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Abstract—Large-scale automated meta-analysis of neuroimag-
ing data has recently established itself as an important tool in
advancing our understanding of human brain function. This
research has been pioneered by NeuroSynth, a database collecting
both brain activation coordinates and associated text across
a large cohort of neuroimaging research papers. One of the
fundamental aspects of such meta-analysis is text-mining. To
date, word counts and more sophisticated methods such as Latent
Dirichlet Allocation have been proposed. In this work we present
an unsupervised study of the NeuroSynth text corpus using Deep
Boltzmann Machines (DBMs). The use of DBMs yields several
advantages over the aforementioned methods, principal among
which is the fact that it yields both word and document embed-
dings in a high-dimensional vector space. Such embeddings serve
to facilitate the use of traditional machine learning techniques
on the text corpus. The proposed DBM model is shown to learn
embeddings with a clear semantic structure.

Keywords—Deep Boltzmann machines; text-mining; topic mod-
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I. INTRODUCTION

The study of the human brain using functional magnetic
resonance imaging (fMRI) has advanced rapidly in the last
decades. This has provided significant insights into the re-
lationship between architecture and function of the human
brain. This is reflected in the number of published studies,
which has grown exponentially during this time. Consequently,
a major challenge for the scientific community involves the
efficient integration and analysis of knowledge across this wide
corpus of studies [1]. This challenge has inspired attempts
to automatically aggregate and analyze knowledge across the
field of fMRI. In particular, NeuroSynth [2] is a meta-analysis
database collecting both brain activation coordinates and the
corresponding text across a range of over ten thousand studies.
This has important applications in the analysis and interpre-
tation of fMRI data such as facilitating quantitative reverse
inference [3].

The automated extraction of information from a collection
of published neuroimaging studies is based on two funda-
mental pillars; the first of which involves generating detailed
statistical maps. In this work we focus on the second pillar; the
extraction and analysis of semantic topics from text [1]. Such
methods look to employ text-mining methodologies to discover
latent topics in the brain imaging literature. Such approaches
can subsequently be combined with activation coordinates to
examine the underlying mapping between cognitive and neural
states.

Recent attempts to model the semantic structure of the
neuroimaging literature have focused on the use of Latent
Dirichlet Allocation (LDA) models [1]. Such an approach

is able to learn a pre-specified number of latent “topics”
which generated observed text. In this work we present a
related approach based on the use of Deep Boltzmann ma-
chines (DBMs). The motivation behind the use of DBMs
over alternative text-mining approaches such as LDA is two-
fold. First, the use of restricted Boltzmann machines (RBMs),
which are a special case of DBMs, has recently been shown
to outperform LDA in terms of generalization performance
[4]. This is hypothesized to be the result of RBMs learning
useful internal representations of the text corpus [5]. The
presence of additional hidden layers in DBMs would serve to
further facilitate the learning of internal representations. The
second advantage of using DBMs is that such models yield
an embedding of words or documents in a high-dimensional
vector space. Such embeddings are a crucial component of
modern natural language processing systems [5] as they can be
easily incorporated into traditional machine learning pipelines.
Furthermore, the use of word embeddings can be employed to
learn joint models across both text and the associated activation
coordinates which is the ultimate objective of meta-analysis
studies [2].

In this work we demonstrate that DBMs can be effectively
employed to learn the distribution of the NeuroSynth text cor-
pus. Further, the proposed model is able to learn embeddings
of both individual words as well as entire documents. As
motivation, Table I shows some of the clusters obtained when
k-means clustering is applied to word embeddings obtained
from the DBM model. The clusters display clear semantic
context.

II. MATERIALS AND METHODS

A. Deep topic models

In this section we outline the models employed in this
work. We begin by introducing Restricted Boltzmann machines
(RBMs), which serve as the building blocks of the deeper
architectures considered in this work. Extensions of RBMs to
directly model word counts are discussed before considering
Deep Boltzmann machines (DBMs).

1) Restricted Boltzmann machines: RBMs are a class of
undirected graphical models which specify a probability distri-
bution over observed binary variables v ∈ {0, 1}D and binary
hidden variables h ∈ {0, 1}F . Formally, RBMs are energy
based models which have a bipartite graph structure across
visible and hidden variables. This structure is imposed in order
to facilitate the learning of the models parameters which we
discuss below.

The following energy function is defined on any configu-
ration of visible and hidden units:

E(v, h; θ) = −vTWh− aT v − bTh (1)
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TABLE I. EXAMPLES OF SEMANTIC CLUSTERS LEARNT BY DEEP
TOPIC MODEL

Associated vocabulary
memory, retrieval, encoding, hippocampus, hippocampal, episodic, items, recall,
memories, recollection, item, familiarity, autobiographical
language, semantic, words, speech, word, reading, verbal, phonological, lexical,
linguistic, naming, fluency, verbs, english
adults, age, children, years, older, young, development, adolescents, developmental,
aging, sleep, adult, late, younger, blind, childhood, hearing, adolescence
emotional, amygdala, social, negative, faces, face, emotion, neutral, affective, facial,
anxiety, fear, expressions, regulation, emotions, ofc, valence, personality, arousal,
fearful, trait, threat, sad, happy, mood, empathy, moral, person, traits, communication
patients, controls, schizophrenia, disorder, deficits, disease, abnormalities, symptoms,
impaired, impairment, adhd, alterations, dysfunction, mdd, abnormal, atrophy, pa-
tient, ptsd, severity, mci, damage, bipolar, lesions, impairments, deficit, depressive,
ocd, mild, syndrome, symptom, elderly, dementia, epilepsy, poor, pathophysiology

where θ = {W,a, b} are the parameters of the RBM which we
wish to estimate. The probability of any given configuration
(v, h) is subsequently defined as P (v, h; θ) = 1

Z(θ)e
−E(v,h;θ),

where Z(θ) =
∑
v,h e

−E(v,h;θ) is normalizing constant. Fur-
thermore, the likelihood for any observation, v, can be obtained
by summing over binary hidden units:

P (v; θ) =
1

Z(θ)

∑
h

e−E(v,h;θ). (2)

Parameter learning in RBMs is typically achieved via per-
forming gradient descent on the log-likelihood over observed
data. From equation (2), the training data log-likelihood is
composed of a positive term, φ+ = log

∑
h e

−E(v,h;θ), and
a negative term, φ− = log Z(θ) [6]. The derivate with respect
to the positive term corresponds to an expectation over the data
dependent distribution of hidden variables, which can be easily
computed due to the bipartite structure of RBMs. However,
the derivative of the negative term involves an expectation
over the distribution of both visible and hidden units under
the proposed model which is intractable. This expectation
is typically approximated by looking to sample from this
distribution using MCMC. Starting with visible units, Gibbs
sampling is applied k times in order to obtain an unbiased
sample of the gradient in a procedure known as Contrastive
Divergence [7]. Letting k →∞ recovers maximum likelihood,
however in practice it has been shown empirically that setting
k = 1 performs well.

2) Replicated Softmax model: The aforementioned RBM
model can be employed when the objective is to learn the
probability over binary visible variables. In the context of
modeling documents it is possible to treat the occurrence of
words at specific locations in the text as binary variables. In
this case the observations correspond to a binary incidence
matrix V ∈ {0, 1}N×D where Vn,d=1 if the nth word in the
document takes the dth value.

While such an approach is able to model the order of
words, there is an explosion in the number of parameters.
The replicated softmax RBM takes a more parsimonious
alternative, directly modeling the word counts, v̂d =

∑
n Vn,d

[4]. In such a setting visible units v̂ ∈ ND correspond to
a vector of words counts for each document. Note that D
corresponds to the size of the vocabulary.

The energy of a state (v̂, h) is defined as:

E(v̂, h; θ) = −v̂TWh− aT v̂ −M · bTh, (3)

where M =
∑
d v̂d is the total number of words in a document.

As with a standard RBM, learning proceeds via Contrastive
Divergence. Such models can be interpreted as learning a
distribution over word histograms of documents.

3) Deep Boltzmann machines: DBMs are extensions of
RBMs to allow for multiple layers of hidden variables. Such
models have the capability of learning internal representations
of the data which are increasing complex [8]. Throughout
this work we consider a two-layer DBM with multinomial
visible variables and binary hidden variables. Such a model
is associated with the following energy function1:

E(v̂, h1, h2) = −v̂TW 1h1 − h1TW 2h2 (4)

where we write h1 and h2 to denote the first and second layer
of binary hidden variables respectively. Similarly, parameters
θ = {W 1,W 2} represent the symmetric interaction terms be-
tween visible-to-hidden and hidden-to-hidden variables. Anal-
ogous to equation (2), the probability assigned to a visible
vector, v̂ is defined as:

P (v̂; θ) =
1

Z(θ)

∑
h1,h2

e−E(v̂,h1,h2;θ) (5)

Furthermore, due to the bipartite across layers the conditional
distributions of each of the layers can be computed in closed
form. This allows for the use of persistent Markov Chains [6]
to estimate the intractable model expectations. Naive mean-
field variational inference is then used to approximate the data-
dependent expectations. For further details we refer readers to
[8].

In practice, appropriate initialization of parameters is cru-
cial to the success of deep models. [8] propose a greedy,
layer-by-layer pretraining algorithm for DBMs. This involves
iteratively stacking RBMs, with the small caveat that bottom-
up (likewise top-down) contributions from the bottom (top)
layer should be doubled during pretraining.

4) Model selection: Selecting the number of hidden units
within each layer of a DBM is a non-trivial task. The difficulty
of such an approach arises from the need to estimate the
(typically intractable) partition function Z(θ) for the entire
model. As Z(θ) depends on both the parameters as well as
number of hidden units, it must be calculated in order to
perform model comparison.

Importance sampling is often employed to estimate prop-
erties of distributions known only up to a normalizing con-
stant using samples from a known distribution. However, for
importance sampling to yield a reliable estimate the known
proposal distribution must resemble the target distribution. In
the context of high-dimensional RBMs finding such a proposal
distribution is challenging. In order to address this challenge,
[9] propose the use of annealed importance sampling (AIS).
Here a sequence of auxiliary proposal distributions are defined
which iteratively approximate the target distribution.

Due to the bipartite structure of RBMs, it is easy to
transition across the intermediate distributions (in practice we
apply one iteration of Gibbs sampling). In this fashion it is
possible to begin with a sample from a uniform RBM (with

1we have excluded bias terms for clarity



partition Z0 = 2F ), which we propagate through auxiliary
distributions [4].

In this work a greedy, layer-by-layer approach was taken
to select the model architecture. As a result, the bottom
layer RBM was trained using a range of hidden units. The
architecture which yielded the maximum likelihood across a
held-out validation set was selected. The hidden activation
from this RBM was subsequently provided as input for the
top layer RBM and the process was repeated.

B. Dataset

The NeuroSynth text corpus was employed in this work.
While the original corpus contains word frequencies over
the entire text for each publication, in this work only the
publication abstracts were employed. This served to reduce the
range of vocabulary employed and was motivated by our belief
that much of the semantic structure present in a publication
would also be present in the corresponding abstract. Abstracts
were collected for 10574 publications using the PUBMED
API resulting in a mean document length of 80 words (±25
words). Standard preprocessing was applied to the text corpus.
Stop words were removed, as well as words which did not
occur with sufficient frequency (fewer than 50 occurrences
throughout the corpus). This resulted in a vocabulary of
approximately two thousand words, of which the 1000 words
which occurred most frequently were retained (corresponding
to over 80% of terms). The dataset was split into a training set
consisting of 9516 documents and a test set with the remaining
1058 documents.

III. RESULTS

A. Model architecture and implementation details

A two-layer DBM was employed consisting of a visible
layer of multinomial visible units followed by two binary
hidden layers with 50 units each. During pretraining and
model selection RBMs where trained using CD−1. In addition,
dropout was employed as a form of regularization with hidden
units retained with probability 0.9.

The architecture was selected by minimizing the negative
log-likelihood over a held out validation dataset in a greedy
manner as described previously. Briefly, AIS was employed to
estimate the partition function for each RBM. Five thousand
auxiliary distributions were employed (specified by uniformly
spaced inverse temperatures) and estimates were averaged over
five hundred runs. Finally, the DBM was initialized to weights
learnt during pretraining and trained as described in [8].

The proposed DBM model can be used to obtain both word
as well as document embeddings in a high-dimensional vector
space2. In the remainder of this section we study both the word
and document embeddings obtained from the proposed DBM
model.

B. Word embeddings

The proposed DBM model can be employed to obtain a
high-dimensional embeddings for each word in our vocabulary.

2in our case the embedding will be in R50 as the top layer has 50 hidden
units

TABLE II. EXAMPLES OF ONE-STEP RECONSTRUCTION

Input One-step reconstruction
memory memory, working, recall, performance, retrieval, verbal, load, seman-

tic, recognition, task
emotion social, emotion, emotional, regions, ofc, brain, affective, gray, traits,

amygdala
face social, facial, faces, face, emotional, processing, regions, functional,

brain, cortex
disorder patients, mdd, disorder, adhd, abnormalities, controls, brain, matter,

alterations, structural
mode network, default, connectivity, brain, regions, cognitive, functional,

mode, activity, cortex

The word clusters shown in Table I can then be obtained by
by applying k-means clustering to the word embeddings. The
number of clusters was selected based on silhouette scores.

Further, Figure [1i] shows a 2D visualization of word em-
beddings using t-SNE [10]. Three sections of the embedding
have been highlighted. Regions A and C showcase embeddings
for terms relating to emotion and memory respectively. It is
important to note that the relevant brain regions are contained
in this sections (i.e., the amygdala and orbitofrontal cortex in
region A and the hippocampus in region C). Meanwhile region
B contains terms relating to age and development.

Finally, an alternative manner of demonstrating the DBM
model has obtained a good estimate of the probability distri-
bution is to consider one-step reconstructions. Some examples
are provided in Table II. The input words where employed to
obtain a distribution over hidden units at the top level. This
distribution was then employed to obtain a distribution over
words. The words with highest probability mass are shown in
the right column.

C. Document embeddings

Document embeddings are obtained in analogous fashion
by providing the entire document word vector as input to the
DBM. By clustering document embeddings and leveraging the
activation maps within the NeuroSynth database, we are able
to study the activations associated with each cluster.

Figure [1ii] shows a subset of the 2D embeddings obtained
using t-SNE over all document embeddings. As before, k-
means clustering was employed to cluster documents accord-
ing to their associated high-dimensional representations (again
silhouette scores used to select number of clusters). It is then
possible to study the reported functional activations of all
publications within a given cluster. Following [1], this was
achieved by convolving all activations within a cluster (i.e., all
activations reported by documents in a cluster) with a 10mm
Gaussian kernel. This resulted in a mean activation map for
all documents within a given cluster. The peak activations,
together with the most frequently occurring words are shown
for six clusters in Figure [1iii]3. The activation maps highlight
key functional networks and regions, for example clusters
four and six identify the pain and motor regions respectively.
The clusters also appear to identify pathologies. For example
cluster one appears to be related to cognitive impairment and
atrophy. Furthermore, it is interesting to note that spatially
adjacent clusters share some similarities. For example, clusters
two and five both show frontal activation.

3figure produced using nilearn module [11].



Fig. 1. i) The top left panel shows the result of applying t-SNE on word embeddings obtained from the DBM model. Three regions have been highlighted are
are shown in greater detail in the remaining three panels. It can be seen that regions A and C correspond to emotion and memory related terms respectively while
region C contains terms associated with aging and development. ii) A subset of the two dimensional embedding obtained from applying t-SNE on document
embedding. iii) Activation maps (left column) are shown for several of the highlighted clusters shown in ii) together the with the most frequently occurring
terms (right column).

IV. DISCUSSION AND FUTURE WORK

In this paper we have demonstrated the use of DBMs in
modeling a text corpus composed of abstracts from neuroscien-
tific publications. The proposed DBM model is able to yield
a vector representation of both individual words as well as
entire documents. Such representations are advantageous for
many reasons, for example they can be employed to cluster
the words or documents.

Further, by combining the abstracts with the NeuroSynth
corpus, we are able to study whether the activation maps
associated with each cluster. While only exploratory results are
presented in this work, future work will look simultaneously
model both text and activations, thereby facilitating formal
inference. A further exciting application would be to lever-
age document embeddings to inform novel machine learning
applications in neuroscience, such as the recently proposed
Automated Neuroscientist [12].
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