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  Abstract—This paper presents a human-machine interface that 
establishes a link between the user and a hand prosthesis. It 
successfully uses electrical impedance tomography, a conventional 
bio-impedance imaging technique, using an array of electrodes 
contained in a wristband on the user’s forearm. Using a high-
performance analog front-end application specific integrated 
circuit (ASIC) the user’s forearm inner bio-impedance 
redistribution is accurately assessed. These bio-signatures are 
strongly related to hand motions and using artificial neural 
networks, they can be learned so as to recognize the user’s 
intention in real-time for prosthesis operation. In this work, eleven 
hand motions are designed for prosthesis operation with a gesture 
switching enabled sub-grouping method. Experiments with five 
subjects show that the system can achieve 98.5% accuracy with a 
grouping of three gestures and an accuracy of 94.4% with two sets 
of five gestures. The ASIC comprises a current driver with 
common-mode reduction capability and a current feedback 
instrumentation amplifier (that occupy an area of 0.07 mm2). The 
ASIC operates from ±1.65 V power supplies and has a minimum 
bio-impedance sensitivity of 12.7 mΩp-p. 
 

Index Terms—Current driver, electrical impedance 
tomography, human machine interface, hand prosthesis control, 
instrumentation amplifier. 

I. INTRODUCTION 

ONTROL of the hand to perform tasks and to communicate 
with others is doubtless one of human’s most valuable 

abilities to possess. With the advancement of technology and 
the ever-increasing fusion of computer and machine into daily 
life, a seamless human-machine interface (HMI) system that 
can recognize hand gestures and motions, and allow the control 
of robotic machines and prostheses to perform dexterous tasks, 
is a target of research. Once established, this link between 
humans and machines can greatly enhance the quality of life, 
with applications ranging from better control of robotics in, for 
example, surgery operations, restoring a degree of normality to 
amputees or safely handling hazardous materials. 

With such promising motivation, a variety of approaches has 
been reported to handle hand gesture and motion recognition 
towards a HMI. The approaches can be classified into two main 
categories [1]: 

1. Image based: It uses a camera to ‘see’ the gestures and 
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software to interpret the image. The technology has been 
developed since the nineties with many reported applications 
[2]. In addition to cameras, sensors are incorporated into the 
system to improve sensitivity and accuracy [3]. The limitation 
of this HMI is the requirement for line-of-sight and may not be 
suitable for prosthesis-related applications. 

2. Non-image based: An alternative approach is to capture 
the hand motions through a glove equipped with e.g. bend 
sensors [4]. Glove based HMI has the benefit of being simple 
and robust but is limited in its range of applications. The most 
promising HMI method by far is surface electromyography 
(sEMG) [5]. While hand motion is performed, the muscle cells 
are neurologically activated and generate voltage potentials. By 
placing electrodes on the skin surface, the voltage potentials can 
be measured near these muscle groups. Because different 
motions activate different muscle groups, successive recorded 
data can be used for motion classification. This type of HMI can 
be applied to our daily life as a wearable gadget [6]; it has been 
dominantly used in active/functional prostheses. According to 
[5] up to 50% of upper-limb prostheses are based on sEMG, and 
this technique can achieve high recognition accuracy [7], [8]. 

This paper presents a different HMI approach to the ones 
described above. The proposed system is shown in Fig. 1. As 
hand motions are strongly and more directly related to the 
physical movement of muscles and bones in the forearm, the 
proposed system aims to measure these movements using a bio-
impedance imaging technology, namely electrical impedance 
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Fig. 1. Proposed EIT based hand prosthesis control system with ASIC. 
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tomography (EIT). The electronics of this EIT reader are 
mounted on a wristband which contains eight electrodes as 
shown in Fig. 1. The reader features a high-performance, analog 
front-end application specific integrated circuit (ASIC) to 
capture the bone and muscle motion through EIT 
measurements, and uses the data to control a prosthetic hand in 
real-time. 

The rest of the paper is organized as follows. Section II 
discusses the use of EIT for HMI hand prosthesis control and 
system design considerations. Section III presents the detailed 
system design and implementation. Measured results in Section 
IV demonstrate the successful operation of the EIT-based HMI 
hand prosthesis system and its medium-term performance. The 
merits and limits of EIT for HMI hand prosthesis control are 
discussed in Section V. Concluding remarks are provided in 
Section VI. 

II. BACKGROUND AND RELATED WORK 
As a promising HMI approach, sEMG has undergone years 

of development, especially for hand prosthesis [9], [10]. 
Reported studies cover topics such as: 1) electronic designs for 
detection of sEMG using discrete components [11] as well as 
integrated circuit solutions [12], [13]; 2) electrode materials, 
placement and number of channels [14], [15]; 3) data 
processing methods for intent interpretation e.g. using support 
vector machine [16] and neural networks [17]; 4) myoelectric 
actuator control profiles such as on-off, and proportional 
schemes [18] as well as grasp force feedback control [19]. 

Although sEMG has been generally successful, a significant 
gap remains in making a seamless HMI for hand prosthesis 
control. The fundamental challenges relate to EMG recording 
[20]. The EMG amplitude is up to tens of mV with frequencies 
up to about 500 Hz. This makes recording susceptible to noise 
and low frequency interference. Deep muscle activity in the 
forearm is also difficult to record using sEMG. Alternative 
ways of recording raw bio-signals that may be merged with 
sEMG systems are required to enhance system performance. 

EIT is a non-invasive, radiation-free bio-impedance mapping 
technique. It comprises an array of electrodes in a wristband 
wrapped around the forearm of the subject under test (SUT) as 
shown in Fig. 1. It can measure and estimate the inner structural 
conductivity distribution of any enclosed conductive object in 
the cross-section plane that the band is wrapped around. When 
hand motion is performed, bones and muscles move under the 
skin resulting in a temporal alteration of conductivity 
distribution. This causes inner-impedance variations that can be 
recorded and ultimately related back to the hand motions. 

To better understand EIT operation, an eight electrode EIT 
approximate resistive mesh model based on [21] is shown in 
Fig. 2(a). It operates by injecting a constant sinewave current 
via a pair of electrodes and recording the voltages on the SUT’s 
surface with the remaining electrodes. The amplitude and phase 
of these induced voltages vary according to the internal 
conductivity re-distribution, e.g. muscle movement. 

When designing a high performance EIT system the 
following specifications must be considered: 

1. As the SUT is inhomogeneous, a differential current 

driver [22] should be used as shown at electrodes E1 and 
E2 in Fig. 2(a). This reduces the common mode signal on 
the measuring side and enables the instrumentation 
amplifier (IA) to detect the differential signal between 
electrodes e.g. differential voltage V3 as shown. 

2. The IA should have good common mode rejection ratio 
(CMRR) as EIT measures the dynamic changes between 
differential signals e.g. variation in voltage V5 when 
impedance ZX changes. 

3. Bio-impedance should be measured through a tetra-polar 
scheme (i.e. not involving the contact impedance from the 
current driver during voltage measurements). 

4. The differential current driver should be tightly matched 
as any imbalance between the source and sink currents 
produces a residual current ∆I that can flow through the 
high impedance node ZO to ground producing unwanted 
common mode signals [22], [23] as shown in Fig. 2(b). 

5. For accurate information, the measured data should be I-
Q demodulated to provide the real and imaginary parts of 
the bio-impedance. 

Originally developed as an imaging technique, EIT has 
recently been used for HMI related applications [24], [25]. Our 
first prototype reported in [26] overcame some of the design 
challenges listed above with hardware improvements over the 
AD5933 (a commercial bio-impedance analyzer chip using a 
two-electrode measurement scheme) based systems in [24], 
[25]. However, the overall system was cumbersome and power 
demanding. While low power solutions are available for most 
of the components such as digital-to-analog converter (DAC), 
the bottleneck is the analog front-end where the selected off-
the-shelf integrated circuits for the high CMRR IA and the fully 
differential current driver require at least ±5 V to operate with 
no obvious low-voltage substitutions. Especially for the current 
driver, the design choices and circuit performance at discrete-
level implementation are very limited [27]. To this end, an 

 

Fig.2. EIT models: (a) An approximate EIT resistive mesh model; (b) 
Approximate tetra-polar bio-impedance measurement model with imbalanced 
current source. Ei are electrodes, Ze are the skin contact resistances and Vcm is 
the common mode signal at the inputs of the IA. 
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analog front-end ASIC has been designed towards developing 
a fully integrated HMI system for hand prosthesis control. 

III. SYSTEM DESIGN AND IMPLEMENTATION 

A. System Architecture 
The overall system architecture is shown in Fig. 3. It 

comprises three parts: i) hardware EIT system, ii) software on 
the PC for data processing and pattern recognition, and iii) hand 
prosthesis control unit. The EIT reader is attached to the 
wearable wristband and can operate the eight electrodes inside 
the band. 

The DAC generates a voltage signal, which is filtered and 
sent to the fully differential current driver in the ASIC. The 
current driver block diagram is shown in Fig. 3 and has current 
source and current sink parts. The differential difference 
transconductance amplifier (DDTA) input stage of the current 
source part regulates the source current I+ by measuring the 
input signal and the voltage across resistor Rf and produces a 
voltage to the operational transconductance amplifier (OTA) 
output stage according to the measured differences [28]. To 
drive the load differentially, a current I– is provided by the 
current sink part. It operates by measuring the common mode 
voltage across the load and through feedback, this part of the 
circuit adjusts its output until the common mode voltage is 
reduced to zero. 

The EIT voltages are measured through the current feedback 
IA in the ASIC. The basic functional diagram of the IA is shown 
in Fig. 3. The input voltage is applied via buffers to resistor R1. 
The resulting current through R1 is transferred to resistor R2. 
The output voltage VO is the sum of voltage Vref and the voltage 
across R2 provided via buffers. This architecture avoids the need 
multiple matching resistors that are used in conventional 
designs. Following band-pass filtering the output is digitized for 
I-Q demodulation. 

After receiving the user input through the UART link, EIT 
measurements are initiated. On completion, demodulated data 
carrying hand motion information is transferred back to the PC 
for pattern learning and then classification. When given a 
classification, it is passed on to the microcontroller on the 
prosthesis hand. The control unit sends out pulse width 
modulation (PWM) signals to ultimately recreate the same hand 
grip pattern that the user is performing when EIT measurements 
are taken. 

B. Analog Front-end ASIC 
The current driver transistor level schematic is shown in Fig. 

4(a). For the current source circuit, the input voltages are 
measured using transistors M1 and M2 in the DDTA input 
stage, while the voltage across Rf  is measured through M3 and 
M4. The drain currents of M1, M3 and M2, M4 are summed 
together and mirrored through M5 and M6 to the two output 
branches to provide the differential output: 

 𝑉"# − 𝑉"% = 𝐴() ∙ {(𝑉-# − 𝑉-%) − (𝑉/# − 𝑉/%)}					 (1) 

where 𝐴() is the open loop gain of the DDTA input stage that is 
enhanced by the cascoded output branch. The differential 
output is connected to the OTA output stage whose output is 
connected to Rf to provide linear feedback. The source current 
I+ can be written as: 
 𝐼+= (𝑉-# − 𝑉-%) ∙

456∙7859:
-#456∙7859:∙;<

 (2) 

where 𝐺𝑚(?@ is the transconductance of the OTA output stage 
and 𝑉-# − 𝑉-% is the input voltage of the current source circuit. 

The current sink circuit, a two-stage differential difference 
amplifier, is shown in Fig. 4(a). The gates of M17 and M19 are 
connected across the load 𝑍B , and their drain currents are 
summed and mirrored to the M22-M20 branch; the gate 
terminals of M18 and M20 are grounded. With the amplifier’s 
output also connected to the gate of M19, this feedback 
regulates the amplifier’s output to generate a voltage that would 
sink a current I– equal to –(I+) and provide a fully differential 
voltage across the load [29]. 

The transistor level schematic of the IA based on [30] is 
shown in Fig. 4(b). It is realized by two resistive-degenerated 
transconductors. For the input transconductor, transistor M6-
M8 and MC, MD form a current feedback loop that forces the 
drain currents of M1 and M2 to be equal through the current 
mirrors MA-MD. As a result, the input stage acts as a unity gain 
buffer and the differential input voltage is applied across R1. For 
the output transconductor, transistors M9-M21 form another 
current feedback loop. This feedback also forces the drain 
currents of M9, M10 to be equal. Since the differential current 
in ME, MF is mirrored from MA, MB, the current in R2 is 
identical to the current in R1 and the output voltage VO appears 
across R2, resulting in a voltage gain of R1/R2. Voltage Vref is 
used to set the reference level of the output. 

 

Fig. 3. Overall HMI system architecture. 
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The input-referred voltage noise of the IA is defined by: 

 CDE
F

∆H
= 4𝑘𝑇𝑅- + 2 ∙ 4𝑘𝑇 ∙

/
N
O -
PQR,F

+ PQT,U
PQR,F
F V (3) 

where 𝑔8X is the small-signal transconductance of transistor i, 
k is Boltzmann’s constant, T is the absolute temperature, and 
the noise is measured over a bandwidth of ∆𝑓. From (3) it is 
observed that the noise can be minimised by having a small R1. 
R1 is also related to the differential input range, defined as	2 ∙
𝑅- ∙ 𝐼Z-,/. There is a design trade-off between input range, noise 
performance and power consumption. Based on resistive mesh 
simulation and comparing the specification of the IA in [26], 
the input range was designed to be 100 mVp-p; the biasing 
current was set to 25 µA, R1 = 2 kΩ and R2 = 20 kΩ. With the 
gain of the IA set to 10 V/V, its simulated input-referred noise 
was 10 µVrms over the bandwidth 25 kHz to 1 MHz. 

Capacitive mismatch is the primary reason for a limited 
CMRR in IA design. To enable a high CMRR at high 
frequencies, apart from random mismatches which could be 
reduced by a symmetrical layout, a simple but effective method 
is to insert a neutralization capacitor, implemented by transistor 
M4' as shown in Fig. 4(b), to equalize the capacitances at the 
drains of M3 and M4. The ratio of the width of MX to the width 
of the current mirror transistors (M3, M4) is set to 
approximately 4/3 [30]. 

C. Digital Control and IQ Demodulation 
The ASIC is connected to the digital circuits through a pair 

of data converters and the analog back-end comprising standard 
analog filters and two single-to-differential amplifiers as shown 
in Fig. 3, using off-the-shelf components. The digital circuits 

control the EIT operation with a state machine comprising three 
nested loops, as shown in Fig. 5, managing the electrode scan 
for current drive, voltage readout, and signal acquisition and 

 

Fig. 4. Transistor level schematic of the current driver (a) and IA (b). 
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Fig. 5. State machine for controlling the EIT operation. 
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Fig. 6. State machine for controlling the EIT operation. 
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processing. The outer loop controls the current drive, which has 
eight states, each selecting a pair of adjacent electrodes to be 
multiplexed to the current driver. Each state in the outermost 
loop triggers the middle loop for voltage scan. The middle loop 
runs a full cycle before the outer loop moves to the next state. 
The outer loop completes a full cycle to generate one complete 
dataset. The middle loop also has eight states controlling the 
multiplexing of eight pairs of adjacent electrodes to the IA. 
Each state in the middle loop triggers the inner loop for signal 
acquisition. There are three states in the inner loop. After the 
middle loop has switched the IA inputs to a new pair of 
electrodes, the inner loop first resets the band-pass filter in the 
analog back-end to the reference voltage in order to avoid large 
signal fluctuation that might require a long settling time. After 
the reset, the inner loop allows the voltage at the input of the 
ADC to settle before starting sampling and I-Q demodulation. 
Once the inner loop completes the sampling and I-Q 
demodulation state, the middle loop moves to the next state, 
which triggers a new cycle in the inner loop. A full cycle of the 
inner loop takes 1.4 ms, hence generating one dataset takes 
89.6 ms. 

Fig. 6 shows the implementation of the sampling and I-Q 
demodulation unit. The I-Q demodulation, using a digital lock-
in amplifier [31], synchronizes to the DDS-based signal 
generator that drives the current driver. For example, for a 
specific state in the middle loop, m, the digital logic reads out 
samples from a lookup table (LUT) of a pre-stored sinewave, 
sinm(n), and its 90° phase shift, cosm(n). The sinm(n) samples are 
converted by the DAC into a sinewave for the current driver. 
For every LUT readout, the digital lock-in amplifier receives a 
sample from the ADC, Sm(n-1), taking into account the delay 
from the data converters and the analog front-end. Sm(n-1) 
multiplies in parallel with the previous readout samples from 
the LUT, sinm(n-1) and cosm(n-1). The results from the 

multipliers accumulate with all the previous results from the 
same electrode position, m, to derive the real and imaginary 
vectors I(m) and Q(m). For each m, in total 128 samples are 
taken for deriving I(m) and Q(m) at a sampling rate of 3 MS/s. 

D. Hand Prosthesis Motion Control 
A servo-motor based hand prosthesis is used in this study. It 

has six servo-motors of which five are inside the prosthesis arm 
and are responsible for finger movement and one underneath 
the holding station for rotating the whole prosthesis hand. An 
Arduino-Nano microcontroller is placed on the station for 
prosthesis motion control. The previous study [26] showed  that 
groups of five hand gestures give optimal performance, and it 
also suggested a round robin sub-grouping method to increase 
the total number of gestures recognizable but did not provide an 
intuitive way for robin rotation. 

In this work, nine hand gestures divided into two sub-control 
groups are proposed that can be recreated by the hand 
prosthesis, and two other hand gestures (with no corresponding 
prosthesis motion) to implement the group selection without 
additional hardware. The control scheme is shown in Fig. 7. The 
user can perform ‘Left’ or ‘Right’ gesture to select the desired 
sub-control group. Each sub-control group has five gestures that 
the user can perform and ‘Fist’ is a shared gesture in all groups, 
to allow sub-group re-selection. 

Due to individual differences, each user is required to train 
specific neural networks before their hand motion is 
recognizable by the system. Fig. 8 shows the complete system 
control flow chart. It is divided into two main phases: the data 
training phase and the prosthesis operation phase. The system 
uses neural networks to recognize the bio-impedance patterns 
measured by the EIT reader. The neural networks are provided 
by MATLAB’s neural network toolbox-pattern recognition tool. 
During the training, the prosthesis hand is in the idle state. The 
user needs to hold the hand gesture while the EIT reader 
continuously carries out measurements until sufficient data is 
recorded. The system records three sets of data for the ‘Gesture’ 
group and five sets of data for each sub-group A and B. Each 
time the EIT reader takes a measurement, it sends all 
demodulated I-Q data to the PC where the data is converted to 

 

Fig. 7. Hand prosthesis control with two sub-control groups with gesture 
enabled switching method. 
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Fig. 8. System control flow chart for training and prosthesis operation. 
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forty bio-impedance values (in decimal) that are labeled and 
stored for training. Once the stored data is learnt, functions that 
represent the trained neural networks can be generated and used 
for classification during the prosthesis operation phase. There 
are three trained neural networks as shown: G for ‘Gesture’ 
group and A and B for the two sub-control groups. Only one 
neural network is online at a given time. 

In the prosthesis operation phase, the EIT reader 
continuously takes measurements every 200 ms until the user 
terminates the operation. Measured data is passed to the trained 
neural network for classification. The system starts with G 
network as shown in Fig. 8 and progresses to control group A 
or B if ‘Left’ or ‘Right’ gesture is recognized. The software 
gives indications as to which group is online and pauses for 3 s 
when entering a sub-control group, so that the user can re-
gesture according to the selected groups. As the flow chart is 
identical for groups A and B, only A is shown in Fig. 8. The 
system employs a counter return method so that when five 
consecutive ‘Fist’ gestures are detected, the online trained 

neural network returns to G with the prosthesis set in the ‘Fist’ 
gesture. Until such condition occurs, the system stays in the 
sub-control group. When another gesture is classified, the 
counter resets and the microcontroller operates the hand 
prosthesis according to the classification output. 

IV. MEASURED RESULTS  

A. Analog Front-End ASIC  
The ASIC is designed in 0.18-µm CMOS technology and 

operates from ±1.65 V power supplies. The ASIC micrograph 
is shown in Fig. 9(a) (the current driver and IA occupy a die 
area of 0.07 mm2) and Fig. 9(b) the complete EIT reader system 
(which includes an FPGA development board). The ASIC 
performance is summarized in Table I. The system consumes 
340 mW of which 14 mW is in the ASIC. A fully integrated 
design [32] would allow the power consumption to be 
substantially reduced. 

The IA measured maximum differential input signal range is 
100 mVp-p, and at 200 kHz the output has a total harmonic 
distortion (THD) of 53 dB. The measured input-referred 
voltage noise is 9 µVrms from 25 kHz to 1 MHz. As shown in 

 

Fig. 9. ASIC micrograph with individual blocks labeled and the complete EIT 
reader with the ASIC mounted on a daughter board and a FPGA stacked on top 
of the motherboard. 
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TABLE I. 
ASIC MEASURED PERFORMACE 

Parameter Current Driver IA 
Gm /Gain 3.97 mA/V 10 V/V 

Bandwidth 500 kHz 200 kHz 
Output Current Up to 1 mAp-p – 

Output  
Impedance 

750 kΩ  
(at 500 kHz) 

– 

Common Mode 
Reduction / CMRR 

97.5% 
[29] 

80 dB 
(at 200 kHz) 

Differential Input 
Signal Range 

– 100 mVp-p 

THD 42 dB  53 dB 
Input-Referred Noise 

(25 kHz – 1 MHz) 
– 9 µVrms 

 

 

Fig. 10. Measured common mode and differential mode gains of the IA. 

 

Fig. 11. Measured transconductance and bandwidth of the current driver with a 
1 kΩ load. 
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Fig.10 the IA has a gain of 20 dB up to 200 kHz and a common 
mode gain of -60 dB (input common mode signal of 1 Vp-p), 
providing 80 dB CMRR at 200 kHz. The transconductance (and 
bandwidth) of the current driver was measured by outputting a 
1 mAp-p current into a 1 kΩ load; the results are shown in Fig. 
11. The transconductance is maintained at 3.98 mA/V at 

200 kHz and with only a 0.5% drop from the initial value at 
10 kHz. The measured output impedance of the current driver 
is 750 kΩ at 500 kHz. The current driver is capable of reducing 
97.5% of the common mode signal when compared with current 
drivers without common mode feedback [29]. The ASIC has a 
minimum bio-impedance measurement sensitivity of 12.7 mΩp-

p (ratio of IA noise level to maximum output current) and can 
be used to develop a high performance EIT system with a 
bandwidth up to 200 kHz. 

B. System Testing and Results 
Five volunteers were recruited, two females and all right 

handed, for system testing. The wristband was worn on the left 
forearm and after applying a standard medical grade conductive 
ECG gel the training could begin (the gel moisturized the skin 
for better electrical contact). 

System testing started with gathering data for neural network 
training as detailed in Section III-D. Each volunteer was asked 
to perform the eleven gestures shown in Fig. 7 with 150 datasets 
taken for each gesture. The collected data was then grouped as 
shown in Fig. 7 for neural network training. After training was 
completed, the volunteer was asked to first perform all gestures, 
starting from group G and entering group A and performing all 
gestures in the group. Afterward, the volunteer could exit the 
control group and then re-enter group B to repeat the same 
procedure. Lastly, the volunteer returned to the ‘gesture’ group. 
Once this full cycle was completed, the volunteer could perform 
the gestures at will and the same hand grip pattern could be 
recreated by the hand prosthesis. 

To illustrate how EIT could differentiate between gestures 
intuitively, a set of measured bio-impedance values were 
plotted and visually inspected together with a reconstructed EIT 
image. Shown in Fig. 12 is the data from the first volunteer as 
an example. Forty measured bio-impedance values in 50 
datasets were normalized and plotted with an EIT image 
reconstructed using the average of these datasets. By visual 
inspection, it can be seen that each gesture has its own 
distinctive patterns reflected on both the bio-impedance plots as 
well as the EIT images. 

The system accuracy was evaluated with the cross-validation 
method using the 150 datasets previously captured. The first 50 
datasets were used to train the neural network. Then an 
additional test was performed using the remaining 100 datasets. 
Each volunteer’s data produced three confusion matrixes and 
by averaging the results, three overall confusion matrixes could 
be obtained as shown in Fig. 13. Group G achieved an accuracy 
of 98.5% (it is necessary that this group can provide the highest 
accuracy for sub-control group switching). Group A achieved 
an overall accuracy of 92%, where confusion occurred between 
‘Point’ and ‘Scissors’ and between ‘OK’ and ‘Open’. Group B 
achieved an overall accuracy of 97% with little confusion 
occurring between ’Fist’ and ‘Thumbs-Up’. Overall, these two 
groups have an average accuracy of 94.4%, and with the result 
of group G, the overall system accuracy is 95.8%. 

Table II provides a comparison between HMI systems, both 
using sEMG and EIT, for hand gesture recognition and 
prosthesis control. For sEMG, the system that uses a similar 
number of acquisition channels (sEMG requires two electrodes 
per channel) was selected together with hand gesture pools for 
comparison. As shown, the HMI system reported in this work 

 

Fig. 12. All gestures with corresponding prosthesis motion, and 50 datasets of 
40 measured impedance combinations plotted with corresponding EIT images. 



1932-4545 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBCAS.2018.2878395, IEEE
Transactions on Biomedical Circuits and Systems

 8 

has higher accuracy and, benefiting from the ASIC, it can 
achieve a higher bandwidth, and potentially be further 
integrated into a system-on-chip solution.  

C. Preliminary Medium-Term Performance  
It was observed that for a single user even with the same pre-

defined gesture, a gesture could be performed with differences 
(e.g. stretch open and relaxed open). As the system measures 
the bio-impedance alterations, such differences can reduce 
system accuracy. This behavior tends to worsen over time as 

the user is more likely, but unintentionally, to perform the same 
gesture with differences. To maintain system accuracy, either 
data from multiple sessions could be used at the start of training 
or retraining of the neural network over time. 

The reliability of the system accuracy was evaluated over 
multiple sessions. Fifty sessions were carried out by a volunteer; 
50 datasets were taken for each gesture and 5 gestures were 
taken in one session using group A gestures which had the 
lowest accuracy in the tests in Section IV-B. Between sessions, 
there was a two minute break. Using these datasets from fifty 

 

Fig. 13. Confusion matrixes for the three gesture groups. 
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TABLE II.  
COMPARISON WITH OTHER WORK 

Parameter [9] [10] [13] [24] [25] This Work 
Channels 1 6 8 8 8 8 – 32 8 
Technique sEMG sEMG sEMG EIT EIT EIT 

Hand Gestures 8 7 7 8 + 5 2 11 5 + 5 + 3 
Classifier LDA 3 KNN SVM SVM SVM ANN 
Real-Time No Yes Yes Yes Yes Yes 
Accuracy 98% 89% 90% 87% 88.5 – 94.3% 95.8% 

System Bandwidth 500 Hz 1 kHz 1 kHz 100 kHz 100 kHz 200 kHz 
1 Two EMG electrodes required for one channel recording. 
2 Gesture multi-groups used. 
3 Linear discriminant analysis. 
 

 

Fig. 14. Single-user multi-session accuracy test results. 
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Fig. 15. Multi-user accuracy reproducibility test results. 
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sessions, the system accuracy was evaluated using four 
different types of training method. The accuracy is shown in 
Fig.14. The training methods are distinguished by: a) total 
number of sessions trained; b) retraining used. Their details are 
listed in Table III. The preliminary results in Fig. 14 indicate 
that unintentional gesture variations, which are unavoidable 
during practical use, can reduce system accuracy. However, this 
variation could be compensated by using multiple sessions for 
initial training (occasional retraining also proved to be 
effective).  

The reproducibility of the system was also examined. First, 
it was investigated whether the accuracy of the results in 
Section IV-B can be repeated over time. For this test, 6 sessions 
were carried out by 5 volunteers. In each session, 5 gestures 
were taken and for each gesture 50 datasets were captured for 
training and 100 datasets for testing, using group A gestures. 
Sessions were evenly divided into 3 day intervals with at least 
2 hours gap between each session. Using the data from each 
session for training and testing, the overall accuracy for each 
user can be plotted as shown in Fig. 15. The results suggest that 
the system performance of the testing in Section IV-B is 
reproducible. 

Secondly, the correlation between these 6 sessions was also 
investigated by using the first 5 sessions as training data to test 
the last session. The results indicate that there is little 
correlation between the first 5 sessions and the last session. This 
suggests that initial training is required each time the user starts 
to wear the device.  

Finally, using datasets from the reproducibility test, all data 
were combined and sent to 12 different machine learning 
algorithms for performance comparison using the Classification 
Learner APP in MATLAB in addition to the artificial neural 
network (ANN) algorithms. With the default setting, each 
algorithm was trained and the test was done using an exported 

model. The results are summarized in Table IV. For each 
algorithm, the accuracy and computational time are listed. As 
shown both the support vector machine (SVM) and K-nearest 
neighbors (KNN) algorithms can reach an accuracy over 90%, 
but on average KNN tends to require a longer training time. 
Compared with ANN (with the default setting using 10 hidden 
neurons) it only takes 1 s for training while offering competitive 
accuracy; by increasing the neuron size to 100 its accuracy 
increased to 91.1% while requiring less training time compared 
with other algorithms. These preliminary results suggest that 
the EIT datasets are not particularly sensitive to any specific 
machine learning algorithm. However it is possible that 
optimization of a specific algorithm will offer better accuracy 
with shorter training times in the future. 

TABLE III. 
DETAILS OF TRAINING METHODS 

Method Initial Training 
Sessions 

Retraining 
(Sessions Used) 

Total Sessions 
Trained 

1 1 to 5 No 5 
2 1 to 10 No 10 
3 1 to 3 Once (26 & 27) 5 
4 1 to 8 Once (26 & 27) 10 

 

 
Fig. 16. Advantages of EIT as an alternative HMI method for hand prosthesis 
control in terms of: (a) signal bandwidth and strength; (b) different 
measurement sequences. 
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TABLE IV. 
COMPARISON OF MACHINE LEARNING ALGORITHMS 

 Support Vector Machine (SVM) 
Method Linear SVM Quadratic SVM Cubic SVM Fine Gaussian  Medium Gaussian  Coarse Gaussian  

Accuracy 87.3% 91.2% 91.4% 89.1% 89.8% 72.7% 
Training Time 9.2 s 6.3 s 6.1 s 9.9 s 12.3 s 18.3 s 

 K-Nearest Neighbors (KNN) 
Method Fine KNN Medium KNN Coarse KNN Cosine KNN Cubic KNN Weighted KNN 

Accuracy 90.6% 89.7% 73.0% 89.3% 89.3% 89.6% 
Training Time 8.5 s 8.3 s 9.0 s 8.1 s 198.4 s 14.3 s 

Method Artificial Neural Network (ANN) - 10 Hidden Neurons ANN - 100 Hidden Neurons 
Accuracy 88.8% 91.1% 

Training Time 1.0 s 4.0 s 
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V. DISCUSSION AND FUTURE WORK 
The proposed EIT HMI system differentiates hand gestures 

using the differences in bio-impedance. For the system to work 
reliably, it is essential that the impedance features measured 
from each gesture for training have good generality and remain 
unchanged from session to session. Based on the preliminary 
results in Section IV impedance features can vary due to 
different ways of performing the same gesture. Fortunately, this 
alteration can be compensated for a single user. The other likely 
impedance feature alteration can be caused by different 
electrode wristband positioning. For example, the electrodes 6 
and 7 in Fig. 16(b) measure the impedance over the gray shaded 
area in the first session. In a following session the wristband 
position will be different and the position of electrodes is 
changed. The system measures different tissue which may 
possess very different impedance values. Such alteration has 
been observed during the second part of the medium-term 
performance where the user not only took off the band from 
session to session, but also the electrode position was constantly 
adjusted to fit different users. As a result, even though the 
system is able to function properly within sessions, little 
correlation is found between sessions. This leads to an 
unavoidable initial training each time the band is worn.  

Despite the training only requiring a few minutes, it is still a 
weakness of this HMI system. Given the limited number of 
sessions of this preliminary study, further work is needed to 
examine whether these feature alterations due to electrode band 
positioning could be improved. Similar issues are faced by the 
sEMG method where electrode position markers are used when 
carrying out chronic tests [33]. In addition, to improve the 
system chronic performances, adaptive algorithms [34] and 
feedback method [35] are also proposed towards solving this 
open challenge. These solutions may be considered to be 
transferrable when using the EIT method.  

Compared to sEMG whose amplitude ranges up to tens of 
mV with frequencies up to about 500 Hz, as shown in Fig. 
16(a), the frequency and the amplitude of measurable voltages 
in EIT are directly related to the current drive which is user 
programmable in the range from hundreds of µAp-p to a few 
mAp-p and in a bandwidth from 25 kHz up to 500 kHz. This 
means the amplitude of the induced measurable signal is 
adjustable in favor of producing a higher signal-to-noise ratio. 
Also as the frequency of the signal is tunable, it can be moved 
away from the low-frequency interferences, such as the 50 Hz 
mains, which makes the system more robust. In addition, as 
different types of human tissue, e.g. bone, fat or muscles, 
feature different values of bio-impedance due to their biological 
structures, with EIT they can be differentiated at different 
frequencies [36]. Interrogation of tissues with a wide and 
tunable bandwidth could offer more information. EIT can also 
operate with different measurement sequences [37], [38]. It 
could interrogate different or deep muscle groups with different 
sequences for more in-depth analysis as shown in Fig. 16(b). 
Finally, EIT could not only offer high-resolution electrode 
arrays but also multi-plane measurements (otherwise known as 
three-dimensional (3D) EIT [39]) which could gather 
impedance variations at different arm positions simultaneously. 
Impedance frequency differentiation, exploring measurement 
sequences and high-resolution multi-plane (3D) EIT hardware 

upgrades, as well as a performance comparison between sEMG 
and EIT will be the subject of future investigation. 

VI. CONCLUSION 

In this paper, a HMI based on EIT technology has been 
developed. The EIT reader uses a high-performance ASIC that 
consists of a fully differential current driver and a low noise, 
high CMRR IA. The ASIC has a bio-impedance sensitivity of 
at least 12.7 mΩp-p. When integrated into the EIT reader, it can 
accurately capture the user’s forearm inner bio-impedance 
redistribution, providing both real and imaginary impedance 
readings to the PC for pattern recognition and feature extraction 
using an artificial neural network. The system can recognize 
eleven hand gestures with a gesture enabled sub-grouping 
method to enlarge gesture pool sizes while ensure recognition 
accuracy with minimum influence on user experiences. 
Experiments have shown that the system can achieve 98.5% 
accuracy with a grouping of three gestures and an accuracy of 
94.4% with two sets of five gestures. A complete HMI system 
based on the EIT principle for hand prosthesis control has been 
presented, and its medium-term performance investigated 
including a preliminary analysis over different types of machine 
learning algorithm. The merits as well as the limits of EIT as an 
HMI system have also been discussed and future work 
proposed. 
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