582 × 10−6). Solid lines: clamped edge cases (solid lines: h = 0.1,mice = 0.09, L = 4.5582; solid lines with
plus: h = 0.05,mice = 0.045, L = 0.5698; solid lines with filled circle: h = 0.001,mice = 0.0009, L = 4.5582×10−6). Dotted lines:
open water case. (β = 0, c = 1, d = 4, H = 10)

curves of the free edge case. However, for clamped edge case, there are no obvious peaks in the case of h = 0.1
and at h = 0.05, and there is a milder peak around κ0d/π = 0.5 and no visible one near κ0d/π = 1.0. This shows
that for this configuration, ice sheet can suppress this kind of interaction behaviour in the open water mentioned
in Maniar and Newman [16], especially in the clamped cases. Mathematically, when h → 0, the eigenvalues
κn (n = 0, 1, 2, . . .) tend to those in open water and the eigenfunctions become orthogonal. Also, the complex
roots κ−1 and κ−2, which do not exist in open water case, will tend to infinity as h → 0. In such a case, Eq. (13)
can be written as

Lκ4
n + ρg − miceω

2 = ρω2

κn tanh κnH
≈ 0, n = −1 or − 2.

Thus, κ−1 and κ−2 can be obtained very easily as 4
√(

ρg − miceω2
)
/L × ei

π
4 and 4

√(
ρg − miceω2

)
/L × ei

3π
4 , as

L → 0. For other κn (n ≥ 0), the term associated with L can be ignored in Eq. (13) as L → 0; therefore, the
eigenvalues will tend to those in open water.

Whenwe replace the numerator of X (κn, κn′) for n �= n′ (n, n′ = 0, 1, 2 . . .)with the right-hand side of Eq. (13),
we have X (κn, κn′) = − L

ρω2

(
κ2
n + κ2

n′
)
(κn × tanh κnH) (κn′ × tanh κn′ H). This shows that X term is proportional

to L , which tends to zero as h → 0. For the complex roots, κ−1 and κ−2, they tend to infinity as L → 0. By taking
limits in the equation of X (κn, κn′) defined below Eq. (21), X (κn, κn′) → 1

κn+κn′ → 0. In Eq. (21), for the X term,
it becomes orthogonal as h → 0, or all the n terms become independent. While for the terms associated with L ,
due to the line integral, it tends to zero apart from for n = −2, n′ = −1 or n = −1, n′ = −2. We also notice that
the right-hand side of Eq. (21) is non-zero only when n′ = 0. Thus, anm is non-zero only when n = 0, and only the
term of n = 0 needs to be kept in Eq. (25). This means when h → 0, the force tends to that in the open water. To
verify this, we have run a further simulation with h = 0.001. Its results are much closer to those in the open water,
and the typical features in the open water reappear.

The wave forces on cylinders with odd number are plotted in Fig. 11 to show their changes from cylinder to
cylinder. We can see that for free edge case, the forces on these five cylinders have local peaks, and the peaks of
cylinders near the centre are higher than those on the side. Between peaks the forces on upstream cylinders are quite
oscillatory while those on downstream cylinders are much smoother. For clamped edge case, there is no obvious
peak in the force curves. The largest wave force is on the first cylinder and the force generally decreases from the
cylinder to cylinder in the wave direction.

A different wave direction with β = π/4, is considered here. The horizontal wave forces on the middle cylinder
against wavenumbers are shown in Fig. 12. We can find that compared with the zero-incident angle, local peaks in
the curves of open water case as well as free edge case still exist around κ0d/π = 0.5 and 1.0, but with the peaks
becoming less obvious and the position of the peak has moved to the right.
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Fig. 11 Wave forces
changing from cylinder to
cylinder. (β = 0, h = 0.1,
c = 1, d = 4, H = 10,
mice = 0.09, L = 4.5582).
a Free-edge case, b
clamped-edge case

(a)

(b)

Fig. 12 Horizontal wave force on the middle body of a single array of nine cylinders with β = π/4. Dotted lines: free edge; solid lines:
clamped edge; solid lines with filled diamond: open water case (β = 0, h = 0.1, c = 1, d = 4, H = 10,mice = 0.09, L = 4.5582)

Fig. 13 Sketch of two arrays of cylinders (NC = 18)

4.4 Two arrays of cylinders in side by side arrangement

The diffraction problem of a double-array of 2 × 9 cylinders arranged in Fig. 13a have been considered by Evans
and Porter [40] based on the method of Linton and Evans [13] in open water and by Wang and Wu [41] based on
a fully nonlinear finite element method in a numerical wave tank. In present work, we consider a similar problem
in the context of ice-covered ocean with free/clamped edge conditions. The origin of the global coordinate system
is still chosen at the centre of the first cylinder. The coordinates of the centres of the two arrays of cylinders are at
X j = X j+9 = ( j − 1) × 2d ( j = 1, . . . , 9) and Y j = Y j+9 + 2l = 0 ( j = 1, . . . , 9), shown in Fig. 13a. l is half
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(a) (b)

Fig. 14 Wave force on the 5th cylinder with free edge for different arrangements (β = 0, h = 0.1, c = 1, l = d = 4, H = 10). a
Arrangement in Fig. 13a; b arrangement in Fig. 13b

Fig. 15 Total wave forces
on the 5th cylinder with
clamped edge
(β = 0, h = 0.1, c = 1,
l = d = 4, H = 10)

of the distance between the two arrays. In addition, we also consider a double-array of cylinders staggered with
X j = X j+9 − d = ( j − 1) × 2d ( j = 1, . . . , 9) and Y j = Y j+9 + 2l = 0 ( j = 1, . . . , 9), as shown in Fig. 13b.

In the following wave, or β = 0, the wave forces on the 5th cylinder for both two arrangements at free/clamped
edge conditions against wavenumbers are, respectively, displayed in Figs. 14 and 15 to see how the different
arrangements of the cylinders affect the results. The corresponding results in the cases of open water and the case
of 1 × 9 cylinders shown in Fig. 9 are also displayed for comparison. For the free edge case shown in Fig. 14, the
local peaks can be seen around the wavenumbers κ0d/π = 0.5 or 1.0 for the arrangement in Fig. 13a. Evans and
Porter [40] reported that large forces can occur on the middle pair of cylinders in open water at certain wavenumbers
or frequencies, which is also reflected in our results in open water shown in Fig. 14a. However, for the staggered
arrangement in Fig. 13b, the first local peak becomes less obvious, and it has smaller influence on the second
one.

For the clamped edge in Fig. 15, we can see a sharp local peak before κ0l/π = 1.0 in the curve of the total wave
force on the 5th cylinder arranged in Fig. 13a. A similar phenomenon can also be found for the wave forces on
other cylinder pairs near the middle position, such as on the 4th/13th and 6th/15th cylinders. In the double-array
case, each array of cylinders can be approximately treated as a wall if the gap between two neighbouring cylinders
is small. The flow between the two arrays of cylinders will be similar to that in a narrow tank. This is similar to
that of a circular array of cylinders considered by Evans and Porter [18], where the inner flow resembles that in a
circular tank. The difference between these two cases is that when the cylinders are in a circular arrangement, the
internal region is entirely cut off from the external one if the distance between two neighbouring cylinders becomes
zero and there will be no motion in the internal region. In the case of two arrays, the flow between the two arrays
will still exist because of the openings at the two ends even when the distance is zero. The tank resonance effect
remains. The result in Fig. 14 for the arrangement of cylinders in Fig. 13 reflects the resonance of the long tank. It
ought to be pointed out that in the case of the long straight tank, l is the half distance between two tank walls. Here
l is the half distance between the centre lines of the two arrays. On the other hand, we should note that even though
when d → c, it is not a straight tank wall, but curved. The distance between the two walls varies between 2l and
2l − 2c. Thus, the approximation of two straight tank walls for the two arrays of cylinders should be made in the
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Fig. 16 Total wave forces
on the middle cylinder with
clamped edge at different
column numbers
(β = 0, h = 0.1, c = 1,
l = d = 4, H = 10)

context of l 
 c. Furthermore, the distance between the two neighbouring cylinders should be small. Therefore,
the analogy to the straight tank wall could be used only qualitatively but not quantitatively.

We further consider how the total horizontal forces on middle cylinder with m, when there is a double array of
2 × m (m = 1, 3, 5, 7) cylinders with clamped edge condition. In the simulations, cylinders near the middle, such
as 5th and 14th cylinders, are always kept and those on the sides will be added on as m increases. Their results
are displayed and compared in Fig. 16. From the figure we can see that the force curve for the case of m = 1
is very flat and smooth. However, when m increases (m > 3), we notice that sharp peaks start to occur around
the same wavenumber. This suggests that the long tank effect has already appeared at relative small number of
cylinders.

5 Conclusions

By means of eigenfunction expansions and the Green’s second identity repeatedly for domains outside individual
cylinders, solutions for interactions of hydroelastic waves with multiple vertical cylinders have been obtained in an
efficient way. Different arrangements of cylinders have been considered, including cylinders arranged in square, in
a single array, in a double array and in a staggered double array. The wave forces on the cylinders piercing through
ice sheet under clamped and free edge conditions are obtained and analysed. Based on these results, we can draw
the following conclusions:

(1) When ice thickness of the ice sheet h → 0, the results for the hydroelastic wave will tend to those as for the
free surface case in the open water.

(2) For vertical cylinders arranged in an array, we can find that local peaks around κ0d/π = 0.5 and 1.0 are shown in
free edge case at relatively thicker ice sheet. It is not obvious in clamped edge case at similar ice sheet thickness,
but will also be obvious at a far thinner ice sheet.

(3) For two arrays of cylinders arranged side by side and symmetric to y = −d, we can find that large forces
can appear on the middle pairs for clamped edge case but not for the free edge. The ‘enclosure effect’, which
means that each array of cylinders is approximated as a wall, can qualitatively account for such phenomenon.
In staggered case, this approximate effect becomes less obvious.
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