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ABSTRACT 1 

1-antitrypsin deficiency is an inherited disorder caused by mutations in 2 

SERPINA1 leading to liver and lung disease. It is not a rare disorder; however, it is 3 

frequently underdiagnosed or misdiagnosed. The normal 1-antitrypsin protein is a serine 4 

proteinase inhibitor that primarily targets neutrophil elastase; however, it can also inhibit 5 

other proteases and displays immuno-modulatory and anti-inflammatory properties. Over 6 

150 SERPINA1 alleles have been described. The most frequent disease-associated 7 

mutations include the S and Z alleles which lead to expression of aberrantly folded 1-8 

antitrypsin proteins by hepatocytes, leading to low levels of 1-antitrypsin in the 9 

circulation. The liver disease is a ‘gain-of function’ effect due to accumulation of 10 

misfolded 1-antitrypsin within the endoplasmic reticulum (ER) of hepatocytes. 11 

Currently there is no cure for severe liver disease. The lung disease occurs predominately 12 

in adults, and can be evident as early as the 3rd to 4th decade of life. Its hallmark is loss-13 

of-function of the lungs’ antiprotease protective screen but is also characterised by pro-14 

inflammatory ER stress-related effects. 1-antitrypsin deficiency is a genetic cause of 15 

COPD and SERPINA1 MZ heterozygosity is a known risk factor for COPD in smokers. 16 

Treatment of the lung manifestations includes many standard therapies for COPD in 17 

addition to ‘augmentation therapy’ with human plasma-derived, purified 1-antitrypsin. 18 

New therapies targeting misfolded 1-antitrypsin proteins and novel strategies that 19 

attempt to correct the underlying genetic mutation are under development. Effective 20 

modalities and timely diagnosis can enable personalised medical care and greatly 21 

enhance the quality of life of people with 1-antitrypsin deficiency. 22 

  23 

 24 

 25 

 26 

 27 

  28 
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[H1] Introduction 1 

1-antitrypsin is a serine proteinase inhibitor and acute phase protein produced 2 

principally by the liver but also by neutrophils, monocytes and airway epithelial cells. Its 3 

primary target protease is neutrophil elastase; however, it can inhibit other proteases and 4 

also has anti-inflammatory and immuno-modulatory properties. 1-antitrypsin deficiency 5 

(OMIM, 0107400), was first described in 19631, and is an autosomal co-dominant 6 

disorder caused by mutations in the SERPINA1 gene (previously called the ‘protease 7 

inhibitor’ or PI locus) pre-disposing to liver and lung disease in affected individuals 8 

(Figure 1). Over 150 SERPINA1 alleles have been described. The normal allele is 9 

referred to ‘M’. The most frequent and best studied disease-associated SERPINA1 10 

mutations, including the so-called S and Z alleles, lead to expression of aberrantly folded 11 

1-antitrypsin proteins and lower than normal circulating levels of 1-antitrypsin. The 12 

liver disease in children and adults is associated with gain-of function effects due to 13 

accumulation of misfolded 1-antitrypsin protein within the endoplasmic reticulum (ER) 14 

of hepatocytes. Lung disease in adults can manifest as early as the 3rd decade of life and 15 

occurs mainly due to loss-of-function characterised by an inadequate antiprotease 16 

protective screen in the lung. Circulating and intrapulmonary polymers of misfolded 1-17 

antitrypsin, in particular the ‘Z’ form, as well as gain-of-function ER stress-related effects 18 

in monocytes and neutrophils also play roles in the inflammatory manifestations of the 19 

lung disease. There is no current cure for severe liver disease other than liver 20 

transplantation. The lung disease shares many characteristics of cigarette smoke-induced 21 

emphysema but is different in pathology being more panlobular rather than centrilobular, 22 

and most commonly has an initial basal rather than apical distribution. It also has 23 

different patterns of gene expression. 1-antitrypsin deficiency is a genetic cause of 24 

COPD, being responsible for 1-2% COPD cases. Moreover, SERPINA1 MZ 25 

heterozygosity (PI*MZ) is a risk factor for COPD in smokers. 1-antitrypsin deficient 26 

individuals with lung disease receive many standard therapies for chronic obstructive 27 

pulmonary disease (COPD) in addition to augmentation therapy with human plasma-28 

derived, purified 1-antitrypsin. New therapies that target misfolding of mutant 1-29 

antitrypsin or attempt to correct the underlying genetic mutation are being developed. 1-30 
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antitrypsin deficiency is not a rare disorder; however, it is frequently underdiagnosed or 1 

misdiagnosed as asthma, COPD, or cryptogenic liver disease, amongst others. The timely 2 

identification of 1-antitrypsin deficient individuals can enhance their quality of life by 3 

enabling personalised medical care.  4 

In this primer article, we summarize the epidemiology of 1-antitrypsin 5 

deficiency, present the pathobiology of lung and liver disease, and discuss current 6 

research in the field. We also consider existing treatment options and developments that 7 

might further improve the outlook for 1-antitrypsin deficient individuals. 8 

 9 

 10 

[H1] Epidemiology  11 

1-antitrypsin deficiency is relatively common but widely and persistently under-12 

recognized2, 3. This section considers the world-wide prevalence of 1-antitrypsin 13 

deficiency, evidence that it is under-recognized, and the reasons for under-recognition.  14 

Although most prevalent in Scandinavia, North America, and Iberia, 1-15 

antitrypsin deficiency occurs world-wide. In their review of 514 published cohorts of 1-16 

antitrypsin deficient individuals reported from 69 countries in 11 geographic regions of 17 

the world, de Serres et al. observed that 1-antitrypsin deficiency affects individuals in 18 

virtually all racial subgroups studied4. In aggregate, the estimated worldwide prevalence 19 

of PI*MS and PI*MZ heterozygotes is 116 million and that of PI*ZZ, PI*SZ, and PI*SS 20 

individuals is 3.4 million. The prevalence of 1-antitrypsin deficiency has been estimated 21 

based on two detection strategies – population-based screening and case-finding, also 22 

called targeted detection. Of the many population-based screening studies to assess the 23 

prevalence of 1-antitrypsin deficiency (Table 14), the largest two were performed in 24 

newborn infants in Sweden (N = 200,000 newborns)4 and Oregon (N = 107,038)5. In 25 

Sweden, the prevalence of PI*ZZ individuals was 1/1639 and in Oregon, the prevalence 26 

was 1/5097. Estimates suggest that of the approximately 320 million people in the United 27 

States approximately 100,000 have severe 1-antitrypsin deficiency6.  28 

Table 27 summarizes the results of targeted detection studies that have also 29 

assessed the prevalence of 1-antitrypsin deficiency among individuals with various 30 
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suggestive clinical features. Prevalence estimates of severe 1-antitrypsin deficiency 1 

among individuals with COPD range from 0 to 12% with a mean value in the reported 2 

studies of 3.6%. 3 

That 1-antitrypsin deficiency is widely under-recognized is supported by three 4 

lines of evidence: First, in all countries where the issue has been examined, only a small 5 

minority of expected individuals with 1-antitrypsin deficiency have been recognized 6 

clinically8. Second, few physicians comply with guidelines to test all COPD patients for 7 

1-antitrypsin deficiency. Third, individuals with 1-antitrypsin deficiency commonly 8 

experience long delays between their first symptom and first diagnosis of 1-antitrypsin 9 

deficiency and may see many healthcare providers before the diagnosis is first rendered. 10 

Estimates of the mean interval between first symptom (usually dyspnoea) and initial 11 

diagnosis range from 5.6 – 8.3 years3, 9. Diagnostic delay intervals remain as long in 12 

studies from 2013 as they were in the earliest study in 1995, suggesting little 13 

improvement in detection pace over nearly two decades despite the publication of many 14 

guidelines10 which recommend that all COPD patients should be tested for 1-antitrypsin 15 

deficiency. Similarly, the number of healthcare providers that affected individuals see 16 

before the diagnosis is first made has not lessened over time2. In addition to delaying any 17 

management interventions for the affected individual (e.g., smoking cessation, 18 

consideration of augmentation therapy) and identification of family members at risk, the 19 

need to see multiple healthcare providers before initial diagnosis and the associated 20 

diagnostic delay have been associated with adverse psychosocial effects3. In the context 21 

that establishing a diagnosis of 1-antitrypsin deficiency can directly affect both the 22 

patient’s clinical management and can identify potential risk among the patient’s family 23 

members, continuing under-recognition of 1-antitrypsin deficiency provides a world-24 

wide call to action for enhanced detection by healthcare providers. 25 

 26 

[H1] Mechanisms/pathophysiology  27 

Misfolding of mutant forms of 1-antitrypsin within the endoplasmic reticulum 28 

(ER) of 1-antitrypsin-producing cells can lead to toxic loss-of-function and gain-of-29 

function effects. Loss-of-function effects primarily affect the lungs, whereas gain-of-30 
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function effects contribute to both lung and liver manifestations of the disorder through 1 

two principal mechanisms: the perturbation of homeostasis within the lumen of the ER 2 

and the production of polymers of Z 1-antitrypsin within the circulation, the lumen of 3 

the lung or within tissues that can cause chemotaxis and/or activation of inflammatory 4 

cells11. 5 

 6 

[H2] Genetic basis of disease  7 

1-antitrypsin is encoded by the SERPINA1 gene on the long arm of chromosome 8 

14 at 14q32.1. The gene is comprised of four coding exons (II, III, IV, and V), three 9 

untranslated exons (Ia, Ib, and Ic) and six introns. Distinct promoters and transcription 10 

start-sites in the 5′ untranslated region (5′UTR) have been identified for hepatocytes and 11 

extra-hepatic tissues such as monocytes/macrophages and the cornea12. The hepatocyte 12 

SERPINA1 promoter is located within exon 1C, upstream of the hepatocyte transcription 13 

start site12, 13. Alternative promoter regions are located upstream of exon 1A and before 14 

exon 1B; these control SERPINA1 expression in monocytes and macrophages12, 14. Thus 15 

different transcripts are produced due to the different transcription initiation sites, 16 

however alternative splicing of non-coding exons (1A, 1B and 1C) can also occur in a 17 

stimulus- and cell-type specific manner12, 15, 16. Proinflammatory cytokines in particular 18 

IL-6 and leukaemia-inhibitory factor, and essentially the acute phase mediator oncostatin 19 

M, contribute to tissue-specific 1-antitrypsin expression17-21. Recently a specific qPCR 20 

test has been developed to quantify the expression of SERPINA1 transcripts, with the aim 21 

of better understanding regulatory mechanisms controlling SERPINA1 expression22.  22 

The SERPINA1 gene is highly polymorphic and mutations in 1-antitrypsin cause 23 

an hereditary co-dominant autosomal disorder, characterized by reduced serum levels of 24 

1-antitrypsin and high risk of developing emphysema at an early age. Pathological 1-25 

antitrypsin variants are either ‘deficient' or ‘null’. Deficient variants occur as a result of a 26 

point mutation that causes retention of the 1-antitrypsin protein within hepatocytes and 27 

other 1-antitrypsin-producing cells, and low levels of 1-antitrypsin in plasma. There is 28 

no detectable 1-antitrypsin in serum of individuals with null mutations which generally 29 

occur due to a premature stop codon. The most common severely deficient variant is Z 30 

1-antitrypsin (Glu342Lys, rs28929474), whose frequency spans 2–5% in Caucasians of 31 
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European descent. The hypothesis of a recent and single origin of the PI Z mutation is 1 

consistent with different publications. Microsatellite genotyping of the SERPINA1 gene 2 

in populations with different historical backgrounds showed a common genotype 3 

variation23 and analysis of non-recombinant SNPs revealed that the age of the PI Z 4 

mutation was 2902 years (SD+1983) in Latvia and 2362 years (SD+1614) in Sweden24.  5 

Moreover, evidence of some degree of founder effect of the Z mutation has been revealed 6 

by archaeological data on the settlement in Courland of people from Sweden and the 7 

island of Gotland after the seventh century25. Besides the Z mutation, at least 40 other 8 

deficient variants, often referred to as ‘rare', have been identified over the last few 9 

decades; the molecular mechanism by which these mutations can cause disease vary and 10 

they can be prognostic for either liver and lung diseases. Similarly, up to 34 Null alleles 11 

have been characterized to date26 (Table 327-63, reports a list of pathological mutations 12 

which cause 1-antitrypsin deficiency). 13 

 14 

[H2] 1-antitrypsin deficiency in the lung 15 

[H3] Biochemical characteristics of 1-antitrypsin deficiency. 16 

The 1-antitrypsin protein is a 394 residue, 52kDa glycoprotein that is synthesised 17 

by hepatocytes, but is also produced by lung and gut epithelial cells, neutrophils and 18 

alveolar macrophages. It is the major circulating antiprotease but its key function is 19 

regulation of the proteolytic effects of neutrophil elastase within the lung. The inhibitor 20 

uses the characteristic serpin inhibitory mechanism in which elastase docks with, and 21 

cleaves the exposed reactive loop of 1-antitrypsin. The covalently-bound enzyme is then 22 

translocated from the upper to the lower pole of 1-antitrypsin as the cleaved reactive 23 

loop inserts into β-sheet A. This movement distorts the catalytic triad and irreversibly 24 

inhibits the activity of the enzyme64. The Z mutant of 1-antitrypsin is retained within the 25 

ER of hepatocytes as ordered polymers that become sequestered in the Periodic Acid 26 

Schiff-positive, diastase-resistant inclusions53, 65. This same process underlies the severe 27 

plasma deficiency and intra-hepatic inclusions of three other mutants of 1-antitrypsin: 28 

Siiyama (Ser53Phe)66, Mmalton (∆Phe52)67 and King’s (His334Asp)53. Polymerisation 29 

also underlies the deficiency of the mild S (Glu264Val), I (Arg39Cys), Queen's 30 

(Lys154Asn) and Baghdad (Ala336Pro) alleles of 1-antitrypsin40, 68-70. However the rate 31 
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of polymer formation, which is proportional to the destabilising effect of the mutation on 1 

the protein71, is much slower and explains the absence of liver disease and the association 2 

with only mild plasma deficiency.  3 

The original description of polymers of Z 1-antitrypsin described a linkage 4 

between the reactive centre loop and -sheet A65 (Figure 2i). However, alternative 5 

linkages have been described in the crystal structures of a dimer of antithrombin (linkage 6 

by a -hairpin of the reactive centre loop and strand 5A72) and a trimer of 1-antitrypsin 7 

(linkage by strands 1C, 4B and 5B)73 (Figure 2ii and 2iii respectively). The biophysical 8 

characteristics of polymers of 1-antitrypsin formed by refolding from guanidine gave 9 

support to the -hairpin linkage74. The cause of the controversy became clear with 10 

development of a monoclonal antibody (termed ‘2C1’) that recognises the pathological 11 

polymers from hepatocytes of individuals with 1-antitrypsin deficiency53. This antibody 12 

recognises an epitope on polymers formed by heating monomeric 1-antitrypsin that is 13 

not present in polymers formed by refolding from guanidine and urea75. This is due to the 14 

fact that polymers form by different loop-sheet linkages in response to heat rather than 15 

urea or guanidine75. NMR studies followed the polymerisation of Queens (Lys154Asn) 16 

1-antitrypsin under physiological conditions or in urea. Intermediate formation under 17 

physiological conditions was associated with highly native-like behaviour with changes 18 

in a few key motifs40. Global changes were observed in urea consistent with more 19 

widespread unfolding, in keeping with data from hydrogen-deuterium exchange76. 20 

Consequently, different polymeric linkages can be accessed by different chaotrophic 21 

conditions with the application of heat to monomeric 1-antitrypsin recapitulating the 22 

features of polymers associated with disease77. Recent work using small-angle X-ray 23 

scattering (SAXS) suggested that the trimer, tetramer, and pentamer of Z 1-antitrypsin 24 

all form ring-like structures in keeping with C-terminal domain-swap mechanism of 25 

polymerization (Figure 2 right)78. However, ring structures are only rarely seen in 26 

inclusions from the livers of individuals with Z 1-antitrypsin deficiency65.  27 

 28 

[H3] Pathological consequences of 1-antitrypsin loss-of-function. 29 
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There is a plethora of loss-of-function effects that contribute to the 1 

pathophysiology of 1-antitrypsin deficiency lung disease. Events directly related to 2 

unopposed elastase activity include cleavage of coagulation factors, complement, 3 

immunoglobulins, and cell surface receptors such as CXCR179-82 (Figure 3). 4 

Antimicrobial peptides83, elastin84, collagen85, fibronectin86 and proteoglycan87 have also 5 

been reported to be cleaved by elastase. Some of the gene expression changes that occur 6 

in cells responding to elastase include increased matrix metalloprotease and cathepsin 7 

expression mediated via elastase-induced activation of TACE- and Meprin-mediated 8 

EGFR signalling88-91. Other significant outcomes that occur directly or indirectly due to 9 

the decreased antiprotease protective screen in the lung are goblet cell hyperplasia, 10 

increased mucus secretion and impaired mucociliary clearance. Inactivation of tissue 11 

inhibitors of metalloproteases92, secretory leucoprotease inhibitor83, elafin93 and cystatin 12 

C94 can also occur. 1-antitrypsin can inhibit caspase-3 and its loss can promote apoptosis 13 

in lung endothelial cells95. Lack of sufficient 1-antitrypsin is also responsible for 14 

decreased responsiveness to LPS in monocytes and decreased efficiency of neutrophil 15 

killing due to unopposed extracellular serine protease activity cleaving CXCR1 and 16 

CD1482, 96. More recently, data have emerged indicating that LTB4 production, and 17 

associated BLT1 membrane receptor expression97 are increased, as are TNF-α mediated 18 

peripheral blood neutrophil apoptosis98 and p38 and IκBα phosphorylation and matrix 19 

metalloproteinase and cytokine induction via PP2A99. These events contribute to 20 

inflammation and an enhanced rate of neutrophil reactive oxygen species production. 21 

Likewise lower than normal FcγRIIIb membrane expression and increased chemotaxis in 22 

response to IL-8 and soluble immune complexes100 that occur in 1-antitrypsin deficient 23 

neutrophils, together with degranulation of tertiary and secondary granules further 24 

exaggerate reactive oxygen species production101. 25 

 26 

[H2] Endoplasmic reticulum homeostasis 27 

[H3] Intracellular disposal mechanisms for misfolded 1-antitrypsin. 28 

The inciting event in the pathophysiology of α1-antitrypsin deficiency-related 29 

liver disease is the retention of the mutant Z protein within the hepatocyte during 30 

biogenesis (Figure 4)102. This can lead to cellular apoptosis and redox injury. Normally 31 
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proteins accumulated within the ER are degraded by the proteasome or by macro-1 

autophagy. In 1-antitrypsin deficiency, in order to cope with the increased load of 2 

misfolded protein within the ER, cellular disposal mechanisms are also more potently 3 

activated than normal. Soluble Z 1-antitrypsin proteins are monitored within the ER and 4 

diverted to the ubiquitin-proteosome ER associated degradation (ERAD) pathway 5 

whereas polymerised Z 1-antitrypsin is degraded by the process of autophagy. Much of 6 

the work investigating handling of misfolded 1-antitrypsin has concentrated on the Null 7 

Hong Kong (NHK) variant. For degradation by the proteasome, misfolded proteins must 8 

be identified, returned to the cytoplasm and tagged with ubiquitin. ERAD is the major 9 

pathway for disposal of NHK α1-antitrypsin owing to its inability to fold103-106, but even 10 

polymerogenic mutants of 1-antitrypsin can be degraded by ERAD despite having near-11 

native conformations107, 108.  12 

Glycoproteins undergo cycles of N-glycan modification whilst within the ER. 13 

This acts as a timer to identify proteins failing to fold in an appropriate time. ER-α-1,2-14 

mannosidase I (ERManI) trims mannose residues from N-glycans and its overexpression 15 

accelerates degradation of both NHK and Z 1-antitrypsin103, 109, while inhibition of 16 

ERManI with kifunensine stabilises both mutants110. An enzymatically inactive paralogue 17 

of ERManI called EDEM interacts with misfolded glycoproteins to enhance their 18 

degradation111-113. Interestingly, a minor allele of MAN1B1 (encoding ERManI) 19 

associated with reduced protein expression has been reported more frequently than 20 

expected in children requiring transplantation for Z 1-antitrypsin associated liver 21 

disease114.  22 

Z 1-antitrypsin folds more slowly than M 1-antitrypsin and can adopt a non-23 

native intermediate conformation, both of which might contribute to its targeting for 24 

ERAD53, 75, 115. When 1-antitrypsin emerges from the ER into the cytosol it is tagged 25 

with ubiquitin by the E3 ligases Hrd1 and gp78 and their associated E2 ligases, UBE2j1 26 

and UBE2g2116-118.  27 

Whole organelles or large protein aggregates can be destroyed through 28 

engulfment by endomembranes that form into autophagosomes. These fuse with the 29 

lysosome so that the contents are hydrolysed. Mouse and cell models support a role for 30 

the autophagy in the degradation of Z 1-antitrypsin108, 115, 119, 120 and treatment of mice 31 
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with carbamazepine, a drug that can enhance autophagy, reduces accumulation of Z 1-1 

antitrypsin in the liver119, 121. It remains controversial, however, whether autophagy 2 

shows selectivity for ER containing polymers of 1-antitrypsin or if this simply reflects 3 

turnover of the entire organelle. 4 

 5 

[H3] Endoplasmic reticulum stress.  6 

When misfolded proteins accumulate within the ER and threaten to fall out of 7 

solution, the cell is said to experience ‘ER stress’. This triggers an ‘unfolded proteins 8 

response’ (UPR) that reduces the influx of nascent proteins into the ER whilst 9 

reprogramming the cell to fold or dispose of these proteins more efficiently. This process 10 

involves the detection of ER stress by three transmembrane sensors, PERK, IRE1 and 11 

ATF6 (Figure 5), and has been reviewed extensively elsewhere122, 123. The misfolding 12 

variants NHK and Saar 1-antitrypsin trigger the UPR if expressed even at low levels33, 13 

105, 106, 124-126. Both of these variants are truncated and so unable to fold.  They are 14 

normally degraded efficiently by ERAD, but if allowed to accumulate will sequester 15 

large numbers of chaperones, including BiP, and thus lead to ER stress.  The precise 16 

mechanism by which ER stress sensors are activated remains a matter for debate.  One 17 

model suggests that it is the sequestration of BiP by misfolded proteins that provides the 18 

signal127. Normally, BiP binds to and inhibits the ER stress sensors, but when misfolded 19 

proteins accumulate within the ER the level of free BiP falls leading to activation of the 20 

sensors.  An alternative model suggests that the sensors interact directly with stretches of 21 

misfolded protein128. In both models, however, it is the exposure of normally buried 22 

residues of the client protein that constitutes the signal that is sensed by the cell.  23 

Curiously, the dramatic accumulation of polymeric 1-antitrypsin fails to activate the 24 

UPR in most circumstances125, 126, 129-133. Since 1-antitrypsin polymers are thought to be 25 

relatively well-folded structures, they may not present misfolded stretches of amino acids 26 

and so fail to trigger the ER stress sensors. However, the accumulation of polymers does 27 

appear to sensitize the cell to second insults that cause ER stress126, 129-131. The 28 

mechanism for this sensitization remains to be fully worked out, but appears to involve 29 

altered protein mobility within the ER lumen, either owing to local effects on viscosity or 30 

on the degree of ER interconnectivity126. 31 
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These events can impact on a variety of intracellular signalling pathways leading 1 

to transcriptional upregulation of proinflammatory gene expression. For example, basal 2 

and LPS-induced IL-6 and IL-8 expression are increased in monocytes from Z 1-3 

antitrypsin deficient versus non-1-antitrypsin deficient individuals; this phenomenon is 4 

due to intracellular accumulation of Z 1-antitrypsin134. Despite the lack of a robust UPR, 5 

the accumulation of polymerogenic 1-antitrypsin triggers signalling by nuclear factor κB 6 

(NF-κB), which has been termed the ‘ER overload response’ (EOR). Little is known 7 

about this response although chelation of cytosolic calcium appears to limit the activation 8 

of NF-κB, suggesting it might involve increased calcium leak from a distended ER. 9 

However, in primary bronchial epithelial cells (PBECs) Z 1-antitrypsin is expressed at 10 

low levels that fail to form polymers and yet these cells show enhanced basal NF-κB 11 

signalling132. This indicates that NF-κB signalling is not synonymous with EOR 12 

activation.  A possible alternative mechanism by which mutants of 1-antitrypsin can 13 

activate NF-κB signalling appears to involve increased activity of ADAM17. PBECs 14 

isolated from individuals homozygous for Z 1-antitrypsin show hyperactive ERK 15 

signalling and this is dependent upon ADAM17. Moreover, increased ADAM17 activity 16 

has been reported on the surface of neutrophils from 1-antitrypsin deficient 17 

individuals98.  18 

 19 

[H2] Contribution of extracellular Z α1-antitrypsin polymers  20 

Polymers of 1-antitrypsin can be detected in the blood135, bronchoalveolar lavage 21 

fluid and lung tissue of affected individuals136, 137. It is unclear if secreted Z 1-22 

antitrypsin polymerises in the extracellular space or if circulating polymers originate 23 

from dying cells. However, most polymers are of hepatic origin since following liver 24 

transplantation, the circulating levels fall to undetectable within four days135. However, 25 

1-antitrypsin can by synthesised locally by airway epithelial cells, albeit at levels too 26 

low to allow polymerization within the cell132. The importance of extracellular polymers 27 

relates to their pro-inflammatory effects. They are chemotactic and stimulatory for 28 

neutrophils and so are likely to contribute to pulmonary inflammation, and their 29 
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deposition in other tissues may explain the increased incidence of vasculitis or 1 

panniculitis seen in PI*ZZ individuals138 . 2 

 3 

[H2] Clinical manifestations  4 

The Z allele of 1-antitrypsin causes the protein to misfold and form ordered 5 

polymers that are retained within the endoplasmic reticulum of hepatocytes as Periodic 6 

Acid Schiff-positive, diastase-resistant inclusions. These inclusions form in utero139 and 7 

73% of PI*ZZ children have raised serum aminotransferases in the first year of life. 8 

However, this typically resolves and only remains abnormal in 15% of individuals by 12 9 

years of age. Similarly serum bilirubin is elevated in 11% of Z 1-antitrypsin 10 

homozygote infants in the first few months of life but falls to normal by 6 months of age. 11 

Ten percent of PI*ZZ infants develop jaundice as a result of cholestasis and 6% develop 12 

clinically evident liver disease in the absence of jaundice. The clinical symptoms 13 

typically resolve by the second year of life but 15% of children with cholestatic jaundice 14 

progress to cirrhosis5, 140. The risk of death from liver disease in Z 1-antitrypsin 15 

homozygote children is 2-3%141, 142. All adults with Z 1-antitrypsin deficiency have 16 

slowly progressive hepatic damage that is only apparent as a minor degree of portal 17 

fibrosis and no clinical symptoms. However, one a post-mortem study showed that 50% 18 

of Z 1-antitrypsin deficiency individuals develop cirrhosis and occasionally with 19 

hepatocellular carcinoma143. Risk factors for cirrhosis include male gender and obesity 20 

but not alcohol or viral hepatitis144. The predilection for hepatocellular carcinoma in 21 

PI*ZZ individuals is higher than that attributable to cirrhosis alone.  22 

Emphysema associated with Z 1-antitrypsin deficiency is typically panlobular 23 

and affects the bases of the lungs. Individuals present with breathlessness with cor 24 

pulmonale and polycythaemia occurring late in the disease10. Lung function tests are 25 

typical for emphysema with a reduced forced expiratory volume in 1 second (FEV1), 26 

reduced FEV1/forced vital capacity ratio, gas trapping (raised residual volume/total lung 27 

capacity ratio), and a low gas-transfer factor. Partial reversibility of airflow obstruction 28 

(as defined by an increase of 12% and 200 ml in FEV1 after a bronchodilator) is common 29 

in individuals with chronic obstructive pulmonary disease secondary to 1-antitrypsin 30 

deficiency. All the PI*ZZ 35-year-olds followed up in the Swedish birth cohort had 31 
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normal liver and lung function but smoking frequency was significantly lower among 1 

individuals with α1-antitrypsin deficiency than in the controls145. There was evidence to 2 

suggest that ever smokers had abnormal scans and lung function146. 3 

PI*ZZ 1-antitrypsin deficiency is also associated with an increased prevalence of 4 

asthma147, panniculitis148 and granulomatosis with polyangiitis149. The underlying disease 5 

mechanisms are not known but it is possible that the pro-inflammatory polymers and 6 

deficiency of an important antiproteinase contribute to GPA and panniculitis. 7 

 8 

[H2] Gene modifiers, gene-by-environment interactions  9 

A recent genome wide association study tightly linked circulating 1-antitrypsin 10 

levels in a general population sample to the SERPINA gene cluster150, and the detrimental 11 

role of smoke exposure on the clinical phenotype of 1-antitrypsin deficiency has been 12 

recently demonstrated151. Nevertheless, the wide spectrum of clinical phenotypes 13 

associated with 1-antitrypsin deficiency could be caused by interactions between genetic 14 

factors other than SERPINA1, and environmental determinants other than smoking alone. 15 

Indeed, single studies in recent years have identified potential genetic modifiers of COPD 16 

phenotypes in individuals with severe 1-antitrypsin deficiency. Variations in MMP1/ 17 

MMP3 and TNFα have been associated with gas transfer and chronic bronchitis, 18 

respectively, in 1-antitrypsin deficiency152, 153; polymorphisms in IL-10, the cholinergic 19 

nicotine receptor alpha 3 (CHRNA3) and iron regulatory binding protein 2 (IREB2) were 20 

associated with FEV1 and/or FEV1/FVC in PI*ZZ individuals154, 155. Between PI*ZZ 21 

individuals there can be a significant variability in the expression of the lung disease i.e., 22 

ranging from asymptomatic to severe emphysema. This occurs as a result of genetic 23 

predisposition and environmental factors. For example, an interplay between cigarette 24 

smoke induced oxidative stress and Z 1-antitrypsin protein polymerization can impact 25 

on cellular inflammation and cytokine expression156. Regarding the role of the 26 

environment, few data are available however outdoor air pollution can worsen respiratory 27 

status and predict lung function decline in PI*ZZ individuals157, 158. In another study a 28 

statistically significant interaction (p<0.0001) was observed between the PI*MZ 29 

genotype and high levels of exposure to vapours, gas, dusts and fumes (VGDF) on annual 30 

change in FEF25–75%. A similar statistically significant interaction (p=0.03) was 31 
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observed between the PI*MZ genotype and high-level VGDF exposure on annual change 1 

in FEV1/FVC. Overall, larger annual declines in lung function in association with outdoor 2 

particulate matter ≤10 µm were observed in PI*MZ carriers than in PI*MM carriers, and 3 

VGDF-associated FEF25-75% decline was observed only in ever smoking PI*MZ 4 

individuals159. Unlike smoking160, environmental or passive tobacco smoke exposure is 5 

not a risk factor for PI*MZ individuals159.  6 

 7 

[H1] Diagnosis, screening and prevention  8 

While clinical features of 1-antitrypsin deficiency may be useful for selecting 9 

individuals for testing, the spectrum of disease manifestations is exceptionally variable 10 

and the diagnosis is largely a laboratory diagnosis and is well established in many 11 

laboratories throughout the world. The diagnosis requires either a plasma or serum 1-12 

antitrypsin level typically performed using a nephelometer and either genotyping or 13 

Protease Inhibitor (PI) typing161. Presently, most laboratories begin testing by using 14 

genotype-based allele specific amplification of the most common deficiency alleles, Z 15 

and S. One such testing algorithm is shown in Figure 6 but there is a series of alternative 16 

schemes that are used162. Genotyping may be performed using DNA from dried blood 17 

spots, whole blood and saliva. Reflex testing for risk alleles is usually performed by PI 18 

typing using isoelectric focusing of serum or plasma at a pH of 4-5. While S and Z alleles 19 

are present in greater than 95% of all 1-antitrypsin deficient individuals, approximately 20 

5% of deficient individuals of various populations studied will have rare deficiency 21 

alleles, including alleles associated with reduced, dysfunctional or no plasma 1-22 

antitrypsin. These rare alleles are not detected by routine methods and in order to identify 23 

them a combination of PI typing and next generation sequencing of the 1-antitrypsin 24 

gene is used163.  25 

Printed and online educational materials have been created in several languages 26 

by organizations such as the Alpha-1 Foundation and are available at www.alpha1-27 

foundation.org. These education materials assure that appropriate information is available 28 

for helping to determine the risk and benefit of genetic testing and interpret the results of 29 

genetic testing for α1-antitrypsin deficiency for physicians and patients.  30 

 31 

http://www.alpha1-foundation.org/
http://www.alpha1-foundation.org/
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[H2] Population screening, predispositional testing and targeted detection 1 

programmes  2 

1-antitrypsin deficiency remains underdiagnosed164. There are three approaches 3 

to diagnosis of 1-antitrypsin deficiency: 1) diagnostic testing of individuals with 4 

symptoms/signs consistent with 1-antitrypsin-related disease; 2) predispositional testing 5 

of individuals who may be at high-risk of having 1-antitrypsin deficiency, and 3) 6 

targeted detection in patients with a clinical reason to suspect 1-antitrypsin deficiency. 7 

In the past, diagnostic testing in 1-antitrypsin deficiency meant testing of individuals 8 

with early onset, primarily lower lobe, emphysema. This paradigm has led to under 9 

diagnosis and late diagnosis and is no longer acceptable. Predispositional testing involves 10 

follow-up of asymptomatic subjects in whom a gene mutation has been identified, usually 11 

family members with low 1-antitrypsin levels. While development of disease related to 12 

1-antitrypsin deficiency is likely in the future for these individuals, it is not certain and 13 

awaits further developments in our understanding of the natural history of 1-antitrypsin 14 

deficiency. Regarding targeted detection, whilst this is similar to diagnostic testing, the 15 

method applies the ATS/ERS guidelines and increases diagnosis rates significantly. 16 

These guidelines do not recommend neonatal screening 10 (i.e. testing groups without 17 

known risk factors for α1-antitrypsin deficiency) and point to a Swedish study165 which 18 

showed that while neonatal screening reduced smoking rates following detection, there 19 

was an increased incidence of parental distress with a negative impact on the mother–20 

child relationship. Screening guidelines are evolving and appear to be quite dynamic and 21 

the potential benefits of screening versus targeted detection should be revisited 22 

particularly in the light of increased understanding of the pathogenesis of 1-antitrypsin 23 

deficiency-related disease and the experience with other new screening programmes such 24 

as those for cystic fibrosis. The ATS/ERS guidelines do not generally recommend testing 25 

in adolescents aged <11 years, but suggest that testing should be discussed with 26 

individuals in areas with a high prevalence of 1-antitrypsin deficiency or if smoking 27 

rates are high, providing that adequate counselling is given. Recommendations for adults 28 

are similar to those for adolescents. The 2014 Global Initiative for Chronic Obstructive 29 

Lung Disease (COPD) recommendations166 quote the World Health Organization167, who 30 
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recommend that COPD patients from areas with a particularly high prevalence of 1-1 

antitrypsin deficiency should be tested for 1-antitrypsin deficiency. They also noted that 2 

compared to other forms of COPD, typical patients with α1-antitrypsin deficiency tend to 3 

present at a younger age (<45 years) with lower lobe emphysema and suggest that family 4 

members can be identified. These recommendations are not that different from those 5 

which have led to significant under diagnosis of the condition for the past 50 years. The 6 

ATS/ERS guidelines10 recommend testing high-risk groups, such as: all people with 7 

COPD; all nonresponsive asthmatic adults/adolescents; all people with cryptogenic 8 

cirrhosis/liver disease; people with granulomatosis with polyangiitis; bronchiectasis of 9 

unknown aetiology; panniculitis; and first-degree relatives of patients with 1-antitrypsin 10 

deficiency. This increases detection of 1-antitrypsin deficiency. Any targeted detection 11 

program must be linked to robust laboratory diagnostics168. Measurement of 1-12 

antitrypsin levels alone will not differentiate between the various genetic subtypes of 1-13 

antitrypsin deficiency and should be accompanied by either phenotyping or genotyping, 14 

both of which have potential problems which can be solved by evaluation in conjunction 15 

with levels and resort to gene sequencing as required162. Data from the Irish National 16 

Targeted Detection Programme has shown that targeted detection based on the ATS/ERS 17 

criteria enriches the detection of α1-antitrypsin deficiency; the allele frequency for Z was 18 

over four-fold higher in the targeted population compared to an unselected sample of the 19 

general population168. 20 

 21 

[H2] Alpha-1 registries and awareness of α1-antitrypsin deficiency in the medical 22 

community and beyond  23 

In 2012, the National Organization for Rare Disorders (NORD), the European 24 

Organization for Rare Diseases (EURORDIS) and the Canadian Organization for Rare 25 

Disorders (CORD) recognized that Rare Disease Patient Registries “constitute key 26 

instruments for increasing knowledge on rare diseases, supporting fundamental clinical 27 

and epidemiological research, and post-marketing surveillance of orphan drugs and 28 

treatments used off-label”169. They also stressed the importance for patients and their 29 

families; the positive effect on health and social services planning and the ability to 30 

improve quality of care, quality of life and survival of patients. The earliest prospective 31 
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registry for people with 1-antitrypsin deficiency was the National Heart, Lung and 1 

Blood Institute (NHLBI) Registry which enrolled 1129 individuals with severe 1-2 

antitrypsin deficiency from 1989-1992 and followed them until 1996170. This Registry 3 

collected demographic information, medical history, pulmonary function measurements, 4 

and other laboratory evaluations at baseline and at 6-month or yearly intervals during 5 

follow-up. The resulting dataset has produced some of the pivotal findings on the natural 6 

history of 1-antitrypsin deficiency, on mortality, on the problems associated with 7 

delayed diagnosis. This analysis also revealed effects of 1-antitrypsin augmentation 8 

therapy within the registrants whilst recognising that the results needed to be viewed with 9 

circumspection because the registry was not a randomized trial. The current Alpha-1 10 

Foundation Research Registry began enrolment in 1997 with enrolment of mildly 11 

deficient genotypes in 2002171. This is essentially a contact registry with sufficient data to 12 

stratify study invitations to appropriate 1-antitrypsin deficiency affected individuals 13 

although plans are to enlarge this remit. In 1997, the Alpha One International Registry 14 

(AIR) was founded to establish an international database of patients and their 15 

demographic details; to promote basic and clinical research into 1-antitrypsin deficiency 16 

and to coordinate the activity; to collect, assess and disseminate information concerning 17 

all aspects of 1-antitrypsin deficiency; and to encourage support and awareness of α1-18 

antitrypsin deficiency. AIR now includes almost twenty European and non-European 19 

countries172. The sole inclusion criterion for the registry is the presence of phenotype 20 

PI*ZZ, PI*SZ or other severely deficient variants. Some i.e. those in certain national 21 

registries, but not all patients are followed up annually and information collected to 22 

document characteristics of the disease, treatment, smoking habits and lung and liver 23 

function. There are also other large non-affiliated registries. The ideal registry, according 24 

to EURORDIS, should be disease-centred, demonstrate interoperability and 25 

harmonization, utilize a minimum set of common data elements, be linked with 26 

corresponding biobank data, include data directly reported by patients and data reported 27 

by healthcare professionals, and should encourage public-private partnerships to ensure 28 

sustainability. No present 1-antitrypsin deficiency registry meets these criteria.  29 

 30 

[H2] Prevention of morbidity and death in 1-antitrypsin deficient individuals 31 
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There are compelling reasons to identify individuals with 1-antitrypsin 1 

deficiency early. Among these reasons are access to specific therapies and opportunities 2 

to avoid environmental triggers of lung disease through avoidance of personal and 3 

passive cigarette smoking173-175. It has been long recognized that personal cigarette 4 

smoking is associated with a significant life span reduction in α1-antitrypsin deficient 5 

individuals176. Importantly, 1-antitrypsin deficient individuals develop COPD following 6 

exposure to a much lower number of pack-years of cigarette smoking than usual COPD 7 

individuals. Studies based on the Swedish population demonstrate that never smokers 8 

may have normal life spans. Occupational exposures such as mineral dust exposure and 9 

fumes are also associated with increased lung function impairment and symptoms of 10 

respiratory disease in α1-antitrypsin deficiency individuals177. 11 

Early identification of 1-antitrypsin deficient adolescents and adults is associated 12 

with reduction of the number electing to start smoking and increase in smoking cessation 13 

rates178, 179. In addition, screening programs that identify 1-antitrypsin individuals at 14 

birth or during adolescence could substantially reduce the frequency of cigarette smoking 15 

since cigarette addiction is highest in those who start smoking when young. In this 16 

context, avoidance and smoking cessation counselling should be the number one focus 17 

for physicians and health care providers following the identification of 1-antitrypsin 18 

deficient individuals of any age. 19 

While environmental risk factors for obstructive lung disease are well established, 20 

modifiable risk factors for liver disease are less understood but are reported to include 21 

obesity and male gender143. Vaccination for hepatitis A and B are currently recommended 22 

for 1-antitrypsin deficient individuals. Furthermore, moderate alcohol consumption and 23 

good nutritional behaviours may reduce the risk of liver disease in those homozygous for 24 

the Z allele173.  25 

 26 

[H1] Management  27 

[H2] Lung disease 28 

The rationale for the treatment of 1-antitrypsin deficiency-related lung disease is 29 

to increase lung levels of 1-antitrypsin towards normal, thus inhibiting neutrophil 30 
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elastase and other proteases, which, uninhibited, can cause emphysema. In 1987, plasma-1 

purified 1-antitrypsin at a dose of 60mg/kg once weekly was safely delivered 2 

intravenously to patients with 1-antitrypsin deficiency to achieve plasma levels 3 

exceeding a protective threshold of 11 μM180. This target concentration was derived from 4 

1-antitrypsin deficient PI*SZ individuals, who if they refrain from smoking, rarely 5 

develop pulmonary disease. Increased levels of 1-antitrypsin and increased anti-elastase 6 

capacity both in serum and on the pulmonary epithelial surface were shown following 7 

intravenous 1-antitrypsin administration in these studies. Later studies looked at larger 8 

doses over longer time intervals. While these early studies illustrated biochemical 9 

efficacy, there remained a need to demonstrate clinical benefit. There were a number of 10 

observational studies suggesting benefit of 1-antitrypsin augmentation therapy181-184; the 11 

earliest controlled study evaluated an untreated Danish group of α1-antitrypsin deficient 12 

ex-smokers against a comparable German cohort who received augmentation therapy170. 13 

This study showed a small but significant reduction with 1-antitrypsin augmentation in 14 

the annual rate of FEV1 decline (21 mL/year) in those with a moderately reduced FEV1 15 

(31%–65%). Comparable results were noted within the NHLBI registry, and this latter 16 

data set also illustrated a mortality benefit with augmentation not identified in previous 17 

work185. In 1999, Dirksen et al. conducted the first randomized controlled trial and 18 

assessed chest CT changes in those receiving 1-antitrypsin augmentation therapy 19 

compared to those receiving placebo186. This study showed no significant difference 20 

(P=0.07), but provided enough information to develop a power statistic which showed 21 

that a significant protection against CT determined loss of lung tissue with augmentation 22 

therapy could be detected in a placebo-controlled trial over a period of 3 years with 130 23 

patients. A corresponding correction of the FEV1 slope would require 550 patients over a 24 

24-month period, a study population almost impossible to obtain. This was a significant 25 

breakthrough in the field, acknowledged by the regulatory authorities. Consequently; 26 

spirometry was considered a secondary efficacy end point in the study of augmentation 27 

therapy. The second randomized trial, EXAcerbations and Computed Tomography scan 28 

as Lung End points (EXACTLE), followed187. This multicentre, randomized, placebo-29 

controlled, double-blind, exploratory trial utilized CT densitometry and exacerbations to 30 

assess the effect of weekly intravenous 1-antitrypsin augmentation over an 31 
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approximately 2-year period This study illustrated that CT was a sensitive and effective 1 

measure of emphysema progression. A number of statistical analyses were utilized in this 2 

study, with P-values ranging from 0.049 to 0.084, but all suggested at least a trend toward 3 

efficacy of augmentation therapy in reducing loss of lung density by 1-antitrypsin 4 

augmentation. It was acknowledged, however, that this study was underpowered.  5 

Following this, a larger multicentre, multinational, randomized controlled trial (RAPID) 6 

was conducted188. This study randomized PI*ZZ 1-antitrypsin deficiency patients to 7 

receive 1-antitrypsin augmentation therapy intravenously 60 mg/kg weekly or placebo 8 

over 2 years, measuring CT scan lung density at regular study intervals. One hundred and 9 

eighty subjects were evaluated over the 2-year period followed with an extension study 10 

(RAPID Extension) in which all study participants received active drug. The weight of 11 

evidence from RAPID and RAPID extension supported efficacy of augmentation therapy. 12 

Similar rates of lung density decline were observed in Early-Start and Delayed-Start 13 

groups during the Extension study and the reduction in absolute change in lung density 14 

decline was statistically significant when subjects switched from placebo to 1-15 

antitrypsin. There was a consistent treatment effect irrespective of when treatment was 16 

started, but lung density loss in the first two years on placebo was irreversible – 17 

suggesting early treatment may be more beneficial. Neither RAPID nor EXACTLE 18 

showed an effect of augmentation therapy on the number of exacerbations or quality of 19 

life. 20 

Concerns about product purity and transmissibility of infection from human 21 

plasma-derived 1-antitrypsin have led to evaluation of transgenic and recombinant 22 

sources of 1-antitrypsin. Recombinant α1-antitrypsin was successfully produced in 23 

bacteria and yeast as well as in transgenic sheep that were engineered to produce 1-24 

antitrypsin in their milk. A major disadvantage to these recombinant protein forms of 1-25 

antitrypsin was lack of glycosylation or abnormal glycosylation with altered renal 26 

clearance and short half-life following intravenous administration. An inhaled product 27 

with an appropriate half-life on the pulmonary epithelial surface has been investigated. 28 

Aerosolization of plasma-purified α1-antitrypsin (Prolastin) and recombinant 1-29 

antitrypsin n were effective at delivery to the alveolar surface and alveolar interstitium 30 
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but whether in sufficient quantity for clinical efficacy remains to be evaluated189, 190 1 

(Table 4170, 181-186, 188 lists the various treatments). 2 

 3 

[H2] Liver disease 4 

Liver disease associated with 1-antitrypsin deficiency is highly variable. The risk 5 

of life threatening liver disease in children is about 3-5%, although many children may 6 

have self-limited neonatal cholestasis or mild serum aminotransferase elevations5, 191. 7 

Liver disease is uncommon in young and middle aged adults but increases with 8 

increasing age. The lifetime risk of cirrhosis in PI*ZZ individuals may be as high as 9 

50%192. Given the unpredictability of disease progression, many authorities suggest 10 

regular monitoring for liver disease, on at least an annual basis, by a physician familiar 11 

with liver disease and its complications192. Monitoring should include history and 12 

physical examination sensitive for liver disease, such as a focus on the detection of 13 

splenomegaly, and laboratory exam including WBC, platelet count, AST, ALT, alkaline 14 

phosphatase, albumin, bilirubin and INR. Granulocytopenia, thrombocytopenia, climbing 15 

enzymes and bilirubin, and coagulopathy often accompany progressive liver injury. As in 16 

many liver diseases, a baseline liver ultrasound is often considered useful. American 17 

Association for the Study of Liver Diseases (AASLD) guidelines for the detection of 18 

hepatocellular carcinoma (HCC) recommend a liver ultrasound every 6 months for 19 

individuals at >2%/year risk of HCC193. Although data for the magnitude of HCC risk in 20 

1-antitrypsin deficiency is lacking, this is often interpreted to apply to α1-antitrypsin 21 

individuals with evidence of cirrhosis, portal hypertension or persistently large elevations 22 

of liver tests.  23 

There is no specific treatment for 1-antitrypsin liver disease. Current treatment 24 

for progressive liver injury is primarily supportive with attention to the prevention of 25 

malnutrition, rickets, or managing the complications of portal hypertension such as 26 

ascites or variceal bleeding. It is not uncommon for children or adults with 1-antitrypsin 27 

deficiency-associated cirrhosis to remain stable and compensated, with minimal signs and 28 

symptoms for years to decades. In this situation, the recognition of the presence of 29 

cirrhosis with portal hypertension is critical, even of the patient is minimally 30 

symptomatic, so they can be cautioned against splenic injury from contact sports, advised 31 
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to abstain from alcohol, undergo surveillance for variceal bleeding, and cautioned to 1 

avoid non-steroidal anti-inflammatory drugs (NSAIDS). Consumption of NSAIDs in the 2 

presence of portal hypertension can result in life-threatening bleeding even in well-3 

compensated individuals. There are no data regarding alcohol consumption in PI*ZZ 4 

individuals who have no evidence of liver injury. AASLD guidelines for adults with 5 

hepatitis C without evidence of liver injury suggest that up to three alcoholic drinks per 6 

week may be safe.  7 

If progressive liver failure or uncompensated cirrhosis is present and becomes 8 

life-threatening, then liver transplantation is considered. In the U.S., cadaveric organs are 9 

allocated by empirically derived severity scores for both children and adults, which are 10 

correlated with increasing risk of mortality without transplant. Early evaluation at a 11 

transplant centre is recommended for patients with signs or symptoms of deterioration, 12 

although early listing and time on the list do not influence the severity scores in the U.S. 13 

Listing and transplantation in other countries is highly variable, and is often influenced 14 

by referral, waiting and centre-specific factors. Many centres have reported excellent 15 

liver transplant outcomes for α1-antitrypsin deficiency, often better than the median 16 

benchmark outcomes for other liver diseases. Living related liver transplants in infants 17 

(left lateral segment) and adults (split liver) are also reported as successful, including 18 

successful anecdotes when one of the donors is heterozygous, PI*MZ. 19 

 20 

[H2] Emerging therapies 21 

Many new approaches are currently being examined for potential value in the treatment 22 

of 1-antitrypsin deficiency. Extensive studies have been published using in vitro 23 

analyses of molecular structure, and more than ten different compounds have been shown 24 

to block liver injury in the PiZ mouse model of 1-antitrypsin liver disease, although 25 

none is yet approved for human use119, 194, 195. Regarding therapies that target the liver 26 

injury cascade at the point of synthesis, several applications of RNA inhibition 27 

technology are being examined to prevent mutant Z protein synthesis, and thereby to 28 

prevent accumulation and liver injury. In the PiZ mouse model, these methods have been 29 

shown to eliminate liver injury and to return the liver to wild type health196. Two different 30 

Phase I human trials of siRNA inhibition of mutant Z protein synthesis as liver disease 31 
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therapy are now underway in Australia and Europe. The major caveat associated with an 1 

1-antitrypsin-directed siRNA approach is that there would be no 1-antitrypsin 2 

production thus presenting its own management issues which may be supplemented by 3 

transfection for instance with the normal gene and/or augmentation therapy in order to 4 

protect the lung. 5 

Extensive studies have also examined methods to accelerate the intracellular 6 

degradation of mutant Z protein as a treatment for the liver. Several successful cell 7 

culture and mouse experiments have shown that enhanced autophagic degradation 8 

reduces the burden of mutant Z protein in the liver and reduces liver injury119, 194, 195. 9 

Sirolimus, carbamazepine, and the bile acid norUDCA, plus a genetic approach to 10 

augment expression of key autophagy regulators, have all been shown to reduce mutant Z 11 

protein accumulation within cells via enhanced autophagy and to reduce liver cell injury 12 

in a model system. However, excessively high doses of all of these agents were required 13 

to show an effect. A human trial of low dose carbamazepine in PI*ZZ patients with 14 

cirrhosis is currently underway, although results to date are inconclusive.  15 

There has been longstanding interest in chemical chaperone approaches to 16 

improve proper folding and to augment secretion of Z α11-antitrypsin, instead of 17 

intrahepatic protein retention. Such an approach might treat the lung and the liver, as 18 

well. The primary barrier to this approach is the sheer mass of 1-antitrypsin protein 19 

synthesized, which is up to 2g/d in an adult. If a 1:1 binding stoichiometry is needed as 20 

part of the mechanism, then a huge mass of drug would need to be delivered to the ER of 21 

the hepatocytes. Still, studies in cell culture have shown that several compounds promote 22 

the secretion of 1-antitrypsin, and one, 4-phenyl butyrate (4PBA), was effective in the 23 

mouse model197. A pilot human trial was conducted, but no effect on secretion was 24 

detected, likely due to the inability of peak drug levels to reach the therapeutic range 25 

documented in the mouse198. Strategies designed in silico or cell free systems for 26 

therapeutic disruption of mutant Z protein polymerization, likely an event distal to the 27 

protein retention signal, have also been examined in a number of studies195, 199. These 28 

approaches aim to modulate the conformational behaviour of α1-antitrypsin by targeting it 29 

directly to rescue folding, stabilize functional conformers and limit the population of 30 

polymerogenic intermediates200-206. However, many of the compounds examined have not 31 
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had the predicted effect when examined in cell culture and there have been chemical 1 

hurdles to creating medicinal molecules for trials in animal models. Other problems 2 

associated with some of these peptide-based strategies are that reactive loop analogues 3 

tend to generate complexes with α1-antitrypsin that are inactive as antiproteases; 4 

nonetheless, these still have potential to treat the gain-of-function effects in the liver. 5 

Since both loss- and gain-of-function in 1-antitrypsin deficiency are driven by protein 6 

misfolding and aberrant conformational change, addressing this behaviour may counter 7 

both pathogenic cascades at source. An approach to target the proteostasis network has 8 

identified the histone deacetylase 7 inhibitor suberoylanilide hydroxamic acid (SAHA), 9 

as an agent capable of restoring Z 1-antitrypsin secretion from epithelial cells207.  10 

Finally, several studies, including human trials, have examined strategies to 11 

synthesize normal 1-antitrypsin in tissues outside the liver, which might increase serum 12 

levels to protect the lung, but which would not change the risk of liver injury208, 209. To 13 

date, these studies have only been able to generate less than 5% of the serum M α1-14 

antitrypsin level thought to be needed for therapeutic benefit. Several gene repair 15 

technologies are also being investigated. For the lung disease, various gene therapy 16 

approaches designed to increase circulating 1-antitrypsin levels with one having reached 17 

Phase II testing209-214. Two of these approaches involve haematopoietic stem cell therapy 18 

coupled with lentiviral 1-antitrypsin cDNA gene therapy215, 216 and intrapleural 19 

administration of a replication-deficient adeno-associated virus expressing 1-20 

antitrypsin217. 1-antitrypsin deficiency has been at the forefront of the application of 21 

induced pluripotent stem cell (iPSC) technology218-220 with skin fibroblasts from PI*ZZ 22 

individuals having been induced to form hepatocyte-like cells that recapitulated the 23 

disease phenotype219. This technology coupled with the recently developed CRISPR 24 

method of gene editing to correct the Z mutation218 could generate ‘corrected’ PI*MM 25 

cells; theoretically, these cells could be used for autologous grafting without immune 26 

rejection. No human trials have yet begun and in vitro reports are still limited. However, 27 

the promise of this approach, which might be a long term answer to both lung and liver 28 

disease manifestations of this disorder is exciting (Box 1).  29 

 30 

[H1] Quality of life  31 
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1-antitrypsin deficiency can both shorten survival170, 176, 221-224 and can 1 

compromise affected individuals’ quality of life (QOL)(Box 2)225. This section reviews 2 

the prognosis of 1-antitrypsin deficiency, the impact of 1-antitrypsin deficiency on 3 

QOL, and factors that affect these. 4 

1-antitrypsin deficiency is associated with significant morbidity and mortality226. 5 

In a 1978 series, the median age at death for smokers with severe deficiency of 1-6 

antitrypsin was 40 years176 and in a 1988 series of 124 patients223, the cumulative survival 7 

to age 50 was 52%. In the largest available longitudinal study, the National Heart, Lung 8 

and Blood Institute (NHLBI) Registry of Individuals with 1-antitrypsin deficiency170 (in 9 

which 80% of subjects were current [8%] or ex-smokers [72%]), the mortality rate was 10 

~3% per year.  11 

In keeping with prognosis in COPD in general and on the importance of cigarette 12 

smoking as a driver of morbidity and mortality, FEV1 is a major correlate of mortality in 13 

1-antitrypsin deficiency; individuals entering the NHLBI Registry with an FEV1>50% 14 

experienced a normal expected survival whereas those with baseline FEV1<15% 15 

experienced a 36% 3-year mortality rate. In the Danish Registry of 347 patients, median 16 

survival for patients with FEV1<25% was 6.3 years, and increased to 10.5 and 14.2 years 17 

for those with FEV1>25% and 50%, respectively 221. Further regarding FEV1
227 and 18 

thoracic computed tomography densitometry228, these are important predictors of 19 

survival, with more rapid deterioration being associated with current smoking, age 20 

between 30 to 44 years, male sex, FEV1 between 35 to 60% predicted, asthmatic features, 21 

chronic bronchitis and previous episodes of pneumonia227, 229. 22 

Among never smokers with 1-antitrypsin deficiency, COPD is less prevalent and 23 

survival is longer. For example, Larsson 176 reported that the median age at death of never 24 

smokers was 65 years versus 40 years for smokers. On the basis of follow-up data from 25 

568 individuals in the Swedish Registry, Tanash et al. reported that PI*ZZ never-26 

smoking individuals ascertained as asymptomatic non-index cases experienced a normal 27 

lifespan (odds ratio for death = 0.7 compared with age- and gender-matched peers)222. In 28 

addition to smoking and lung function, the method by which individuals are ascertained 29 

as having 1-antitrypsin deficiency conditions prognosis in 1-antitrypsin deficiency; the 30 
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standardized mortality ratio is highest (5.0) for who come to attention because of liver 1 

symptoms222. 2 

The most frequent cause of death among individuals with 1-antitrypsin 3 

deficiency is COPD or sequelae. In the NHLBI Registry, emphysema accounted for 72% 4 

of deaths and cirrhosis for 10%224, whereas among PI*ZZ never smokers, emphysema 5 

accounted for fewer deaths (45%) but liver disease for more (28%)222. 6 

1-antitrypsin deficiency also contributes to substantial morbidity and impaired 7 

QOL. As with usual COPD, individuals with 1-antitrypsin deficiency-associated COPD 8 

experience depression, anxiety, dyspnea, and impaired health-related QOL. A 9 

comparison of these symptoms in patients with usual COPD versus 1-antitrypsin 10 

deficiency-associated COPD showed that a quarter of 1-antitrypsin deficient individuals 11 

reported symptoms of depression and 36% reported anxiety that was deemed clinically 12 

important230. While the degree of anxiety and depression was similar among 1-13 

antitrypsin deficient versus 1-antitrypsin-replete COPD patients, those with 1-14 

antitrypsin deficiency reported higher degrees of dyspnea (using the Modified Medical 15 

Research Council Dyspnea Scale) and worse health-related QOL (based on the St. 16 

George’s Respiratory Questionnaire [SGRQ]). In a series of 1062 individuals with severe 17 

deficiency of 1-antitrypsin225, those older than 59 years experienced fewer exacerbations 18 

and had better QOL scores (SGRQ and SF-36) than younger individuals. Though 19 

available randomized controlled trials have shown that augmentation therapy tends to 20 

slow emphysema progression186, 188, no convincing effect of augmentation therapy on 21 

exacerbation or health-related quality of life measures has been observed to date. That 22 

said the 2011 Global Initiative for Chronic Obstructive Lung Disease (GOLD) strategy 23 

performs well in identifying 1-antitrypsin patients with increased risk of poorer 24 

outcomes, specifically mortality, lung function decline and exacerbations231. 25 

On the other hand, participation in a disease management program consisting of 26 

directed patient self-education (i.e., with a comprehensive reference guide describing 27 

COPD and α1-antitrypsin deficiency) and organized supervision (i.e., through monthly 28 

telephone conversations with 1-antitrypsin deficiency program coordinators supervising 29 

participants’ understanding of long-term treatment plans) by 878 1-antitrypsin deficient 30 
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individuals receiving augmentation therapy was associated with 1-year improvements in 1 

medication use, enhanced compliance with supplemental oxygen, reductions in some 2 

measures of healthcare resource utilization (though not overall hospitalization rates), and 3 

selected improvements in healthcare-related QOL measures232. 4 

 5 

[H1] Outlook  6 

It remains unclear why the clinical presentation of patients homozygous for Z 1-7 

antitrypsin is so variable. In the Swedish registry of PiZZ individuals, respiratory disease 8 

was the most common cause of death (55%) while only a minority died of liver disease 9 

(13%)146.  Overall, respiratory symptoms were the most common presentation (43%) 10 

while liver disease was the presentation in only 7%. In never-smokers 28% of individuals 11 

fulfilled the spirometric criterion for COPD, which rose to 72% in exsmokers.  12 

Nevertheless, 1-antitrypsin deficiency is the most common genetic cause for paediatric 13 

liver transplantation. Moreover, when patients with PiZZ-related lung disease in one 14 

British centre were screened for liver disease, 17.5% were found to have severe fibrosis 15 

on liver biopsy233. Moreover as discussed, this variability may reflect the contributions of 16 

gene modifiers such as MAN1B1114. The ability to model these genetic differences using 17 

patient-derived iPSCs is beginning to address this219, 234. When differentiated into 18 

hepatocyte-like cells, iPSCs from individuals who had developed severe liver disease 19 

show delayed clearance of Z α1-antitrypsin and more prominent accumulation of 20 

inclusions. When combined with whole genome analysis, characterization of these 21 

differences is likely to clarify the effect of genetic modifiers. It is also possible that 22 

similar techniques could help personalize medical care by identifying those likely to 23 

develop liver disease. 24 

Augmentation with 1-antitrypsin is not yet universally accepted to prevent 25 

emphysema, although recent trials using surrogate endpoints for lung protection have 26 

been encouraging185, 186, 188. Although no one study is definitive, the weight of evidence 27 

clearly supports the efficacy of augmentation therapy in slowing the progression of 28 

emphysema in 1-antitrypsin deficient individuals. This therapy is expensive and requires 29 

repeated, lifelong, intravenous infusions. The level of 11µM as the normal 1-antitrypsin 30 

level is arbitrary and based on the not fully proven hypothesis that SZ individuals who do 31 
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not smoke do not have an increased risk for COPD/emphysema. There are a series of 1 

studies which suggest that in 1-antitrypsin deficient patients receiving augmentation 2 

therapy, when their 1-antitrypsin levels are at their nadir (just below the next infusion), 3 

that some of the immune-modulatory effects of α1-antitrypsin may be lost or lessened. 4 

The RAPID study also suggested that higher doses resulted in less CT lung density 5 

decline. Thus future trials should look at higher dosages and/or more sustained elevated 6 

levels of 1-antitrypsin. What also remains to be shown is whether the protection 7 

afforded by augmentation therapy is mediated solely by correction of the protease-8 

antiprotease balance or whether the beneficial effects are evident primarily due to 9 

modification of inflammation. Moreover, since the contribution of circulating polymers 10 

to the inflammation associated with the PI*ZZ genotype is unknown, it is impossible to 11 

predict if simple augmentation therapy can ever be successful without suppression of the 12 

endogenous protein.  13 

Other potential therapies that may supersede augmentation therapy are already on 14 

the horizon. In addition to the gene therapy, iPSC and gene editing approaches that have 15 

been discussed as yet it remains unclear whether these strategies can produce sufficient 16 

quantities of 1-antitrypsin in an active form to render augmentation unnecessary. 17 

Regarding targeting proteostasis, it is now appreciated that protein folding within 18 

different compartments of the cell is far more intertwined than previously believed235. 19 

Recent studies have suggested that targeting maladaptive protein folding responses in the 20 

cytosol can improve the folding of substrates within the ER including that of Z 1-21 

antitrypsin236. 22 

1-antitrypsin is only one member of a larger family of serine protease inhibitors 23 

(serpins). Many other members of this family are mutated in human disease and so it is 24 

likely that lessons learned from the study of 1-antitrypsin will have wider application 25 

(Box 3). For example, the neuron specific neuroserpin undergoes polymerization and 26 

formation of inclusion bodies in a manner precisely mimicking 1-antitrypsin, but 27 

neuroserpin accumulation leads to neurodegeneration and early onset dementia237. When 28 

agents are developed that prevent polymerization of 1-antitrypsin, they will lead rapidly 29 

to therapies for this and other serpinopathies where accumulation is the primary problem. 30 

Similarly, small molecules developed to mimic the anti-inflammatory effects of 1-31 
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antitrypsin would have much wider applicability since 1-antitrypsin augmentation 1 

therapy appears to be beneficial in other disorders including cystic fibrosis238, 239. 2 

There is more for the cell biologist to learn from 1-antitrypsin. The fact that 3 

different mutants of this one protein can induce either selective ER stress or ER overload 4 

makes it a versatile tool with which to probe ER dysfunction. The mechanism by which 5 

luminal accumulation of polymers can trigger downstream signaling is unknown, but it 6 

has been proposed that the ER overload may also mediate cellular responses to enveloped 7 

viruses and so, once again, the study of α1-antitrypsin could shed light on other more 8 

prevalent conditions240, 241.  9 

 10 

 11 

  12 
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Box 1. Emerging Therapies 1 

 2 

Liver directed 3 

 siRNA targeting the α1-antitrypsin mRNA 4 

 Autophagy regulators 5 

 Methods to enhance proteostasis 6 

 Approaches to refold +/or inhibit polymerisation of mutant 1-antitrypsin 7 

Lung directed 8 

 Inhaled α1-antitrypsin 9 

  Hematopeoietic stem cells + lentiviral α1-antitrypsin gene delivery 10 

 Intramuscular and intrapleural AAV-mediated delivery of 1-antitrypsin gene 11 

therapy 12 

 CRISPR-mediated correction of the Z 1-antitrypsin mutation in iPSCs  13 

 14 

  15 
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Box 2. Factors affecting symptoms and QOL in 1-antitrypsin deficient individuals with 1 

COPD230 2 

Symptom Comment 
Depression Decreased in those in a stable relationship rather than single 
Anxiety Increased in those who are younger and less educated 
Dyspnea Worse if single, and compared to non-α1-antitrypsin deficient 

individuals with COPD 
Impaired 
QOL 

Poorer compared to non-α1-antitrypsin deficient individuals with 
COPD, but less severe above 59 years of age 

 3 

 4 

 5 

  6 
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 Box 3. Other disorders caused by ER overload for which 1-antitrypsin deficiency 1 

represents a good model 2 

Early onset dementia and neurodegeneration resulting from neuroserpin 

accumulation237  

Thrombosis caused by antithrombin deficiency242, 243  

Angioedema associated with mutations in C1-inhibitor244, 245 

Emphysema due to loss of circulating α1-antichymotrypsin246, 247 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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Figures 1 

[Editor’s note to peer reviewers: We would welcome any specific comments you may 2 

have on how figures could be improved or any suggestions for new figures that 3 

would enhance the manuscript. Please note that all figures will be re-drawn by the 4 

Nature Reviews art team following peer review. As such, we kindly request that you 5 

focus your attention on the content of the figures rather than their overall 6 

appearance.]  7 

 8 

Figure 1. The natural history of α1-antitrypsin deficiency and/or Figure showing lung and 9 

liver manifestations. 10 

Please remove all text, and redraw as suggested by the reviewer as “one life timeline with 11 

different % along the life of an affected individual. This will summarize % of getting 12 

liver and pulmonary diseases along life, leaving a % asymptomatic (like all the % cited at 13 

the beginning of page 13).” See Fig. 1 in Huntington Disease Primer and/or Fig 3 in 14 

Menopause Disease Primer as examples. 15 

 16 

  17 
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Figure 2A: SERPINA1 gene/promoter structure and location of various mutations to be 1 

based on these diagrams 2 

 3 

 4 

 5 
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 1 

 2 

Figure 2B. Left. Proposed models of serpin polymerisation (key linkage motifs 3 

highlighted in black): i. Reactive centre loop- -sheet A linkage, ii, linkage by a -hairpin 4 

of the reactive centre loop and strand 5A and iii, linkage with strands 1C, 4B and 5B.  5 

Right. Structure of monomeric α1-antitrypsin with the position of key mutations shown in 6 

black.  "The intermolecular domain swap that forms the basis of the dimer is indicated by 7 

an arrow; '+' denotes the donor region, and '*' the acceptor region, that mediate 8 

interactions with adjacent subunits in the polymer chain Figures generated with PyMol by 9 

Dr James Irving, UCL, UK. 10 

 11 

 12 
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 1 

Figure 3. Intrapulmonary consequences of unopposed neutrophil elastase activity. 2 

Neutrophil elastase is normally inhibited by α1-antitrypsin. However, in the α1-3 

antitrypsin deficient lung, unopposed elastase activity can activate cell surface receptors, 4 

cleave proteins and transcriptionally upregulates expression of classes of genes. 5 

Please expand this figure to include….. 6 

  7 
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 1 

Figure 4. Liver injury cascade. The Z α1-antitrypsin protein is synthesized and retained in 2 

the ER of hepatocytes rather than secreted. Most of the mutant proteins molecules are 3 

degraded by ERAD but some escape proteolysis, polymerise and form inclusions in the 4 

ER. Although autophagy is activated to degrade the polymers, some cells remain 5 

engorged with Z polymers. Cells with the most polymers undergo apoptosis and redox 6 

injury. Hepatocellular regeneration is stimulated but a chronic cycle of cell death and 7 

regeneration leads to fibrosis, HCC and end organ injury. These events are impacted 8 

upon by genetic and environmental modifiers. 9 

Please add to this figure as follows:  10 
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 1 

Figure 5. Fates of antitrypsin within the endoplasmic reticulum. The nascent 1-2 

antitrypsin protein is translated and enters into the endoplasmic reticulum (ER) where it 3 

is cotranslationally glycosylated.  Exposed hydrophobic stretches are bound by the 4 
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HSP70 class chaperone BiP to prevent aggregation.  Trimming of glucose residues of the 1 

N-linked glycan by glucosidases I (GS1) and GS2 regulate interaction with the lectin 2 

chaperones calnexin (CNX) and calreticulin (CRT), which lead to folding by ERp57248. 3 

Antitrypsin is thought to be maintained in a soluble monoglucosylated form by 4 

reglucosylation by UGGT1249. If correctly folding, the antitrypsin in packaged in to 5 

COPII coated vesicles for traffic to the Golgi apparatus.  Misfolded antitrypsin (e.g. 6 

NHK) is eventually undergoes demannosylation by ER α-mannosidase I (ERManI) and 7 

exits the CNX cycle and interacts with EDEM. Further demannosylation eventually leads 8 

to interaction with the chaperones OS-9 and GRP94 and delivery to the HRD1 ubiquitin 9 

E3 ligase complex for ER associated degradation (ERAD)116. The E3 ligase gp78 has also 10 

been implicated in the degradation of antitrypsin.  If misfolded antitrypsin (e.g. NHK) 11 

accumulates within the ER, it is thought to sequester BiP away from the ER stress sensors 12 

PERK, ATF6 and IRE1 leading to activation of the unfolded protein response (UPR).  By 13 

contrast, if Z antitrypsin, which can also be degraded by ERAD, accumulates within the 14 

ER forms ordered polymers that appear inefficient at activating the UPR, perhaps owing 15 

to more limited interactions with BiP.  The mechanism of this polymerisation remains 16 

controversial.  The mechanisms by which polymers leads to activation of the ER overload 17 

response (EOR) are also poorly understood, but appear to require the release of calcium 18 

from the ER lumen.  Under some circumstances, polymers within the ER can be degraded 19 

by autophagy. 20 

 21 
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 1 

Figure 6. 1-antitrypsin DNA Sequencing and/or PI typing testing algorithm. 2 

(*)Protease Inhibitor Typing (by isoelectric focusing and/or DNA Sequencing). 3 

 4 

 5 

 6 

 7 

 8 

 9 
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 4 

Table 1. Prevalence of specific 1-antitrypsin deficiency phenotypes in selected 5 

population screening studies (adapted from 4, 146) 6 

 7 

 

Year 

 

Location  

 

Ref. 

 

Subject Population 

 

Number Screened 

Prevalence of Selected α1-antitrypsin  Genotype (%) 

ZZ SZ MZ SS 

 

2011 

 

Ireland 

 
168 

 

Electoral Register 

 

1,100 

 

0 

 

0.18 

 

4.18 

 

0.18 

         

 

2007 

 

Poland 

 
250, 251 

 

Random sample  

 

859 

 

0 

 

0 

 

2.10 

 

0.12 

         

1972 Finland 252 College  664 0.15 - 5.12 - 

         

1976 Sweden 5 Newborns 200,000 0.06 0.02 - - 

1979 Sweden 253 Military recruits 11,128 0.04 0.08 0.03 - 

2002 Denmark 254 Random sample 9,187 0.07 0.11 4.90 0.13 

         

1976 Netherlands 255 Population survey  1,474 0.07 0.07 2.24 0 

1980 Netherlands 256 Newborns 95083 0.03 - - 0.04 

1988 Belgium 257 Newborns 10,329 0.06 0.12 0.97 0.01 

1975 United Kingdom 258 Population survey 5,588 0.04 0.21 2.02 0.32 

1973 New York 259 Population survey 500 0 0 3.6 0.2 

1976 California 260 High school  1,841 0 0.27 1.85 0.05 

1977 New York 261 Newborns 1,010 0 0 1.19 0.89 

1977 Arizona 262 Population survey 2,944 0.07 0.20 3.0  

1978 Oregon 263 Newborns 107,038 0.02 0.01  - 

1984 Minnesota 264 Blood donors 904 0 - 2.77 0.22 

1989 Missouri 6 Blood donors 20,000 0.04 0.01 0.01  

1993  New York 265 Newborns 11,081 0.03 0.05 0.53 0.01 

         

1978 Italy 266 Outpatients  202 0 0 1.98 0 

2011 Italy 267 Town screening 817 0.12  5.6 0.12 

         

1973 Spain 268 Population survey 576 - - 1.04 - 

2009 Madeira 269 Volunteers 200 0 1 4 3 

2010 Cape Verde 270 Volunteers 202 0 0 0.5 1.49 

         

1973 Zaire 271 Population survey 132 0 0 0 0 

1977 Somalia 272 Newborns 347 - 0.03 0.0006 0.04 

2011 Saudi Arabia 273 Volunteers 158 0 3.8 2.53 1.9 

         

1977 Japan 274 Blood donors 856 0 0 0.23 0 

  8 
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Table 2. Results of targeted detection studies for 1-antitrypsin deficiency. Adapted 1 

from7, 168, 275.  2 

Detection Strategyref  Number of Patients Prevalence of Specific AAT Phenotype (%, N) 

PI*ZZ  PI*SZ PI*MZ PI*SS PI*MS Other 

Targeted detection 

(Patients with COPD, 
emphysema, asthma, or 

bronchiectasis)276 

1060 evaluable 

samples from 1156 
(Germany) 

0 

 
 

 0.2% (N = 3) 3.7 % (N = 39) 0.09 % (N 

= 1) 

 3.4 % (N = 

36) 
 

PI*M Null - 0.09 %  

(N =1) 
 

Case-finding linked to 
an AATD awareness 

program277  

2696 (Germany) 9.9% (N = 
268) 

2.0% (N = 
53) 

18.1% (N = 
488) 

 3.6% (N = 
97) 

 

Rare phenotypes – 0.5%  
(N =13) 

 

Case-finding (Patients 

with COPD)278 

2137 (Spain) 0.37% (N = 

8) 

0.14% (N = 

3) 

 0.14% (N 

=3) 

  

Case-finding 

(Emphysema without 

risk factors or of early-
onset, spontaneous 

pneumothorax, cervical 

artery dissection, PAS 
positive bodies in liver, 

isolated transaminase 

elevation, ANCA 
positive, or low alpha-1 

proteins on protein 

electrophoresis)279 

285 specimens 

collected over 9 years 

(Italy) 

12% (N = 

26) 

 

8% (N = 17) 

 

62% (N = 131) 

 

 14% (N = 29) 

 

PI*ZI 0.35 % (N = 1) 

PI*ZMmalton – 0.35% (N = 1) 

PI*MMmalton 2.1% (N = 6) 

Case-finding (Targeted 

detection in COPD 

with education program 
and free testing)280 

969 (Florida) 3.2% (N = 

31) 

 

0.4% (N = 4)  

 

11% (N = 107)    

Case-finding (missing 

or reduced alpha-1 

globulin band, early 
onset emphysema, 

familial cluster, first 

degree relative of 
subjects with 

ascertained AATD or 

MZ heterozygosity)281 

1841 (Italy) 6.4% (118) 0.9% (17 )    Null Null 0.4% (8) 

Z null 0.2% (4) 

Rare variants 0.2% (4) 

Case-finding 

(individuals with 

abnormal PFTs)282 

225 0  2.7% (N=6)  7.1% (N=16) PIFF 0.4% (N=1) 

Case-finding (Patients 

with advanced COPD 

admitted for carotid 
body surgery)260 

965 1.9% (N= 

18) 

0.3% 

(N=3/965) 

7.7% 

(N=74/965) 

0.3% 

(N=3/965) 

10.1 (N= 

75/742) 

 

Case-finding283 29 0  1    

Case-finding 

(Physicians receiving 
results of pulmonary 

function tests showing 

fixed airflow 

obstruction were 

prompted in the 

electronic medical 
record to test for 

AATD)8 

624 (baseline) vs. 979 

(after implementing 
the electronic alert) 

1/38 whose 

phenotype 
was 

checked 

after 

implementi

ng the 

electronic 
alert 

0 1/38 0 2/38 No difference in the rate of  

detecting AAT deficient  
patients (serum level < 100 

mg/dl) before (8.9%) vs. after 

(5.3%) implementing 

 the electronic alert 

National targeted 

detection programme 
following ATS/ERS 

guidelines168 

12,000 (Ireland) 1.83% 

(N=219) 

1.38% 

(N=165) 

13.81% 

(N=1657) 

0.5% 

(N=60) 

10.08% 

(N=1209) 

Electronic red-flag on AAT 

<1.0g/l in 7 participating 
centres 

 3 

  4 
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Table 3. List of pathological mutations, other than Null, of SERPINA1 gene which cause 1 

1-antitrypsin deficiency. Mutation(s) column reports codon contig by fixing codon 1 as 2 

first translated codon after signal peptide. Mutations are named according to 3 

electrophoretic mobility and eponym, as reported in literature. Base allele and RefSNp 4 

(rs) numbers are reported if available. Minor allele frequencies (MAF) are inferred from 5 

consultation of http://www.ncbi.nlm.nih.gov/projects/SNP. 6 

 7 
Mutation(s) Name Base allele Rs Intron/exon 

position 

Minor 

allele 

frequency 

(MAF) 

AAT protein Ref 

S -19TCG>L 

TTG 

Zwrexham  Rs140814100 Exon 2, signal 

peptide 

0.0001-

0.0002 

reduced 27 

H 15CAC>D 

AAC 

Ejohannesburg M1(Val) Rs138070585 Exon 2 0.0000-

0.0001 

reduced 28 

D 19GAT> A 

GCT 

Pyonago M1(Val)  Exon 2 Single 

reports 

reduced 29 

R 39CGT>C 

TGC 

I M1(Val) Rs28931570 Exon 2 0,001-

0,0006 

reduced 30 

L 41CTG>P 

CCG 

Mprocida M1(Val) Rs28931569 Exon 2 <0,00001 reduced 31 

L 41CTG 

del8bp, 

ins22bp, 

del30bp> Ter70 

Mvarallo   Exon 2 Single 

reports 

absent 32 

F 52TTC, del 

TT 

Mpalermo M1(Val)  Exon 2 Single 

reports 

reduced 33 

F 52TTC, del 

TTC 

Mmalton M2  Exon 2 Single 

reports 

reduced 34, 35 

F 52TTC, del 

TT and G 

148GGG>R 

AGG 

Mnichinan M1(Val)  Exon 2 Single 

reports 

reduced 36 

F 53TTC>S 

TCC 

Siiyama M1(Val) Rs55819880 Exon 2 Single 

reports 

reduced 37 

G 67GGG>E 

GAG 

Mmineral 

spring 

M1(Ala) Rs28931568 Exon 2 Single 

reports 

reduced 38 

T 85AGG>M 

ATG 

Zbristol  Rs199422213 Exon 2 0,0000-

0,0002 

Reduced , 

unglycosylated 

39 

G 148GGG> R 

AGG 

V M1(Ala) Rs112030253 Exon 2 0,0006-

0,001 

Slightly 

reduced 

33 

K 154AAG> N Queen’s   Exon 2 Single 

reports 

reduced 40 

K 174AAG> E 

GAG 

Flyon  Rs766034720 Exon 2 <0,00001 Slightly 

reduced 

41 

H 209CAC> N 

AAC 

E M4  Exon 3 Single 

report 

reduced 42 

V 210GTG> E 

GAG 

M1pierre-benite  Rs746197812 Exon 3 <0,00001 reduced 43 

R 223CGT> C 

TGT 

F M1(Val) Rs28929470 Exon 3 0,001-

0,003 

Slightly 

reduced 

44, 63 

G 225GGC> 

RCGC 

Pbrescia   Exon 3 Single 

report 

reduced 45 

http://www.ncbi.nlm.nih.gov/projects/SNP
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N 256GAT> V 

GTT 

Plowell/Pduarte M1(Val)/M4 Rs121912714 EXON 3 0,0004-

0,0006 

reduced 46-48 

N 256GAT> V 

GTT and P 

391CCC> H 

CAC 

Ybarcelona   Exon 3-Exon 5 Single 

report 

reduced 49 

K 259AAA> I 

ATA 

Mpisa M1(Val)  Exon 3 Single 

report 

reduced 50 

E 264GAA> V 

GTA 

S M1(Val) Rs17580 Exon 3 0,019-0,03 Slightly 

reduced 

51 

E 264GAA> V 

GTA 

T, Pnorth adams M4  Exon 3 Single 

reports 

Slightly 

reduced 

33, 42 

T 268ACC> I 

ATC 

Nhartford city M1(Val) Rs28929470 Exon 3 <0,0001 reduced 42, 55 

L 276CTG> P 

CCG 

Nnagato M2  Exon 3 Single 

report 

reduced 29 

S 330TCC> F 

TTc 

Smunich M1(Val) Rs201788603 Exon 4 0,0002 Slightly 

reduced 

33 

g.16770, 

del26bp,insGG 

Mwhitstable M2  Intron 4 Single 

report 

reduced 52 

H 334CAT> N 

GAT 

King   Exon 5 single 

report 

reduced 53 

K 335AAG> E 

GAG 

Etokyo M1(Val) Rs200945035 Exon 5 0,0002-

0,0006 

reduced 54 

A 336GCT> T 

ACT 

Wbethesda M1(Ala) Rs1802959 Exon 5 <0,0001 reduced 46 

N 341GAC> 

HCAC 

Zlittle rock S  Exon 5 Single 

report 

reduced 42 

E 342GAG> K 

AAG 

Z M1(Ala) Rs28929474 Exon 5 0,004-

0,012 

reduced 56 

E 342GAG> K 

AAG 

Zaugsburg M2 Rs28929474 Exon 5 Single 

report 

reduced 57, 58 

M 358ATG> R 

AGG 

Pittsburg  Rs121912713 Exon 5 Single 

reports 

dysfunctional 59 

P 362CCC> H 

CAC 

Psäo tomè   Exon 5 Single 

report 

reduced 60 

E 363GAG> K 

AAG 

Xchristchurch  Rs121912712 Exon 5 0,0018 Slightly 

reduced 

61 

K 368AAA> E 

GAA 

Etaurisano M2  Exon 5 Single 

report 

reduced 50 

P 369CCC> S 

TCC 

Mwurzburg M1(Val) Rs61761869 Exon 5 0,0002-

0,0003 

reduced 62 

P 369CCC> L 

CTC 

Mheerlen M1(Ala) Rs199422209 Exon 5 0,0000-

0,0001 

reduced 62 

P 391CCC> H 

CAC 

Yorzinuovi M1(Val)  Exon 5 Single 

report 

reduced 50 

 1 

  2 
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Table 4. 1-antitrypsin augmentation therapy observational studies and clinical trials  1 

 2 

Design Reference Year Main outcome 
measures 

Outline Ref. 

Randomised Chapman 
(RAPID 
Study) 

2015 Slower rate of lung 
tissue loss on CT 

177 
subjects 
2-4 yr 
follow up 
 

188 

Randomised Dirksen 
EXACTLE 
Study) 
 
Dirksen 

2009 
 
 
 
1999 

Trend towards 
slower rate of lung 
tissue loss on CT 
 
Trend towards 
slower rate of lung 
tissue loss on CT 

77 subjects 
2-2.5 yr 
follow up 
  
56 subjects 
3yr follow 
up 
 

186 
 
 
 
185 

Observational Seersholm 1997 Reduction in FEV1 
decline in cohort 
with FEV1 31-65% 

295 
subjects 
>1 yr follow 
up 
 

184 

Observational NHLBI 
Registry 

1998 Reduction in FEV1 
decline in cohort 
with FEV1 35-49% 

1,129 
subjects 
c.7.2 yrs 
 

170 

Observational Lieberman 2000 Reductions in 
exacerbations 

96 subjects 
1-10 yrs 
 

181 

Observational Wencker 2001 Slower rate of FEV1 
decline 

96 subjects 
>12 months  
 

182 

Observational Tonelli 2009 Slower rate of FEV1 
decline 

164 
subjects 
41.7 months 
 

183 

 3 

 4 

  5 
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