
Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License  
(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of  

the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages  
(https://us.sagepub.com/en-us/nam/open-access-at-sage).

https://doi.org/10.1177/2398212818794805

Brain and Neuroscience Advances
Volume 2: 1–8

© The Author(s) 2018
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/2398212818794805
journals.sagepub.com/home/bna

Introduction: the importance of Ca2+ 
entry for function of excitable cells
It has been clear from the time of Sydney Ringer, working at 
University College London, that calcium ions (Ca2+) are essen-
tial for heart muscle contraction (Ringer, 1883). However, the 
paramount importance of Na+ and K+ for the activation and inac-
tivation underlying action potential generation led to Ca2+ per-
meation being little studied for many years. In the 1950’s Paul 
Fatt, working at University College London with both Katz and 
Ginsborg, found that Ca2+ supports action potential-like spikes in 
crustacean muscle (Fatt and Ginsborg, 1958; Fatt and Katz, 
1953), and this was also found to be true in barnacle muscle 
(Hagiwara and Takahashi, 1967). When it was also identified that 
Ca2+ was essential for neurotransmitter release (Katz and Miledi, 
1967), it became clear that calcium ion entry through membranes 
was key to many important processes in nerves as well as muscle. 
These key players in the field are pictured in Figure 1(a)–(d).

Identification of multiple subtypes of 
calcium channel
A major contribution to the understanding of calcium channel 
function then came from Harald Reuter (Figure 1(e)), who 

showed, using microelectrodes, that calcium currents were pre-
sent in voltage-clamped cardiac Purkinje fibres (Reuter, 1967). 
The advent of the gigaseal patch-clamp method for recording 
currents through the membrane of single cells (Hamill et  al., 
1981) then allowed single calcium channels to be resolved 
(Fenwick et al., 1982).

The discovery and use of verapamil, and the 1,4-dihydropyri-
dines (DHPs) including nifedipine, as antihypertensive drugs 
represented a very important advance (Fleckenstein, 1983) 
(Figure 1(f)). Their target was found to be inhibition of cardio-
vascular calcium channels (Lee and Tsien, 1983); thus, the term 
calcium channel blocker or antagonist was coined. Related drugs 
were found to have agonist effects (Schramm et  al., 1983), to 
increase cardiac calcium conductance and prolong single channel 
openings (Hess et  al., 1984). Both the agonist and antagonist 
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drugs gave researchers important tools to dissect calcium channel 
function in a variety of tissues.

The first suggestion that there was more than one component 
to calcium currents in different tissues came from the group of 
Hagiwara et al. (1975), followed by evidence of low threshold 
Ca2+ spikes in mammalian central neurons (Llinás and Yarom, 
1981), and distinct low voltage-activated currents in peripheral 
dorsal root ganglion neurons (Carbone and Lux, 1984; Fedulova 
et al., 1985; Nilius et al., 1985).

Identification of N-, P- and R-type 
calcium currents as distinct from 
L-type channels
In dorsal root ganglion (DRG) neurons, it was then found that 
there were three calcium current components. The DHP-sensitive 
current was designated L-type (for long-lasting, which also had a 
large singe channel conductance) and the low-voltage activated 
component was termed T (for transient, which also had a Tiny 
single channel conductance). A third component, which was 

high-voltage activated but DHP-insensitive, was termed N-type 
(neither L nor T, and also exclusively Neuronal) (Fox et al., 1987; 
Nowycky et al., 1985) (Figure 2(a)). A blocker of this component 
was not long in appearing. A toxin component from the marine 
snail Conus geographus, ω-conotoxin GVIA, first thought to 
block both neuronal L- and N-type calcium currents (McCleskey 
et al., 1987), was later found to be highly selective for N-type 
channels (Boland et al., 1994; Plummer et al., 1989). Using this 
pharmacological blocker, N-type calcium currents were then 
shown to play a key role in neurotransmitter release (Hirning 
et al., 1988).

The importance of pharmacological tools in the discovery of 
calcium channel subtypes became even more evident when it was 
found that the calcium current in Purkinje neurons was not 
blocked by DHPs or by ω-conotoxin GVIA. This current was 
called P-type (for Purkinje) (Llinás et al., 1989). The same group 
used a polyamine toxin (FTX) from the American funnel web 
spider to block Purkinje cell Ca2+ currents, but FTX was not par-
ticularly selective for P-type channels, whereas a peptide toxin 
component from the same spider (ω-agatoxin IVA) was more 
selective, blocking fully the calcium current in Purkinje neurons 
(Mintz et al., 1992). This toxin also inhibited a component of the 
calcium current in cerebellar granule cells (Pearson et al., 1995; 

Figure 1.  Some key figures in the early discovery of calcium 
channels and their pharmacology: (a) Bernard Katz, (b) Susumu 
Hagiwara, (c) Paul Fatt, (d) Bernard Ginsborg (right) demonstrating 
equipment similar to that used to record crustacean muscle action 
potentials, (e) Harald Reuter and (f) Albrecht Fleckenstein. (c) 
is taken from a photograph (1978) by Martin Rosenberg, the 
Physiological Society; reproduced with permission; (a), (b) and (f) 
are reproduced from with permission from Richard W. Tsien (Barrett 
and Tsien, 2004); (d) is reproduced with permission from Bernard 
Ginsborg, who died this year (1925–2018).

Figure 2.  Single calcium channels with different properties, and 
topology of the channels. (a) Identification of a third component 
of voltage-gated calcium channels (N-type) from the biophysical 
properties of single channel currents observed in cell-attached patches 
on dorsal root ganglion neurons. Redrawn from Nowycky  
et al. (1985). TP: test potential; HP: holding potential. Reproduced 
with thanks to Richard W. Tsien. (b) Diagram of α1 subunit topology 
and calcium channel subunit structure, also showing α2δ (purple) 
and β (blue). ϒ1 is only present in skeletal muscle calcium channel 
complexes. S4 voltage sensors in each α1 domain are represented 
by red transmembrane segments. Yellow denotes S5 and S6 pore 
transmembrane segments in each domain.
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Randall and Tsien, 1995), which was initially termed Q-type as it 
had different biophysical properties from that in Purkinje neu-
rons (Randall and Tsien, 1995); however, these are usually now 
called PQ currents. That study also identified an additional resist-
ant current component in cerebellar granule cells which was des-
ignated R-type (Randall and Tsien, 1995), and a similar novel 
component was also identified in bullfrog sympathetic neurons 
(Elmslie et al., 1994). A tarantula toxin, SNX-482, was identified 
to block this component (Newcomb et al., 1998), but it has sub-
sequently been found also to block other channels (Kimm and 
Bean, 2014), complicating interpretation of physiological experi-
ments using SNX-482.

Purification and molecular 
identification of the calcium channel 
subtypes
Receptors for the DHP calcium antagonists were identified using 
[3H]-nitrendipine to guide purification. They were found to be 
highly concentrated in the t-tubules of skeletal muscle (Fosset 
et al., 1983), where they were shown to be responsible for charge 
movement and excitation-contraction coupling (Rios and Brum, 
1987). Purification studies identified the skeletal muscle DHP 
receptor to be a complex of five polypeptides in approximately 
equal amounts, and therefore considered to be subunits. They 
were termed, in decreasing order of size, the α1, α2, β, ϒ and δ 
subunits (Hosey et al., 1987; Takahashi et al., 1987). The 175 kDa 
α1 subunit was tentatively identified as the pore-forming subunit 
of the channel, since it bound radiolabelled DHP. The associated 
proteins were termed auxiliary or accessory subunits.

Peptide sequence from the purified DHP receptor protein 
enabled the identification of probes and subsequent cloning of 
the skeletal muscle calcium channel (Ellis et al., 1988; Tanabe 
et  al., 1987). The hydropathy plot indicated that it was a 24 
transmembrane spanning protein, with four homologous 
repeated domains joined by intracellular linkers, similar to 
recently cloned voltage-gated Na+ channel (Noda et al., 1984) 
(Figure 2(b)). This protein was termed α1S (for skeletal muscle) 
and was indisputably shown to encode a calcium channel by 
injection of its cDNA into dysgenic skeletal myotubes which 
lack the mRNA for α1S (Tanabe et  al., 1988). This restored 
excitation–contraction coupling, as well as the very slow cal-
cium current observed in native skeletal muscle.

The cardiac L-type calcium channel, termed α1C, was then 
cloned by homology with α1S (Mikami et al., 1989). Prior to 
this time, the unique permeation selectivity of the voltage-gated 
calcium channels for Ca2+ had already been attributed to high 
affinity Ca2+ binding in the pore of the channel (Hess and Tsien, 
1984), and this was borne out by identification of key glutamate 
residues in the pore ‘P loops’ (Yang et al., 1993), whose acidic 
side chains were surmised to participate in Ca (α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid)2+ binding and 
permeation.

Several brain calcium channels were then cloned and identi-
fied to encode P- and N-type channels (Mori et al., 1991; Snutch 
et al., 1990; Starr et al., 1991). These were termed α1A and α1B, 
respectively. Another channel was cloned and dubbed α1E 
(Soong et al., 1993). It was first classified as a low-voltage acti-
vated T-type channel, but it soon became clear that it did not have 

the expected properties, and it is now considered to encode 
R-type channels. Genes for three T-type channels were later 
cloned by Perez-Reyes and colleagues (Cribbs et al., 1998; Lee 
et al., 1999; Perez-Reyes et al., 1998). These were termed α1G, H 
and I. In addition, two further L-type channels were identified. 
The first, cloned from brain, was called α1D (Williams et  al., 
1992) and was shown to have distinctive biophysical properties, 
being lower voltage-activated than α1C (Koschak et al., 2001; Xu 
and Lipscombe, 2001). Finally, a fourth L-type channel was iden-
tified because of its role in a genetic form of night blindness 
(Bech et al., 1998; Strom et al., 1998), and this was also shown to 
have properties distinguishing it from the other L-type channels 
(Koschak et al., 2003).

Following the cloning and initial study of all the calcium 
channel α1 subunits identified in the mammalian genome, a 
rationalised nomenclature was adopted in 2000, grouping the α1 
subunits into CaV1 (L-type), CaV2 (non-L-type) and CaV3 
(T-type) (Ertel et al., 2000) (Table 1). Since that time the distinc-
tive properties of multiple splice variants of these channels have 
also been recognised.

Importance of auxiliary subunits
The auxiliary β subunit from skeletal muscle was the first to be 
cloned (Ruth et  al., 1989) (Figure 2(b)). It was subsequently 
termed β1a, after three further isoforms (β2, β3 and β4) as well as 
multiple splice variants were identified by homology. β1b is the 
non-muscle splice variant of β1 (Pragnell et al., 1991), and β2a is 
a palmitoylated β2 splice variant, giving it distinctive properties 
(Qin et  al., 1998). The importance of these β subunits to the 
expression of the CaV1 and CaV2 channels was clear from anti-
sense knockdown studies in native tissues and early expression 
studies (Berrow et  al., 1995; Qin et  al., 1998). In contrast, the 
CaV3 channels do not appear to have any obligate auxiliary 
subunits.

When the auxiliary α2δ subunit was cloned, it was realised that 
α2 and δ are encoded by the same gene and form a pre-protein, 
which is then proteolytically cleaved, but the α2 and δ proteins 
remain associated by pre-formed disulphide bonding (De Jongh 
et al., 1990; Jay et al., 1991). Its proteolytic cleavage has recently 
been shown to be essential for α2δ function (Kadurin et al., 2016). 
The skeletal muscle α2δ was subsequently termed α2δ-1, when 
three further mammalian isoforms were identified: α2δ-2 (Barclay 
et al., 2001; Gao et al., 2000), α2δ-3 and α2δ-4 (Qin et al., 2002). 
The muscle α2δ subunit was first described as a transmembrane 
protein, but they have subsequently been shown to be glycosyl-
phosphatidylinositol (GPI)-anchored into the outer leaflet of the 
plasma membrane (Davies et  al., 2010) (Figure 2(b)). The α2δ 
subunit was predicted to contain a von Willebrand factor A (VWA) 
domain, which was found to be essential for trafficking, both of 
α2δ itself, and for its effect on the α1 subunits (Canti et al., 2005; 
Cassidy et al., 2014; Hoppa et al., 2012).

The skeletal muscle calcium channel complex also contains a 
ϒ subunit, now called ϒ1 (Takahashi et al., 1987) (Figure 2(b)), 
but ϒ is not associated with other calcium channels, and further 
members of this ‘ϒ subunit’ family are now known to be traffick-
ing proteins that modulate the function of AMPA (α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid) glutamate receptors, 
rather than voltage-gated calcium channel subunits (Tomita et al., 
2003). The roles of the different calcium channel auxiliary 
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subunits have been more extensively reviewed recently (Dolphin, 
2012).

Elucidation of physiological channel 
function from knockout mouse 
studies and genetic mutations
Several spontaneously arising mouse loss-of-function mutants 
were identified which gave important clues as to the function of 
the channel subunits. This was particularly true for CaV2.1, β4 
and α2δ-2 which are strongly expressed in cerebellum, and whose 
mutation produced obvious ataxias (Barclay et al., 2001; Burgess 
et al., 1997; Fletcher et al., 1996). Subsequent targeted knockouts 
gave similar phenotypes. A surprise came with the knockout of 
CaV1.3, both in mice and in a homozygous human mutation, in 
whom the main phenotype was deafness and sino-atrial node 
dysfunction (Baig et al., 2011). Furthermore CaV1.4 was identi-
fied from its role in a retinal disease (Bech-Hansen et al., 1998; 
Strom et al., 1998), and the knockout mouse has a similar pheno-
type (Mansergh et al., 2005). Knockout of CaV2.2 resulted in a 
diminution of neuropathic pain responses, reinforcing its impor-
tance in primary afferent neurotransmission (Saegusa et  al., 
2001). Similarly, α2δ-1 knockout delayed the onset of mechani-
cal hyperalgesia following neuropathic injury (Patel et al., 2013) 
and α2δ-3 has a role in hearing (Pirone et al., 2014), and in the 
central control of pain (Neely et al., 2010).

Structural studies
The first components of the calcium channel complex to be ame-
nable to structural studies were the β subunits, which contain two 
conserved interacting domains (SH3 and guanylate kinase-like), 
the latter binding to the linker between domains I and II of the 
channels (Chen et  al., 2004; Opatowsky et  al., 2004; Pragnell 
et al., 1994; Richards et al., 2004; Van Petegem et al., 2004).

The first crystal structure for a calcium-selective voltage-
gated channel was obtained using a mutant form of a bacterial 
sodium channel homolog, NaVAb, a single domain channel 
which forms homo-tetramers (Payandeh et al., 2011). This was 
mutated so that the pore became Ca2+-selective, forming CaVAb. 
This structure has provided multiple insights, including 

confirmation of the Ca2+ permeation process (Tang et al., 2014). 
Remarkably, this channel was sensitive to calcium channel antag-
onists, yielding further important insight into the binding and 
mechanism of action of these drugs (Tang et al., 2016). For mam-
malian calcium channel complexes, although low-resolution sin-
gle particle electron microscopic structures were published 
previously (Serysheva et al., 2002; Walsh et al., 2009; Wolf et al., 
2003), major advances in cryo-electron microscopy were needed 
before a detailed structure of the skeletal muscle calcium channel 
was produced, very beautifully elucidating details of the pore and 
the subunit arrangement (Wu et al., 2016). GPI-anchoring of α2δ 
(Davies et al., 2010), and interaction of the α1 subunit with the 
VWA and Cache domains (which have similarity to bacterial 
chemotaxis domains) of α2δ (Canti et al., 2005; Cassidy et al., 
2014), were confirmed in the structure (Wu et al., 2016).

Calcium channel modulation
Only two canonical second messenger modulation pathways will 
be considered here, for reasons of space: inhibitory modulation 
of neuronal calcium channels by G-proteins, and cyclic AMP-
dependent phosphorylation, mediating enhancement of L-type 
channels. Many other pathways also deserve mention, including 
Ca2+-calmodulin control of Ca2+-dependent inactivation and 
facilitation of L-type and P-type channels, studied extensively by 
the late David Yue (Dick et al., 2008; Peterson et al., 1999).

G-protein modulation

Voltage-dependent activation of neuronal calcium channels is 
required for neurotransmitter release, and this process can be 
inhibited by a range of modulatory neurotransmitters coupled to 
seven-transmembrane receptors (Dolphin, 1982; Jessell and 
Iversen, 1977; Peng and Frank, 1989), leading to the view that 
inhibitory modulation of the calcium channel-mediated compo-
nent of the presynaptic action potential underpins receptor-
mediated presynaptic inhibition (Dolphin et  al., 1986; Dunlap 
and Fischbach, 1978; Ikeda and Schofield, 1989) (Figure 3(a)). 
Modulation of neurotransmitter release was found to be medi-
ated by a pertussis toxin-sensitive GTP-binding protein, of the 
Gi/Go family (Dolphin and Prestwich, 1985). The inhibitory 

Table 1.  Subtypes of calcium channel.

Activation voltage Functional 
nomenclature

Channel α1 
subunit

CaV nomenclature Main function

(High) L a1S 1.1 Skeletal muscle voltage sensor
High L a1C 1.2 Cardiac, smooth muscle function
Medium L a1D 1.3 Hearing, sino-atrial node function
Medium L a1F 1.4 Retinal neurotransmission
High PQ a1A 2.1 Synaptic transmission in CNS, motor nerves and elsewhere
High N a1B 2.2 Synaptic transmission in PNS (and CNS, especially early in development)
Medium R a1E 2.3 Present in some neurons and synapses
Low T a1G 3.1

Neuronal excitability, pacemaker activity, subthreshold oscillationsLow T a1H 3.2
Low T a1I 3.3

PNS: peripheral nervous system; CNS: central nervous system.
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modulation of neuronal calcium currents was subsequently also 
identified to involve these G-proteins (Scott and Dolphin, 1986; 
Holz et al., 1986) (Figure 3(c)). Using both native and cloned 
CaV2 channels, the modulation was subsequently shown to be a 
direct membrane-delimited effect of Gβϒ subunits (Herlitze 
et  al., 1996; Ikeda, 1996), mediated by the channel I-II linker 
(Bourinet et  al., 1996) and its intracellular N-terminus (Page 
et al., 1998). The characteristic voltage-dependence of the inhi-
bition, which means that inhibition is lost with large or repeated 
depolarisations, was shown to require participation of the cal-
cium channel β subunit (Meir et al., 2000).

Cyclic AMP-dependent phosphorylation

Another key example of second messenger modulation is provided 
by L-type calcium channels, which are potentiated by β-adrenergic 
receptor activation, via a cyclic AMP-dependent mechanism 
(Cachelin et al., 1983; Reuter, 1983). In heart, this effect is medi-
ated by β1-adrenergic receptors and forms one of the main compo-
nents of the fight-or-flight response. However, it has been difficult 
to reproduce when cloned CaV1.2 calcium channels are expressed, 
for example, in HEK-293 cells, suggesting it is more complex than 
simple channel phosphorylation, and indeed, the role of the several 
protein kinase A substrate serines in cardiac CaV1.2 function is  
still being determined (Lemke et  al., 2008; Yang et  al., 2016). 

Furthermore, the response to β-adrenergic stimulation may involve 
a proteolytically cleaved C-terminal fragment of the endogenous 
CaV1.2 channels (Fu et al., 2013; Fuller et al., 2010). Perhaps sur-
prisingly, there appears to be a somewhat different basis for the 
spatially restricted stimulation observed in hippocampal neurons 
following activation by β2-adrenergic receptors of neuronal 
CaV1.2 channels (Qian et al., 2017).

Future research
The selective pharmacology that has been so important for dis-
secting out the functions of different calcium channels is still 
incomplete. Although a selective inhibitor of the T-type cal-
cium channels exists (Dreyfus et al., 2010), it does not differ-
entiate between the CaV3 channels. Similarly, there are 
currently no selective inhibitors of the different CaV1 channels. 
Such inhibitors that would be able to differentiate between 
these very similar channels could have important therapeutic 
possibilities. For example, selective inhibition of CaV3.2 could 
be of therapeutic benefit in certain types of pain (Marger et al., 
2011), and selective inhibitors of CaV1.3 have potential for 
therapeutic use in Parkinson’s disease and other disorders 
(Striessnig et  al., 2015). Furthermore, although ω-conotoxin 
GVIA is a selective blocker of N-type channels and a related 
compound is licenced for use intrathecally in some chronic 
pain conditions (Miljanich, 2004), no small molecule inhibi-
tors of N-type channels have yet been shown to be effective in 
clinical trials for chronic pain.

Future challenges include a full understanding of how par-
ticular calcium channels are trafficked into precise subcellular 
domains, for example, how some channels are targeted to den-
drites (Hall et al., 2013), while others are directed to presynaptic 
active zones to mediate neurotransmitter release (Kaeser et al., 
2011). Furthermore, calcium channels have been found to inter-
act, directly or indirectly, with multiple scaffolding proteins, ion 
channels and second messenger pathways (Müller et al., 2010), 
but how these are organised and function together remains to be 
elucidated. Related to this, the pathways for intracellular Ca2+ 
signalling to the nucleus and the selectivity for L-type Ca2+ 
channels in neurons are still being revealed (Cohen et al., 2015; 
Wheeler et al., 2012).
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