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Abstract 

Acute myocardial infarction (AMI) and the heart failure (HF) that often results are among the 

leading causes of death and disability in the world. As such, novel strategies are required to 

protect the heart against the detrimental effects of acute ischemia/reperfusion injury (IRI), in 

order to reduce myocardial infarct (MI) size and prevent the onset of HF. The endogenous 

cardioprotective strategy of remote ischemic conditioning (RIC), in which cycles of brief 

ischemia and reperfusion are applied to a tissue or organ away from the heart, has been 

reported in experimental studies to reduce MI size in animal models of acute IRI. In the clinical 

setting, RIC can be induced by simply inflating and deflating a cuff placed on the upper arm 

or thigh to induce brief cycles of ischemia and reperfusion, a strategy which has been shown 

to reduce MI size in ST-segment elevation myocardial infarction (STEMI) patients undergoing 

primary percutaneous coronary intervention (PPCI). The results of the ongoing 

CONDI2/ERIC-PPCI trial are eagerly awaited, and will provide definitive answers with regards 

to the cardioprotective effect and clinical outcome benefits of RIC in STEMI.      

 

Introduction and background 

Ischemic heart disease is the leading cause of morbidity and mortality in the world. This 

reflects the increased prevalence of cardiovascular risk factors including cigarette smoking, 

diabetes, hypertension and hypercholesterolemia. These conditions also predispose patients 

to peripheral vascular disease, cerebrovascular disease and, renal disease, adding to disease 

complexity of the cardiovascular patient.  

Up to 25% of ST segment elevation myocardial infarcts (STEMI) are fatal (Laurie J. Lambert, 

James M. Brophy, Normand Racine, Stéphane Rinfret, Philippe L. L’Allier, Kevin A. Brown, 

Lucy J. Boothroyd, Dave Ross, Eli Segal, 2016). Survivors of the acute coronary thrombotic 

occlusion depend on timely revascularization with thrombolysis or primary percutaneous 
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coronary intervention (PPCI) to abate infarction-induced lethal arrhythmias/cardiac arrest in 

the short term. In the long term, reduced ischemic time leads to smaller infarct size. However, 

despite timely PPCI or thrombolytic therapy, there remains significant morbidity and mortality 

following STEMI. 

The ischemic insult to the myocardium is two-fold; (1) at the time of coronary occlusion; and 

(2) at the time of reperfusion secondary to reperfusion injury. Reperfusion injury can be 

responsible for up to 50% of final infarct size (Hausenloy DJ, 2013). Pump failure secondary 

to non-viable infarcted myocardium is one of the long-term sequelae of STEMI. The ensuing 

heart failure syndrome involves deleterious activation of the renin-angiotensin-aldosterone 

system and peripheral vasoconstriction, leading to sodium and water retention (with worsening 

heart failure) and left ventricular remodeling (hypertrophy, dilation and impaired cardiac 

function) in a patient already burdened with multiple morbidities as outlined. 

To reduce the risk of short and long term complications of infarction, sophisticated and efficient 

systems are in place in many countries for prompt recognition and treatment of STEMI through 

thrombolysis or PPCI. Strategies employed have included ambulance initiation of thrombolysis 

and the development of designated centers providing direct PPCI services to respective 

catchment areas, bypassing the emergency department, with reduction in “pain-to-balloon” 

and “pain-to-thrombolysis” time. However, despite these measures, morbidity and mortality 

following PPCI or thrombolytic therapy remain significant. 

Attenuating myocardial reperfusion injury, the cardiomyocyte death which occurs on 

reperfusing ischemic myocardium, is a potential therapeutic target for reducing infarct 

complications such as cardiac death and re-hospitalization for heart failure (HHF). Accessible 

and effective clinical interventions are required to address reperfusion injury and reduce 

associated complications. In this regard, remote ischemic conditioning (RIC) has been shown 

to reduce perioperative myocardial injury in patients undergoing coronary artery bypass graft 

(CABG) surgery in small studies, but the beneficial effects of RIC have not been reproduced 

in large clinical outcome studies. In contrast, RIC remains a promising cardioprotective 
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strategy in STEMI patients undergoing PPCI. In this article, we review the therapeutic potential 

for RIC as a cardioprotective strategy for reducing MI size and improving clinical outcomes 

post-PPCI.  

 

Remote ischemic conditioning – cardioprotection from a distance 

Przyklenk et al. (Przyklenk K, Bauer B, Ovize M, Kloner RA, 1993) were the first to describe 

the cardioprotective phenomenon of remote ischemic preconditioning in 1993, where 4x5 

minute cycles of occlusion and reflow to the circumflex coronary artery reduced MI size in a 

canine heart induced by 45 minute occlusion and 3 hrs reperfusion of the left anterior 

descending artery (Przyklenk K, Bauer B, Ovize M, Kloner RA, 1993). This study suggested 

that cardioprotection could be transferred from one coronary artery territory to another through 

ischemic preconditioning (Przyklenk K, Bauer B, Ovize M, Kloner RA, 1993). This concept was 

then extended to the remote organ, the kidney, by McClanahan et al., who showed that 10 

minute occlusion and reflow in the renal artery could reduce MI size induced by 30 minute 

ligation and 3 hrs reperfusion of the left main coronary artery (McClanahan TB, Nao BS, Wolke 

LJ, Martin BJ and KP, 1993). Oxman et al. demonstrated that RIC could be applied non-

invasively, using a tourniquet applied to the hindlimb (Oxman T, Arad M, Klein R, Avazov N, 

1997), a key finding in the translation of RIC into the clinical setting. 

Two key properties of RIC have facilitated its translation into the clinical setting (see Figure 1 

for time-line of translation of RIC from experimental to clinical studies):  

(1) Feasibility: In an experimental animal MI model, the RIC stimulus could be applied to the 

hind limb to protect the heart against acute IRI (Oxman T, Arad M, Klein R, Avazov N, 1997) 

(Birnbaum Y, Hale SL, 1997). The RIC stimulus can be delivered non-invasively in human 

volunteers by inflating a blood pressure cuff on the upper arm to induce cycles of brief 

ischemia-reperfusion (Kharbanda RK, Mortensen UM, 2002). Hence, most clinical studies 

have applied RIC using cycles of brief ischemia-reperfusion in the upper or lower limb (limb 

RIC).  
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(2) Flexibility: In ischemic preconditioning (IPC), the protective stimulus has to be applied 

prior to ischemia and in ischemic postconditioning (IPost), at the onset of reperfusion to the 

heart directly. RIC can be applied at any time (before, after the onset of, or at the end of 

ischemia) to a remote organ or tissue. 

 

Mechanisms underlying RIC cardioprotection 

The actual mechanistic pathways underlying RIC cardioprotection is not known but it has been 

established that a neurohormonal pathway links the distal organ or tissue to the heart. The 

pathway linking the remote organ or tissue to the heart is believed to involve the release of 

local autacoids stimulating the sensory afferent neural pathway in the remote organ or tissue 

resulting in the production of a circulating transferrable blood-borne factor(s) conferring 

cardioprotection. Current evidence suggests the factor is thermolabile and hydrophobic, and 

is between 3.5 and 30 kDa. There is likely a complex interaction of signaling pathways in 

response to RIC, linking to the regulation of various cellular functions, including the acute 

phase response, immune response, hemostasis and lipid transport (V. Sivaraman and 

Hausenloy, 2015). 

A number of candidate molecules have been suggested to be the blood‐borne cardioprotective 

mediator of RIC including opioid (Dickson EW, Blehar DJ, Carraway RE, Heard SO and K, 

2001), adenosine (Leung CH, Wang L, 2014), bradykinin (Schoemaker RG, 2000), 

erythropoietin, calcitonin gene related peptide, stromal derived factor 1‐alpha (SDF1‐α) 

(Davidson SM, Selvaraj P, 2013), hypoxia inducible factor 1‐alpha (HIF1‐α) and nanoparticles 

produced by cells called exosomes (Giricz Z, Varga ZV, 2014). Adenosine, bradykinin and 

calcitonin gene-related peptide (CGRP) may activate afferent neural pathways within the 

remote preconditioned organ to confer cardioprotection (Hausenloy DJ and Yellon DM, 2008). 

Activation of protein kinase C appears to be an important step in humoral cardioprotection in 

rats (Serejo FC, Rodrigues LF Jr, da Silva Tavares KC and AC, 2007).  
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Naloxone appears to block the cardioprotective effect of RIC in rats (Patel HH, Moore J, Hsu 

AK, 2002). Endogenous opioids generated by remote preconditioning may be a humoral factor 

conferring cardioprotection (Patel HH, Moore J, Hsu AK, 2002). It has been proposed that 

endocannabinoids generated by intestinal ischemia may activate CB2 endocannabinoid 

receptors on the myocardium in cardioprotection (Hajrasouliha AR, Tavakoli S, Ghasemi M 

and et al Sadeghipour H, 2008). Remote ischemic preconditioning (RIPC) appears to suppress 

the inflammatory response and activate an anti-inflammatory, anti-apoptotic gene transcription 

profile (Konstantinov IE, Arab S, Kharbanda RK, Li J, Cheung MM and Al, 2004) (Konstantinov 

IE, Arab S, Li J, Coles JG, Boscarino C, 2005) (Peralta C, Fernandez L, Panes J, Prats N, 

Sans M, 2001). Further investigation of relevance to cardioprotection is required. KATP 

channels of the myocardial sarcolemma and mitochondria have been implicated in IPC 

cardioprotection (Yellon DM, 2003). Ligand receptor binding at the cell surface activates signal 

transduction pathways which open mitochondrial KATP channels. The generation of 

mitochondrial reactive oxygen species then mediates cardioprotection by either activating pro-

survival kinases (Yellon DM, 2003) or inhibiting mitochondrial permeability transition pore 

(mPTP) opening (Costa AD, Jakob R, Costa CL, Andrukhiv K, West IC, 2006). ĸ-opioid agonist 

induces mPTP opening (Zhang SZ, Wang NF, Xu J, Gao Q, Lin GH, 2006). Remote rat limb 

preconditioning can mediate cardioprotection through ĸ-opioid receptor blockade (Zhang SZ, 

Wang NF, Xu J, Gao Q, Lin GH, 2006). 8-sulphophenyltheophylline (8-SPT), a non-specific 

adenosine receptor antagonist, could block the cardioprotective effect of RIC performed on 

the rabbit kidney if administered prior to preconditioning (Pell TJ, Baxter GF, Yellon DM, 1998) 

and also after preconditioning (Takaoka A, Nakae I, Mitsunami K, Yabe T, Morikawa S, 1999). 

Elevated adenosine levels in carotid artery blood of rabbits subjected to preconditioning 

suggests that myocardial adenosine receptor binding is a key step in the mechanism of 

preconditioning (Takaoka A, Nakae I, Mitsunami K, Yabe T, Morikawa S, 1999). Free radical 

scavenger was able to block the cardioprotective effect of RIC (Weinbrenner C, Schulze F, 

Sarvary L, 2004), implicating signaling reactive oxygen species as a mediator of RIC 

cardioprotection. Transection of the femoral nerve before application of the RIC stimulus 
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blocked cardioprotection (Lim SY, Yellon DM, 2010) (Steensrud T, Li J, 2010). Ding et al. 

noted that brief renal artery occlusion was associated with increased afferent renal nerve 

activity, and nerve transection also blocked RIC‐induced cardioprotection (Ding YF, Zhang 

MM, 2001). Direct stimulation of the sensory nerve of the remote organ or tissue has been 

reported to reproduce the cardioprotective effect of RIC (Dong JH, Liu YX, Zhao J, Ma HJ, 

Guo SM, 2004) (Merlocco AC, Redington KL, 2014) (Redington KL, Disenhouse T, 2013). 

Stimulation of cutaneous sensory nerves, using either topical application of capsaicin 

(Redington KL, Disenhouse T, 2012) or surgical skin incision (Ren X, Wang Y, 2004) (Gross 

GJ, Baker JE, Moore J, Falck JR, 2011), has been reported to mimic RIC cardioprotection. 

 

Clinical application of remote ischemic conditioning 

Cardiac bypass surgery as a clinical setting for cardioprotection 

The first clinical setting for RIC to be tested in was cardiac bypass surgery, in which the heart 

is subjected to a global ischemic insult when put onto cardiopulmonary bypass, followed by 

global reperfusion injury (acute IRI) when taken off cardiopulmonary bypass (Venugopal V, 

Ludman A, 2009). Direct handling of the heart, coronary embolization, and the inflammatory 

response to cardiopulmonary bypass can all contribute to perioperative myocardial injury 

(PMI)which can be quantified by measuring serum cardiac enzymes (Creatine Kinase MB 

isoenzyme, Troponin T and I) (Croal BL, Hillis GS, 2006) (Wang TK, Stewart RA, 2013), and 

can be detected as late gadolinium enhancement (LGE) on cardiovascular magnetic 

resonance imaging (CMR) (Selvanayagam JB, Porto I, 2005). The presence of PMI has been 

associated with worse clinical outcomes post-cardiac surgery (Croal BL, Hillis GS, 2006) 

(Wang TK, Stewart RA, 2013).  

The first attempt to clinically apply RIC involved only eight patients, in a study in which 

remote limb preconditioning failed to affect CK-MB in elective patients undergoing cardiac 

surgery (Gunaydin B, Cakici I, Soncul H, Kalaycioglu S, Cevik C, 2000). This study was 

underpowered; CK-MB was measured 5 minutes after declamping the aorta; cuff inflation to 
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300 mmHg was used; and an inadequate RIPC protocol was used with two cycles of 3 minute 

upper limb ischemia followed by 2 minute reperfusion (Gunaydin B, Cakici I, Soncul H, 

Kalaycioglu S, Cevik C, 2000).  

Cheung et al. were the first to successfully apply RIPC clinically (Cheung MM, Kharbanda RK, 

Konstantinov IE, Shimizu M, Frndova H, 2006). They reported that an RIPC protocol using 

four 5 minute cycles of lower limb ischemia was able to reduce myocardial injury, improve 

airway resistance, and decrease inotrope score in 17 children undergoing congenital cardiac 

surgery (Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, 2006). 

Hausenloy et al (Hausenloy DJ, Mwamure PK, Venugopal V, Harris J, Barnard M and Al, 

2007) demonstrated that RIPC, using three-5 min cycles of upper limb ischemia, was able to 

reduce myocardial injury (43% reduction in serum troponin-T released over 72 hours) in adult 

patients undergoing elective coronary artery bypass grafting surgery. RIPC using limb 

ischemia has also been reported to be cardioprotective in the setting of repair of abdominal 

aortic aneurysm (AAA) elective surgery (Ali ZA, Callaghan CJ, Lim E, Ali AA, Nouraei SA, 

2007). Ali et al demonstrated that invasive lower limb ischemia using two 10 minute episodes 

of iliac artery occlusion was able to reduce myocardial injury (27% reduction in serum troponin-

I released over the perioperative period) and preserve renal function during elective AAA 

surgical repair (Ali ZA, Callaghan CJ, Lim E, Ali AA, Nouraei SA, 2007). 

The results of several recent meta-analyses have confirmed the cardioprotective 

effects of RIC cardiac bypass surgery in attenuating perioperative myocardial injury (Haji Mohd 

Yasin NA, Herbison P, 2014) (Healy DA, Khan WA, 2014).  There have, however, been several 

neutral studies (Karuppasamy P, Chaubey S, 2011) (Young PJ, Dalley P, 2012) (Rahman IA, 

Mascaro JG, 2010) including at least one very large study (McCrindle BW, Clarizia NA, 2014).  

RIPHeart study (Meybohm et al., 2015): 1403 adults undergoing elective cardiac surgery with 

cardiopulmonary bypass under general anesthesia with intravenous propofol were 

randomized to upper-limb RIPC or sham intervention. No significant differences between the 

RIPC group and the sham-RIPC group were seen in the level of troponin, the duration of 
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mechanical ventilation, the length of stay in the intensive care unit, the length of hospital stay, 

incidence of new onset atrial fibrillation, and the incidence of postoperative delirium. 

 

ERICCA study (Hausenloy et al., 2015a): 1612 patients undergoing elective on-pump CABG 

with or without valve surgery were randomly assigned to RIPC or sham conditioning. There 

was no standardization of anesthetic management and perioperative care. The combined 

primary end point was death from cardiovascular causes, nonfatal myocardial infarction, need 

for coronary revascularization, or stroke at 12 months from randomization. RIPC was not 

shown to improve clinical outcomes in patients undergoing elective on-pump CABG with or 

without valve surgery. 

The reasons for this discrepancy may relate to: patient/clinical factors (CABG vs valve 

surgery, stable vs unstable patients); timing of the limb RIC protocol (before vs after surgical 

incision); blinding to the RIC protocol (proper vs limited blinding); the intensity of the RIC 

protocol (3 vs 4 cycles of limb RIC and inflation of cuff to 200mmHg vs 15mmHg above systolic 

blood pressure); and the presence of confounding factors. 

 

Propofol and volatile anaesthetic agents – potential confounding factors 

Attenuation of RIC has been noted when propofol anaesthesia has been used (Bautin et al., 

2014), and the use of propofol, rather than volatile anaesthesia, appears to be a common 

factor in studies that failed to protect with RIC in CABG (Heusch, 2013; Zangrillo et al., 2015). 

The American College of Cardiology Foundation and the American Heart Association Task 

Force on Practice Guidelines have recommended the use of volatile anaesthetics in surgical 

patients with increased cardiovascular risk (Fleisher et al., 2008). Whether RIC provides 

additional cardioprotection to the use of volatile anaesthetic in patients undergoing cardiac 

surgery is uncertain with clinical studies showing mixed results.  

 

Diabetes may attenuate RIC cardioprotection through neurohumoral pathways  
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Single-dose RIC does not appear to offer much cardioprotection in diabetic patients (Xu et al., 

2014; Baranyai et al., 2015; Epps and Smart, 2016; Lejay et al., 2016) and the mechanisms 

of which are not well understood. About 60% to 70% of people with diabetes mellitus will 

eventually develop the complication of diabetic peripheral neuropathy (Boulton et al., 2005). 

In many of these patients, sensory C fibers mediate the cardioprotective effect of RIC, are 

damaged (Green et al., 2010) and this may be an important contributor to the attenuation of 

RIC cardioprotection (Saxena et al., 2010; Jensen et al., 2012). It may be necessary to exclude 

patients with diabetic neuropathy or sensory neuropathy from future clinical trials in RIC. In 

addition, diabetes affects the intracellular signaling pathways that are crucial for endogenous 

cardioprotection. These include: PI3K/Akt/glycogen synthase kinase 3 beta (PI3K/Akt/GSK3-

β) signaling pathway, phosphorylation of ERK1/2 (extracellular signal-regulated protein 

kinases 1 and 2), generation and release of nitric oxide, ATP-sensitive potassium channels, 

and oxidative stress generation (Chen et al., 2012; Baumgardt et al., 2016; Wang and Zhao, 

2016). This may further contribute to the attenuation of RIC cardioprotection. 

 

PPCI as a clinical setting for RIC cardioprotection  

Timely myocardial reperfusion by PPCI is the most effective therapy for limiting MI size and 

preserving LV systolic function in patients presenting with STEMI. Restoration of coronary 

blood flow in the occluded artery results in myocardial reperfusion injury which may be  

amenable to cardioprotection by IPost and RIC (Bulluck and Hausenloy, 2015).  

In several proof-of-concept studies, limb RIC appeared to be effective when administered by 

paramedics in the ambulance (Botker HE, Kharbanda R, 2010a), on hospital arrival prior to 

PPCI (Rentoukas I, Giannopoulos G, 2010a) (White SK, Frohlich GM, 2014), and even at the 

onset of reperfusion with PPCI (Crimi G, Pica S, 2013). Please see Table 1 for summary of 

major clinical studies in STEMI patients. 

Bøtker et al. (Botker HE, Kharbanda R, 2010b) in the CONDI trial were the first group to test 

the effect of RIC in patients with STEMI. The study involved 142 STEMI patients with the 

primary endpoint being myocardial salvage index at 30 days post PPCI, measured by 
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myocardial perfusion imaging as the proportion of the area at risk salvaged by treatment. They 

found an increase in myocardial salvage index at 30 days with no difference in MI size 

measured by SPECT or peak troponin. Reduced MI size was found however in LAD STEMI.  

Crimi et al. (Crimi et al., 2013) then assessed the effect of RIC on 100 anterior STEMI patients 

and found a 20% reduction in 72 hour AUC CK–MB and a 21% reduction in myocardial 

oedema by MRI. This was the first study to show the effect of RIC given at onset of reperfusion, 

and the first to report the effect of RIC on enzymatic MI size and myocardial oedema. 

It has been observed that the beneficial effect of RIPC can be inhibited by the opioid receptor 

blocker naloxone (Patel HH, Moore J, Hsu AK, 2002). Rentoukas et al (Rentoukas I, 

Giannopoulos G, 2010b) sought to assess the enhancement of the cardioprotective effect of 

RIC by opioids by having 3 arms in their study comprising of RIC only group, RIC and morphine 

group and control group. In paired comparisons between groups, the RIC and morphine group 

performed better than the control group in terms of both ST-segment reduction and peak 

troponin I, whereas the differences in outcomes between the RIC only group and the control 

group did not reach statistical significance.   

Munk et al. (Munk et al., 2010) analysed the effect of RIC in relation to the size of the 

myocardial area at risk (AAR), infarct location, and target vessel patency in a study involving 

242 STEMI patients. Ejection fraction, LV volumes (2D and 3D echocardiography and 

myocardial perfusion imaging), and speckle-tracking global longitudinal strain were compared 

between treatment groups. Although no significant overall effect was observed, RIC seemed 

to result in modest improvement in LV function in high-risk patients prone to develop large 

myocardial infarcts. 

Sloth et al. (Sloth et al., 2014) performed a study involving 251 STEMI patients. The RIC 

intervention was 4 × 5 min inflations/deflations of cuff on upper arm in the ambulance before 

PPCI without sham control. This showed a 51% reduction in all-cause mortality, nonfatal MI, 

TIA or stroke, HHF at 3.8 years and was the first study to test effect of RIC on long-term 

outcomes after PPCI as a secondary end point. 
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Prunier et al. (Prunier et al., 2014) had a study arm involving PPCI combined with RIC and 

IPost which consisted of four cycles of 1-min inflation and 1-min deflation of the angioplasty 

balloon in their study consisting of 55 STEMI patients. RIC immediately prior to PPCI was 

shown to reduce infarct size in STEMI patients, yet combining this therapy with an IPost 

strategy did not lead to further decrease in infarct size. 

In the study by White et al in 2015 (White et al., 2015), 197 patients with ST-segment elevation 

myocardial infarction with TIMI (Thrombolysis In Myocardial Infarction) flow grade 0 were 

randomly assigned to receive RIC (four 5-min cycles of upper arm cuff inflation/deflation) or 

control (uninflated cuff placed on upper arm for 40 min) protocols prior to PPCI. This study 

aimed to determine whether RIC performed (PPCI) could reduce myocardial infarct (MI) size, 

assessed by cardiac MRI, in patients presenting with ST-segment elevation myocardial 

infarction. The primary study endpoint was MI size assessed by cardiac MRI in 83 subjects on 

days 3 to 6 after admission. RIC was found to reduce MI size by 27%, when compared with 

the MI size of control subjects. At 24 hours, high-sensitivity troponin T was lower with RIC. 

RIC also reduced the extent of myocardial oedema measured by T2-mapping CMR and 

lowered mean T2 values. This precluded the use of CMR oedema imaging to accurately 

estimate the area at risk. When using coronary angiography jeopardy scores to estimate the 

area at risk, RIC was found to significantly improve the myocardial salvage index. This study 

demonstrated that RIC, performed in patients with STEMI treated by PPCI, reduced MI size, 

increased myocardial salvage, and reduced myocardial oedema when performed prior to 

PPCI.  

Yellon et al. (Yellon et al., 2015) performed the ERIC-LYSIS study, which is the only study to 

test effect of RIC in thrombolysed patients with STEMI. 519 STEMI patients were randomised 

to 4 × 5 min inflations/deflations of cuff on upper arm at the hospital before thrombolysis or 

sham control with deflated cuff application. There was a 17% reduction in enzymatic MI size 

(CK–MB and troponin T) in the RIC group.   

In the LIPSIA CONDITIONING study by Eitel et al. (Eitel et al., 2015) involving 333 STEMI 

patients, improved myocardial salvage was seen when IPost was combined with RIC. Neither 
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IPost alone nor RIC + IPost reduced myocardial oedema. No difference in MI size, MVO, or 

6-month clinical end points (death, re-infarction, and heart failure at 6 months) were seen.  

Renal outcomes were assessed by Yamanaka et al. (Yamanaka et al., 2015) in a 94-STEMI 

patient study with the primary endpoint being incidence of contrast induced-AKI after 

administration of contrast medium. The odds ratio of CI-AKI in patients who received RIPC 

was 0.18 (95% confidence interval: 0.05-0.64; p=0.008). Lower incidence of ventricular 

arrhythmia was also noted in the RIC group within 24 hours of RIC.  

The study by Verouhis et al. (Verouhis et al., 2016) has been the only neutral study of RIC in 

STEMI. The use of a non-standard RIC protocol comprising of variable numbers of RIC cycles 

(as many as 7-9) were used and may have contributed to the neutral results. The primary 

endpoint of the study was infarct size expressed as myocardial salvage index determined by 

CMR on days 4-7 after PCI. There was no significant difference in myocardial salvage index 

between the RIPerC and PCI group. 

Liu et al. (Liu et al., 2016) performed the first study to assess the effect of RIC in STEMI 

patients through the use of CMR to detect early microvascular obstruction. The primary study 

end point was early microvascular obstruction measured by CMR. There was a significant 

decrease in early microvascular obstruction as assessed by CMR in the RIC group.  

Most recently, Gaspar et al found that RIC administered prior to PPCI improved clinical 

outcomes following STEMI with reduced rates of HHF (Gaspar et al., 2018). This is the first 

prospectively designed study to investigate the effect of RIC on clinical outcomes following 

STEMI as primary endpoint. RIC was shown to be beneficial in a combined clinical endpoint 

of cardiac mortality and hospitalisation for HF. Improved EF recovery was also documented 

in patients with impaired LV function. In-hospital heart failure risk and need for diuretics, 

inotropes and/or intra-aortic balloon pump were reduced in RIC group.   

In a large European multicentre study, the CONDI2/ERIC-PPCI trial (ClinicalTrials.gov 

Identifier: NCT02342522) is investigating, whether RIC initiated prior to PPCI can reduce the 

rates of cardiac death and hospitalisation for heart failure at 12 months as the primary 

endpoint. It is a prospective, randomized-controlled trial of 5200 STEMI patients undergoing 
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PPCI. Patients have been randomized to either RIC or sham control. Secondary endpoints 

include: (i) Rates of cardiac death and heart failure hospitalization at 30 days, (ii) Rates of all-

cause death, coronary revascularization, re-infarction, stroke at 30 days and at 12 months, (iii) 

TIMI flow post-PPCI, (iv) ST-segment resolution on ECG taken at 90 minutes, (v) Enzymatic 

MI size as assessed from a 48 h area-under-the-curve (AUC) high-sensitive Troponin-T 

(hsTrop-T) using blood samples collected at time 0, 6, 12, 24, and 48 hours in a sub-study, 

(vi) MI size as measured by cardiac magnetic resonance (CMR) scan performed at 6 months 

in a sub-study. It is well established that RIC can reduce MI size in STEMI patients who have 

received PPCI. It is not known whether this beneficial effect translates to improved clinical 

outcomes. The results of the CONDI2/ERIC-PPCI study, which will be available in Summer 

2019, will establish whether limb RIC, as a non-invasive low-cost intervention, can improve 

long-term clinical outcomes in STEMI patients treated with PPCI. 

 

Challenges and future directions 

Several post-hoc analyses of RIC in STEMI studies have shed further insights. In the post-

hoc analysis by Pryds et al. (Pryds et al., 2016a) assessing the influence of pre-infarction 

angina and coronary collateral blood flow (CCBF) on the effectiveness of RIC in STEMI 

patients, pre-infarction angina was found not to modify RIC efficacy in STEMI patients 

undergoing PPCI. CCBF to the infarct-related artery seemed to affect the cardioprotective 

efficacy of RIC, with mean myocardial salvage index (MSI) being increased in patients with 

CCBF versus without CCBF in the RIC with PPCI group. Pryds et al. (Pryds et al., 2016b) also 

found, in a separate post-hoc analysis, that RIC as adjunct to PPCI attenuated the detrimental 

effect of healthcare system delay on myocardial salvage in patients with STEMI. In patients 

with healthcare system delay >120 min, RIC with PPCI increased median MSI compared with 

PPCI alone, suggesting that the cardioprotective effect of RIC increases with the duration of 

ischemia. Sloth et al. (Sloth et al., 2015) found no significant difference in the effectiveness of 

RIC in subgroups of cardiovascular risk factors, lipid and glucose levels, and medication use 
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in their post-hoc analysis. Sloth et al. (Sloth et al., 2016) also performed a post-hoc analysis 

addressing the issue of cost-effectiveness of RIC in STEMI patients. They found that after 4 

years of follow-up, mean cumulative cardiovascular medical care costs were lower in the RIC 

group than in the control group, while mean major adverse cardiac and cerebrovascular event-

free survival time was 0.30 years higher in the RIC than in the control group. These results 

suggest that RIC in STEMI appears to be a cost-effective treatment strategy in patients with 

STEMI. 

 

Daily RIC following STEMI  

Chronic renal failure patients undergoing haemodialysis are subjected to repeated episodes 

of acute myocardial ischemia resulting in myocardial stunning and chronic LV systolic 

impairment (Crowley LE, 2013). Limb RIC has been reported to attenuate ST-segment 

depression and prevent myocardial stunning in these patients (Crowley LE, 2013).  

One experimental study has demonstrated that performing limb RIC daily for a period of 28 

days prevented adverse post-MI LV remodeling in the rat heart (Wei M, Xin P, 2011). This 

approach has been tested in the clinical setting in two studies.  

DREAM (Vanezis et al., 2018): This trial assessed the role of daily RIC in improving left 

ventricular ejection fraction (LVEF) recovery in patients with reduced LVEF (<45%) after 

STEMI treated with PPCI. Patients were recruited from four UK hospitals and randomised to 

receive either 4 weeks of daily RIC or sham conditioning commencing on day 3 post P-PCI. 

The primary endpoint was the improvement in LVEF over 4 months assessed by cardiac MRI. 

73 patients (38 cases, 35 controls) completed the study. There was no difference in the 

improvement in LVEF over 4 months between the treatment and control groups. No 

differences were seen in the secondary outcome measures of changes in infarct size and left 

ventricular end-diastolic and systolic volumes, major adverse cardiac and cerebral events, 

mean Kansas City Cardiomyopathy Questionnaire score and change in N-terminal pro-brain 

natriuretic peptide levels. Daily RIC starting on day 3 and continued for 4 weeks following P-
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PCI for STEMI did not improve LVEF as assessed by CMR after 4 months when compared 

with a matched control group. The failure to begin RIC immediately prior to PPCI may have 

contributed to the neutral results of this study, and in this regard, the ongoing CRIC-RCT trial 

(NCT01817114) which is initiating RIC prior to PPCI and administering RIC daily for one 

month may provide further insights.   

 

Summary and Conclusions 

RIC provides an easily applied and very effective endogenous strategy for reducing MI size 

following acute IRI. Despite extensive studies, the actual mechanistic pathway underlying RIC 

cardioprotection remains unclear - although a neurohormonal pathway is believed to be 

critical, the exact interplay between the neural and hormonal pathway is yet to be determined, 

and the identity of the cardioprotective humoral factors remain unknown. RIC has been 

successfully tested in a number of clinical settings including CABG surgery, elective PCI and 

more recently and most promisingly in STEMI patients undergoing PPCI. The translation of 

RIC into patient benefit has been elusive for CABG surgery patients, and this failure may be 

attributed to insufficient information on the optimum RIC protocol, the effects of co-medications 

of RIC cardioprotection such as propofol anesthesia and use of nitrates, and the presence of 

age and co-morbidities such as diabetes. RIC has most promise for STEMI patients 

undergoing PPCI, and the results of the CONDI2/PPCI study which are due in Summer 2019 

are eagerly awaited, and will provide the definitive answer as to whether RIC can improve 

clinical outcomes and change clinical practice.    
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Table 1 - Major clinical studies of RIC in STEMI  

Study and Year Number 
of 
patients  

Type of 
patients 

RIC protocol  Main outcomes  Notes  

Bøtker et al. (Botker 

HE, Kharbanda R, 
2010b) CONDI 

(2010)   

142  All STEMI 4 × 5 min 
inflations/deflations of cuff 
on upper arm in the 
ambulance before PPCI  
Sham control: none  
 

Primary endpoint: Myocardial salvage 
index at 30 days post PPCI, measured 
by myocardial perfusion imaging as the 
proportion of the area at risk salvaged by 
treatment 
Increase in myocardial salvage index at 
30 days  
No difference in MI size (SPECT or peak 
troponin) 

First study to test effect of RIC in patients with 
STEMI  
Reduced MI size in LAD STEMI  
 

Munk et al. (Munk et 

al., 2010)  

(2010) 

242 All STEMI 4 × 5 min 
inflations/deflations of cuff 
on upper arm in the 
ambulance before PPCI  
Sham control: none  
 

Ejection fraction, LV volumes (2D and 
3D echocardiography and myocardial 
perfusion imaging), and speckle-tracking 
global longitudinal strain were compared 
between treatment groups. 
Although no significant overall effect was 
observed, RIC seemed to result in 
modest improvement in LV function in 
high-risk patients prone to develop large 
myocardial infarcts 

The effect of RIC was analysed in relation to 
the size of the myocardial area at risk (AAR), 
infarct location, and target vessel patency. 

Rentoukas et al 

(Rentoukas I, 
Giannopoulos G, 
2010b)  

(2010) 

93  All STEMI 3 × 4 min 
inflations/deflations of cuff 
on upper arm at the 
hospital before PPCI  
Sham control: 3 × 5 min 
low-pressure 
inflations/deflations  

Better ST-segment resolution and lower 
peak troponin I  
Additive effects with morphine  

Combined effects of RIC with morphine  
 

Crimi et al. (Crimi et 

al., 2013)  

(2013)   

100  Anterior 
STEMI only 

3 × 5 min 
inflations/deflation of cuff 
on thigh at onset of 
reperfusion  
Sham control: none  

20% reduction in 72 h AUC CK–MB  
21% reduction in myocardial oedema by 
MRI  
 

First study to show effect of RIC given at 
onset of reperfusion, and first to report effect 
of RIC on enzymatic MI size and myocardial 
oedema  

Sloth et al. (Sloth et 

al., 2014)  
251  All STEMI 4 × 5 min 

inflations/deflations of cuff 
on upper arm in the 
ambulance before PPCI  

51% reduction in all-cause mortality, 
nonfatal MI, TIA or stroke, HHF at 3.8 
years  
 

First study to test effect of RIC on long-term 
outcomes after PPCI (secondary end point)  
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(2014) 

Sham control: none 

Prunier et al. (Prunier 

et al., 2014) 

(2014) 

55 All STEMI 3 × 5 min 
inflations/deflations of cuff 
on upper arm in before 
PPCI  
Sham control: none 

RIC immediately prior to PPCI was 
shown to reduce infarct size in STEMI 
patients, yet combining this therapy with 
an IPost strategy did not lead to further 
decrease in infarct size. 

Study had arm involving PPCI combined with 
RIC and IPost which consisted of four cycles 
of 1-min inflation and 1-min deflation of the 
angioplasty balloon. 

White et al. (White et 

al., 2015) 
ERIC-STEMI 

(2015) 

83  All STEMI 4 × 5 min 
inflations/deflations of cuff 
on upper arm at the 
hospital before PPCI  
Sham control: deflated 
cuff  

27% reduction in MI size by MRI  
19% reduction in myocardial oedema by 
MRI  
 

First study to show effect of RIC given before 
PPCI on MI size and myocardial oedema by 
MRI  
 

Yellon et al. (Yellon et 

al., 2015) 
ERIC-LYSIS  

(2015) 

519  All STEMI 4 × 5 min 
inflations/deflations of cuff 
on upper arm at the 
hospital before 
thrombolysis  
Sham control: deflated 
cuff  

17% reduction in enzymatic MI size (CK–
MB and troponin T)  

Only study to test effect of RIC in 
thrombolysed patients with STEMI  
 

Eitel et al. (Eitel et al., 

2015)  

LIPSIA 
CONDITIONING 

(2015)    

333  All STEMI 4 × 5 min 
inflations/deflations of cuff 
on upper arm at the 
hospital before PPCI plus 
IPost  
Sham control: none  
 

Increased myocardial salvage with RIC + 
IPost versus control (49 versus 40)  
No difference in MI size, MVO, or 
6-month clinical end points (death, re-
infarction, and heart failure at 6 months)  
 

Improved myocardial salvage when IPost 
combined with RIC  
Neither IPost alone nor RIC + IPost reduce 
myocardial oedema  
 

Yamanaka et al. 

(Yamanaka et al., 
2015) 

(2015) 

94 All STEMI 3 × 5 min 
inflations/deflations of cuff 
on upper arm at the 
hospital before PPCI 
Sham control: Yes 

Primary endpoint: Incidence of contrast 
induced-AKI after administration of 
contrast medium 
Odds ratio of CI-AKI in patients who 
received RIPC was 0.18 (95% 
confidence interval: 0.05-0.64; p=0.008) 

Lower incidence of ventricular arrhythmia was 
noted in the RIC group within 24 hours of RIC 

Verouhis et al. 

(Verouhis et al., 2016)   

(2016) 

93 Anterior 
STEMI only 

5-minute cycles of 
inflation and deflation of a 
blood pressure cuff 
around the left thigh which 
was continued throughout 
the PCI procedure 
Sham control: Yes 

The primary endpoint of the study was 
infarct size expressed as myocardial 
salvage index determined by CMR on 
days 4-7 after PCI. 
There was no significant difference in 
myocardial salvage index between the 
RIPerC and PCI group 

This study has been the only neutral study 
RIC STEMI study. The use of a non-standard 
RIC protocol comprising variable numbers of 
RIC cycles (as many as 7-9) were used and 
may have contributed to the neutral results.  
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Liu et al. (Liu et al., 

2016)  

(2016) 

119 All STEMI 4 × 5 min inflations to 200 
mmHg /deflations of cuff 
on upper arm in the 
ambulance before PPCI  
Sham control: none 

The primary study end point was early 
microvascular obstruction measured by 
CMR. 
There was a significant decrease in early 
microvascular obstruction as assessed 
by CMR in the RIC group 

This was the first study to assess the effect of 
RIC in STEMI patients through the use of 
CMR to detect early microvascular 
obstruction. 

Gaspar et al. (Gaspar 

et al., 2018)  

(2018) 

448 All STEMI 3 × 5 min 
inflations/deflations of cuff 
on upper arm in before 
PPCI  
Sham control: Yes 

RIC was shown to be beneficial in a 
combined clinical endpoint of cardiac 
mortality and hospitalisation for HF. 
Improved EF recovery was also 
documented in patients with impaired LV 
function. In-hospital heart failure risk and 
need for diuretics, inotropes and/or intra-
aortic balloon pump were reduced in RIC 
group  

First prospectively designed study to 
investigate the effect of RIC on clinical 
outcomes following STEMI as primary 
endpoint.   

CONDI-2/ ERIC-PPCI 
(Hausenloy et al., 
2015b) 

5,400 All STEMI 4 × 5 min 
inflations/deflations of cuff 
on upper arm before PPCI  

Sham control: none or 
simulated  

Ongoing study  

Primary end point of cardiac death and 
HHF at 12 months  

Collaboration between Denmark, Serbia, 
Spain, and the UK  

First study to test effect of RIC on long-term 
clinical outcomes as primary end point  
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Figure 1. This figure shows the time-line of translation of RIC from experimental to clinical 

studies   

 

  


