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Properties of the signal mode in the polariton optical parametric oscillator regime
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Theoretical analyses of the polariton optical parametric oscillator (OPO) regime often rely on a mean-field
approach based on the complex Gross-Pitaevskii equations in a three-mode approximation, where only three
momentum states, the signal, pump, and idler, are assumed to be significantly occupied. This approximation,
however, lacks a constraint to uniquely determine the signal and idler momenta. In contrast, multimode numerical
simulations and experiments show a unique momentum structure for the OPO states. In this work we show that
an estimate for the signal momentum chosen by the system can be found from a simple analysis of the pump-only
configuration. We use this estimate to investigate how the chosen signal momentum depends on the properties
of the drive.

DOI: 10.1103/PhysRevB.98.165307

I. INTRODUCTION

When exciton-polaritons in semiconductor microcavities
are introduced by a coherent laser pump with energy ωp

and momentum kp applied close to the inflection point of
the lower-polariton dispersion, pairs of pump polaritons can
scatter to other states while conserving energy and momen-
tum. This is known as the optical parametric oscillator (OPO)
regime [1–5]. Above a threshold pump strength, the paramet-
ric scattering leads to two new largely occupied states, the
signal and idler, with energies ωs, ωi and momenta ks , ki

respectively, satisfying 2ωp = ωs + ωi and 2kp = ks + ki

[1–3]. The large emission from the signal and idler modes
can be of potential use in optical devices since the signal
beam is both strong and directional [1,6]. Coherently pumped
polariton systems have also been used to explore many-
body collective phenomena such as polariton superfluidity
[7–9] and nonequilibrium phase transitions [10].

Theoretical analyses of the OPO regime commonly use
a convenient three-mode description, where the dominant
signal, pump, and idler modes are the only ones present in
the mean field [4,5,11,12]. This description, however, suffers
from an important deficiency: there are not enough constraints
to uniquely determine the signal and idler momenta. Instead,
for most system parameters, there is a range of momenta ks

and ki at which the system is unstable to the OPO phase
[11,13]. However, in experiments and numerical simulations
of the full problem, there is no restriction on the number of
modes that can be occupied, and the system chooses a unique
momentum structure which is usually dominated by a single
ks , ki pair [13–16].

Since the three-mode approximation is particularly con-
venient for investigating the OPO regime [12,17,18], some
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means of determining which of the possible ks values the
system chooses would be useful. While many previous works
have explored the physics behind the formation and selection
of the signal mode [11,13,16,19,20], ultimately, determining
specifically which ks is chosen analytically remains an un-
resolved problem. Here we explore this open question by
considering the instabilities of the below threshold description
of the coherently pumped polariton system that includes only
the pump mode, similar to methods employed in previous
studies of the polariton OPO regime [4,11–13,18,19,21]. In
particular, we find the momentum at which the pump mode is
most unstable, i.e., which eigenstates have the largest positive
imaginary part, and compare this with numerical solutions of
the multimode problem, where the occupations show peaks at
unique values of ks and ki . Throughout this paper we restrict
our analysis to the optical limiter regime, where the pump-
only solution is single valued, which is relevant to many recent
studies pertaining to order and superfluidity in the polariton
OPO regime [8–10,22], as opposed to the bistable regime
considered in many previous experimental and theoretical
studies [4,11–13,16,19,20,23–25].

We first use a simplified lower-polariton model to deter-
mine the polariton OPO phase diagram, finding regions of
pump intensity and possible ks where (i) the pump-only so-
lution is unstable towards the OPO regime and (ii) the simple
three-mode OPO description is stable to small fluctuations.
The states which lie within region (i) but outside of region
(ii), i.e., where both single- and three-mode solutions are
dynamically unstable, are characterized by more complicated
momentum space structures not limited to three modes.

In order to explore the characteristic patterns adopted by
the polariton system, we solve numerically the equivalent
multimode problem in various regimes across the OPO region.
It turns out that, despite the fact that the OPO state can
have a very complex momentum distribution, in almost all
cases the largest (after the pump) occupations come from two
unique modes, which we identify as the signal and idler states
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with associated momenta ks and ki . We then show that these
momenta can be estimated by finding the most unstable mode
in the simple single-mode approximation. Finally, we consider
a two-component exciton-photon model (which gives a more
precise description of the polariton system) and show that
similar conclusions hold. The exciton-photon model is then
used to investigate how changing the pump momentum and
energy (relative to the lower-polariton dispersion) affects the
resulting signal.

II. LOWER-POLARITON MODEL:
ONE-MODE AND THREE-MODE DESCRIPTIONS

In this section, we present the one- and three-mode ap-
proximations to the lower-polariton field ψ describing two-
dimensional (2D) microcavity polaritons, whose dynamics
are given by a momentum space complex Gross-Pitaevskii
equation (cGPE) (with h̄ = 1):

i∂tψ (k) = [ωlp(k) − iκlp]ψ (k)

+
∑
k1,k2

gk,k1,k2ψ
∗(k1 + k2 − k)ψ (k1)ψ (k2)

+Fpe−iωpt δk,kp
. (1)

The lower-polariton dispersion is ωlp(k) = 1
2 {ωc(k) + ωx −√

[ωc(k) − ωx]2 + �2
R}. Here ωx and ωc(k) are the exciton

and cavity photon dispersion relations, respectively, �R is
the Rabi frequency of the exciton-photon coupling, κlp is
the polariton decay rate, and gk,k1,k2 = gXXkXk1+k2−kXk1Xk2

describes the momentum-dependent polariton-polariton inter-
actions with Hopfield coefficients Xk [12,15,18] and exciton-
exciton interaction gX. To facilitate the numerical integration
of the polariton cGPE, we consider a simplified situation
where the polariton-polariton interaction is treated as being
constant. The mean-field and linear-response results are close
to those obtained when the full momentum dependence is
included and are therefore representative [26]. The external
pump Fp introduces polaritons at the pump energy ωp and
momentum kp.

In the following we use dimensionless units, measuring
time, length, and energy in units of 2/�R ,

√
h̄/(�Rmc ), and

h̄�R/2, respectively, where mc is the cavity photon effective
mass. Without any loss of generality we can choose the pump
wave vector to be along the x direction, i.e., kp = (kp, 0).
Unless stated otherwise, we use kp = (1.4, 0), resonant to the
lower-polariton dispersion with ωp = ωlp(kp ) = −0.42, in di-
mensionless units where ωc(0) = ωx = 0 and use a polariton
decay rate of κlp = 0.045.

A. Single-mode description and estimate
of the signal momentum

The first step in the theoretical analysis of the OPO transi-
tion is to determine the mean-field solution assuming that only
one mode, coinciding with the pump energy and momentum,
is occupied [4,11,12]. This means using the following ansatz:

ψ (k) = Pe−iωpt δk,kp
. (2)

In the lower-polariton model, the mean-field occupation of the
pump mode and the eigenvalues of the linear-response matrix

can be calculated exactly [4,11,12]. Substituting Eq. (2) into
the cGPE (1) and considering the mean-field steady state
i∂tP = 0 give

Fp = [ωlp(kp ) − ωp + gp|P |2 − iκlp]P,

where gp ≡ gXX4
kp

. Thus, the mean-field occupation in the

pump mode (np = |P |2) becomes

|Fp|2 = {[ωlp(kp ) − ωp + gpnp]2 + κ2
lp}np.

The mean field already gives some information about the
expected behavior: |Fp|2 is cubic in np, which can lead
to bistable behavior under certain pumping parameters. The
critical quantity is the detuning of the pump away from
the lower-polariton dispersion: if ωp − ωlp(kp ) >

√
3κlp, the

pump mode is bistable [4,11,12,20,23]. However, in this work
we do not consider the bistable regime but restrict ourselves to
the optical limiter regime, with a monotonic relation between
the pump strength and the polariton occupation np.

The next step is to perform a linear-response analysis
(linear Bogoliubov-like theory [4,15]) by expanding in fluc-
tuations around the pump mode, which means using a new
ansatz [4,11,12,15]:

ψ = Pe−iωpt δk,kp
+ �Pe−i(ωp+ω)t δk,kp+�k,

where ω is the energy and �k is the momentum of the fluc-
tuations. The linear-response matrix L is formed by keeping
only terms that are linear in fluctuations to give [2,5,12,15]

L =
(

α+ − iκlp gpP 2

−gpP ∗2 −α− − iκlp

)
, (3)

where

α± = ωlp(kp ± �k) − ωp + 2gp|P |2. (4)

The matrix L satisfies [4,12]

L(k)�� = ω(k)��,

where �� is a vector of the fluctuations and ω(k) are the
complex eigenvalues, the real parts of which give the spectra
of the excitations, Re(ω), while the imaginary parts give
the regions of instability, Im(ω) > 0 [4,11–13,18,19,21]. The
eigenvalues of Eq. (3), are [12,17]

ω± = α+ − α−

2
− iκlp ± 1

2

√
(α+ + α−)2 − 4n2

p, (5)

with α± defined in Eq. (4). If the discriminant in Eq. (5) is
positive, then the two eigenvalues have a common imaginary
part, Im(ω±) = −κlp, and the pump-only state is stable. When
the discriminant is negative, the imaginary parts of the eigen-
values differ, and it is possible to find the location of the
maximum of Im(ω+). This can become positive, leading to
instability towards some new solution, the simplest of which
is the three-mode OPO state [4,12].

In Fig. 1 we plot Im(ω+) [Eq. (5)] as a function of the
pump strength Fp and momentum along the x direction of
the considered excitation. The blue line in Fig. 1 indicates the
contour on which Im(ω+) changes sign; that is, the region
inside is where this pump-only solution is unstable. The
momentum at which Im(ω+) has a maximum value (which
we call km

s ) for a given pump strength is marked by the yellow
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FIG. 1. The imaginary part of the eigenvalues Im(ω+) that be-
come positive. Maximum values of Im(ω+) at each pump strength
are marked by yellow dashed lines. The blue line [Im(ω+) = 0]
encloses the region of instability.

dotted line and overlaid to highlight where the maxima lie in
relation to the borders of the unstable region.

At very weak pumping, the km
s values form a ring in

momentum space, an example of which is shown in Fig. 2.
This appears as two branches in Fig. 1 that indicate the kx

values at which the ring at each Fp crosses ky = 0. As the
pump strength is increased, the maximum value of Im(ω+)
increases and then decreases to again become negative. There
is an intermediate pump strength at which the ring of km

s

values become indistinguishable; the km
s values approach this

“coalescence” point evenly. This coalescence point occurs at
comparatively weak pumping, in the center of the unstable
region, but before the imaginary part reaches its maximum
value. Once there is a single km

s , its value is constant until the
discriminant of Eq. (5) becomes positive, after the pump mode
has become stable again.

FIG. 2. Imaginary part of the eigenvalues Im(ω+) in 2D momen-
tum space (kx, ky ) for the pump-only state close to lower threshold
(Fp = 0.0157). The condition Im(ω+) > 0 determines a ring-shaped
region in k space where the system can develop signal modes.

B. Three-mode approximation

To describe the OPO regime, which may occur inside the
blue contour in Fig. 1, the simplest ansatz consists of three
modes ψ = ψs + ψp + ψi , the signal, pump, and idler re-
spectively, with each mode being a plane wave with amplitude
M:

ψm = Me−iωmt δk,qm
.

We substitute this into the lower-polariton cGPE [Eq. (1)]
[11,12,18]. Some of the interaction terms introduce modes
outside of the three-mode ansatz; these are discarded by
requiring energy and momentum conservation within the OPO
modes. This leads to three coupled cGPEs, one for each of
the signal, pump, and idler modes. Considering the steady
state with ∂tP = ∂tS = ∂t I = 0 gives three complex equa-
tions [11,17,18]:

�sS + g̃xP
2I ∗ = 0, (6)

�pP + 2g̃xSP ∗I + fp = 0, (7)

�iI + g̃xS
∗P 2 = 0, (8)

where g̃x ≡ gXX2
pXiXs , with the shorthand notation

�j ≡ ωlp(kj ) − ωj − iκlp + gXX2
j [2(ñs + ñp + ñi ) − ñj ]

(with ñj = X2
j nj = X2

j |J |2) and the external pump
fp = Fpe−iωpt δk,kp

, with the redefinition XpFp → Fp.
Note that the above set of equations is invariant under a global
U(1) phase rotation of the form⎛

⎝S

I

P

⎞
⎠ →

⎛
⎝S ′

I ′
P ′

⎞
⎠ =

⎛
⎝eiα 0 0

0 e−iα 0
0 0 1

⎞
⎠

⎛
⎝S

I

P

⎞
⎠;

S → S ′ = Seiα, I → I ′ = Ie−iα, P → P ′ = P.

The U(1) symmetry can be broken spontaneously and is
responsible for the existence of a gapless phase mode above
the OPO threshold, leading to interesting universal critical
phenomena such as long-distance coherence [21] and super-
fluidity [8]. The U(1) symmetry allows us to freely choose the
phase of one of the fields. Specifically, we choose the signal S

to be real. We are, however, still left with seven unknowns: the
three amplitudes |S|, |P |, |I |; the two remaining phases; and
the energy ωs and momentum ks of the signal mode (the idler
mode is linked to the signal via energy and momentum con-
servation 2ωp = ωs + ωi and 2kp = ks + ki). With six real
constraints given by Eqs. (6)–(8) there remains one unknown
not set by the three-mode mean-field conditions. This is often
chosen to be the signal momentum ks . The main purpose of
this work is to provide a method by which we can estimate
the ks that would be chosen by a real physical system, for
example, the one which occurs in the numerical solution of
the full multimode problem.

The three-mode description of the polariton OPO regime
gives a finite signal mode occupation ns for a wide range of
ks and Fp, corresponding to the momenta and pump strengths
at which the single-mode description is unstable. Therefore,
for each signal momentum ks and pump strength Fp, we ask
two questions: (i) whether the OPO regime exists (nonzero
ns) and (ii) whether it is stable to fluctuations in kx and ky (all
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FIG. 3. Region where the single-mode ansatz is unstable, with
the areas where the three-mode ansatz is stable (turquoise) and
unstable (yellow) to fluctuations in both kx and ky . The blue dotted
line indicates the momentum km

s for which the imaginary part of the
eigenvalues around the pump-only mean field has a maximum at a
given Fp , and the green crosses mark the location of the signal found
in the numerical simulations.

imaginary parts of the eigenvalues are � 0) since the existence
of a mean-field solution does not imply its stability [11,12,17].

The stability of the OPO state for a given pump
strength and ks is considered through linear-response analy-
sis [11,17,18]:

LOPO =
(

−M (�k) −Q(�k)

Q∗(−�k) M∗(−�k)

)
,

with the submatrices [17,18]

Mm,n(�k) = δm,n[ωm − ωlp(km + �k) + iκlp]

− 2
3∑

r,t=1

δm+r,n+t gψ∗
r ψt ,

Qm,n(�k) = −
3∑

r,t=1

δm+n,r+t gψrψt ,

where n,m, r, t = 1, 2, 3 = s, p, i. There are six eigenvalues,
three of which have imaginary parts that are always less
than −κlp and three of which have imaginary parts that may
become positive.

The phase diagram in Fig. 3 shows the three types of
behavior that occur: (i) a stable single-mode solution and
no possibility for OPO (white region), (ii) both single- and
three-mode solutions being unstable (yellow region), and (iii)
a stable three-mode OPO ansatz (turquoise regions) [22]. We
observe that at low pump strengths, the three-mode OPO is
stable for a range of ks on the side towards the pump. As the
pumping is increased, this region narrows slightly and moves
towards ks = 0. A further increase of the pumping leads to
a region where the three-mode OPO is unstable for all ks

for which it exists. At the highest pump strengths, there is
again a region where the three-mode OPO is stable. This is
centered on a small positive ks and includes ks = 0. Only at
the highest pump strengths does the km

s from the single-mode
linear-response analysis lie consistently within the region of

FIG. 4. Unstable eigenvalues (positive imaginary part) around
the OPO for fluctuations in kx and ky . ks = (0, 0) with (a) Fp =
0.0316, np = 0.048 and (b) Fp = 0.0325, np = 0.052.

the stable three-mode OPO. The green crosses in Fig. 3 are
the kx values of the most occupied modes from the numerical
integration of the cGPE and are discussed fully in Sec. III.

In Fig. 4 we plot two examples of the largest imaginary
part of the eigenvalues of the linear response for specific un-
stable configurations of the three-mode ansatz, with the signal
momentum ks = 0. These two examples highlight that the
three-mode description may be stable to fluctuations along the
line ky = 0 but show instabilities at finite ky �= 0. We observe
different structures in the momentum fluctuation along the full
phase diagram of the three-mode ansatz, some of which are
quite complex [26].

III. NUMERICAL SOLUTION OF THE MULTIMODE
POLARITON FIELD

So far, the results presented have been obtained by consid-
ering a single-mode or a three-mode ansatz for the polariton
field. However, as highlighted by the large yellow region in
Fig. 3, a complete description of the system requires the
consideration of solutions beyond the three-mode ansatz since
the three-mode description of the OPO regime gives stable
solutions for only a small part of the full OPO region. In
this section we consider the multimode scenario by numer-
ically integrating the nonlinear dynamical equation of the
lower-polariton field given by Eq. (1) in 2D real space r =
(x, y) and with a momentum-independent polariton-polariton
interaction. Further, we describe the polariton field through a
stochastic complex Gross-Pitaevskii equation (scGPE), which
can be obtained from the mapping of the Fokker-Planck equa-
tion of the time evolution of the quasiprobability function onto
a Langevin equation on a grid with lattice spacing a; provided
gX/(κlpdV ) � 1 [27], where dV = a2, the volume element
of the considered lattice controls the truncation condition of
the Wigner representation.

The scGPE for the lower-polariton field in real space reads:

idψ (r) = {
ĤMF ψ (r) + fp

}
dt + i

√
κlpdW, (9)

where the complex-valued, zero-mean, white Wiener noise
dW fulfils 〈dW ∗(r, t )dW (r′, t )〉 = 1

dV
δr,r′dt , the exter-

nal drive fp = Fpei(kp ·r−ωpt ), and the operator ĤMF is
abbreviated

ĤMF = ωlp(−i∇) − iκlp + gX|ψ (r)|2−. (10)
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FIG. 5. Signal density in linear (left) and logarithmic (right)
scales. The lower and upper thresholds are identified as Fon and Foff ,
respectively.

We consider a constant interaction gX and |ψ (r)|2− =
|ψ (r)|2 − 1

dV
[27].

A. Mean-field polariton distributions

First, we consider the mean-field solution of the multimode
and nonlinear problem by integrating Eq. (9) in time with
the Wiener noise term dW set to zero and replacing |ψ (r)|2−
by |ψ (r)|2. Both in this model and later in the exciton-
photon model, numerical integration is performed using the
XMDS2 package [28], with either an adaptive-step-size Runga-
Kutta algorithm (for mean-field numerics) or a fixed-step-size
semi-implicit algorithm with five iterations (for stochastic
numerics), on a 256 × 256 lattice for a plane-wave external
pump. In all the numerical results reported here, we consider
a Rabi splitting �R = 4.4 meV and a cavity photon mass
mc = 2.3 × 10−5me, which is appropriate for typical exper-
imental systems [9]. We identify the OPO regime by finding
a significant occupation of the signal mode, i.e., |ψs |2 > 104,
where ψs is the signal field at some kx < kp. In Fig. 5 we
show the signal density as a function of the pump strength
on both linear and logarithmic scales, and it can be seen that
OPO appears for a range of pump strengths Fon � Fp � Foff .
In our units, we have Fon ≈ 0.0135 and Foff ≈ 0.053, which
match closely with the OPO thresholds given by the onset of
instability of the pump-only solution.

The system in the steady state exhibits two distinct be-
haviors. First, we observe that for certain values of Fp, the
full multimode polariton field in the steady state conforms
to the three-mode description since we see the appearance of
three significantly occupied modes at three distinct values of
kx (signal kx < kp, pump kx = kp, and idler kx > kp), with
occupations orders of magnitude larger than any modes ap-
pearing at other momenta. In Fig. 6 we plot several examples
of the multimode nonlinear mean-field solution, with three
distinct peaks clearly visible for Fp = 0.025, 0.034, 0.050
[Figs. 6(b), 6(c), and 6(e)]. In agreement with the linear
stability analysis in the previous section, these pump strengths
support a stable three-mode ansatz solution at the mean-field
level, as can be seen in Fig. 3. In contrast, at very low and
intermediate pump strengths, the steady-state solutions for the
field cannot be described by a three-mode configuration due
to the appearance of a high number of significantly occupied
states beyond the three-mode ansatz [see Figs. 6(a) and 6(d)].
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FIG. 6. Polariton density profiles at various pump strengths
across the OPO regime. Log scale profiles: (a) Fp = 0.016, (b) Fp =
0.025, (c) Fp = 0.034, (d) Fp = 0.043, and (e) Fp = 0.050; (f)
Fp = 0.043, linear scale. The three-mode description of the OPO
regime is unstable for Fp = 0.043 [(d) and (f)]. The labels p, s, and
i indicate the pump, signal, and idler modes, respectively, with the
latter two well defined only for some Fp .

These regions in pump strength coincide with the unstable
three-mode ansatz shown in Fig. 3.

B. Beyond the mean-field approximation

Due to the pumping scheme acting in the x direction,
the steady-state field configurations presented in the previous
section show zero density for modes with ky �= 0 since there
is no mechanism to excite these modes within the mean-
field approximation. An additional numerical study including
fluctuations is therefore required to capture all the details
of the system, particularly its behavior in both the kx and
ky directions, which is the topic of the present section. We
present results for the full multimode nonlinear problem with
quantum fluctuations described by the stochastic equation
given in Eq. (9), which provides a more complete description
of the system than the mean-field analysis. We note that the
full stochastic form of Eq. (9) can also be derived in the
semiclassical limit of the Keldysh field theory, from which
it can be seen that this method includes effects to all orders in
classical fields and up to second order in quantum fluctuations
[29], making it almost exact for systems with large numbers
of particles.

In Fig. 7 we plot the density of the polariton field in 2D
momentum space for different values of external drive Fp

within the OPO region. Figure 8 gives a comparison between
these results and the linear-response analysis shown previ-
ously. The color map for the left column of Fig. 7 has been
truncated to between 100 and 105 to increase the visibility of
the main features. As shown in the right column, the main
peaks actually have densities above 105 for most values of Fp.
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FIG. 7. Density of the polariton field |ψ |2 (log scale) at pump
strengths across the OPO region. In the left column, we plot |ψ |2 in
2D momentum space, while the profiles through ky = 0 are plotted in
the right column. The panels are marked by their pump strength Fp:
(a) Fp = 0.0135, (b) Fp = 0.016, (c) Fp = 0.0235, (d) Fp = 0.026,
(e) Fp = 0.0335, (f) Fp = 0.0435, and (g) Fp = 0.051. For Fp =
0.016 the most prominent peaks on the signal and idler rings occur at
ky = ±0.327, so an additional line (red) is plotted in the right panel
in (b), showing the density along ky = 0.327. The pump state appears
in all figures as a peak with maximum density at k = (1.4, 0).

We highlight that the steady-state polariton field, con-
sidering quantum fluctuations, shows four different regimes
depending on the strength of the external pump, which we
now describe in order of decreasing pump strength from the
upper threshold. First, we observe that at high pump strengths,
i.e., close to the upper threshold, the polariton field has a
density distribution in momentum space with three different
significantly occupied modes, the signal, pump, and idler [see
Fig. 7(g) for an example]. This regime coincides in pump
strength with the region of the stable three-mode mean-field
ansatz near the upper threshold (turquoise region at high Fp

in Fig. 8). Additionally, as seen in Fig. 8, for these high
pump strengths the momentum of the signal mode agrees quite

FIG. 8. ks from the multimode stochastic simulations plotted
against the stable regions of Fig. 3. Black crosses indicate the
locations of the most prominent peaks within this momentum range,
which occur along ky = 0. Red pluses mark where the most promi-
nent peaks have ky �= 0. Red horizontal lines show the diameter of
the rings seen at low Fp . Green dotted lines mark Fp for which a
single signal state is not well defined, with multiple crosses at the
same Fp indicating several peaks of the same order of magnitude.
Solid gray lines labeled (a)–(g) mark the profiles plotted in Fig. 7.

well with that found by considering where the single-mode
description is most unstable (i.e., ks = km

s ).
On decreasing the pump strength, we enter a range of pump

strengths where the three-mode description of the polariton
field fails in almost all cases, as indicated by the green dotted
lines in Fig. 8. This is due to the appearance of multiple peaks
of the same order of magnitude in density for both the signal
(kx < kp) and idler (kx > kp) fields, meaning that a single
specific value of ks cannot be defined here. Additional modes
beyond the three-mode description, which are often referred
to as satellites [11,30], can become populated by further scat-
tering channels, where signal or idler polaritons scatter from
each other or from those in the pump mode [14,16,30,31]. The
three-mode description fails here since some of the satellites
become comparable in size to the expected signal and idler
modes. Notably, the range of pump strengths at which we
observe such solutions corresponds to the range for which the
three-mode mean-field ansatz has no stable solutions. While
small satellite states are commonly seen in both experimental
[14,31] and numerical [11,13,16,30] studies, the situation
where the occupation of these extra modes spontaneously be-
comes large enough to invalidate the three-mode description
has not yet been observed experimentally. In a few cases, such
as those seen in Figs. 7(f) and 6(f), we see a particularly
unusual configuration of extra modes, where a peak appears
between the pump and the expected signal, as opposed to
the usual arrangement, where satellites are evenly spaced by
kp − ks .
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At intermediate to low values of external pump, we observe
that the signal and idler fields again develop single sharp
maxima at specific values of momentum, allowing a descrip-
tion in terms of three modes. Examples of this are shown in
Figs. 7(c)–7(e). In these cases satellite states are still visible
on the logarithmic scale but are at least an order of magnitude
smaller than the signal and idler. Although the chosen ks is
not always within the region where the three-mode mean-field
ansatz is stable, it seems to adhere more closely to this region
than to km

s from the single-mode linear-response analysis.
At very low pump strengths (Fp < 0.02), the three-mode

description once again fails, and we instead see the signal
and idler fields having multiple maxima distributed around a
ring in momentum space. At the higher of these Fp, the main
maxima still occur along ky = 0, but at lower pump strengths
maxima at ky �= 0 become the most relevant, as shown in
Fig. 7(b). Very close to the lower threshold [Fig. 7(a)], Fp =
0.0135, the distinct maxima give way to a nearly uniform den-
sity for states on the rings. We note that the size of these rings
matches almost exactly with the rings of km

s from the linear
stability analysis at the same pump strengths (e.g., Fig. 2).
Such rings have previously been observed in calculations of
the luminescence of the polariton field at the OPO lower
threshold [17] and have also been seen in experiments in the
bistable regime, although in those cases the rings intersect at
the pump momentum to form a figure-of-eight pattern [25,32].

IV. EXCITON-PHOTON MODEL

In this section we extend our study by considering the
exciton-photon model, which describes the polariton system
in terms of the constituent fields [2,4,8,27] (with h̄ = 1):

i∂t

(
ψx

ψc

)
= Ĥxc

(
ψx

ψc

)
+

(
0

fc(r, t )

)
, (11)

where

Ĥxc =
(

ωx (−i∇) − iκx + gx|ψx |2 �R/2
�R/2 ωc(−i∇) − iκc

)
.

Here ψx and ψc are the exciton and photon fields, respectively,
we assume a constant exciton-exciton interaction gx [4,5,33],
and ωx, ωc correspond to the dispersion relations of the
exciton and photon fields, respectively [33,34]. Since the
exciton mass is much larger than the cavity photon mass,
its dispersion is considered to be flat [30,33,35]. The exciton
and photon decay rates are given by κx , κc, respectively, and
are considered to be equal in all calculations, with values
κx = κc = 1/τc ≈ 0.045, where τc ≈ 5.8 ps. We use �R =
4.4 meV and gX = 0.002 meV μm2. The external pump fc is
again a plane wave of the form F ′

pe−iωpt δk,kp
. The numerical

integration runs to 72 ns in all cases.
First, we consider the steady-state mean-field solution for

a single mode (plane-wave ansatz) for both the exciton and
photon fields, which coincides with the pump energy and mo-
mentum, i.e., ψc(r) = Pce

−iωpt−ikpr, ψx (r) = Pxe
−iωpt−ikpr.

We substitute these expressions into Eq. (11) and, after rear-
ranging, obtain Pc = 2

�R
(ωp + iκx − ωx − gx|Px |2)Px from

the first line. So although the external pump is written in
terms of both Pc and Px , Pc can be eliminated, and the
exciton occupation can be found directly from F ′

p = [ωp +
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FIG. 9. ks from numerical integration of the coupled cGPEs
(magenta dotted line with pluses) and upper and lower values of km

s

from the linear response (red dash-dotted and black dashed lines,
respectively).

iκc − ωc(kp )]Pc − �R

2 Px [4]. Adding fluctuations to both the
exciton and photon fields leads to the linear-response ma-
trix [4,27]:

Lxc =
(

A(�k) B

−B∗ −A∗(−�k)

)
, (12)

with

A(�k) =

⎛
⎜⎜⎜⎝

ωx + 2gx|Px |2 �R

2−ωp − iκx

�R

2

ωc(kp + �k)
−ωp − iκc

⎞
⎟⎟⎟⎠

and

B =
(

gxPx
2 0

0 0

)
.

The eigenvalues of Eq. (12) are calculated numerically, and
the maximum value of the imaginary part at each pump
strength is extracted as in Sec. II A.

0.015

0.020

0.025

-0.2 0.0 0.2 0.4

Im
(ω

)

Momentum (kx)

Fp = 2.28

Fp = 2.74

FIG. 10. Imaginary part of one of the eigenvalues of Eq. (12)
Im(ω+) near k = 0 for a range of pump strengths near the sharp jump
in ks that occurs when the two peaks combine.
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crosses) for varying kp , with ωp = ωlp (kp ) (� = 0). Right: Signal
momentum at the upper threshold with varying kp for three detun-
ings, � = −0.05, 0.00, +0.05.

A. Stability analysis and mean-field numerics

First, taking kp = 1.4 (in dimensionless units) and con-
sidering the pump tuned resonantly to the lower-polariton
dispersion, we can see in Fig. 9 behavior qualitatively similar
to that described using the simplified lower-polariton model
over much of the OPO regime. At higher pump strengths,
there is a single ks value, ks ≈ 0.1, over a significant range of
pump strengths. At lower pump strengths the system exhibits
two distinct values of ks in the ky = 0 plane, appearing in
both the numerics and the stability analysis. In contrast to the
lower-polariton model, the approach to the coalescence point
is abrupt. This is the result of the dip between the two peaks
disappearing, as shown in Fig. 10.

B. Changing the pump properties

In this section we study the behavior of km
s obtained from

the stability analysis when changing the detuning � ≡ ωp −
ωlp(kp ) and the momentum kp of the external pump. First, in
the left-hand side of Fig. 11, we plot the various thresholds
that we have been interested in for a range of pump momenta.
We see that all thresholds increase with kp [26]. In the right-
hand panel of Fig. 11, we show that changing the detuning of
the pump in either direction while remaining within the optical
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FIG. 12. Signal energy Re(ω+) and momentum ks with pump
energy ωp and momentum kp (corresponding symbols) for � =
+0.05. The signal used is from the coalescence point. The solid line
is the unperturbed lower polariton dispersion.

limiter regime has no noticeable effect on the value of ks for
a given kp. The signal momentum decreases with increasing
kp (see Fig. 12); however, the change in ks is small compared
to the corresponding change in kp. The independence of ks

from the detuning is consistent with experiments, while the
variation in signal momentum is probably too small to be
observed in current experiments [19,24]. We also investigate
the behavior of the signal energy (the real part of the eigen-
value of the linear-response matrix at ks) as a function of the
external pump momentum kp at � = +0.05 (see Fig. 12). We
observe that the signal energy monotonically increases with
kp, consistent with experiments [24].

V. CONCLUSIONS

In this work we have investigated the rich phenomenology
of the signal state in the parametrically driven polariton sys-
tem. In particular, we focused on determining in which regime
the commonly used three-mode OPO description is valid and
whether we can predict the signal momentum from a simple
stability analysis, without the need to resort to the full solution
of nonlinear multimode equations. In all cases, we restricted
our analysis to the optical limiter regime, where the pump
mode occupation is a monotonic function of the external pump
strength.

Our nonlinear stochastic simulations of the polariton OPO
show behaviors at different pump strengths that can be clas-
sified into four cases: (i) three-mode solutions near the upper
threshold, (ii) multimode solutions (large satellites in addition
to the signal, pump, and idler modes) at higher intermediate
pump strengths, (iii) approximately three-mode solutions at
lower intermediate pump strengths (small satellites), and (iv)
rings near the lower threshold. The three-mode ansatz is a
good approximation in cases (i) and (iii) but cannot represent
the form of the OPO seen in cases (ii) and (iv) well. The range
of pump strengths for case (ii) corresponds closely to where
the three-mode mean-field ansatz has no stable solutions.

Our study of the momentum of the most unstable eigenval-
ues from the linear-response analysis of the pump-only case
(km

s ), compared with the ks chosen by the system described by
the full multimode nonlinear stochastic equations, shows that
linear-response analysis provides a good estimate for both the
ks value chosen near the upper threshold [case (i)] and the size
of the rings that occur near the lower threshold [case (iv)] but
is less useful for intermediate pump strengths. We extended
our study using the more complete exciton-photon model and
found that similar conclusions hold.

Finally, we have shown that the signal momentum does not
depend on the detuning of the pump laser and varies little with
the pump momentum, while the signal energy does increase
with the pump energy and momentum, in agreement with
previous experiments [24].
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5, 041028 (2015).

[11] D. M. Whittaker, Phys. Rev. B 71, 115301 (2005).
[12] M. Wouters and I. Carusotto, Phys. Rev. B 75, 075332 (2007).
[13] S. S. Gavrilov, N. A. Gippius, V. D. Kulakovskii, and S. G.

Tikhodeev, J. Exp. Theor. Phys. 104, 715 (2007).
[14] A. I. Tartakovskii, D. N. Krizhanovskii, D. A. Kurysh, V. D.

Kulakovskii, M. S. Skolnick, and J. S. Roberts, Phys. Rev. B
65, 081308 (2002).

[15] I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).
[16] A. A. Demenev, A. A. Shchekin, A. V. Larionov, S. S. Gavrilov,

V. D. Kulakovskii, N. A. Gippius, and S. G. Tikhodeev, Phys.
Rev. Lett. 101, 136401 (2008).

[17] K. Dunnett and M. H. Szymańska, Phys. Rev. B 93, 195306
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